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Abstract—Recently, more and more attention has been paid to
the connected object detection for better performance. One of the
most interesting fields is learning from multiple resources in a
connected fashion. In this paper, we present a connected object
detection method using multiple cameras for the smart trans-
portation system. The proposed architecture consists of three
parts: an alignment framework, a deep multi-view fusion network
and an object detection network. Experiments are conducted to
illustrate the performance of our proposed architecture.
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I. INTRODUCTION

With the rising amount of computation resources, great

progress has been made in the area of computer vision with the

help of convolution networks [1], [2]. This progress has driven

the development of many aspects of the smart transportation

system, such as autonomous vehicles and advanced driving.

One of the fundamental problems of smart transportation is to

build a quick and accurate object detection algorithm in the

real world since an advanced driving vehicle must have the

capacity to detect surrounding objects promptly and precisely

to ensure its safety [3]. On another hand, the cameras with

improved function but cheaper price emerged, which enables

the assumption to equip multiple cameras on a single vehicle

to assist autonomous driving in a relatively economical way.

How to handle occlusion is one of the toughest issues

in object detection tasks. Some researches, especially those

focused on the methods for 3D object detection address this

problem by employing bird view [4], [5]. This type of data

representation, however, may obscure the intrinsic nature of

the 3D object. Furthermore, these bird view based algorithms

require the use of LiDAR equipment, which is much expensive

than cameras. On the other hand, LiDAR data always tends

to be sparse and not adequately accurate. Another issue of

object detection method is that the single front view will lose

the information of the real-world 3D structure. For instance,

if we look at a cone in the front view, what we observe will

be only a circle. These issues point out a crucial problem that

we may have different detection results of the same scene

at different perspectives using the same algorithm. In order

to gain more information from a certain scene for accurate

object detection, we propose to adapt the images captured

by different cameras from different viewpoints. Base on the

previous researches, deep learning has shown its mighty force

to extract deep features which are informative to represent the

original images [6], we proposed a joint framework grounded

on state-of-the-art deep neural networks.

Multi-view image detection always involves image align-

ment, re-scale, and fusion. Conventionally, image alignment

algorithms are aimed at finding the correspondence of images

with distinct ratios of overlapping [7], and the differences

between views can not be too large or too small. As we

proposed to combine and maintain more information via

combining multiple images through fusion, the first challenge

of our research is finding the appropriate method to align the

images. In this paper, we proposed three means addressing the

image alignment issue and demonstrate the feasibility of every

method. The second challenge of our research is the design

of an effective fusion network. Inspired by [8], we proposed

a dense fusion network that follows a cascade structure to

avoid losing information in the fusion process. We adopt the

idea of the dense network and employed joint operation to

fuse different views as it proved its ability to excavate the

deep information among different sources without losing the

original image data presentation. The final ingredient of our

framework is an object detection network to ultimately testing

the accuracy of our method. Instead of using the popular

region-based detector, we employ an end-to-end detector to

fit the real-time requirement for autonomous driving vehicles.

As shown in Fig. 1, we constructed a joint framework to

demonstrate our assumption. The result of the alignment

framework will feed to the fusion network and the outcome of

fusion will further be tested by the object detection network.

The main contributions of our method are: 1) we propose

three approaches for aligning images taken from different

perspectives and conduct the experiments to exam the validity

of every method; 2) we build a trainable fusion network based

on DenseNet to extract features from input images and perform

the fusion operation; 3) we induct an evaluation of the fused

features by applying state-of-the-art object detection network.

II. RELATED WORK

We proposed a joint approach for the task that adopting

multiple cameras for accurate object detection. The holonomic

framework follows a cascade structure: first align the corre-

sponding regions (bounding boxes), then fuse the calibrated

images to gain more information, and apply the object detector

at last to test the improvement.
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Fig. 1: An overview of the proposed network architecture. Our

approach aligns two input images, send the alignment result

to a fusion network, and evaluate the result through an object

detection network.

A. Alignment

The task of image alignment can be conducted through

several aspects. Calibration is one of the conventional and

classical approaches by exploiting the setting of cameras.

Zhang et al. [9] proposed a flexible calibration technique by

observing a planar pattern presented by cameras at different

angles, which is demonstrated effective.

Feature-based alignment is another key method to match

images base on the correspondence of features. Li et al.

[10] designed their automatic feature-based localization and

comparison method in a two-step manner: firstly implement

the general localization; then perform accurate localization

through point to point matching.

Alternatively, some researchers conduct alignment by find-

ing the matching between pixels. Pixel-based alignment is also

called direct alignment, which is based on searching for the

alignment where most pixels agree [11]. Mohammadzade et

al. [12] successfully conduct their experiments for the task of

face recognition by finding the correspondence between pixels

of faces and demonstrate that their method outperforms state-

of-the-art eye-alignment methods.

B. Fusion

Fusion data from different sources in different formats is

not a brand new idea. Most existing works fuse the bird

view of LiDAR data and the front view of image data, then

apply convolutional network to make prediction. Chen et al.

[13] proposed their framework to exploit multiple views from

different sensors based on a region fusion architecture.

However, it is worth noticing that the previous works

employing LiDAR and cameras trends to be expensive not only

because of the cost of various equipment but also the rising

cost of computing caused by different data formats. Based on

this consideration, one scheme is to estimate object pose and

shape through multiple cameras and this achieves a state-of-

art performance [14]. Johns et al. [15] proposed a multi-view

recognition method by firstly decomposing the image sequence

into image pairs, then assign the weight of the images pairs

according to their contribution to train the classifier.

To our knowledge, this research is the first proposal to fuse

the images from different perspectives using the neural net-

works. However, fusion images with different properties have

been explored by multiple researchers. Liu et al. [16] trained

their neural network by both original and blurred images

patches. Their network jointly adopt the activity measurement

and fusion strategy and obtained state-of-the-art performance.

[17] combined the most widely used fusion strategies: multi-

scale transform and sparse representation to implement their

fusion network.

Inspired by the aforementioned fusion strategies, we adopt

the idea of DenseNet [8] to implement our fusion network.

DenseNet directly connects all the layers under the premise of

ensuring the maximum information transmission between the

layers in the network. In a conventional convolutional neural

network, assuming it has L layers, there will be L connections,

but in DenseNet, there will be L(L+1)/2 connections, which

means the input of each layer comes from the output of all

the previous layers. [18] adopted dense block in their fusion

network to refine the performance of multi-scale fusion and

proved the dense block can effectively extract the information

from the inputs.

C. Object Detection

Various methods for object detection can be found in the

literature. Considering the efficiency requirement of smart

transportation, especially autonomous driving vehicles, we

consider three end-to-end state-of-the-art object detection net-

works as our experimental tools.

MobileNet [19] was firstly proposed by Howard et al.

MobileNet’s main contribution is to replace the previous

standard convolutions with depth-wise separable convolutions

to improve the computational efficiency and reduce the pa-

rameter amount of convolutional networks. It defaults to the

assumption that the conventional convolution kernel has a

decomposition characteristic, which is similar to a linear

combination in the channel dimension mapping of feature

maps. The Google team demonstrated the effectiveness of

MobileNet as an efficient infrastructure network through a

variety of experiments.

Yolo V3 [20] is the latest algorithm in the Yolo series, it

contains both reservations and improvements to the previous

algorithms. YOLO V3 uses multiple-scale fusion methods to

make predictions; a new network is leveraged to implement

feature extraction and each bounding box uses a multi-label

classification strategy to predict which classes the bounding

box might contain. Faster detection speed and higher detection

accuracy have been achieved by adapting these improvements.

Qiong et at [21] proposed their single-stage object detector

based on recurrent rolling convolution (RRC) architecture.

RRC automatically find suitable contextual information for

SSD to improve target detection performance. Comparing to

the R-CNN’s two stages structure: extraction and classifica-

tion, RRC only requires a single process to get the detection

result and achieved state-of-the-art detection accuracy.

III. PROPOSED FRAMEWORK

Our proposed framework contains three key components:

the alignment framework; the fusion network and the object

detection network.
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Fig. 2: An example of corresponding images in data 1 and

data 2. The differences between them are observable but not

too palpable.

A. Data

The data set we use is provided by KITTI Vision Bench-

mark Suite, which is a real-world computer vision benchmark

designed for the researches of autonomous driving. [22].

Specifically, we make use of one of the binocular data set in

which the images are captured by two-color cameras (camera

2 and camera 3) equipped on the top of a vehicle. The height

above the ground of the cameras are identical and the distance

between them is 0.54 meter. The data set can perfectly fit our

requirements: the differences between views exist but not too

large. And the identical height of the cameras simplified the

alignment process by restricting the position change within

the horizontal direction. Each data set contains 7481 training

images and 7518 testing images. The label of the first data

set is also provided. We are going to use ”data 1” and ”data

2” to infer the first and second data set respectively in the

remaining part of this paper. In this data set, the label for the

training data of data 1 is available but the label for data 2 is

not provided. Fig 2 shows a pair of corresponding images in

data 1 and data 2. We can observe from the images that the

differences between them are perceptible but not too distinct.

B. Alignment

1) Calibration: In the aforementioned data set, the cali-

bration matrix from a base camera to every other camera is

given. The first attempt we assume to align different images is

to calibrate two images through a calibration matrix. In state-

of-the-art benchmark data suit [22], the mapping between 3D

reference labels and 2-D image labels is a key component of

image calibration, which forces the user to take the distortion

of images into consideration [23].

2) Generate Label via Object Detector: we also proposed

an alignment method by using state-of-the-art object detec-

tion networks. Concretely, given an image(image 1) with the

ground-truth label, we assume the image(image 2) we try to

align with image 1 contains the same amount of object that

can be detected by art object detection networks. Thus we run

the detector on image 2 and compare the label generated with

the ground truth label. In the following step, we compare the

position of all the labels of image 1 and image 2 and assume

the bounding boxes with the minimal position difference

represent the same object.
3) Generate Label via Pooling: The last alignment strategy

we conceived is based on the assumption that the bounding

boxes of the corresponding regions in image 1 and image 2

are identical. As we mentioned before, the height above the

ground of the cameras and identical, so the absolute height of

corresponding bounding boxes remain unchanged. Then we set

the original position of the bounding box in image 2 (bounding

box 2) using the location value of bounding box 1, and slide

the window to the right by the stride of 1 pixel. While sliding,

we implement average pooling of the window and compare

the difference of the image cropped by the window in image

1 and image 2. The bounding boxes which have the minimal

difference will be considered as the corresponding alignment

regions.

C. Fusion

We construct our fusion network based on the insight of the

splendid DenseNet [8]. DenseNet is a convolutional neural

network with dense connections. In this network, there is a

direct connection between any two layers. That is to say,

the input of each layer of the network is the union of the

output of all the previous layers, and the feature map learned

by a layer is also directly transmitted to all layers after it.

Due to the aforementioned network structure, the DenseNet

naturally possesses the ability to extract and maintain the most

informative features of the inputs. By fusion the feature map

extracted by the DenseNet, we made the assumption that more

features will be reserved in the fused image and further benefit

the object detection process.

Inspired by [24], we build our end-to-end trainable fusion

network by combining the feature extraction network, fusion

network and image reconstruction network. The feature extrac-

tion network is utilized to extract deep features of the input

images through the embedded dense blocks. Then we feed the

deep features to the fusion network and then apply the image

reconstruction network to reconstruct the images. Both the

feature extraction network and image reconstruction network

followed a three-layer structure to minimize information loss.

We proposed to apply both addition and L1 norm fusion

strategies in the fusion phase and adopt an object detector

to demonstrate the effectiveness of the fusion process. Due to

time constraint, we only implement the addition strategy in

the experiments.

D. Object Detection

In the object detection stage, we adopted three states-of-the-

art object detection networks [19], [21], [20] to evaluate our

calibration and fusion network. By establishing the contrastive

experiments, RRC performs more fitful for our data and

proposed experiment. Thus all the object detection tasks will

be implemented using RRC model in the rest part of this paper.

IV. EXPERIMENT

We conducted all the experiments on the Ubuntu 18.04

platform equipped with 2.80GHz Intel(R) Xeon(R) X3460
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CPU. For frameworks (e.g. fusion and object detection) that

process faster on GPU, we use a Tesla K40c (12GB RAM).

We implement the proposed deep learning framework on the

widely used open-source framework Caffe [25].

A. Alignment
1) Calibration: The data set provided by KITTI Vision

Benchmark Suite [7] provided the corrected rotation matrix

(R) and mapping matrix (P), which can be directly used in

combination with the camera internal parameters and dis-

tortion parameters to generate a calibration parameter. As

we mentioned before, let Ti and Ri denote the rotation and

translation matrices from camera 0 to camera i, we can deviate

the calibration matrices for camera 2 and 3 are shown below.

R = R
(−1)
3 ∗R3, (1)

T = T2 − T3. (2)

After applying the aforementioned calibration method, we

found that the calibration parameter varies along with the

distance from the camera to the object. Thus although we can

calibrate individual pair of images, we are not able to find a

fixed algorithm to calibrate all the images.
2) Generate Label via Object Detector: Under the situation

that the data 1 has the ground truth label, we proposed our

second alignment method by making use of the capability of

state-of-the-art object detection network. In KITTI data set,

the coordinate plane is defined by Xmin, Xmax, Ymin, and

Ymax. We conducted the experiments to generate the labels

of image3 data set through the following steps:

• Use Object Detection Network to generate the label of

all the images in data 2.

• As the pair of corresponding images in data 1 and data 2

data set have minor differences. We assume that we can

always find the matching relationship between the regions

in those two data sets and the bounding boxes have an

identical size.

• Camera 2 and camera 3 have the same height above the

ground, we assume the corresponding bounding boxes

have the same Ymax and Ymin value.

• As camera 3 is located on the right side of camera 2.

We assume that all the corresponding regions in image

2 should be found to the right of the region position in

image 1.

• Thus we compute the sum of the squared difference of the

two corresponding bounding boxes and assign the label

of the region in image 1 to the region with the smallest

deviation value in image 2 (the position of the region in

image 2 must locate to the right of the region in image

1).

We had conducted the experiments on the entire data set

which contains 7481 images. The result shows the number

of regions of the corresponding images cannot fit well. In

our 7481 training examples, only 5215 of them get an iden-

tical number of regions comparing with image 1. Also, the

algorithm that finding minimal deviation can not guarantee to

obtain real mapping.

3) Generate Label via Pooling: We designed our finial

assumption based on the two previous attempts in deference

to the following steps.

• Given two corresponding images, we firstly define the

bounding box of image 2 (bounding box 2) as the same

size of the bounding box of image 1 (bounding box 1).

• As we mentioned before, we set the Ymax and Ymin

value of the bounding box 2 as the same value of

bounding box 1. Thus we only need to find the Xmax

and Xmin value now.

• we set the location of the start point of bounding box 2

using the location value of bounding box 1, and slide the

window to the right by the stride of 1 pixel.

• We implement average pooling of the window and com-

pare the difference of the image cropped by the window

in image 2 and image 3.

• In the last step, assign the label of bounding box 2 to the

bounding box 3 which has a minimal difference.

The experimental result of this method shows great im-

provement. We are able to align 7476 of the images. Fig

3 shows the alignment result of a pair of images in data 1

and data 2. We can observe from the figure that even though

the relative interval between the objects varies, we can still

obtain a desirable result. The following experiments will be

conducted base on this calibration method.

B. Fusion

As the result of pure calibration is not desirable, we

proposed our fusion network based on the idea of region

fusion. Our fusion network consists three major parts: an

input network to extract features from multiple images; a

fusion network to fuse the features, and an output network to

reconstruct the image from the fused feature map. As shown

in Fig 4, our region fusion task can be further divided into the

following steps.

• After alignment, we obtain the corresponding labels in

image 1 and image 2. Then we extract the image patches

cropped by the bounding boxes.

• Implement region fusion based on our fusion network. In

this process, we choose addition as the fusion strategy

and adopt pixel and system structure loss to find the best

parameter for our model.

• Stitch the fused region back to image 1 using the ground

truth label of image 1. The output of the fuse model will

be the input of the object detection model.

Within the fusion network, we follow the method proposed

by [26] to use addition as the fusion strategy. Inspired by [24],

In order to avoid information lost in the image reconstruction

process, we minimize the loss function L to train our fusion

framework. As shown in equation 3, lost function L is the

combination of weighted structural similarity loss and pixel

loss.

L = λ ∗ Ls + Lp. (3)

The equation of pixel loss is shown in equation 4 where

R and F stand for the fused image and the output result.
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Fig. 3: The result of applying Pooling method to data 2. The green rectangles illustrate the bounding box of detected object.

Fig. 4: Region based fusion framework. We fuse the corre-

spond regions of a pair of images and put the fused patches

back to image 1.

Essentially, it is the Euclidean distance between the two

images.

Lp = ||R,F ||2. (4)

The similarity loss is calculated by Equation 5, where SSIM

is the function to generate structural similarity proposed by

Wang et al. [27].

Ls = 1− SSIM(R,F ). (5)

Fig 5 shows the result of our region fusion method. The

outcome demonstrates our network successfully aligns the

regions and strong features can be observed along the edges.

C. Object Detection

In the object detection stage, we leveraged the RRC object

detection model and retrain the model using Caffe framework

[25]. The RRC model was pre-trained on the KITTI binocular

data set and achieve competitive accuracy on object detection

tasks. We set the training batch size as 1 and learning rate as

1−8. Following the setting of RRC model, we set the epoch

as 60,000, but due to time constraint, we only provide the

result after training for 1,000 epochs. Fig 6 depicted the object

detection result of the fused image. We can observe from the

result that the vehicles had been successfully detected.

TABLE I: Result of Object Detection

Original 1 Easy Moderate Hard
Accuracy 90.51 % 89.89 % 80.67 %

Original 2 Easy Moderate Hard
Accuracy 89.84 % 80.89 % 71.64 %

Fuse Easy Moderate Hard
Accuracy 89.86 % 80.92 % 71.66 %

Table 1 displays the result of the object detection model. The

”Original 1” row shows the result when we employ the original

model and use un-fused images for testing. The ”Original 2”

row shows the result when we employ the original model but

use the fused image for testing. We can observe a rational

decrease in accuracy. The result fits our assumption because

the features become different during the fusion process, so

the model trained on original features can not achieve similar

accuracy. The ”Fusion” row displays the result when we

train the RRC model using fused images for 1,000 epochs.

Due to the computation limitation of GPU, we in fact only

employ 13.4% of our training data for once. However, we can

still observe slight accuracy improvement under such strict

situation. At the same time, we can always detect the loss
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Fig. 5: The result of region-based fusion. The first two images in the first row represent the corresponding regions in a pair

of images. And the last image in the first row is the fusion result of the two regions. The image in the second row is the

synthesized result of the original image and fused region.

Fig. 6: The result of our model after training for 1,000 epochs.

is decreasing during the training process. Grounded on the

aforementioned phenomenons, we have the confidence to make

the assumption that we will achieve higher accuracy after

completing 60,000 epochs.

V. CONCLUSION

In this paper, we proposed and conducted experiments to

test our assumption that we can improve the object detection

accuracy via fusion images taken from different perspectives

and demonstrated the assumption by our joint framework.

The result proves the deep learning network provides the

feasibility of optimal feature extraction and fusion toward the

object detection task and this unique capability can be further

employed to other domains.

One limitation of our current implementation is that it

requires the pair of input images contain a relatively large

overlapping area and similarly target objects. We will further

explore situation input images show more variances.
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