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Abstract: Gaussian process (GP) models encounter com
large spatial datasets since its computational complexity
ple size n. Although the Full-Scale Approximation (FSA!
ing function provides an effective way for approximating G
shortcomings such as the less smooth prediction surface on block boundaries an
sensitiveness to the knot set under small-scale data dependence. To address
issues, we propose a Smoothed Full-Scale Approximation (SFSA)
analysis of large spatial dataset. The SFSA leads to a class of scalable mod-

y reduced-rank covariance

els, whose covariance functiops consist of two par

function capturing large-scalef@patial dependence a 1ce adjusting lo-

endence scales 8

on block boundggies; it also lead NSt nce and prediction results
under different x

variance. The proposed method pm \ W¥w of approximation methods

patial covariance functions.

¥s arising from ecology, climatology, and other disciplines have
generated considerable interests for scientists. With the advent of remote sensing
and Geographic Information System (GIS) techniques, the spatial data collection

capacity increases dramatically, and statisticians nowadays are often facing a
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large number of observations on variables of interest. The growth in data volume
imposes computational challenges to classical geostatistical models (Stein (1999);
Banerjee et al. (2014)) and has driven the innovations of computational methods
scalable to handle large datasets (e.g., Sun et al. (2012)).

One of the most popular models for spatial datasets is the Gauss\l process
(GP) model, assuming that finite observations are jointly Ggussian. Although
GP models enjoy mathematical tractability for model fitti ‘
computational complexity generally grows cubically
expensive matrix operations. Specifically, calculati
determinant of an n x n covariance matrix of a GP ty
ing point operations per second (flops), making model fitting 0
computationally prohibitive for very large n.

Recently, Sang and Huang (2012) proposed a so-called F'
mation (FSA) approach to approximate the original covariance function of GP
models for large spatial datases By combining

els and sparse models, it can

oas of both low-rank mod-

oroximate the d ce matrix well un-

der both large- and small-scale dependen
els (e.g.,Higdon (2Q02); Banerje
(2011); Ngu

the original spatial process by a is based on a reduced number of

nd Johannesson (2008);

Katzfuss and Cress )) seek to approximating

‘an enjoy computational complexity

bcal variations well when using limited

Lvariance matrix (Furrer et al. (2006); Kaufman
‘aussian-Markov property of the spatial random field
recision matrix (Rue and Tjelmeland (2002); Lindgren

et al. (2011)).

use co

¢ way for inducing sparsity of the precision matrix is to
Poods (e.g., Vecchia (1988)), and most recently, Datta et al.
(2016) proposed a nearest-neighbor GP (NNGP); a new permutation and group-
ing method for improving the performance of NNGP can be found in Guinness
(2016). Most recent “hybrid” methods extending the low-rank models include
Nychka et al. (2015); Katzfuss (2017); Ma and Kang (2017). The modern-version
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local GP models (e.g., Gramacy and Apley, 2015; Gramacy and Haaland, 2016;
Zhang et al., 2016; Park and Apley, 2017) can also be applied very effectively
to modeling large or massive spatial data. Lastly, the divide and conquer based
approaches have also been proposed to model large and nonstatiogary spatial
datasets. See, e.g., the treed GP (e.g., Gramacy and Lee, 2008; Kor&

2014) and the spatial meta kriging (Guhaniyogi and Banerjee\2017).

ni et al.,

Let C(, -; @) be the original covariance function of a
accurate approximation to C(-,-;8), the FSA appr
original covariance function using the covariance func
process model (Banerjee et al. (2008)), denoted by C;
covariance, defined as Cs = C — (;, is approximated by a sparse

definite function. The covariance function of FSA, denoted by CT(,;

evaluated on observed Spatiaﬁcations. If we se (-, -) to be compactly

supported covariance functions Gneiting (2002)

is referred to as FSA-Taper; if K(-,-

same data block agd K(-,-) =0 A ulting approximation is
referred to as F SA\’ock. It turns ock outperforms FSA-Taper

empirically (Sang et al. (2011)), ‘ 1ts nature of being an unbiased
approximation of coviai { , block, and the convenience of using

parallel computation. extends the FSA-Block approximation

Pcion of GP models, it has several shortcomings.
nd boundaries of two adjacent blocks by the FSA-
s smooth than the rest of the regions, mainly due to the
amption for the residual covariance function, Cy; the mis-
%5 on block boundaries can result in large prediction errors
on locations close to block boundaries. Second, although the overall performance
of the FSA-Block is more robust than that of the predictive process and inde-
pendent block estimations to the choice of knots and blocks, the approximation

error for the residual-covariance information across blocks can be severe when
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the predictive-process part does not perform well (e.g., when the underlying spa-
tial process is less smooth or the knot number is insufficient), leaving room for

further improvement.

In this paper we develop a new covariance approximation for gpatial GP
models. We first extend the nearest-neighbor GP models develope&ay Datta

et al. (2016) to construct a nearest neighboring block GP model We then propose

residual covariance with a reduced-rank predictive
relax the independent-blocks assumption in FSA-B
the dependence between each block and its neighbo
covariance matrix. The proposed method can alleviate the

predictions on boundary locations for the FSA-Block approach. We na

process models scalable to largg datasets. There soth parameter estimation
and prediction by the SFSA a;x

work due to the existence of a closed-for

oach can be read ler a unified frame-
of the SFSA Gaussjan process al
chical spatial modesﬁo facilitate c maintaining model richness.

The SFSA also provides a

brella, including the pr

|, the indepeiggant < 0d, and the nearest-neighbor GP approxi-

¥.putational methods for large spatial datasets.

is organized as follows. Section 2 reviews the FSA-

V. 4 gives details on the parameter-estimation and prediction
procedures of SFSA. Section 5 defines the valid GP constructed from the SFSA.
We compare SFSA with other state-of-the-art methods through simulation stud-
ies in Section 6.1 and a total column ozone dataset in Section 6.2. Finally Section

7 concludes the paper with a brief summary and discussions of some potential
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extensions. The proof of theorems and additional numerical results are given in

the supplementary materials.

2. Methodology
2.1 The spatial regression model \

Let y(s) be a response variable observed at a spatial locgtion s € S C R,
where S is the spatial domain and d = 1,2,3. We G\( s) through t

following spatial regression model:

y(s) = x(s)" B +w(s) +e(s),

where x(s) is a p-dimensional vector of covariates, 3 is a vector of reg
coefficients, w(s) is a latent mean-zero Gaussian process, and ¢(s) is
white noise process with a constant variance 72, independent o
ance 72 is often referred to as the “nugget,” accou
effect. The dependence struct\? of w(s) is speci

tion, C(s,s’;0) = cov(w(s),w(s’)). For example, t

= o2 exp(—h?/¢), and the exponential covariance
p(—h/¢), are two special cases of (2.2) with v — oo
and v = 0.5, re

Now sup 1s observed at n spatial locations in S = {si,...,s,}. Let

y=(y " be the observed response vector and x = (x(s1), ..., z(sp))
be the n x p design matrix. The log-likelihood function is:
1 T 1 1 n
Uyl0.8) = —5(y —xB)" G5 (y = xB) — 5|Cy| — 5 log(2m), (2:3)

T
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where Cy = var(y) is the data covariance matrix. Since evaluating (2.3) in gen-
eral requires O(n?) flops for calculating |Cy| and Cy L. the computational cost

can be very expensive or even prohibitive when n is very large.

2.2 The FSA-Block approach
In this subsection, we will briefly review the FSA-Block approach. The FSA-
Block approach (Sang et al. (2011); Sang and Huang (2012))\ motivated fr

the decomposition of the latent spatial process w(s):
w(s) = wi(s) + ws(s),

where w;(s) is the Gaussian predictive process (Banerjee et al.

is referred to as the residual process of w(s) that is independent of w;

tions and inaccuracy in spatiag predictions (e.g., inley et al. (2009); Stein
(2014)). a\

Let S* = {sj,...,s’ } be a (pre- | ‘ocations in S, referred
to as the knot setg In the follqQ > senéric notation C(A, B) =
[C(si,sj)]sieAﬂsjeBt& for two location sets A and

B. The covariance function of w

(2.5)

(2.6)

Yora, Cy,, is positive definite when S N S* = () and positive
semi-definite otherwise. In general, C,, has a dependence structure of a smaller
scale than the full covariance but it is still a dense matrix. Sang et al. (2011)
proposed to approximate Cy,. by a block-diagonal matrix to reduce computations

while preserving the residual-covariance entries within blocks. Specifically, let P
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be a partition rule that partitions the observed data vector y into K disjoint sub-
vectors yi of length ng, for k = 1,..., K. If one groups observations according
to blocks, then the approximated likelihood by the FSA-Block approach follows
the Gaussian distribution, N'(x3, (Cy, + Cw. o Tg + 721,,)), where Tt\is a block-

diagonal matrix with 1,, 17 as its k-th block, 1,, is an ng x 1 vector

P “ones, I,

of

=], an addition!

is an identity matrix of size n, and o is the Schur product (entgywise product)
two matrices. Compared with Cy,, by the predictive pro t\
block-diagonal residual covariance matrix is incorpor
mation errors within each data block. Since (C,,, o
it takes O(n) order flops for computing its inverse a
shown that the computational complexity of the FSA-Block appr
with n (Sang and Huang (2012)).

However, the independent-blocks approximation of C,, ig

severe when wj(s) does not pygvide a good app ation for w(s) so that the
entries across blocks of the ré&lual covariance

the knots are not placed properly or the ; insufficient). More im-

portantly, since the approximati 1ante matrix by FSA-Block
are zero for data me the same b

for data across blocks, there
exist jumps of approximation err ) h data block and its neighboring

*

* )T denote the vector of w(-) evaluated on the

L w(s

knot set. To motiv. :he new method, we write the data likelihood as
P516.6) = [ p(y18.6,w°) - p(w" [0)dw"

where p(y|3,0,w*) follows N'(x8 + C(S, S*)C(S*, S*)~tw*, Cy, + 72I,). The
computational bottleneck lies in evaluating p(y|3,0,w"), since C,,, is a dense

matrix in general. We propose to replace p(y|3,6,w*) with some Gaussian
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density whose computations are less expensive; then after integrating out w*,
an approximated Gaussian likelihood with a reduced computational cost can be

readily obtained. Note that compared with the original data covariance matrix,

the covariance matrix in p(y|3, 0, w*) has entries closer to zero. The‘fore, data
v on w*.

located in distant blocks are more likely to be independent, conditio

‘posite likelihood

This observation motivates us to use the conditional block ¢
(CBCL) approach in Stein et al. (2004) for approximati

Specifically, let P be a partition rule leading to
the corresponding partition of observations y = Uk,K:
a size of ny, and Zle ng = n. Let yp_1) = yT,.
Y(0) = 0. By the chain rule,

K

p(Y|/Ba Ha W*) = Hp(Yk‘y(k—l)a /67 0, W*)
k=1

When n is very large, it is cor\lvtationally expe s cvaluate the full condi-

tional density, p(yk|Y(k71) ) ﬁa 07
sional. Thus, following Stein et al. (200¢),

subvector of y(k_l)ﬁr the k-th

*), for a large k, .—1) is high dimen-
)

\

conditional set to be a

3,0, ,B,0,w"), (2.7)

closeness” may be measured by the Euclidean distances

of block centers). ecific, Sy is defined as

v, if k= ].,
{81,52,...,Sk—1}, if k <g;
g-nearest blocks in {S1,S2,...,S,_1}, if k> q.

In practice, one chooses K to partition the data such that each data block con-
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tains only a few hundreds observations for computation efficiency. By choosing
g < K, evaluating p(y|3,0,w™*) is computationally efficient. The FSA-Block

approach is a special case of the proposed method when one uses () as the condi-

tional set for every y. Usually we choose ¢ > 1 to ease the discontingity issue of
approximation errors across data blocks. We later show that the predi\on errors
around block boundaries can be reduced by applying the propgsed approach. We
name the proposed approach the Smoothed FSA (SFS \Lch.

Next, we show that the SFSA approach gener Gaussian ligelih

. For residual ¢

with a closed-form expression for its covariance mat
matrices of (ws(-) + €(+)), we use the generic notati
€(S4),ws(Sp) + €(Sp)) and Y4 = var(ws(Sa) + €(Sa)), where

two sets of spatial locations. Now, for &, =1,..., K, define

In,, it 1=k
By = [fzk,N(k)zflk)} (oo +1: if 1 € N(k);
0, J\\ ‘wise,
(2.8)
where n;y = Zléia'éN(k) n;. o n; matrix encoding the con-
ditional dependence

1formation het block and the I-th block. Let
B; = (B, ... ‘
Section S1.1) the conSga kY N(k)> B, 0, W"), is proportional to

‘*)TBZTEIQ}V(@BZ(Y -xB - Uw")},

';Vl(k)Z;f N (k) is the residual covariance of the k-th
‘ghboring blocks, and U = C(S, S*)C(S*,S*)~1. The
che following likelihood:

K
— [ TTptalyie: 8.6.w") - piw* O
W =1

The following theorem shows that this approximated likelihood corresponds to a

Gaussian density with a closed-form covariance matrix.
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Theorem 1. Let y ~ N(x3,Cy), then the approzimated likelihood by the SFSA
approach, p(y|B,0), follows N(x,@,C’;), where

Ch = B7'S0n BT +C(S,S7)C(S*,8%)71e(s, 57,

where Ycon is a block-diagonal matriz with Yy k) as its k-th block,“and B =
(Bf',...,Bi )T e R™™, \

oL Sll

The proof is given in the supplementary materi

2.4 A new unifying view

The proposed method offers a unified approximatio
models. Evidently, the method is a direct generalization of the FSA-Bloc
proach (SFSA with ¢ = 0) and the conditional block composgte Lilald
proach (SFSA with m = 0), and hence includes both as spec .
for spatial GP models that

Thus,

SFSA provides a unified approximation framew

allows us to compare different @Wethods directly.

Below we compare the performance of each terms of covariance
matrix approximation. Figure 1\§hows nces of entries between
the approximated d@a covariance sinal data covariance matrix,
for each of these three approach ¥)00 locations were randomly
generated in a squage domXin and the exponential covariance
function, C(s,s’) = e 2 nugget effect 0.01, was used to gener-

ate the covariance Pltions. For all three approaches, equally

block index takes an increasing order from

roximation errors by SFSA are much smaller than those
by the
tween neighboring blocks. Compared with the CBCL approximation, while both

approach, due to the corrections of residual covariance be-

approaches provide good approximations for covariance entries within a certain
location band, the SFSA approach leads to smaller approximation errors for the

residual covariance entries off the location band, due to the inclusion of the low-
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Residual covariance Residual covariance
. 0.8
1000 1000
0.6
2000 2000
0.4
3000 02 3000
4000 4000
1000 2000 3000 4000
(a) FSAB, K = 100.
Residual covariance
) 0.8
1000 [ 1000
| 0.6
2000 2000
0.4
3000 02 3000

4000

— 4000
1000 2000 3000 4000

(¢) CBCL, K = 100,

Residual covariance

. N
1000 5""&1‘ 'i\'-
o M
.
2000 '\'i'n,
" e i
3000 . .

1000 2000 3000 4000
(f) SFSA, K = 16.

1ce matrix for three methods. SFSA: the Smoothed
?che FSA-Block approximation; CBCL: the Conditional
approximation.

rank predi component.

2.5 C 1g parameters for SFSA

roach requires specifications of several tuning parameters, in-
cluding a knot set, a scheme of block partition, the ordering of data blocks, and
the number of neighboring blocks ¢. For the knot set, random sampling, Latin
Hypercube Sampling (McKay et al. (1979)) or a spatial grid can be applied to

place knots with a good space coverage. Alternatively, we can treat the knots as
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unknown parameters and model them stochastically (Guhaniyogi et al. (2011);
Katzfuss (2013); Zhang et al. (2015)). For the block partition, Eidsvik et al.
(2014) provided some guidance on blocking strategy, and recommended to use
the empirical variogram to determine the block width. The K-meang clustering
algorithm based on Euclidean distances of locations is a simple chn(ke for cre-
ating blocks; alternatively, one may apply a clustering algorighm based on the
estimated covariance matrix from a pilot study to acc
For uniformly spaced spatial locations, we recommen
blocks (e.g., see Eidsvik et al. (2014); Katzfuss (201
very well. In this paper we have focused on using r
implementation of our method. For highly non-uniformly distribu
launy triangulation (e.g., see Lee and Schachter (1980)) might be a more ¢
partition method to create meshes for the proposed method.

After creating the blocks, it is necessary to order the blocks for constructing
the residual likelihood of SFS‘ Following Gui (2016), we compared the

"SA for a few or 10ds, including the

model-fitting performances of
sorted-coordinate (SC) ordering, the r e maximum-minimum-
distance (MMD) Orﬁring, and t

tary material, Sect S2.1). Base

g (see the supplemen-
on-study results, we recom-
mend using the SC ordering for data and the CO ordering for
Lastly, the selecti of neighboring blocks (g) is a trade-off
1" the statistical efficiency. Apparently, the
v blocks, the more accurate approximation the
Pnulation results (see the supplementary material,

ber of neighboring blocks such as ¢ = 3 or 4 (with a

Z“uclidean distance between block centers becomes a natu-
ral choice to determine the ¢g-nearest neighboring blocks. Alternatively, one may
define the “closeness” of two blocks by a distance metric between the residual
correlations of observations in two blocks. But apparently such an approach re-

quires the estimation of residual correlation and will increase computational cost.
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Table 1: Notations for SFSA.

Sample size: n
Knot number: m
Block size: ng
Number of blocks: K \
Number of neighbors: ¢

More detailed discussion on finding the nearest neig

residual correlations is provided in the supplementar

3. Computational Aspects of the SFSA Approach

We first determine the computational complexity for evaluatj
likelihood of SFSA. For simplicity, suppose all data blocks ha

y—1

“con

B

Evaluating the d

cient, since we only

'FSA likelihood is computationally effi-
¥ determinants of two m x m matrices and
evtuating |UT BTY ! BU|, we need to obtain
that B is a sparse matrix with at most (gny + 1)
1d hence calculating BU is cheap with computational
0 obtain each diagonal block of the block-diagonal ma-
trix Yeon, We nee nvert a (gnp X gng) residual covariance matrix for neigh-
hich has the computational complexity of order O(g3n3).
con has the order O(K¢*n}) = O(ng3n?).

Now suppose Y.,, has been obtained. To evaluate the quadratic term in
(3.1), the required quantities are (y — x83)" BTY_ ! B(y — x3), U' BT}, BU,

and UTBTY ! B(y — x8). Recall that X, is block-diagonal, and its inverse

con

takes O(Knj) = O(nn}) flops; BU has computational complexity O(nmgny),
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because B is a lower-triangular matrix with at most (gny+ 1) nonzero entries per
row and U is an n by m matrix; similarly, evaluating B(y — x3) needs O(ngny)
flops. After Y1, BU, and B(y — x3) are calculated, (y — x8)" BTl B(y —

con? con

x3) needs O(nny, + n) flops, UTBTY_ ! BU needs O(nm? + nmnb‘lops, and

UTBTY ! B(y — x3) needs O(nny + nm) flops.

con

Therefore, the computational complexity of the SFSA appgoach has the order

O(ng*n? +nmgny+nm?). In practice, the data is partiti
that each block has a block size of a few hundreds.
size m to be a few hundreds and set ¢ < K, the S
computational complexity linear with n.

Parallel computation is possible for evaluating SFSA’s likelihood-

B = (Bi*T, cel, B}‘(T)T is a lower-triangular matrix, where B}, = (By.1,. ..

(y —x8)" B' 2, B(y —x

con

Similarly, \

Y UTB Sy Bily —xB).
k=1

1d hence avoid the loop in algorithm 1. By using K cores,
the co i iplexity of SFSA has the order O(¢*nj + mqni + nym?).
R™ ™ it will require large memory to store U for very large n.
We remark that due to the sparsity of B}, only Uy = C(Sk, S*)C(S", S*)~1 and
Un(ky = C(Snw), S*)C(S™, 5*)~1 are required to calculate BjU when evaluating

the likelihood of SFSA.
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Algorithm 1 Evaluating the log-likelihood function of SFSA.
1: Compute C, = C(S*,8*) and U = C(S, S*)C(S*, S*)~1. Factorize C, = QT Q..
2: for k=1 to K do
3: Compute Xy, i n(k), and Yy (). Then compute B = (Bg,1, ..., Br,x) according
o (2.8).
4: Compute 2k|N(k) Y — 2k N(k)EN(k) N (k) Factorize Zk\N(k) = QZI ';)Qk\N(k)'

UTBk k|N( )Bk(y x03).

6: end for

7: Sum up the quantities for each block to obtain (
UTBTY} BU, and UTBTY_} B(y — x83).

8: Compute the quadratic term in (3.1) and Sy« = UT

9: Compute the log of determinants: log|Xy-

K
2 3 log|Qun(r)| and log |C.| = 2log |Q«.
k=1
10: Evaluate the log-likelihood function in (3.1).

5: Compute the quantities (y —x3)T B Ek&v(k)BZ (y —x8), UTBﬁzkﬁv( )B;U7 and

10min ¢ T T —_——
5min L[|~ SFSA, q=0(FSAB) 3
L|-o- SFSA, q=1 -
||—+ SFSA, q=3 7 ]
1min F|~® Full GP - _g
30s o %
g i _ o ]
g + 3
7 ]
o) ]
1 1
50K 100K 500K ™ 2M

wle). For SFSA and FSAB, m = n, = 200, and the results were
cores.

obtained by using

Fig s the computational time of SFSA for different sample sizes.
We can see that for the data size of two millions, evaluating the likelihood of

SFSA with ¢ = 1 can still be done in a short time.

4. Parameter Estimation and Prediction
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4.1 Maximum likelihood estimation
The maximum likelihood estimators maximize the log-likelihood function

in (2.3). To facilitate computations, we replace the full covariance matrix Cy

with the approximated covariance matrix C;L, in Theorem 1. The apgroximated
log-likelihood by SFSA is: p\

_ 1 -
logi(y1B.6) = —5(y = xB)TC] (v —xB) —
We calculate the inverse covariance matrix as (see e

i =3}, — 2L BUS,.-UTBTS

con con

Algorithm 1. For |C’;f,| (see equation (S1.3)),

Gy = UTBTS,BU + C 1| - |

con

Calculation of UT BTY ! BU it®olves the multip an n X n matrix B

nonzero entries pel‘)vv, and he 5 cheap with computational

complexity O(ngny™,. Then efficie are achieved, since calculat-

ing C;r, only involves computjing

).\ prior 7(B) ~ N (pg, Xo) can be assigned to 3.
the form of a covariance function. Taking the Matérn
covarlanc (2.2) as an example, the inverse gamma prior IG(a,b)
can be assigned variance parameter o2 and the nugget 72, where hyper-
bsen to assign vague priors or to reflect reasonable guesses
for the mean and variance; for the dependence range parameter ¢, a uniform
prior with a reasonable support of practical dependence ranges can be used; and
for smoothness parameter v, usually a uniform prior at (0, 3] is used, since high

values of smoothness can hardly be identified from real datasets.
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The marginalized likelihood that integrates out both 8 and w is

p(yl6) = /ﬁ p(y18.0)r(B)AB ~ N (p1y. ),

where p,, = EyC’;lx(xTC’;lx+Eal)_lEaluo and Xy = Cy +XEOX7\9ince the

posterior distribution of @ does not have a closed form, we first draw posterior

Hastings algorithm (Gelman et al. (2014)). Since p
and p(3|60,y) is Gaussian, the posterior samples of
using the method of composition. Similarly, the pos

recovered by sampling from

p(wly) = /9 /B p(wly. 6, B)p(Bly)p(6ly)dBd

When n is large, we replace Cy with C;, (see srem 1) in p(y|0), p(810,y),

and p(wly, 8, 3), for drawing Psterior samples e

4.3 Prediction
Let S, = {s1 ,\ ,Sn,} be
SpNS =10, with y, % (y(s1),. ..,

Using the same partition rulg P onsSY into K disjoint blocks, suppose

spatial locations such that

p¥ply,w",3,0) - p(y|lw",3,0) - p(w*|0)dw™.

since p(y,ly, w*, 3,0) and p(y|w*, 3, 60) are high dimen-
butations may not be feasible. Thus, we define the follow-

ing ap Plditional density,

K
ﬁ(yp‘yavv*ngao) = Hp(yp,k’ykvyN(k)a‘V*?/Bao)a
k=1

where we set p(YprlYr, Yn(k), W, 8,0) = 1 if y,r = . This definition assumes
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that y, is independent of the rest of predictive responses, conditional on w*,
the observations in the same block yi, and the observations in neighboring blocks
YN (k)- Notice that for the predictive response vector yy , its neighboring location
set is Sy Ny = {SN(k)> Sk}, for k = 1,..., K, where recall that .”\V(k) is the

neighboring location set for the observed response vector yg.

Then an approximated marginal joint density with compﬁ%tional efficiency

can be obtained as
ﬁ(YP7Y|Bv 0) = /ﬁ(yp’y7W*7/3’ 9) ﬁ(y|W*7/67

where p(y|w*, 3, 0) is the Gaussian density given in (2*

By = (Bpk,1,- -+, Bprx), where By has the si

encoding the residual conditiorf! dependence info moday,, ;. given its neigh-
bors y(Sy n(k)) for the I-th block, | = 1... K. v (xgl,...,ng)T
Uy = (Ug:l, .. .,Ug:K)T, B, = (R",,... .on be a block-diagonal
matrix with X,y ,\\; as its k-th\ @
p(yply, B, 0) follows & Gaussian dj

)

Seon BT BI + U,C.UL — F,C} FL,
Seon BT+ U,C.UT).

mal mean p,, is the kriging formula for spatial predictions
pproximation. In fact, in Section 5, we prove that the SFSA
approach can induce a valid GP with a closed-form covariance function.
Remark: There are different ways to approximate p(y,,y|3,0) for predic-
tion. For example, consider the case in which the predictive response vector y,

belongs to some block [, then we can have an approximation of the augmented
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data likelihood, p(yp,y|8, @), defined as

/ H p(y]c|Y§L\;L(%)7W*aB’ 0) ’ p(ypaYZ|YN(l)aW*>/67 0) ’ p(W*|0)dW*7
1<k<K,k#l

where y?\?&) = (yg,y%(k))T if block [ is a neighbor of the k—th\ock and
y%‘&) = Yn(k) otherwise. However, the prediction obtainbe this apprQx-
imation cannot yield a valid GP, since integrating 1

lead to p(y|B3,0) in Theorem 1 (except for the speci
y?\?&) = yN() for k =1,..., K, which corresponds
method).

5. The Smoothed FSA Spatial Process

In this section, we show that the SFSA approach equippe
tion method in Section 4 yields a valid spatial GP gith a closed-form covariance
function. Therefore, both par‘leter estimation rediction of SFSA can be

performed in a unified GP fraMework. Recall i
the underlying spatial process w(s) can 1 into two independent
processes w;(s) andgws(s), wherdga ’ ive process with covariance
C\ws(s) is the

tion C(+,-) — Ci(+,-). Iy e the new residual process that

function Ci(-,-), an

nce the approximated process by the SFSA approach

rule P leading to S = Ui{:lSk, the key assumption on
100d of the SFSA approach is

K
p(y1B8.0,w*) = [[ pvxlyneiy, B, 6, w),
k=1
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which is equivalent to

K
p(s(9)10) = T pliss(Sk)ltiss(Sy ) 6)- (5.1)
k=1

Let P also partition a set of predictive locations \S), into K disjoint Acks Sp ks
k=1,..., K. The assumption in Section 4,

K
Blyply, w*, 0) = [ p(yprlyr ¥
k=1
is equivalent to
K
B04(5,)|5(S). 8) = [ pbs(Spr) (k) (S
k=1

We remark that assumptions (5.1) and (5.2)
sumptions for the nearest neigpor GP defined o

Consider an arbitrary set of locations S . ' 0y \ S be the subset
of S, that is outside of S (predi

|0‘/

where p(ws(Sp)|ws(S WA ssion in (5.2) and p(ws(S)|0) has the

I dostsi. (5.3)

expression in (5.1). i Pom shows that the approximated process

Theorem 2. constructed process with finite dimensional distri-

en ﬁjl(s) s a valid Gaussian process with covariance

function de

s), if s,8' € 5;

BBy (S,8), ifs¢ S, s es;

BX! vBL, if s,8' ¢ S,and s, s
belong to different blocks;

BSE;[,BST, + X, kv (8,87), if s,8" ¢ S,and s, s’ belong

to the same block k,

Ci(s,s') = (5.4)
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where Bs and By are similarly defined as B, in Section 4.3, under the special
scenario that the predictive location set S, = {s} or {s'}; E;, =B 'S,nBT " is
the approzimated residual covariance matriz in Theorem 1; X, y (k) @S the resid-
ual variance of Ws(Sp ), conditional on its neighbors in ws(S); Z;(Ql, Sa) and

\'sponding

Y kN (k) (S1,52) denote the sub-matrices of E;r, and ¥y, pN(k) for co

location sets S1 and Ss, respectively.

The proof of Theorem 2 basically follows Datta
mentary material, Section S1.3). Now adding the pr

function part, the covariance function of the SFSA G
Ci(s,s') = C(s,s) +Cl(s,s).

Utilizing the finite-dimensional distribution giving in The e can

recover the conditional distribution expression 2 in Proposition 1 by using

the properties of multivariate Qaussian distributi iically, following the

results in (5.4) and (5.5), the approximated cros ce between the pre-
diction set S, and the trainingyset S Ei,); the usual kriging
formula yields the Qnditional m .onal variance of y, given y

presented in Proposition 1.

Yoctiveness of our method through simu-
of the NNGP, SFSA, and SFSA’s variants
in Matlab; we used the R package “laGP”

Apley (2015)). All methods ran on a AMD Opteron (tm)
z CPUs and 32 GB memory. For log-likelihood func-
tion opbimi used the matlab function, fminunc, which implements a
oldfarb-Shanno (BFGS) based Quasi-Newton method. We
used parfor command in Matlab for parallel computations.
6.1. Simulation Studies

We use the following example to show that compared to FSAB, the SFSA

approach with ¢ > 1 can alleviate the prediction errors around block boundaries.

processor with 2.

Broydern™®
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We generated 500 data from a Gaussian process with mean zero and Matérn
covariance function in (2.2) on an equally spaced grid in domain § = [-1,7].

Then predictions were performed at 100 equally spaced locations in & and the

rest of data was used for training. For both the FSAB and SFSA appgoaches, we
partitioned [—1,7] equally to create K = 4 blocks, with 5 knots eqz\
on [—1,4]. Therefore, the block boundaries are s = 1, 3,5 and\here are no knots

'y placed

close to the boundary s = 5. For SFSA, we set ¢ =
for £ = 2,3,4. We experimented both the Matér
0?2 =1,v=15,¢6 = 0.2,72 = 0.01 and the Gaussi

0?2 =1,¢ = 0.1,72 = 0.01. The parameter settings

covariance func

processes with relatively small dependence ranges.

Matern covariance, m=5 Gaussian covariaga

0.02

0.025 FSAB

. For the Matérn-covariance case (left panel), the MSPEs
by the FSAB apprg are particularly very large around block boundaries (s =
he SFSA approach can reduce prediction errors around
block-b oints by borrowing dependence information from neighboring
blocks. It can be seen that the MSPEs of SFSA are almost indistinguishable from
those of the full model. Similar conclusions hold for the Gaussian-covariance
case (right panel). Thus, for a smooth spatial process with a relatively small

dependence range, the SFSA approach with ¢ > 1 is preferred, since it can
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significantly alleviate discontinuities of predictions around block boundaries.
6.2. Application to a Total Column Ozone Dataset

In this section, we analyze the total column ozone (TCO) level 2 dataset
collected on October, 1st, 1988 (previous analysis of this dataset can ge found in
Cressie and Johannesson (2008); Eidsvik et al. (2014)). This TCO 1ev§‘2 dataset
has n = 173,405 observations, and we partitioned the data '\Ylto a training set

and a prediction set under two prediction scenarios: ction on 25,0

randomly selected locations (MAR); and 2) predict focations inNa h

out 15 degree x 15 degree rectangle region (MBD) 1§t consists of ar
predictive locations. For both prediction scenarios, we
sets for evaluating the prediction performance of all comparison n

Following the analysis in Eidsvik et al. (2014), we used a fixed mean

eter and a Cauchy covariance function C(s,s’) = o%(1 + |[|s

ance and range parameters, respectively. We also ylered a Matérn covariance
function (see (2.2)), with the ;X

using the full covariance model on 10,000

»othness v fixed

constant mean wag removed bef{gae \ Hance-function parame-
ters. We compare ;gA with the 1 LaGP methods in terms of

prediction performance, consideril’ quared prediction error (MSPE)
ore (CRPS) (e.g., see Gneiting and
ve used 24 x 24 regular blocks and 225

and the mean contin
Raftery (2007)). For

) ordering for the MBD scenario; then the num-
= 1 was specified. For NNGP and LaGP, 50 neighbors
wmeter estimation and prediction. For LaGP, the “mspe”

d.

were use

heuristic was co

Plie prediction results for all comparison methods. We focus
on the results of the Matérn covariance, since it generally leads to better MSPE
results than the Cauchy covariance, except for SFSA under the MBD scenario.
For the MAR scenario testing the small-range predictions, NNGP performs the
best, with slightly smaller MSPE and CRPS values than those of SFSA. However
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Table 2: Prediction performances of SFSA, FSAB, NNGP, and LaGP for the TCO data.
The results were obtained based on 3 prediction sets for each prediction scenario.

Scenarios SFSA FSAB NNGP LaGP-mspe
Matérn Cauchy | Matérn Cauchy | Matérn  Cauchy
MAR MSPE 27.06 27.77 27.24 27.98 26.67 27.43 \58.03
CRPS 2.51 2.53 2.53 2.55 2.50 2.52 3.78
Time (min) 58 33 47 31 57 27 121
MBD MSPE 16.73 16.32 21.46 24.26 21.77 ‘8 23.47
CRPS 2.75 2.54 2.91 2.90 2.88 A | 3.31
Time (min) | 79 27 72 31 4

for the MBD scenario, the SFSA method results in th
NNGP results in larger MSPE and CRPS values than those of SFSA fo
MBD scenario, which may be because the correlations of th
a relatively large scale so that borrowing information from non® ng lo-
cations is helpful for improving the prediction cacy. Compared with other

methods, the LaGP leads to \uch larger predi

(especially for the
developed based on
she TCO dataset; using

n covariance functions) may

MAR scenario), which may be because itgmetho
the Gaussian covariance that is
other covariance fultions (e.g., t
improve its prediction performan At the current LaGP package
does not support thig

For computation both the parameter-estimation and pre-
have comparable computational speeds.

La®P has much longer computational time for

or SFSA, FSAB, and NNGP, the computational bottle-

ter-estimation step rather than the prediction step, since

The prediction plots on a 288 x 180 longitude-latitude regular grid using the
Matérn covariance are shown in the left column of Figure 4. The three methods,
SFSA, FSAB, and NNGP produce very similar prediction surfaces, due to their

comparable capability on the short-range predictions. Their associated predic-
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(c) SFSA prediction err

Prediction standard error

prediction errors (on a log scale)

Prediction standard error

(g) NNGP prediction errors (on a log scale)

faces and the prediction standard errors (on a log scale) for
)

Figure 4: Predictio
SEFSA, FSAB, andd

tion standard errors (on a log scale) are shown in the right column, and we can
observe that the prediction standard errors are particularly large for regions with-
out any observations. For SFSA and FSAB, relatively larger prediction standard

errors are observed around block boundaries; and this artifact is alleviated for



26 BOHAI ZHANG, HUIYAN SANG AND JIANHUA Z. HUANG

SFSA compared with FSAB.

7. Discussion

We propose a Smoothed Full-Scale Approximation approach ({FSA) that
extends the FSA-Block approach by correcting the approximation e\wrs of co-
variance between each block and its neighboring blocks. We prgve that the SFSA
approach yields a class of valid Gaussian process model x
estimation and prediction of SFSA can be performed j
proposed method incorporates the FSA-Block approa
composite likelihood approach as special cases, and
statistical efficiency. Compared with the FSA-Block approac
proach can reduce prediction errors at locations around block boundaries

can help produce a smoother prediction surface.

(Katzfuss and Cressie (2011)gBevilacqua et al: 2); Zhang et al. (2015)),
where we consider a spatio—t(&poral partition o ons and define the
neighboring blocks in space and time. \ > Euclidean distance of
spatio-temporal locations may n

will explore using(“ler measures

ing blocks that minimize the re ) ¢ e for non-neighboring blocks to

M proposed by Diggle et al. (1998) for modeling
endent observations involves two stages. In the first
mal on a latent spatial process are i.i.d exponential family
random variablegg in the second stage, the latent spatial process is modeled
as a ’xed and random effects. For this modeling strategy, the
SFSA approximation is applied to n(s) = g(E(y(s)|n(-)) = x(s)T B+ w(s) +(s)
in the second stage, where g(-) is a link function, y(-) is the data process, and
n(-) is the latent spatial process. Similarly to the Gaussian case, we approximate

w(s) with the process induced by SFSA, denoted by w'(s), to facilitate compu-
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tations for evaluating the joint likelihood function. However, the marginalized
likelihood that integrates out the latent spatial process 7(-) does not have an
analytical form and hence, MCMC algorithms need to be employed to obtain
posterior samples of model parameters @ along with 7(s). Alternativﬁf, the EM

algorithm can be used to estimate model parameters for the spatial .M (e.g.,

\

'heorems, and

see Sengupta and Cressie (2013)).

Supplementary Materials

The supplementary material contains the proofs

numerical results for comparing SFSA with other me
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