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Summary: This paper focuses on analysis of spatio-temporal binary data with absorbing states. The research was

motivated by a clinical study on amyotrophic lateral sclerosis (ALS), a neurological disease marked by gradual loss

of muscle strength over time on multiple body regions. We propose an autologistic regression model to capture

complex spatial and temporal dependencies in muscle strength among different muscles. As it is not clear how the

disease spreads from one muscle to another, it may not be reasonable to define a neighborhood structure based

on spatial proximity. Relaxing the requirement for pre-specification of spatial neighborhoods as in existing models,

our method can learn underlying network structure of disease spreading pattern directly from observed data. The

model also allows the network autoregressive effects to differ in accordance with muscles’ previous status. Based

on joint distribution derived from this autologistic model specification, joint transition probabilities of responses

over locations can be estimated and the one-time ahead disease status can be predicted. Model parameters are

estimated through maximization of penalized pseudo-likelihood. Post-model selection inference was conducted via a

bias-correction method, for which the asymptotic distributions were derived. Simulation studies were conducted to

evaluate the performance of the proposed method. The method was applied to the analysis of muscle strength loss

from ALS clinical study.
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1 Introduction

This research was motivated by a clinical study on amyotrophic lateral sclerosis (ALS).

ALS, also known as Lou Gehrig’s disease, is a neurological disease that mainly affects the

nerve cells in the brain and the spinal cord that are responsible for controlling voluntary

muscle movements. As the disease progresses, a patient’s brain gradually loses the ability

to signal and control muscle movements, which leads to muscle weakness, impaired physical

functionality and finally death. Currently there is no treatment for the disease. The symptom

typically starts from a particular muscle group and then spreads to other muscles as the

disease progresses. In other words, muscles at different locations are interconnected so that

a “normal” muscle can become diseased due to another “diseased” muscle. The spreading

pattern, however, remains unknown. Such a disease spreading can arise from many other

occasions; for example, a pathogen in a farmland or a virus in a computer network.

Our research interest is to characterize how the disease spreads over space and time.

There are several features that pose a challenge to statistical modeling and inference. First,

neighborhood is not clearly defined, because spatial closeness may not reflect the underlying

disease spreading pattern. For example, disease in one location can spread to another distant

location rather than any nearby locations. Therefore, actual dependence over space is deter-

mined by some sophisticated but unknown structure in a latent space. Second, outcome of

interest is irreversible over time. For example, in ALS once a muscle becomes “diseased”, it

can never return to “normal” as there is no treatment. Thus, data generation mechanism has

an absorbing state. Lastly, the strength of temporal association depends strongly on previous

disease statuses. For example, recently diseased muscles pose a higher risk than muscles that

are diseased a while ago.

The autologistic model, first proposed by Besag (1974), is one of the most widely used

modeling methods for spatial binary data. Being closely related to a joint Markov random
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field for binary responses, this model is known to be advantageous for its direct modeling of

spatial dependence over other existing models via latent variables for dependence. Caragea

and Kaiser (2009) propose a centered autologistic model to allow for more interpretable

parameters, and Hughes et al. (2011) conduct comparative studies to evaluate the perfor-

mance of several computation methods for fitting the autologistic model. In these papers,

a pre-specified neighborhood structure is often required to establish spatial dependence. To

relax this requirement, there has been a surge of recent work (Höfling and Tibshirani, 2009;

Ravikumar et al., 2010; Xue et al., 2012) in the context of the Ising models, a special case

of autologistic regression, where sparse regularization techniques is invoked to learn sparse

network associations among nodes. These regularization methods, however, focus mostly on

spatial data and hence are not directly applicable to the evaluation of spreading patterns

over space and time, as needed in the case of ALS disease. For spatio-temporal binary data,

Zhu et al. (2005) develop a model via joint distributions to first estimate spatial correlation

then prediction. To incorporate absorbing states, Kaiser et al. (2014) formulate a model in

which sufficient support conditions and specify to construct well-defined joint distributions

of all observations. Both approaches rely on pre-specified neighbor structures on lattices.

Agaskar and Lu (2013) consider a binary vector autologistic regressive model in time and

use regularization estimation methods to study sparse network. However, they neither model

absorbing states nor consider simultaneous spatial dependence.

The main contribution of our paper is to develop an autologistic network model in space and

time that addresses the aforementioned challenges: the model learns a spatial network from

data without the need to pre-specify a neighborhood structure; accounts for absorbing states;

and considers varying impacts depending on previous status. Also, it has centered autoco-

variates to capture the residual dependence structure from the large-scale structure (Caragea

and Kaiser, 2009; Hughes and Haran, 2013), and consequently alleviates spatial confounding
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issues and enhance parameter interpretability. While the model bases on the conditional

probability of a single location, we derive a valid joint distribution of all locations to establish

one-time transition probability, which is essential for spreading pattern analysis.

For the estimation of model parameters, we invoke a pseudo-likelihood inference (Besag,

1975). Since the proposed model has an excessive number of parameters representing all pos-

sible pairwise spatial associations, penalization is employed with the least absolute shrinkage

and selection operator (LASSO) penalty as suggested by Tibshirani (1996). The connection

of this pseudo-likelihood with the standard framework of generalized linear model (GLM)

estimation is established. Also, as is well known, since the LASSO estimator is biased and

does not have a tractable limiting distribution, we propose a bias-correction for penalized

pseudo-likelihood estimator and establish its asymptotic distribution, following the ideas of

post-selection inference (Van de Geer et al., 2014; Tang et al., 2016).

The remainder of the paper is organized as follows. In Section 2, we propose an autologistic

network model for binary data observed in space and time. In Section 3, we derive a valid joint

distribution for the proposed model and formulate transition probabilities. In Section 4, we

discuss a bias-corrected penalized pseudo-likelihood estimator with an iterative algorithm

and a large-sample theorem. In Section 5, we present simulation studies to assess how

accurately our proposed approach performs statistical inferences. In Section 6, the application

to the motivating ALS clinical study is illustrated. Finally, we summarize the research

findings and suggest future studies in Section 7.

2 Autologistic Network Model with Absorbing States

Denote a binary random variable such that Ym(sj, t) is 1 if a location sj is diseased at time t

for a subject m, and 0 if normal. Let M be the number of subjects, Ns the number of

locations that are fixed over subjects, and T (m) the number of times that may vary over
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subjects. We define two index sets,

P0
mt = {j : Ym(sj, t− 1) = 0, j = 1, . . . , Ns}; (1)

P1
mt = {j : Ym(sj, t− 1) = 1, j = 1, . . . , Ns},

where P0
mt is an active set consisting of locations previously normal, in which they have a

chance to change their status at the next time, and P1
mt is an absorbing set consisting of

remaining locations, previously diseased. The vector of independent variables including an

intercept and time t as well as other covariates is denoted by Xm.

We specify the conditional probability of presence of a progressive disease, given indepen-

dent variables and other locations’ status at previous and current times,

P[Ym(sj, t) = 1|Xm, Ym(sk, t− 1), Ym(sk, t) for ∀k ∈ {1, . . . , Ns} \ {j}] = pm(sj, t), (2)

where A \ B denotes the set A excluding B. This conditional probability is assumed to be

Markovian over time, while subjects are sampled independently. We propose an autologistic

network model, for j ∈ P0
mt,

logit
{
pm(sj, t)

}
= XT

mβ +
∑

k∈P0
mt\{j}

η0jk
{
Ym(sk, t)− κm

}
+
∑

k∈P1
mt\{j}

η1jk
{
Ym(sk, t)− κm

}
(3)

subject to η0jk = η0kj and η1jk = η1kj for all j 6= k

where logit(p) = log{p/(1−p)} and κm = exp(XT
mβ)/{1+exp(XT

mβ)}, m = 1, . . . ,M . Note

that pm(sj, t) = 1 for j ∈ P1
mt because of absorbing features.

We center the autocovariate terms by κm to reduce bias and make the better interpre-

tations on η-parameters. Without centering, pm(sj, t) is completely biased toward 1-valued

autocovariates and impossible to obtain effect from 0-valued autocovariates; pm(sj, t) would

never decrease in time. The centering constant κm is the expectation of logit{pm(sj, t)}

under an independence model without autocovariates. When β = 0, for example, 0 and 1

of autocovariates are distinguished by −0.5 and 0.5, respectively. See Caragea and Kaiser

(2009) for more discussions.
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We divide the autocovariates into the active and absorbing set to allow normal and diseased

locations having different levels of contributing risk through η0jk and η1jk, respectively. The

parameter η0jk indicates an impact of the location sk on sj when sk is previously normal.

Similarly, η1jk is an impact of sk on sj when sk is previously diseased. These parameters

characterize associations between sj and sk for any j 6= k, which allow us to learn a network

structure concerning all possible connections of any two locations.

Also, we restrict symmetricity on η-parameters to ensure both a valid joint distribution (as

shown in Section 3) and nondirectional correlations. In infectious factor spreading pattern

studies such as ALS data analysis (in Section 6), these η-parameters can be further restricted

to take only non-negative values from practical considerations; it is unusual that a normal

location makes others more likely to be diseased.

[Table 1 about here.]

Table 1 specifies a simple example on η-parameters. Consider two locations s1 and s2, and

assume that the effect of s2 on s1 is of interest when s1 is normal at t − 1. The probability

of s1 being diseased at t, pm(s1, t), follows the proposed model (3) given the status of s2

and other locations at t − 1 and t. Model parameters η012 and η112 will characterize the

effect of s2 on s1 as follows. If s2 were both previously and currently normal (Case 1),

logit{pm(s1, t)} would decrease as much as η012(0 − κm). If s2 were previously normal but

currently diseased (Case 2), logit{pm(s1, t)} would increase as much as η012(1− κm). These

two cases imply that strongly linked locations with high value of η012 are more likely to stay

healthy (or be diseased) simultaneously. On the other hand, s1 would always be ill-affected

if s2 were diseased at the previous time (Case 3); logit{pm(s1, t)} will increase as much as

η112(1− κm). There are no other cases for s2 such as being previously diseased but currently

normal because of absorbing feature. Likewise, η0jk and η1jk characterize the impacts of sk

on sj for j 6= k.
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3 Joint Distribution and Transition Probability

We show that the conditional probabilities modeled by (3) uniquely determine a valid joint

distribution of spatio-temporal binary responses. For simplicity, let η0 = {η0jk}j<k and

η1 = {η1jk}j<k be the vectorized autoregressive coefficients of size Ns(Ns − 1)/2 where

j, k ∈ {1, . . . , Ns}, and θ = (β,η0,η1)
T , all coefficients of size p.

We first consider the spatial joint distribution for a given t and a given m: the distribution

of a random vector Ymt =
{
Ym(s1, t), . . . , Ym(sNs , t)

}T
. Since the realizations of Ymt against

absorbing states have no chances to occur, we restrict its domain. Let S be all possible joint

responses at Ns locations so that 2Ns elements are in S. Define Smt as a subset of S including

all available joint responses, Smt =
{
Ymt ∈ S|Ym(sj, t) = 1 for sj s.t. Ym(sj, t − 1) = 1

}
,

which includes 2|P
0
mt| elements, where |P0

mt| is the number of active locations at t. According

to Theorem 3 in Kaiser and Cressie (2000), we have a valid spatial joint distribution of

Ymt ∈ Smt,

f(Ymt|θ) =
exp{Q(Ymt|θ)}∑

Ymt∈Smt
exp{Q(Ymt|θ)}

(4)

for a fixed subject m and time t, where

Q(Ymt|θ) =
∑
j∈P0

mt

Ym(sj, t)
{
XT

mβ −
∑

k∈P0
mt\{j}

η0jkκm −
∑

k∈P1
mt\{j}

η1jkκm

}
+

1

2

∑
j∈P0

mt

{ ∑
k∈P0

mt\{j}

η0jkYm(sj, t)Ym(sk, t) +
∑

k∈P1
mt\{j}

η1jkYm(sj, t)Ym(sk, t)
}
.

The details for deriving (4) are deferred to Appendix A.

We can now write the full joint distribution of responses over all times, locations and

subjects, denoted by Y = {Ym(sj, t)|m = 1, . . . ,M ; j = 1, . . . , Ns; t = 1, . . . , T (m)}, as

P(Y |θ) =
∏M

m=1

∏T (m)
t=1 f(Ymt|θ). This follows the independent assumption among responses

across subjects, based on an inductive method with a valid Markov random field model at

an initial time t = 0 (Kaiser et al., 2014).

Here, the spatial joint distribution in (4) can be viewed as conditional distribution at t given
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t − 1, because Ym(t−1) determines both P0
mt and Smt. Therefore, when making an inference

on responses at next time, Ymt given Ym(t−1), we calculate one-time transition probability,

f(Ymt|θ) = P(Ymt|Ym(t−1);θ), (5)

which is essential for infectious factor spreading pattern studies. By plugging in estimates θ̂

to (5), one can infer one-time ahead disease status or predict at which locations the disease

is most (or least) likely to occur next. See Section 5 for numerical studies on this.

4 Penalized Maximum Pseudo Likelihood Estimation with Bias-correction

4.1 The Penalized Maximum Pseudo Likelihood Estimation

Estimating the autologistic model parameters in (3) is challenging since the normalizing

constant in its joint likelihood function, the denominator of (4), is computationally costly

when Smt is a large set. For efficient computation, we replace the full likelihood with a

product of conditional likelihoods, a pseudo-likelihood approach (Besag, 1974).

For simplicity, we stack all active responses into a longitudinal vector with a single index i

as Y =
{
Yi|i = 1, . . . , n

}
=
{
Ym(sj, t)|m = 1, . . . ,M ; sj ∈ P0

mt; t = 1, . . . , T (m)
}

where

n =
∑M

m=1

∑T (m)
t=1

∑Ns

j=1 I(sj ∈ P0
mt). In other words, each i is uniquely assigned to an index

combination (m, sj, t). With this notation, pm(sj, t) is expressed by the probability of a

binary response Yi from a logistic linear regression model; model (3) is equivalent to

logit{P (Yi = 1)} = X i(κi)
Tθ, (6)

where a centering parameter κi is determined for some i with respect to (m, sj, t). The design

matrix X = {X 1(κ1), . . . ,X n(κn)}T is a set of X i(κi) = {Xm, (Y
−j
mt − κm)I(Y −jm(t−1) =

0), (Y −jmt − κm)I(Y −jm(t−1) = 1)}T with Y −jmt = Ymt \ {Ym(sj, t)}, κm = κm1Ns−1 and θ =

(β,η0,η1)
T . To ensure the model identifiability, we assume that the design matrix X i(κi)

is of full rank. Let θ∗ be the true parameter. This equivalent transformation is often used

for autoregressive models (Wang, 2012). Consequently, the pseudo log-likelihood of original
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binary spatio-temporal data {Ym(sj, t)} is reformulated as the log-likelihood of longitudinal

binary vectors {Yi},

Lc(θ) =
1

n

n∑
i=1

Lc,i(θ) =
1

n

n∑
i=1

(
YiX i(κi)

Tθ − log
[
1 + exp{X i(κi)

Tθ}
])
, (7)

which can be maximized by the standard framework of generalized linear model (GLM)

estimation for a fixed κi.

We regulate (7) using the least absolute shrinkage and selection operator (LASSO) (Tibshi-

rani, 1996). The sparsity on θ is needed not only because of a large number of regressors but

also in order to reflect the reality that a specific covariate or location possibly has negligible

effect. Specifically, we maximize the `1-penalized pseudo log-likelihood,

Fλ(θ) = Lc(θ)− λ‖θ‖1, (8)

where ‖ ·‖1 is the `1-norm and λ > 0 is a tuning parameter for regularization. Other regular-

ization approaches for sparsity can be employed, such as the adaptive LASSO (Zou, 2006),

the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), and the maximum a

posteriori (MAP) estimation.

4.2 The Bias-corrected Estimator and Inference

The consistency of LASSO estimators for GLM has been approved under appropriate reg-

ularity conditions (Van de Geer, 2008). However, they do not have a tractable limiting

distribution to make statistical inference. Along the lines of Van de Geer et al. (2014) and

Tang et al. (2016), we find a bias-corrected LASSO estimator which asymptotically behaves

as a maximum pseudo-likelihood estimator under the assumption that the nonzero set of

true parameters θ∗ is known in advance.

Let θ̂λ = (β̂λ, η̂0λ, η̂1λ)
T be the regularized estimator at λ, that is θ̂λ = arg maxθ Fλ(θ).

By the Karush-Kuhn-Tucker (KKT) optimality conditions (Kuhn and Tucker, 2014), i.e. the
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subgradient of the objective in (8) is 0, the regularized pseudo likelihood estimator satisfies

Sn(θ̂λ)− λẐ = 0, (9)

where Sn(θ̂λ) =
1

n

∑n
i=1 L̇c,i(θ̂λ) is a pseudo-score function of (7) and Ẑ = (Ẑ1, . . . , Ẑp)

T is a

subdifferential satisfying Ẑj = sign(θ̂j) if θ̂j 6= 0 and Ẑj ∈ {−1, 1} otherwise, for j = 1, . . . , p.

The first-order Taylor expansion of Sn(θ̂λ) in (9) leads to Sn(θ∗)+ Ṡn(θ∗)(θ̂λ−θ∗)−λẐ ≈ 0.

Multiplying both sides by {Ṡn(θ∗)}−1 and reordering terms, we have

θ̂λ + {−Ṡn(θ∗)}−1λẐ − θ∗ + {Ṡn(θ∗)}−1Sn(θ∗) ≈ 0. (10)

Combine the first two terms and define θ̃ = θ̂λ+{−Ṡn(θ∗)}−1λẐ. From (10), we have θ̃−θ∗ ≈

{−Ṡn(θ∗)}−1Sn(θ∗), a property also satisfied by the maximum pseudo-likelihood estimator

asymptotically. This motivates us to use θ̃ as a bias-corrected estimator. In practice, θ∗ is

unknown, and −Ṡn(θ∗) is estimated by an observed Hessian matrix, Ĥ = −Ṡn(θ̂λ). Since

λẐ = Sn(θ̂λ) from (9), the bias-corrected LASSO estimator is therefore

θ̃ = θ̂ + Ĥ−1Sn(θ̂λ). (11)

For the log-likelihood in (7), Sn(θ̂λ) =
1

n
X T (Y − π̂λ) and Ĥ =

1

n
X T V̂λX , where π̂λ =

(π̂1λ, . . . , π̂nλ)
T and V̂λ = diag{π̂1λ(1−π̂1λ), . . . , π̂nλ(1−π̂nλ)} with π̂iλ = logit−1{X i(κi)

T θ̂λ}.

We introduce notations for the asymptotic framework. Recall n =
∑M

m=1

∑T (m)
t=1

∑Ns

j=1 I(sj ∈

P0
mt) and p = Ns(Ns−1)+px, where px is the number of other covariates. We let the number

of subjects M and the number of locations Ns go to infinity while fixing T (m) and assuming

p < n. Given two positive sequences {an} and {bn}, an � bn means −∞ < lim inf(an/bn) 6

lim sup(an/bn) < ∞; and an = Op(bn) means 0 < lim inf(an/bn) 6 lim sup(an/bn) < ∞.

Denote ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ as the `1, `2 and the maximum norm of a vector or a matrix,

respectively. We will make use of the following regularity conditions.

(C1) Suppose that ‖X i‖∞ = Op(1), for i = 1, . . . , n. Also assume Λmin(X TX /n) = O(1) and
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Λmin(X TX /n) = O(1), where Λmin(M) and Λmax(M) denote the minimum and maximum

eigen values of a matrix M, respectively.

(C2) There exists δ > 0 such that in a neighborhood around a true value θ∗, denoted as

Nδ(θ
∗), it holds for some constant 0 < ε0 < 1, ε0 < logit−1(X T

i θ) < 1−ε0, for ∀θ ∈ Nδ(θ
∗).

(C3) It holds s∗ = o(
√
n/(p log p)) and λ �

√
log p/n, where s∗ � p is the number of true

signals.

We establish the consistency and asymptotic normality of the bias-corrected estimator in

the following theorem.

Theorem 1: Suppose the conditions (C1)-(C3) hold, the bias-corrected estimator θ̃ de-

fined in (11) is consistent. For a fixed r, let Ar = {A ∈ Rr×p : 0 < Λmin(AAT ) 6

Λmax(AA
T ) <∞}. For any A ∈ Ar, we have the following asymptotic normality result

n1/2Σ−1/2A(θ̃ − θ∗) d−→Nr(0, Ir)

where Σ = A{H∗}−1J∗{H∗}−1AT , H∗ = E{−L̈c(θ
∗)} and J∗ = var{L̇c(θ

∗)}.

The proof is provided in Appendix B. This asymptotic normality result enables us to establish

statistical inferences for the biased corrected estimator, such as hypothesis tests or confidence

interval constructions. Theorem 1 is general because the result is applicable to cases beyond

the regularized pseudo-likelihood considered in this paper as long as p < n. For other `1-

norm regularized composite likelihood estimators that are built upon a weighted product

of a collection of component likelihoods such as low dimensional conditional or marginal

densities (Varin et al., 2011), the asymptotic results still hold under appropriate regularity

conditions.

4.3 The Iterative Algorithm for Estimation

The common algorithms for a logistic regression such as Newton’s method cannot apply

because κ-parameter in (3) is a nonlinear function of β. Instead, we first estimate the
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parameters which are linear, with the bias-correction, and then update the nonlinear portion

κm’s (or κi’s equivalently) iteratively until all converges, as follows.

1. Fit the independence model, the model (3) with ∀η = 0, and set as β̂(0);

2. At the l-th iteration, for a fixed κ̂
(l−1)
i = logit−1

{
XT

i β̂
(l−1)} and given λ (see below), fit the

penalized logistic model (6) by maximizing (8), and update estimates θ̂
(l)
λ =

{
β̂

(l)
λ , η̂

(l)
0λ, η̂

(l)
1λ

}T
;

3. Calculate the bias-corrected estimates by (11), θ̃(l) = θ̂
(l)
λ +

{
Ĥ(θ̂

(l)
λ )
}−1

Sn(θ̂
(l)
λ );

4. Update the centering parameters κ̂
(l)
i = logit−1{XT

i β̃
(l)};

5. Return to step 2 until all converges.

In step 1 and step 2, the standard logistic regression (Hastie and Pregibon, 1992) and the

GLM with regularization (Friedman et al., 2010) are used, respectively. For example, glm

and glmnet in R software can apply.

The algorithm involves the selection of a tuning parameter λ which controls the sparsity

of network connectivities. In practice, an optimal λ can be determined via some data-

dependent model selection criteria, such as generalized cross-validation (GCV) (Golub et al.,

1979), Bayesian information criterion (BIC) (Schwarz et al., 1978) and extended Bayesian

information criterion (EBIC) (Chen and Chen, 2008). Alternatively, one can manually choose

λ that meets a desired degree of sparsity from certain domain knowledge. We suggest to use

any technique at the first iteration, l = 1, and fix it for the remaining to save computation.

5 Simulation Studies

Simulation studies were conducted to investigate, first, how well the proposed model esti-

mation and inference work, and second, how better the proposed prediction via transition

probabilities performs than a simple Markov model.

We set Ns = 8 locations, (s1, s2, . . . , s8), and the dimension of each η0 and η1 is 8×(8−1) =

56. We assigned different values to η0 and η1 that are symmetric and moderately sparse,
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as illustrated in Figure 1. For simplicity, only an intercept was included in the independent

model; Xm = 1 with a coefficient β = −2. This leaded κm ≈ 0.12 for all m = 1, . . . ,M , and

0 and 1 of autocovariates are transformed to −0.12 and 0.88, respectively. In other words,

we let the influence of diseased status be stronger than normal status.

[Figure 1 about here.]

Recall that θ = (β,η0,η1)
T determines one-time transition probability from a joint outcome

to another by the formula (5). Since there are 28 joint outcomes with Ns = 8, it is not

feasible to present all transition probabilities regarding our θ. Alternatively, we illustrate an

example to provide better insights on relationships between θ and P(Ymt|Ym(t−1);θ). Suppose

Ym0 = (1, 0, 0, 0, 1, 0, 1, 1), then the most probable next outcome is Ym1 = (1, 0, 0, 0, 1, 1, 1, 1)

with probability 0.21; that is, s6 is the most likely to be newly diseased. This can be partly

explained by η156(= η165) = 2.15, a strong positive contribution to switch the status of s6

from 0 to 1 when Ym(s5, 0) = Ym(s5, 1) = 1. Likewise, Ym1 = (1, 1, 0, 0, 1, 0, 1, 1) has the

second highest probability of 0.18 with s2 being newly diseased next, by η112(= η121) = 1.69.

The initial status at 8 locations, Ym0, was generated from a Bernoulli distribution with a

probability 0.25; Y (sj, 0) ∼ Bernoulli(0.25), for j ∈ {1, . . . , 8}. The next status was generated

from the true transition probabilities, P(Ymt|Ym(t−1);θ
∗), and we repeated this until all is

diseased. Such sample sequences were independently generated for M = 500 subjects to

fit the model. The iterative algorithm described in Section 4.3 was applied to estimate

model parameters. The sparsity parameter was tuned at the first iteration by the method

of cross-validation via function in R (cv.glmnet) and withheld for the subsequent iterations

to speed up algorithmic convergence where high-quality initial values are always desirable.

For non-negativity constraint, the minimum value of η is set to be zero using the option

(lower.limits). Most runs have converged in 10 or less iterations. We ran B = 100 rounds

of simulations.
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Figure 2 illustrates the simulation results with the means and standard deviations of

the estimated parameters and the means of the estimated asymptotic standard deviations,

denoted by η̂, SDη̂ and SEη̂, respectively. In the panels (a) and (b), the point estimates

verified that our estimation procedure is, in general, able to recover the network structures

and discriminates autoregressive effects among different pairs of locations. For example, from

the true parameters we set in Figure 1, the impact of s7 on s8 (or s8 on s7) when the previous

state was 0 is stronger than that of s5 on s7 (or s7 on s5), that is, η078(= η087) = 2.98 > η057(=

η075) = 1.21. These impacts were estimated as η̂078(= η̂087) = 2.99 > η̂057(= η̂075) = 1.18,

which are very close to the true values. Moreover, the panels (c) and (d) demonstrated

the asymptotic distribution derived by Theorem 1. The good correspondence between the

empirical and estimated variances convinced that the covariance matrix in Theorem 1 is a

proper estimator for asymptotic variances of parameters in the proposed model.

[Figure 2 about here.]

We also compared the autologistic network model (3) with a simple Markov model,

logit{pm(sj, t)} = XT
mβ +

∑
k 6=j

ηjk{Ym(sk, t− 1)− κm} (12)

subject to ηjk = ηkj for all j 6= k,

which has both centered autocovariates and symmetric η-parameters. For each model, we

estimated parameters and transition probabilities, and computed individual root-mean-

square errors at every active transition, defined as

RMSE2
mt =

1

B

B∑
b=1

{P(Ymt|Ym(t−1); θ̂(b))− P(Ymt|Ym(t−1);θ
∗)}2

where θ̂(b) denotes the estimated model parameters at the b-th simulation run. Since it is quite

infeasible to show the RMSEs at all active transitions, we instead showed their summaries

in Table 2. Note that the number of active transitions is
∑Ns

k=0 2k
(

Ns

Ns−k

)
, which is 6561 for
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Ns = 8. From Table 2, the proposed model (3) estimated the transition probabilities more

precisely than the simple Markov model (12).

[Table 2 about here.]

Despite of the overall reasonable estimation performance, a theoretically guaranteed re-

covery of the true sparsity by the LASSO (i.e. variable selection consistency) requires the

irrepresentable condition (Zhao and Yu, 2006); relevant variables (signal with non-zero η)

are not strongly correlated with the irrelevant variables (noise with zero η). This condition

is generally considered too stringent to hold in practice. In our application, we expect some

dependence in the design matrix consisting of autocovariates; for example, the empirical

correlation between the two columns corresponding η167 and η168 is about 0.4 while their true

values are η167 = 0 and η168 = 0.68. However, we focused parameter estimation consistency

shown in Theorem 1 under the restricted eigen condition (C1) and Donoho and Johnstone

(1994)’s hard threshold rate
√

log p/n in condition (C3). The simulation numerical results

also demonstrate that our estimator is in general a good approximation of true parameter

values.

6 Application to ALS Patients Data

Data used in this research came from the EMPOWER study, a double-blind, placebo-

controlled phase III clinical trial on dexpramipexole in patients with ALS (Cudkowicz et al.,

2013). Participants were 18 to 80 years old, with first symptom onset 24 months or less at

study entry and an upright slow vital capacity of at least 65% of the predicted value for age,

height, and sex at screening. A total of 942 patients were enrolled from 81 academic medical

centers in 11 countries. Sixteen muscles (eight bilaterally) were tested at study entry and

every two months thereafter for up to 12 months. As shown in Figure 3, the sixteen muscles
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are: the left and right of shoulder flexion, elbow flexion, hip flexion, knee flexion, elbow

extension, knee entension, wrist extension and ankle dorsiflexion.

[Figure 3 about here.]

For the ALS disease, the association in muscle strength between different muscles is not

merely determined by the spatial proximity of muscles at different body locations, it can also

be affected by the proximity of nerves controlling muscles in the spinal cord. For example,

when a patient’s right wrist muscle loses strength, the left wrist muscle, although far away

from the right one, can be affected before the right elbow, which is physically closer to the

right wrist. Absorbing features also need to be considered, because once a muscle becomes

diseased it can never recover. Moreover, in the spread of muscle weakness by ALS, a newly

diseased muscle may have different effects on a muscle compared to the others that are

diseased earlier. Our model is thus suitable for the ALS disease spreading pattern study.

In this study, the raw muscle strength data were dichotomized using the regression equa-

tions in National Isometric Muscle Strength Database Consortium (1996) and Bohannon

(1997), which established the predictive strength of each muscle for healthy people based

on their gender, age, height, and weight. The predicted strengths were used as a benchmark

to determine whether muscles were diseased or not. Specifically, a muscle was declared as

impaired (= 1) if its measured strength is 40% less than the predicted strength, or healthy

(= 0) otherwise. Once a muscle was declared as impaired at a time, it would remain so

from that time point on. We fitted the model (3) to these data with independent variables

X = {1, t, symptom onset site, symptom duration} and estimated the model parameters

using the regularized pseudo-likelihood in (8). The tuning parameter, λ, was chosen by 10-

fold cross validation. In the iterative algorithm for parameter estimation given in Section 4.3,

we stopped the iteration when every updated estimate falls within 1% difference from the

old estimate.



16 Biometrics, February 2018

Figure 4 shows the heat maps of estimated η0 and η1, respectively. The horizontal con-

nections between the right and left side of the same muscle were mostly stronger than other

connections for both previously healthy and diseased patients. This implies that a muscle is

likely to remain at the same status as its opposite side, no matter what status a muscle was

at the previous visit. Also, the estimates of η1 were sparser than those of η0, under the same

degree of regularization (at the same value of λ). This implies that newly impaired muscles

have different impacts on others, even vertically between upper and lower body muscles, while

muscles impaired far in the past were mostly associated only with physically neighboring

muscles or their counterparts. Moreover, the fairly strong connection was observed between

elbow and knee in η1, which can be a clue to a biological link of spreading path between

upper and lower body locations.

[Figure 4 about here.]

By computing the transition probabilities from (5), we could make prediction on one-time

ahead disease progression. One of clinical interests is to single out which muscles have the

most likelihood of being impaired before long. We could also track the most susceptible

muscles continuously and sequentially until all muscles are impaired. This resulting pathway

of muscle impairment provides a simple yet informative prediction of disease spreading. A

more rigorous way is perhaps to make inference on a probable path according to a transition

probability matrix; however, the dimension of this path space is too large for practical use.

Suppose a male patient visits a clinic for the first time when only one muscle is impaired

by ALS, say 21.6 months ago, and his symptom is not bulbar onset. Figure 5 illustrates two

examples of probable disease progression paths for this hypothetical patient. In Figure 5 (a),

the left wrist extension got impaired first, spread to the right wrist extension, and then

followed by the knee muscles. This progression path is in conjunction with the implication

of the estimated parameters in Figure 4; spreading directions occurred between the left and



Autologistic Network Model on Binary Data 17

right sides. Also, the knee muscles, which are highly linked to lower body muscles, were likely

to get impaired first among lower body sites, and so were the elbow muscles among upper

body sites. The other spreading path, with the left ankle flexor initially impaired, exhibited

quite similar progression in Figure 5 (b); the transitions between muscles of right and left

sides and between elbow and knee muscles were remarkable.

[Figure 5 about here.]

Table 3 summarizes the bias-corrected estimates of regression coefficients β; the confidence

intervals and p-values were based on Theorem 1. The coefficients β̂ can be better interpreted

in terms of the estimated centering parameter κ̂ = logit−1(XT β̂). For example, the estimated

overall probability of disease progression with no contributions from independent covariates

or autocovariates is κ̂ = logit−1(3.57) ≈ 0.03, which is reasonably low. In that manner, this

probability would decrease over time because β̂ = −0.05 for the visiting time is negative

with p < .0001. In other words, individual muscles would be likely to stay healthy if there

were no inter-muscle spatial dependency and other risk factors. Also, the negative effect of

the symptom duration (β̂ = −0.01 with p = 0.0071) suggests that a patient having a longer

symptom duration tends to have a lower probability of progression, in contrast, a patient

who had a most recently onset tend to have higher probability of progression.

[Table 3 about here.]

7 Discussion

We proposed an autologistic network model for spatio-temporal binary data with absorbing

state. The major contributions are: we relaxed the need of pre-specification on neighborhood

structure; we considered absorbing state of binary processes by partitioning the inferrable

active set and non-inferrable absorbing set; the model incorporated previously diseased and

normal locations with their different profiles; the model can apply to other applications with
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a similar data structure, such as an epidemic, a pathogen, a virus, and so on. Furthermore,

we established a valid joint distribution from the proposed conditional probability model and

derived the transition probabilities for useful to characterize spreading patterns of a disease.

For the estimation, the LASSO-penalized pseudo-likelihood maximization was invoked to

enforce sparsity on network associations. We proposed an efficient iterative algorithm for

model implementation by converting the optimization into the ordinary penalized GLM

problem. In addition, a bias-correction method was applied to obtain the asymptotic nor-

mality. Note that since the asymptotic properties are proved at a fixed level of sparsity,

their validity would hold when the tuning parameter, which is chosen according to some

data-driven criteria such as the cross validation, satisfies the condition given in (C3). This

technical work is worth future exploration.

Our simulation study affirmed that the proposed estimation approach is valid for inference

on model parameters. We also studied in simulation that the proposed model can estimate

transition probabilities more precisely than a simple Markov model, which has neither simul-

taneous spatial dependency or different impacts depending on previous status. Meanwhile,

the application to the ALS data demonstrates that our model offers further insights into the

spreading mechanism of muscle weakness by ALS disease.

Future research could focus on ordered categorical data or mixed data of continuous and

discrete measures, rather than dichotomized data, to retain more information. Moreover,

instead of using `1-penalty, other regularization approaches could be employed; `0-penalty

could be appealing as it does not lead to estimation bias. It would be of interest to con-

sider methods that combine both dimensionality reduction and sparsity. Lastly, three-way

association, rather than two-way, would be worthwhile to consider, which is useful in brain

imaging data analysis.
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Appendix

(A): Derivation of Joint Distribution in Section 3

We build a negpotenial function Q following Besag (1974) and Kaiser and Cressie (2000) to

derive a valid joint distribution from conditionals. For a fixed subject m and time t whose

previous state is zero (i.e. Ym(sj, t− 1) = 0 and so Ym(sj, t) ∈ P0
mt), the conditional density

of a response Ym(sj, t) at y is

fj{y|Xm, Ym(sk, t− 1), Ym(sk, t) for ∀k 6= j;θ} = pm(sj, t)
y{1− pm(sj, t)}1−y.

From the model specification in (3), we have its log-conditional density as

log fj{Ym(sj, t)|Xm, Ym(sk, t− 1), Ym(sk, t) for ∀k 6= j;θ}

= Ym(sj, t)
[
XT

mβ +
∑

k∈P0
mt\{j}

η0jk{Ym(sk, t)− κm}+
∑

k∈P1
mt\{j}

η1jk{Ym(sk, t)− κm}
]

− log

(
1 + exp

[
XT

mβ +
∑

k∈P0
mt\{j}

η0jk{Ym(sk, t)− κm}+
∑

k∈P1
mt\{j}

η1jk{Ym(sk, t)− κm}
])

for all Ym(sj, t) in the active set P0
mt. As the above conditionals indicate only pairwise

dependencies, the negpotential function of all responses in the active set has only the first
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and second order of cliques, so it has the following permutation invariance form,

Q(Ymt|θ) =
∑

j: Ym(sj ,t)∈Amt

Hj{Ym(sj, t)} +
∑

j:Ym(sj ,t)∈Amt

k: j<k6Ns

Hj,k{Ym(sj, t), Ym(sk, t)}.

To derive Hj{Ym(sj, t)} and Hj,k{Ym(sj, t), Ym(sk, t)}, we follow Besag (1974) and define

Hj{Ym(sj, t)} = log
fj{Ym(sj, t)|Y ∗m(s−j, t)}
fj{Y ∗m(sj, t)|Y ∗m(s−j, t)}

Hj,k{Ym(sj, t), Ym(sk, t)} = log
fj{Ym(sj, t)|Ym(sk, t), Y

∗
m(s−j,−k, t)}fj{Y ∗m(sj, t)|Y ∗m(s−j, t)}

fj{Y ∗m(sj, t)|Ym(sk, t), Y ∗m(s−j,−k, t)}fj{Ym(sj, t)|Y ∗m(s−j, t)}

Choosing Y ∗m(sj, t) = 0 for each j in active set P0
mt, we obtain

Hj{Ym(sj, t)} = Ym(sj, t)
{
XT

mβ −
∑

k∈P0
mt\{j}

η0jkκm −
∑

k∈P1
mt\{j}

η1jkκm

}
Hj,k{Ym(sj, t), Ym(sk, t)} =

∑
k∈P0

mt\{j}

η0jkYm(sj, t)Ym(sk, t) +
∑

k∈P1
mt\{j}

η1jkYm(sj, t)Ym(sk, t).

The negpotential function then takes the form in (4) and finally, the joint distribution of

Ymt in the support set Smt given a complete set of conditional distributions, denoted by f ,

can be specified up to a normalizing constant by Theorem 3 in Kaiser and Cressie (2000).

(B): Proof of Theorem 1 in Section 4

Proof. We first introduce some notations to simplify mathematical expressions. For a

function ρ : X × Y → R, write Pnρ =
∑n

i=1 ρi/n, and Pρ = E(Pnρ). Also define a function

ρ(α, y) = yα− log{1 + exp(α)}. For the binary logistic regression model, we can rewrite the

pseudo loglikelihood function as `c(θ) = Pnρ(X iθ, Yi).

When condition (C2) holds, the second derivative of ρ(α, y) with respect to α is ρ̈(α, y) =

logit−1(α){1− logit−1(α)}, which is positive and bounded away from zero. It indicates that

ρ(α, y) behaves quadratically near α∗ = X iθ
∗ and hence the quadratic margin condition

holds (see, e.g., Section 6.4 of Bühlmann and Van De Geer (2011)), i.e., Pn{ρ(X iθ̂λ, Yi) −

ρ(X iθ
∗, Yi)} > c‖X (θ̂λ − θ∗)‖22/n for some constant c.

Furthermore, the restricted eigenvalue condition (C1) implies that the compatibility condi-

tion required in Theorem 6.4 in Bühlmann and Van De Geer (2011) holds. Combining these
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two conditions together, the oracle inequality of the LASSO estimator can be established as

c‖X (θ̂λ−θ∗)‖22/n+λ‖θ̂λ−θ∗‖1 6 Pn{ρ(X iθ̂λ, Yi)− ρ(X iθ
∗, Yi)}+λ‖θ̂λ−θ∗‖1 = O(s0λ

2),

which provides asymptotic bounds for both the prediction error and the `1 error, i.e.,

‖θ̂λ−θ∗‖1 = OP(s0λ), ‖X (θ̂λ−θ∗)‖22/n = O(s0λ
2). Under condition (C3), θ̂λ is a consistent

estimator of θ.

Notice that Ĥ = 1
n
X Tdiag

[
π̂1(θ̂λ){1 − π̂1(θ̂λ)}, . . . , π̂n(θ̂λ){1 − π̂n(θ̂λ}

]
X . By condi-

tions (C1) and (C2), Λmin{Ĥ} = min‖u‖2=1 u
T ( 1

n
X Tdiag

[
π̂1(θ̂){1 − π̂1(θ̂)}, . . . , π̂n(θ̂){1 −

π̂n(θ̂}
]
X )u = O{min‖u‖2=1 u

T ( 1
n
X TX )u} = O(Λmin{X TX /n)}. Similarly, Λmax{Ĥ} =

O{Λmax(X TX /n)}, which indicates Ĥ is strictly positive definite. Consider the inverse

matrix of Ĥ , and define it as Θ̂Ĥ = I. Recall Λmax(Θ) = 1/Λmin(Ĥ), and Λmin(Θ) =

1/Λmax(H), which suggests that Θ̂ is also strictly positive definite with bounded eigenvalues

and hence ‖Θ̂‖2 = Λmax(Θ̂) = O(1). Combing this fact with Sn(θ̂λ) = λκ̂(θ̂λ) → 0 and

θ̂λ → θ∗, we prove the consistency of θ̃ = θ̂λ + Θ̂Sn(θ̂λ), i.e. θ̃ → θ∗ as n→∞.

We next show the asymptotic normality of the biased-corrected estimator. When condition

(C2) holds, the third derivative of ρ(α, y) with respect to α exists and its absolute value is

bounded by 1, which ensures that the second derivative of ρ(α, y) with respect to α is locally

Lipschitz with a universal constant.

From the Taylor expansion of ρ̇(X iθ, y) and the Lipschitz conditions on ρ̈(X iθ, y) for ∀θ ∈

Nδ(θ
∗), we have ρ̇(X T

i θ̂λ, Yi) = ρ̇(X T
i θ
∗, Yi)+ ρ̈(X T

i θ̂λ, Yi)X T
i (θ̂λ−θ∗)+O(|X T

i (θ̂λ−θ∗)|2).

Therefore,

θ̂λ + Θ̂Sn(θ̂λ)− θ∗

=θ̂λ + Θ̂Pn{ρ̇(X T
i θ̂λ, Yi)X i} − θ∗

=θ̂λ − θ∗ + Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iρ̈(X T

i θ̂λ, Yi)X T
i (θ̂λ − θ∗) + X iO(|X T

i (θ̂λ − θ∗)|2)}

=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Pn{X iρ̈(X T
i θ̂λ, Yi)X T

i }(θ̂λ − θ∗)]

=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Ĥ(θ̂λ − θ∗)]
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=Θ̂Pn{ρ̇(X T
i θ
∗, Yi)X i + X iO(|X T

i (θ̂λ − θ∗)|2)}+ [θ̂λ − θ∗ + Θ̂Ĥ(θ̂λ − θ∗)]

= Θ∗Pn{ρ̇(X T
i θ
∗, Yi)X i}︸ ︷︷ ︸

T1

+ Θ̂Pn{X iO(|X T
i (θ̂λ − θ∗)|2)}︸ ︷︷ ︸
T2

+ (Θ̂−Θ∗)Pn{ρ̇(X T
i θ
∗, Yi)X i}︸ ︷︷ ︸

T3

(A.1)

When conditions (C1)-(C3) hold, by Hölder’s inequality, the second term in (A.2) is

‖T2‖∞ = ‖Θ̂Pn{X iO(|X T
i (θ̂λ − θ∗)|2)}‖∞ 6 O(Pn{‖Θ̂X i‖∞|X T

i (θ̂λ − θ∗)|2})

6 O(Pn{‖Θ̂‖1‖X i‖∞|X T
i (θ̂λ − θ∗)|2})

6 O(Pn{
√
p‖Θ̂‖2‖X i‖∞|X T

i (θ̂λ − θ∗)|2})

= O(
√
p‖X T (θ̂λ − θ∗)‖22/n) = O(

√
ps∗λ2) = op(1/

√
n)

Notice that we consider the case with p < n, and hence ‖Θ̂−Θ∗‖1 = O(1/
√
n). By Hölder’s

inequality, the third term in (A.2) is as follows

‖T3‖∞ 6 ‖Θ̂−Θ∗‖1‖Pn{ρ̇(X T
i θ
∗, Yi)X i}‖∞ = ‖Θ̂−Θ∗‖1‖{Yi − logit−1(X T

i θ
∗)}X i‖∞

= ‖Θ̂−Θ∗‖1‖Pn{Yi − logit−1(X T
i θ
∗)}‖1‖PnX i‖∞ 6 op(1/

√
n)

We now consider n1/2A(θ̃ − θ∗) = n1/2AT1 + n1/2A(T2 + T3). For any A ∈ Ar with fixed

r, we have ‖n1/2A(T2 + T3)‖∞ 6 ‖A‖1‖
√
n(T2 + T3)‖∞ = or(1)

Also recall the Fisher information for the logistic regression is J∗ = var{ 1

n
X T (Y − π∗)},

and the Hessian information is H∗ = 1
n
X Tdiag

[
π∗1(1 − π∗1), . . . , π∗n(1 − π∗n)

]
X , where π∗i =

logit−1{X i(κi)
Tθ∗}. From conditions (C1) and (C2), both J∗ and {H∗}−1 exist. WhenAAT

is positive definite with bounded eigen values, Σ−1/2 exists.

From the central limit theorem and the theory of unbiased estimating equation theory (see,

e.g., Chapter 3 of Song (2007)), we have n1/2AT1
d−→Nr(0,AΘ∗J∗Θ∗AT ).

Finally, we prove that

n1/2Σ−1/2A(θ̃ − θ∗) d−→Nr(0, Ir)
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(a) η0 (b) η1

Figure 1: Illustration of true parameters designated for simulation; node indices j ∈
{1, 2, . . . , 8} are written in circles; nonzero values of ηjk(= ηkj) are labeled on edges in (a) for
η0 and in (b) for η1, while zeros have void edges; the width of edges represents the strength
of conditional dependence between two nodes.
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(a) η̂0 (b) η̂1

(c) SD and SE of η̂0 (d) SD and SE of η̂1

Figure 2: Simulation results; (a)(b) mean of estimates; (c)(d) standard deviation of
estimates, SD, and mean of asymptotic standard deviation (standard error) of estimates, SE.
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Figure 3: Measured muscles on a human body map; right and left sides of eight pairs of
muscle groups, totally sixteen number of muscles (16 nodes), are examined.
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Table 1: Demonstration of η-parameters describing the effect of s2 on the probability of s1
being diseased, pm(s1, t), which depends on the status of s2 at previous and current times.

Ym(s2, t− 1) Ym(s2, t) change in logit{pm(s1, t)}
Case 1 0 0 η012(0− κm)
Case 2 0 1 η012(1− κm)
Case 3 1 1 η112(1− κm)
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Table 2: Summary of RMSEs of transition probabilities at active transitions

model median mean max

(3) autologistic network 0.0040 0.0087 0.0925
(12) simple Markov 0.0081 0.0335 0.4461
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Table 3: Summary for the bias-corrected estimates of β from EMPOWER study

covariate estimate 95% confidence iinterval p-value

Intercept −3.5695 (−3.7758,−3.3633) < 0.0001
Visiting time (t) −0.0512 (−0.0656,−0.0367) < 0.0001

Onset site −0.0011 (−0.1012, 0.0991) 0.6470
Symptom duration −0.0100 (−0.0182,−0.0017) 0.0071


