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ABSTRACT
Attention mechanism has shown great success in computer

vision. In this paper, we introduce Spatial Pyramid Attention

Network (SPANet) to investigate the role of attention block

for image recognition. Our SPANet is conceptually simple

but practically powerful. It enhances the base network by

adding Spatial Pyramid Attention (SPA) Blocks laterally. In

contrast to other attention based networks that leverage global

average pooling, our proposed SPANet considers both struc-

tural regularization and structural information. Furthermore,

we investigate the topology structure of attention path connec-

tion and present three SPANet structures. SPA block is flex-

ible to be deployed to various convolutional neural network

(CNN) architectures. The experimental results show that our

SPANet significantly improves the recognition accuracy with-

out introducing much computation overhead compared with

other CNN models. Codes are made publicly available 1.

1. INTRODUCTION

Convolutional neural networks have shown profound influ-

ence on a variety of visual processing applications. Hence,

there are ever-increasing interests in CNN improvements. To

enhance the performance of CNNs, recent works add more

and more convolutional layers to the CNN architecture. For

example, from 8-layer AlexNet [1] to 1000-layer ResNet

[2,3], they aim to improve the accuracy of image recognition.

Inevitably, more learnable layers introduce more parameters

and prolong inference time.

In addition to making neural networks deeper, other

efforts focus on investigating attention mechanisms [4] in

CNNs. By informing a CNN network where to look and

what to pay attention to, attention networks achieve a bet-

ter performance with fewer layers. As an example, SENet [5]

introduces Squeeze-and-Excitation (SE) blocks to study the

channel dependencies in a CNN architecture. Although afore-

mentioned CNN architectures achieve better performance for
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Fig. 1. Architecture of our SPANet. We design a Spatial Pyra-

mid Structure to replace the traditional global average pool-

ing. SPANet-A learns attention from current feature maps.

SPANet-B learns from previous feature maps. SPANet-C

adds an optional point-wise convolution to the attention path.

image recognition, the use of global average pooling (GAP)

layers that aggregate a 3D feature map to a 1D attention map,

would certainly cause loss of structural information in in-

termediate feature maps. To mitigate this problem, Convo-

lutional block attention module (CBAM) [6] considers both

channel-wise attention and spatial attention, which focuses on

channel dependencies and structural information respectively.

In this paper, we innovatively incorporate structural infor-

mation to channel-wise attention blocks. We argue that the

limitation originating from the global average pooling makes

the shallow layers (which output big-size feature maps) un-

able to fully leverage the advantages of attention mechanism

[7]. Following this argument, we present Spatial Pyramid At-

tention (SPA), which introduces a spatial pyramid structure to

encode the intermediate features instead of using the simple

global average pooling. Our proposed SPA is composed of

two parts: one is a spatial pyramid structure which aggregates

a 3D feature map into a 1D attention map, and the other is

a combination of two fully-connected layers and a sigmoid-

based activation layer, which sequentially encodes and de-

codes attention weights. These two parts are light-weight.

In terms of pooling schema, our spatial pyramid struc-
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ture could be considered similar to SPPNet [8] and Region

of Interesting Pooling [9]. In contrast, our spatial pyramid

structure encodes a feature map with more structural infor-

mation while SPPNet and Region of Interesting Pooling aim

to obtain a fixed-length feature vector. In addition to being

capable of retaining the spatial information in each channel, a

major advantage of the proposed spatial pyramid structure is

that it does not introduce any additional parameter. All lay-

ers in the spatial pyramid structure are not learnable, which is

nearly cost-free. Compared to SENet [5], our structure only

modifies the first fully-connected layer to tackle the large in-

put size. The small computation overhead contributes to its

enhanced performance.

Inspired by self-attention, we explore three topology

structures of the Spatial Pyramid Attention module in our

proposed SPANet, referred to as SPANet-A, SPANet-B and

SPANet-C. SPANet-A learns attention from current feature

maps, which follows a traditional self-attention path connec-

tion schema. SPANet-B learns from previous feature maps.

SPANet-C adds an optional point-wise convolution to the at-

tention path. Fig. 1 depicts the schemas of SPANet.

We comprehensively evaluate the performance of SPANet

using CIFAR-100 and a down-sampled ImageNet dataset.

Without bells and whistles, SPANet outperforms related state-

of-art work [2,5,10,11]. Experimental results show that struc-

tural information in the attention mechanism, which we focus

on, is a crucial factor for model performance. Compared to

SENet that only considers the structural regularization in at-

tention mechanism, our SPANet obtains 1.88% accuracy im-

provement on downsampled ImageNet [12].

2. RELATED WORK

Multi-Path Connection. Multi-path connection in deep

learning was first used in Highway Networks [13, 14]. By al-

lowing an unimpeded information flowed across several lay-

ers, a Highway Network is capable of reusing the information

from previous layers, which facilities the training of deep net-

works. Moreover, gating units are employed to regulate the

information flow. Subsequently, He et al. proposed Residual

Networks (ResNet) [2, 3], which learn the residual functions

by adding skip-connections. The ResNet shows that an iden-

tity mapping shortcut is crucial to ease the optimization [2,3].

Hence, ResNet discards the gating units used in Highway

Networks and keeps the information passed though shortcuts.

The better performance achieved by ResNet has made short-

cut connections attractive. As a more dense reformulation,

the work in [10] connects every convolutional layer in a deep

convolutional network. Without introducing more parame-

ters, it effectively alleviates the vanishing gradient problem

and improves feature reuse.

In addition to shortcut connections, there are works

studying the internal multi-path connections in convolutional

blocks [15]. The InceptionV4 Network [15] is one of this

kind. Besides a shortcut connection, each inception block in

InceptionV4 contains 3-6 carefully designed paths. All these

paths are integrated together using filter concatenation as in-

put to the next block. More recently, attention based networks

such as SENet [5] and CBAM [6] provide an independent at-

tention path to learn the weight of each channel and achieve

state-of-the-art performance.

Attention Mechanism. Attention Mechanism [4] has

been prevailed in computer vision for years [16]. By adopt-

ing a gating function such as soft-max and Sigmoid, atten-

tion mechanism is able to selectively emphasize salient fea-

tures as well as suppress insignificant features. Thus, vi-

sual features could be better captured and exploited. In [5],

a Squeeze-and-Extraction block was proposed to learn the

channel-wise attention for each convolutional layer, which

provides an end-to-end training paradigm for attention learn-

ing. Inspired by SENet, Competitive-SENet [17] studies at-

tention from both the residual path and the shortcut path. Al-

though Competitive-SENet achieves promising performance,

it is tailored particularly for Residual Networks [2], which

limits its generalization to other models. Without being lim-

ited to channel-wise attention, Sanghyun Woo et al. [6] ex-

ploited the relation between channel-wise attention and spa-

tial attention and proposed a Convolutional Block Attention

Module (CBAM). CBAM is composed of two parts, i.e., a

channel-wise attention part and a spatial attention part. The

two attention parts in CBAM is able to tell what (channel)

to look and where (spatial) to focus on. Unlike CBAM that

learns channel-wise attention and spatial attention separately,

our proposed SPANet learns channel-wise and spatial atten-

tion in an integrated fashion.

3. SPATIAL PYRAMID ATTENTION MODULE

Convolutional neural networks achieve great success in com-

puter vision. Meanwhile, it ignores the weights of chan-

nels, which affects CNN’s ability of discrimination. Atten-

tion mechanism, on the other hand, is capable of capturing

channels’ dependency, but ignores the structural information

of channels. To enhance the representation power of CNNs,

we introduce a spatial pyramid attention module. The pro-

posed module considers the spatial pyramid structure which

integrates average pooling of different sizes and explores the

connection schema of attention paths.

3.1. Design Overview

Fig. 2 depicts the paradigm of our spatial pyramid attention

module. The module learns a 1D attention map in an atten-

tion path, which is laterally connected to the original convo-

lutional flow. The learned attention map is fed to each con-

volutional block in the original path. Such a design makes it

possible to apply SPA module to various base models easily.
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Fig. 2. Architecture of the spatial pyramid attention module. It is composed of three components, i.e., point-wise convolution,

spatial pyramid structure, and multi-layer perception. Point-wise convolution is particularly designed for SPANet-C to match

the channel number and integrate channel information. Spatial pyramid structure includes adaptive average pooling of three

different sizes to integrate structural regularization and structural information in an attention path. Multi-layer perception learns

an attention map from the output of the spatial pyramid structure. In SPANet-A, the input feature map is the current output of

a block. In SPANet-B and SPANet-C, the input feature map is the previous output of a block with SPANet-C performing an

optional point-wise convolution.

Suppose a CNN is composed of L layers, each of which

outputs a feature map. We use xl to denote the output of the

l-th layer, where l ∈ [1, L] is the index of a layer. We de-

noted adaptive average pooling and fully-connected layer as

P (·, ·), Ffc (·) respectively. C (·) represents a concatenation

operation, σ (·) is a Sigmoid activation function, and R (·) is

referred to as re-sizing a tensor to a vector.
Given an intermediate feature map xl ∈ R

C×W×H ,
an attention mechanism based CNN model learns attention
weights from the input xl and multiplies each channel in xl

by learnable weights to produce an output. The output of Spa-
tial Pyramid Structure S(xl) can be presented as:

S(xl) = C (R (P (xl, 4)) , R (P (xl, 2)) , R (P (xl, 1))) . (1)

Omitting the batch normalization and activation layer for clarity,

SPA module performs transformation F as

F (xl) = σ (Ffc (Ffc (S(xl)))) . (2)

Equation (2) presents the essence of transformation by the SPA

module. The batch normalization layer, activation layers and point-

wise convolution omitted in Equation (2) are included in the im-

plementation and performance evaluation of the SPA module (Sec-

tion 4). Following [8], we propose 3-level pyramid average pooling:

4× 4, 2× 2 and 1× 1.

3.2. Attention Path Connection

Most of the existing self-attention based networks follow a path de-

sign pattern: they learn an attention map from a feature map and then

apply the learned attention map to the original feature map [5, 18] .

However, being confined to aforementioned schema compromises

the exploration of attention path connections. For SPANet, we study

the topology of attention path connections and explore three varia-

tions: SPANet-A, SPANet-B, and SPANet-C, as shown in Fig. 1.

SPANet-A feeds the current feature map xl to the attention path

to generate a 1D attention map. Accordingly, the output of a block

in SPANet-A can be expressed as

xl = F (xl)⊗ xl, (3)

where ⊗ denotes element-wise multiplication. SPANet-A uses a

similar schema as traditional self-attention path connections.

SPANet-B learns an attention map directly from xl−1 (where

xl−1 ∈ R
C′×W ′×H′

) instead of the processed xl. The output of a

block in SPANet-B is

x = F (xl−1)⊗ xl. (4)

This design in SPANet-B is to assure that the attention path is inde-

pendent of the original convolutional block path, enabling the atten-

tion path to learn more generalized weights. Note that although the

two paths are independent of each other, they are not completely ir-

relevant because the attention path and the convolutional block path

are trained jointly.

SPANet-C. Considering the channel number in xl−1 may not

be equal to the channel number in xl, the attention path might not

produce the most accurate weights for xl. Thus, we modify SPANet-

B by adding a point-wise convolutional layer [19] at the beginning of

the attention path if C′ �= C. We compute the output of SPANet-C

as follows.

x = F (C (xl−1))⊗ xl, (5)

where C (·) denotes the point-wise convolution operation. The point-

wise convolution, which consists of a convolutional layer with a 1×
1 filter and a batch normalization layer, aims to integrate channel

information and match channel numbers of output feature maps. It

makes the attention path further independent of x.

We focus on the topology structure of attention path connections

in the preceding discussion. The implementation details of the atten-

tion mechanism are provided in Section 4. All of the three SPANets

can be integrated with other CNN architectures. In the following

discussion, SPANet refers to SPANet-C unless otherwise specified.

3.3. Spatial Pyramid Attention

Many existing attention based networks [5, 6, 6, 17] aggregate input

feature maps into a 1D vector using global average pooling. They

achieve structural regularization [20], but miss the structural infor-

mation. In contrast, the spatial pyramid structure in our proposed

attention module utilizes average pooling of three different sizes to



both achieve structural regularization and explore structural infor-

mation (as shown in Fig. 2).

3.3.1. Spatial Pyramid Structure

Global average pooling (GAP), which aggregates the global infor-

mation in each channel, was introduced in [21] to replace the con-

ventional fully-connected layers in CNNs. Since then, it has pre-

vailed in computer vision for recognition [2], detection [22], seg-

mentation [23], and more.

We note that existing work on global average pooling used the

last feature map which is small in size (7 × 7 for example). How-

ever, attention based CNNs (e.g., [5], [6], [7], etc.) apply global

average pooling on each feature map. As presented in [20], GAP

behaves similarly to a structural regularizer and is capable of pre-

venting over-fitting. However, applying GAP to every feature map

overemphasizes the effect of regularization and misses the original

feature representation and structural information, especially when a

feature map is large. For example, aggregating a 112 × 112 feature

map to a mean value causes significant loss of a features’ represen-

tation capability, which affects feature learning.

To address this problem, we propose a spatial pyramid structure
used in attention blocks. The spatial pyramid structure adaptively

and averagely pools an input feature map to three scales: 4 × 4,

2 × 2, and 1 × 1. The spatial pyramid structure provides a combi-

nation of three regularization terms, i.e., the 4 × 4 average pooling

captures more feature representation and structural information, the

1× 1 average pooling is the traditional GAP with a strong structural

regularization, and the 2× 2 average pooling aims at a trade-off be-

tween structural information and structural regularization. Then we

re-size the three outputs to three 1D vectors and combine all together

to generate a 1D attention map. Our spatial pyramid structure is ca-

pable of both preserving the feature representation and inheriting the

advantages of the global average pooling.

3.3.2. Fully-Connected Layers

The 1D attention map v extracted from the spatial pyramid structure

is a concatenation of the outputs from three pooling layers. However,

it cannot be used to learn channel dependency and its non-linear ex-

pression affects the effectiveness of the attention mechanism. To

address this problem, we leverage the excitation block [5] to encode

v and generate a 1D attention map ṽ. The excitation block employs

two fully-connected layers. Then a sigmoid layer is employed to

normalize the output to a range of (0, 1).

We use W1 and W2 to denote the first and second fully-

connected layers respectively, where we set the reduction rate to r.

Thus, the generated attention map is

ṽ = sig (W2ρ (W1v)) , (6)

where ρ is a rectified linear unit (ReLU) function and sig denotes

the sigmoid function. Like in SENet [5], we set r to 16.

3.3.3. Point-wise Convolution

The attention block in our proposed spatial pyramid attention mod-

ule produces attention maps to analyze channel dependencies. In

Base SENet SPA-A SPA-B SPA-C

MobileNetV2 75.18 75.75 75.81 75.44 75.75

DenseNet 74.51 74.77 75.01 75.22 75.13

ResNeXt 77.93 78.96 78.76 78.56 78.63

VGG16 72.92 73.0 72.68 - -

Table 1. Performance on CIFAR-100. SPANet and SENet

achieve the best accuracy on four backbone CNN models.

SPANet outperforms three backbone models.

SPANet-B, the attention path learns a vector converted from a fea-

ture map with C′ channels to multiply a feature map with C chan-

nels. However, the dis-match of channels may cause discrepancy in

attention learning and decrease the performance of SPANet.

SPANet-C addresses this issue by adding a point-wise convolu-

tional layer when C′ �= C. Specifically, the point-wise convolution

is a convolutional layer with a filter in size of 1 × 1. By setting the

input channel as C′ and the output channel as C in the point-wise

convolutional layer, we are able to match the number of channels

and integrate channel information.

4. PERFORMANCE EVALUATION

We comprehensively evaluate our SPANet on CIFAR-100 [24] and

ImageNet [12]. Due to a lack of sufficient computing resources, we

experiment on a downsampled ImageNet with 32 × 32 images. We

compare ResNet + SPANet with SENet and ResNet. We also ap-

ply SPANet and SENet to several other base CNN architectures, in-

cluding VGG [25], MobileNetV2 [11], DenseNet [10], and ResNext

[26], to study the generalizability of SPANet.

4.1. Experiment Settings and Datasets

We implement SPANet using Pytorch. We train all models using a

stochastic gradient descent method, with a 0.9 Nesterov momentum

and a 5e−4 weight decay. The batch size is 512 and the learning

rate is initialized as 0.1. We experiment on two common datasets:

CIFAR-100 [24] and Downsampled ImageNet [12] (a downsampled

version of the original ImageNet dataset). For training, we adopt a

data augmentation scheme used in [2, 3]. We pad an original image

by 4 pixels with value zero on each side and then randomly crop

the padded image back to a size of 32 × 32 pixels. In addition,

we horizontally flip 50% of images in random. To facilitate model

training, we normalize the image data by using channels’ means and

standard deviations. On CIFAR-100, the epoch size is set to 300 and

the learning rate is decreased by a factor of 10 every 70 epochs. On

ImageNet, we set the epoch size to 100 and divide it by 10 at the

30th, 60th, and 90th epochs. All experiments are conducted on a

server with 4 TESLA K80 GPUs.

4.2. Experimental Results

We compare the performance of our SPANet with SENet and the

base networks. We employ four base networks, i.e., light-weight

model MobileNetV2 [11], heavy-weight model DenseNet [10],

ResNeXt [26], and VGG16 [25].

Recognition accuracy. Table 1 shows the results on CIFAR-

100. From the table, we can see that SPANet achieves the best per-

formance in several scenarios but not all, while SENet outperforms



Base SENet SPANet-A SPANet-B SPANet-C

Top1 acc. Top5 acc. Top1 acc. Top5 acc. Top1 acc. Top5 acc. Top1 acc. Top5 acc. Top1 acc. Top5 acc.

MobileNetV2 [11] 44.306 69.496 44.556 70.264 46.370 71.678 46.242 71.298 46.596 71.812

DenseNet [10] 49.190 74.454 50.198 75.078 50.692 75.476 51.886 75.714 50.856 75.872

ResNeXt [26] 59.346 81.984 59.784 82.534 61.210 83.550 60.130 82.842 60.106 82.914

VGG16 [25] 49.214 73.698 49.612 73.512 50.094 74.144 - - - -

Table 2. Performance on downsampled ImageNet. SPANet outperforms all four backbone CNN models and SENet.

0 10 20 30 40 50 60 70 80 90 100

Epochs

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Lo
ss

Base
SENet
SPANet-A
SPANet-B
SPANet-C

20 22 24 26 28 30
3

3.05

3.1

3.15

(a) ResNet18

0 10 20 30 40 50 60 70 80 90 100

Epochs

2

2.5

3

3.5

4

4.5

5

5.5

Lo
ss

Base
SENet
SPANet-A
SPANet-B
SPANet-C

30 35 40 45
2.65

2.7

2.75

2.8

2.85

2.9

2.95

(b) MobileNetV2

Fig. 3. Training loss on the downsampled ImageNet (Best

viewed in color). The three SPANets consistently produce

less loss than SENet and the base networks. Similar results

are also found on CIFAR-100.

the base networks in all cases. This is different from our intuition. As

aforementioned, the global average pooling is for structural regular-

ization, which mitigates over-fitting. Our spatial pyramid structure,

on the other hand, uses both structural regularization and structural

information to achieve a better learning capability. However, it may

cause over-fitting on small datasets. The performance of SPANet on

CIFAR-100 becomes stable, i.e., the training loss approaches zero.

This indicates a larger training dataset can contribute to a better per-

formance.

We further test SPANet on the downsampled ImageNet dataset.

The results are presented in Table 2. Our major findings are

1) SPANet achieves the best performance over the base models.

SPANet surpasses the base models, i.e., MobileNetV2, DenseNet,

ResNeXt, and VGG16, by 2.290%, 2.696%, 1.864%, and 0.88%

respectively in the Top-1 accuracy. Moreover, all three types of

SPANet outperform the base models and SENet. These results show

the effectiveness of SPANet and prove that using both structural reg-

ularization and structural information is imperative for the attention

mechanism. 2) The best performance is not achieved by one par-

ticular type of SPANet. For example, SPANet-A has two great-

est accuracy improvements, and SPANet-B and SPANet-C each has

Depth SE SE+ SE++ SPA-A SPA-B SPA-C

18 75.19 74.97 75.25 75.41 75.01 75.56
50 77.91 77.45 77.43 78.21 78.11 77.95

101 78.03 77.88 77.61 78.11 78.35 79.17

Table 3. Ablation results on CIFAR-100 based on ResNet.

’+’ means an SE block is connected to a previous feature map.

’++’ means an additional point-wise convolution is added to

SENet+.

one. They deliver the best performance on different backbones. This

result verifies it is necessary to investigate the topology structure

of attention path connections. 3) The performance enhancement

varies among the backbone models. SPANet achieves an improve-

ment of 2.696% (2.040% over SENet) on DenseNet, but a small im-

provement of 0.88% (0.482% over SENet) on VGG16. This indi-

cates the architecture of a base network may affect the effective-

ness of SPANet. Note that the four networks represent different

network architectures. MobileNetV2 is typically designed for light-

weight models like [19,27,28]. DenseNet includes shortcut connec-

tions. ResNeXt is the first one that exposes ”cardinality” dimension.

VGG is a popular plane-structure network. Our experimental results

demonstrate that SPANet performs well on different types of CNN

architectures.

Training Loss. Next, we plot the training loss as shown in Fig.

3. Due to space limitations, we present the results on ResNet18

and MobileNetV2. In the figure, we can see SPANet achieves the

least loss compared with other models. Among the three types of

SPANet, SPANet-A, SPANet-B, and SPANet-C perform the best on

ResNet18, DenseNet, and MobileNetV2 respectively. They employ

different connection schemas, indicating that nuances in the differ-

ent topology structures of attention path connections influence the

performance of SPANet.

4.3. Ablation Analysis

In this set of experiments, we run a number of ablations to analyze

SPANet. Tables 3 and 4 present the results.

Attention Connection. Unlike SPANet-A, SPANet-B uses an

attention connection schema that learns attention from a previous

feature map. We compare SENet with SENet+ and SPANet-A with

SPANet-B because each pair only differs in the topology structure of

their attention path connections. In the tables, we can see that SENet

always performs better than SENet+ while the results of SPANet-A

are mixed compared with SPANet-B. We observe similar results in

Tables 1 and 2 where more backbone models are tested. Results on

the downsampled ImageNet (shown in Table 4) indicate that the two

attention path connection schemas on SENet and SPANet achieve

comparable performance. Thus, we can conclude that the topology

structure of an attention path connection should not be fixed to a



Base SENet SENet+ SENet++ SPANet-A SPANet-B SPANet-C

Top1 Top5 Top1 Top5 . Top1 Top5 . Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

ResNet18 53.632 77.200 53.526 77.424 53.754 77.412 53.668 77.610 54.502 78.184 54.236 78.026 54.644 78.430

ResNet50 60.434 82.476 59.414 81.716 59.316 81.652 59.132 81.648 61.304 83.396 61.364 83.514 61.476 83.502

ResNet101 61.860 83.522 60.928 82.862 60.922 82.774 60.826 82.628 62.672 84.122 62.808 84.382 61.020 83.184

Table 4. Ablation results on downsampled ImageNet. ’+’ and ’++’ have the same meanings as in the preceding table.

certain schema and further exploration is needed.

Point-wise Convolution. We also evaluate the impact of point-

wise convolution on recognition accuracy. We compare SENet+ 
with SENet++ and SPANet-B with SPANet-C on both CIFAR-

100 and downsampled ImageNet datasets. Experimental results 
show SENet+ consistently outperforms SENet++, while SPANet-C 
achieves a better performance than SPANet-B in four of six cases. 
This indicates that point-wise convolution improves the performance 
of SPANet-B, but not always among the three types of SPANet.

Spatial Pyramid Structure. We evaluate the spatial pyramid 
structure which is a substitute for global average pooling. We com-

pare the performance of the base networks with that of SPANet-

A based models. Tables 1, 2, 3, and 4 present the results. From 
the tables, we can see SPANet consistently outperforms the base 
and SENet based networks. Specifically, SPANet-MobileNetV2 
surpasses MobileNetV2 by 2.064% and SENet based network by 
1.814% on the ImageNet dataset. Compared to a 0.25% improve-

ment made by SENet, SPANet-A significantly enhances the accu-

racy. These results show the importance of combining structural 
information and structural regularization in attention paths as dis-

cussed in Section 3.3.

5. CONCLUSIONS

We present the Spatial Pyramid Attention Network (SPANet), a new 
design to enhance the performance of CNN. SPANet introduces the 
spatial pyramid structure to the attention path, which integrates the 
structural information and structural regularization. We explore the 
topology structure of attention path connections and develop three 
types of SPANet using different connection schemes. Experimental 
results on two datasets demonstrate both the efficiency and effective-

ness of SPANet.
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