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Abstract—Recently, more and more attention has been paid to
the connected object detection for better performance. One of the
most interesting fields is learning from multiple resources in a
connected fashion. In this paper, we present a connected object
detection method using multiple cameras for the smart trans-
portation system. The proposed architecture consists of three
parts: an alignment framework, a deep multi-view fusion network
and an object detection network. Experiments are conducted to
illustrate the performance of our proposed architecture.
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I. INTRODUCTION

With the rising amount of computation resources, great
progress has been made in the area of computer vision with the
help of convolution networks [1], [2]. This progress has driven
the development of many aspects of the smart transportation
system, such as autonomous vehicles and advanced driving.
One of the fundamental problems of smart transportation is to
build a quick and accurate object detection algorithm in the
real world since an advanced driving vehicle must have the
capacity to detect surrounding objects promptly and precisely
to ensure its safety [3]. On another hand, the cameras with
improved function but cheaper price emerged, which enables
the assumption to equip multiple cameras on a single vehicle
to assist autonomous driving in a relatively economical way.

How to handle occlusion is one of the toughest issues
in object detection tasks. Some researches, especially those
focused on the methods for 3D object detection address this
problem by employing bird view [4], [5]. This type of data
representation, however, may obscure the intrinsic nature of
the 3D object. Furthermore, these bird view based algorithms
require the use of LiDAR equipment, which is much expensive
than cameras. On the other hand, LiDAR data always tends
to be sparse and not adequately accurate. Another issue of
object detection method is that the single front view will lose
the information of the real-world 3D structure. For instance,
if we look at a cone in the front view, what we observe will
be only a circle. These issues point out a crucial problem that
we may have different detection results of the same scene
at different perspectives using the same algorithm. In order
to gain more information from a certain scene for accurate
object detection, we propose to adapt the images captured
by different cameras from different viewpoints. Base on the
previous researches, deep learning has shown its mighty force

to extract deep features which are informative to represent the
original images [6], we proposed a joint framework grounded
on state-of-the-art deep neural networks.

Multi-view image detection always involves image align-
ment, re-scale, and fusion. Conventionally, image alignment
algorithms are aimed at finding the correspondence of images
with distinct ratios of overlapping [7], and the differences
between views can not be too large or too small. As we
proposed to combine and maintain more information via
combining multiple images through fusion, the first challenge
of our research is finding the appropriate method to align the
images. In this paper, we proposed three means addressing the
image alignment issue and demonstrate the feasibility of every
method. The second challenge of our research is the design
of an effective fusion network. Inspired by [8], we proposed
a dense fusion network that follows a cascade structure to
avoid losing information in the fusion process. We adopt the
idea of the dense network and employed joint operation to
fuse different views as it proved its ability to excavate the
deep information among different sources without losing the
original image data presentation. The final ingredient of our
framework is an object detection network to ultimately testing
the accuracy of our method. Instead of using the popular
region-based detector, we employ an end-to-end detector to
fit the real-time requirement for autonomous driving vehicles.
As shown in Fig. 1, we constructed a joint framework to
demonstrate our assumption. The result of the alignment
framework will feed to the fusion network and the outcome of
fusion will further be tested by the object detection network.

The main contributions of our method are: 1) we propose
three approaches for aligning images taken from different
perspectives and conduct the experiments to exam the validity
of every method; 2) we build a trainable fusion network based
on DenseNet to extract features from input images and perform
the fusion operation; 3) we induct an evaluation of the fused
features by applying state-of-the-art object detection network.

II. RELATED WORK

We proposed a joint approach for the task that adopting
multiple cameras for accurate object detection. The holonomic
framework follows a cascade structure: first align the corre-
sponding regions (bounding boxes), then fuse the calibrated
images to gain more information, and apply the object detector
at last to test the improvement.
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Fig. 1: An overview of the proposed network architecture. Our
approach aligns two input images, send the alignment result
to a fusion network, and evaluate the result through an object
detection network.

Object
Detection

A. Alignment

The task of image alignment can be conducted through
several aspects. Calibration is one of the conventional and
classical approaches by exploiting the setting of cameras.
Zhang et al. [9] proposed a flexible calibration technique by
observing a planar pattern presented by cameras at different
angles, which is demonstrated effective.

Feature-based alignment is another key method to match
images base on the correspondence of features. Li et al.
[10] designed their automatic feature-based localization and
comparison method in a two-step manner: firstly implement
the general localization; then perform accurate localization
through point to point matching.

Alternatively, some researchers conduct alignment by find-
ing the matching between pixels. Pixel-based alignment is also
called direct alignment, which is based on searching for the
alignment where most pixels agree [11]. Mohammadzade et
al. [12] successfully conduct their experiments for the task of
face recognition by finding the correspondence between pixels
of faces and demonstrate that their method outperforms state-
of-the-art eye-alignment methods.

B. Fusion

Fusion data from different sources in different formats is
not a brand new idea. Most existing works fuse the bird
view of LiDAR data and the front view of image data, then
apply convolutional network to make prediction. Chen et al.
[13] proposed their framework to exploit multiple views from
different sensors based on a region fusion architecture.

However, it is worth noticing that the previous works
employing LiDAR and cameras trends to be expensive not only
because of the cost of various equipment but also the rising
cost of computing caused by different data formats. Based on
this consideration, one scheme is to estimate object pose and
shape through multiple cameras and this achieves a state-of-
art performance [14]. Johns et al. [15] proposed a multi-view
recognition method by firstly decomposing the image sequence
into image pairs, then assign the weight of the images pairs
according to their contribution to train the classifier.

To our knowledge, this research is the first proposal to fuse
the images from different perspectives using the neural net-
works. However, fusion images with different properties have
been explored by multiple researchers. Liu et al. [16] trained
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their neural network by both original and blurred images
patches. Their network jointly adopt the activity measurement
and fusion strategy and obtained state-of-the-art performance.
[17] combined the most widely used fusion strategies: multi-
scale transform and sparse representation to implement their
fusion network.

Inspired by the aforementioned fusion strategies, we adopt
the idea of DenseNet [8] to implement our fusion network.
DenseNet directly connects all the layers under the premise of
ensuring the maximum information transmission between the
layers in the network. In a conventional convolutional neural
network, assuming it has L layers, there will be L connections,
but in DenseNet, there will be L(L+1)/2 connections, which
means the input of each layer comes from the output of all
the previous layers. [18] adopted dense block in their fusion
network to refine the performance of multi-scale fusion and
proved the dense block can effectively extract the information
from the inputs.

C. Object Detection

Various methods for object detection can be found in the
literature. Considering the efficiency requirement of smart
transportation, especially autonomous driving vehicles, we
consider three end-to-end state-of-the-art object detection net-
works as our experimental tools.

MobileNet [19] was firstly proposed by Howard et al.
MobileNet’s main contribution is to replace the previous
standard convolutions with depth-wise separable convolutions
to improve the computational efficiency and reduce the pa-
rameter amount of convolutional networks. It defaults to the
assumption that the conventional convolution kernel has a
decomposition characteristic, which is similar to a linear
combination in the channel dimension mapping of feature
maps. The Google team demonstrated the effectiveness of
MobileNet as an efficient infrastructure network through a
variety of experiments.

Yolo V3 [20] is the latest algorithm in the Yolo series, it
contains both reservations and improvements to the previous
algorithms. YOLO V3 uses multiple-scale fusion methods to
make predictions; a new network is leveraged to implement
feature extraction and each bounding box uses a multi-label
classification strategy to predict which classes the bounding
box might contain. Faster detection speed and higher detection
accuracy have been achieved by adapting these improvements.

Qiong et at [21] proposed their single-stage object detector
based on recurrent rolling convolution (RRC) architecture.
RRC automatically find suitable contextual information for
SSD to improve target detection performance. Comparing to
the R-CNN’s two stages structure: extraction and classifica-
tion, RRC only requires a single process to get the detection
result and achieved state-of-the-art detection accuracy.

III. PROPOSED FRAMEWORK

Our proposed framework contains three key components:
the alignment framework; the fusion network and the object
detection network.
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Fig. 2: An example of corresponding images in data 1 and
data 2. The differences between them are observable but not
too palpable.

A. Data

The data set we use is provided by KITTI Vision Bench-
mark Suite, which is a real-world computer vision benchmark
designed for the researches of autonomous driving. [22].
Specifically, we make use of one of the binocular data set in
which the images are captured by two-color cameras (camera
2 and camera 3) equipped on the top of a vehicle. The height
above the ground of the cameras are identical and the distance
between them is 0.54 meter. The data set can perfectly fit our
requirements: the differences between views exist but not too
large. And the identical height of the cameras simplified the
alignment process by restricting the position change within
the horizontal direction. Each data set contains 7481 training
images and 7518 testing images. The label of the first data
set is also provided. We are going to use “data 1” and “data
2” to infer the first and second data set respectively in the
remaining part of this paper. In this data set, the label for the
training data of data 1 is available but the label for data 2 is
not provided. Fig 2 shows a pair of corresponding images in
data 1 and data 2. We can observe from the images that the
differences between them are perceptible but not too distinct.

B. Alignment

1) Calibration: In the aforementioned data set, the cali-
bration matrix from a base camera to every other camera is
given. The first attempt we assume to align different images is
to calibrate two images through a calibration matrix. In state-
of-the-art benchmark data suit [22], the mapping between 3D
reference labels and 2-D image labels is a key component of
image calibration, which forces the user to take the distortion
of images into consideration [23].

2) Generate Label via Object Detector: we also proposed
an alignment method by using state-of-the-art object detec-
tion networks. Concretely, given an image(image 1) with the
ground-truth label, we assume the image(image 2) we try to
align with image 1 contains the same amount of object that
can be detected by art object detection networks. Thus we run
the detector on image 2 and compare the label generated with
the ground truth label. In the following step, we compare the
position of all the labels of image 1 and image 2 and assume
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the bounding boxes with the minimal position difference
represent the same object.

3) Generate Label via Pooling: The last alignment strategy
we conceived is based on the assumption that the bounding
boxes of the corresponding regions in image 1 and image 2
are identical. As we mentioned before, the height above the
ground of the cameras and identical, so the absolute height of
corresponding bounding boxes remain unchanged. Then we set
the original position of the bounding box in image 2 (bounding
box 2) using the location value of bounding box 1, and slide
the window to the right by the stride of 1 pixel. While sliding,
we implement average pooling of the window and compare
the difference of the image cropped by the window in image
1 and image 2. The bounding boxes which have the minimal
difference will be considered as the corresponding alignment
regions.

C. Fusion

We construct our fusion network based on the insight of the
splendid DenseNet [8]. DenseNet is a convolutional neural
network with dense connections. In this network, there is a
direct connection between any two layers. That is to say,
the input of each layer of the network is the union of the
output of all the previous layers, and the feature map learned
by a layer is also directly transmitted to all layers after it.
Due to the aforementioned network structure, the DenseNet
naturally possesses the ability to extract and maintain the most
informative features of the inputs. By fusion the feature map
extracted by the DenseNet, we made the assumption that more
features will be reserved in the fused image and further benefit
the object detection process.

Inspired by [24], we build our end-to-end trainable fusion
network by combining the feature extraction network, fusion
network and image reconstruction network. The feature extrac-
tion network is utilized to extract deep features of the input
images through the embedded dense blocks. Then we feed the
deep features to the fusion network and then apply the image
reconstruction network to reconstruct the images. Both the
feature extraction network and image reconstruction network
followed a three-layer structure to minimize information loss.
We proposed to apply both addition and L1 norm fusion
strategies in the fusion phase and adopt an object detector
to demonstrate the effectiveness of the fusion process. Due to
time constraint, we only implement the addition strategy in
the experiments.

D. Object Detection

In the object detection stage, we adopted three states-of-the-
art object detection networks [19], [21], [20] to evaluate our
calibration and fusion network. By establishing the contrastive
experiments, RRC performs more fitful for our data and
proposed experiment. Thus all the object detection tasks will
be implemented using RRC model in the rest part of this paper.

IV. EXPERIMENT

We conducted all the experiments on the Ubuntu 18.04
platform equipped with 2.80GHz Intel(R) Xeon(R) X3460
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CPU. For frameworks (e.g. fusion and object detection) that
process faster on GPU, we use a Tesla K40c (12GB RAM).
We implement the proposed deep learning framework on the
widely used open-source framework Caffe [25].

A. Alignment

1) Calibration: The data set provided by KITTI Vision
Benchmark Suite [7] provided the corrected rotation matrix
(R) and mapping matrix (P), which can be directly used in
combination with the camera internal parameters and dis-
tortion parameters to generate a calibration parameter. As
we mentioned before, let T¢ and Ri denote the rotation and
translation matrices from camera O to camera 1, we can deviate
the calibration matrices for camera 2 and 3 are shown below.

R=R{Y xRy, (1)

T=T,—1Ts. @)

After applying the aforementioned calibration method, we
found that the calibration parameter varies along with the
distance from the camera to the object. Thus although we can
calibrate individual pair of images, we are not able to find a
fixed algorithm to calibrate all the images.

2) Generate Label via Object Detector: Under the situation
that the data 1 has the ground truth label, we proposed our
second alignment method by making use of the capability of
state-of-the-art object detection network. In KITTI data set,
the coordinate plane is defined by Xmin, Xmax, Ymin, and
Ymax. We conducted the experiments to generate the labels
of image3 data set through the following steps:

o Use Object Detection Network to generate the label of

all the images in data 2.

o As the pair of corresponding images in data 1 and data 2
data set have minor differences. We assume that we can
always find the matching relationship between the regions
in those two data sets and the bounding boxes have an
identical size.

e Camera 2 and camera 3 have the same height above the
ground, we assume the corresponding bounding boxes
have the same Ymax and Ymin value.

o As camera 3 is located on the right side of camera 2.
We assume that all the corresponding regions in image
2 should be found to the right of the region position in
image 1.

o Thus we compute the sum of the squared difference of the
two corresponding bounding boxes and assign the label
of the region in image 1 to the region with the smallest
deviation value in image 2 (the position of the region in
image 2 must locate to the right of the region in image
1).

We had conducted the experiments on the entire data set
which contains 7481 images. The result shows the number
of regions of the corresponding images cannot fit well. In
our 7481 training examples, only 5215 of them get an iden-
tical number of regions comparing with image 1. Also, the
algorithm that finding minimal deviation can not guarantee to
obtain real mapping.
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3) Generate Label via Pooling: We designed our finial
assumption based on the two previous attempts in deference
to the following steps.

o Given two corresponding images, we firstly define the
bounding box of image 2 (bounding box 2) as the same
size of the bounding box of image 1 (bounding box 1).

¢ As we mentioned before, we set the Ymax and Ymin
value of the bounding box 2 as the same value of
bounding box 1. Thus we only need to find the Xmax
and Xmin value now.

« we set the location of the start point of bounding box 2
using the location value of bounding box 1, and slide the
window to the right by the stride of 1 pixel.

« We implement average pooling of the window and com-
pare the difference of the image cropped by the window
in image 2 and image 3.

o In the last step, assign the label of bounding box 2 to the
bounding box 3 which has a minimal difference.

The experimental result of this method shows great im-
provement. We are able to align 7476 of the images. Fig
3 shows the alignment result of a pair of images in data 1
and data 2. We can observe from the figure that even though
the relative interval between the objects varies, we can still
obtain a desirable result. The following experiments will be
conducted base on this calibration method.

B. Fusion

As the result of pure calibration is not desirable, we
proposed our fusion network based on the idea of region
fusion. Our fusion network consists three major parts: an
input network to extract features from multiple images; a
fusion network to fuse the features, and an output network to
reconstruct the image from the fused feature map. As shown
in Fig 4, our region fusion task can be further divided into the
following steps.

o After alignment, we obtain the corresponding labels in
image 1 and image 2. Then we extract the image patches
cropped by the bounding boxes.

« Implement region fusion based on our fusion network. In
this process, we choose addition as the fusion strategy
and adopt pixel and system structure loss to find the best
parameter for our model.

o Stitch the fused region back to image 1 using the ground
truth label of image 1. The output of the fuse model will
be the input of the object detection model.

Within the fusion network, we follow the method proposed
by [26] to use addition as the fusion strategy. Inspired by [24],
In order to avoid information lost in the image reconstruction
process, we minimize the loss function L to train our fusion
framework. As shown in equation 3, lost function L is the
combination of weighted structural similarity loss and pixel
loss.

L=\xLy+ L, 3)

The equation of pixel loss is shown in equation 4 where
R and F stand for the fused image and the output result.
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Fig. 3: The result of applying Pooling method to data 2. The green rectangles illustrate the bounding box of detected object.

Fusion

Fig. 4: Region based fusion framework. We fuse the corre-
spond regions of a pair of images and put the fused patches
back to image 1.

Essentially, it is the Euclidean distance between the two
images.

Ly = [|R, Fl[2. @

The similarity loss is calculated by Equation 5, where SSIM
is the function to generate structural similarity proposed by
Wang et al. [27].

L,=1-SSIM(R,F). (5)

Fig 5 shows the result of our region fusion method. The
outcome demonstrates our network successfully aligns the
regions and strong features can be observed along the edges.

C. Object Detection

In the object detection stage, we leveraged the RRC object
detection model and retrain the model using Caffe framework
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[25]. The RRC model was pre-trained on the KITTI binocular
data set and achieve competitive accuracy on object detection
tasks. We set the training batch size as 1 and learning rate as
18, Following the setting of RRC model, we set the epoch
as 60,000, but due to time constraint, we only provide the
result after training for 1,000 epochs. Fig 6 depicted the object
detection result of the fused image. We can observe from the
result that the vehicles had been successfully detected.

TABLE I: Result of Object Detection

Original 1 Easy | Moderate | Hard
Accuracy 90.51 % | 89.89 % | 80.67 %

Original 2 Easy | Moderate | Hard
Accuracy 89.84 % | 80.89 % | 71.64 %

Fuse Easy | Moderate | Hard
Accuracy | 89.86 % | 80.92 % | 71.66 %

Table 1 displays the result of the object detection model. The
”Original 17 row shows the result when we employ the original
model and use un-fused images for testing. The “Original 2”
row shows the result when we employ the original model but
use the fused image for testing. We can observe a rational
decrease in accuracy. The result fits our assumption because
the features become different during the fusion process, so
the model trained on original features can not achieve similar
accuracy. The “Fusion” row displays the result when we
train the RRC model using fused images for 1,000 epochs.
Due to the computation limitation of GPU, we in fact only
employ 13.4% of our training data for once. However, we can
still observe slight accuracy improvement under such strict
situation. At the same time, we can always detect the loss

Authorized licensed use limited to: University of North Texas. Downloaded on December 18,2020 at 20:45:32 UTC from IEEE Xplore. Restrictions apply.



Fig. 5: The result of region-based fusion. The first two images in the first row represent the corresponding regions in a pair
of images. And the last image in the first row is the fusion result of the two regions. The image in the second row is the

synthesized result of the original image and fused region.

Fig. 6: The result of our model after training for 1,000 epochs.

is decreasing during the training process. Grounded on the
aforementioned phenomenons, we have the confidence to make
the assumption that we will achieve higher accuracy after
completing 60,000 epochs.

V. CONCLUSION
In this paper, we proposed and conducted experiments to

test our assumption that we can improve the object detection
accuracy via fusion images taken from different perspectives
and demonstrated the assumption by our joint framework.
The result proves the deep learning network provides the
feasibility of optimal feature extraction and fusion toward the
object detection task and this unique capability can be further
employed to other domains.

One limitation of our current implementation is that it
requires the pair of input images contain a relatively large
overlapping area and similarly target objects. We will further
explore situations where input images show more variances.
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