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ABSTRACT

In this paper, we present a cascaded context dependency mod-

ule, which is a highly lightweight module that can improve

the performance of deep convolutional neural networks for

various visual tasks. Inspired by the feature pyramid work in

object detection and the context dependency work in image

recognition, we consider to cascade the contexts of multi-

scale feature maps to aggregate the locality and globality in

a local region. We further extract the dependency between

original input and cascaded contexts for feature recalibration.

Without employing learnable layers, our method introduces

almost no additional parameters and computations. Further-

more, Our module can be seamlessly plugged into many

existing CNN architectures to improve the performance. Ex-

periments on ImageNet and MS COCO benchmarks indicate

that our method can achieve results on par with or better than

related work. Qualitatively, we achieve an absolute 1.42%

(77.3137% vs. 75.8974%) top-1 classification accuracy im-

provement based on ResNet50 on ImageNet 2012 validation

set with negligible computational overhead. Besides, our

method yields significant gains on the MS COCO benchmark

for the object detection task. All codes and models are made

publicly available 1.

Index Terms— CNN, lightweight, context dependency,

multi-scale

1. INTRODUCTION

Capturing the properties of locality and globality concurrently

is a central importance in deep neural networks [1, 2]. In

computer vision, CNNs achieve this by stacking a series of

convolutional layers sequentially, enlarging the receptive field

from small to large [3].

While convolutional layers operate the features in a local

receptive field, they consider no communication with other

features that are not in the range of receptive field. To meet the

* Equal contribution

� Corresponding author
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https://github.com/13952522076/ParameterFree.

requirement of globality, a CNN architecture has to progres-

sively and recursively propagate features in a large or even

global range using multiple convolutional layers. That is, the

shallow layers consider the features more locally, whereas the

deep layers infer feature more globally [4]. Unambiguously,

this is a departure from the primary conception that locality

and globality should be captured concurrently. Furthermore,

the final extracted global concepts may bias toward the most

informative local features, and differ from the essential global

concepts.

In this paper, we propose cascaded context dependency

module, a simple yet effective module that captures the fea-

ture dependency on both local region and global range. Moti-

vated by the feature dependency work in [1, 5], we calculate

the dependencies between the original features and extracted

context. An apparent distinction is that our extracted context

is obtained from different scales of the original feature maps

using pooling operations. By doing so, we naturally integrate

the contexts from different scales together. We consider three

different scales of contexts: fine, coarse, and global, which

are easily achieved by adaptively average pooling operations.

The three contexts are then merged to achieved our cascaded

contexts, aggregating locality and globality naturally.

A second property of our method is the transformation

operation on the feature dependency. Rather than leverag-

ing learnable layers to transform the dependencies, we fol-

low the work in normalization layers [6, 7, 8] that utilize

the normalization statistics, but operated in groups. This ap-

proach in our module exhibits considerably simpler designs

and fewer computations than [1, 5] while efficiently process

the obtained dependency. Concurrent with our work, some

efforts [9, 10, 11] also considers normalization statistics for

different visual tasks. However, they are different from us

essentially.

We evaluate our module on ImageNet 2012 [12] image

classification and MS COCO [13] object detection tasks,

compared with a range of related work. Consistently, our

method yields a systematic improvement with negligible

computational overhead. Integrating our cascaded context

dependency module into base CNN architectures, we sur-

pass the original counterpart by a large margin and achieve

a performance that on par with or even better than related
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insertable modules. Our proposed module is designed as

an external module independent of the original networks,

making it easy to be integrated with various existing CNN

architectures. Experimental results have demonstrated that

our module can improve the performances of various CNN

architectures, and for different vision tasks.

2. RELATED WORK

Context Dependency. Features not only respond in a local

region, but may also own a long-range feature dependency

[1, 14]. In pursuit of long-range feature dependency, Non-

Local Network [1] introduces a non-local block, which is a

general non-local operation calculating the dependency for

each pair of features. However, the pairwise computation is

heavy. Recently, [5] simplified the non-local operation by ex-

ploiting the dependency between original feature maps and

the global context. We also notice that some attention mod-

ules [15, 16] consider the context dependency inherently.

Multi-scale aggregation. Multi-scale aggregation holds

prevalence for a long time. A most distinct example in CNNs

is the spatial pyramid pooling [17]. To eliminate the limi-

tation of fixed input size of earlier CNNs, [17] proposed a

spatial pyramid pooling strategy that is adaptively pooling

the feature maps to three scales and feed to the finial fully-

connected layers. The simple but effective strategy dramat-

ically improves the CNN capability for image classification

and object detection tasks. Similar to [17], Feature Pyra-

mid Network [18], Cascaded R-CNN [19] and Multi-scale

Network [20] also consider the use of multi-scale interme-

diate feature maps for low-level/high-level feature semantics

fusion and feature map resolution compensation. In this pa-

per, we follow previous efforts and leverage the multi-scale

aggregation for our local and global context fusion.

Normalization. Normalization layers [6, 8, 7] have been

an integral part of recent deep neural networks. Inspired by

Batch Normalization [6], a series of normalization algorithms

have been proposed. To overcome the problem of small batch

size in Batch Normalization, Layer Normalization [7] nor-

malizes all channels for each sample and avoids the depen-

dency on a batch of samples. Group Normalization [21] di-

vides channels into several groups and normalizes each group

individually. Inspired by these work, we also employ normal-

ization statistics in our module.

3. METHOD

We present the Cascaded Context Dependency Module (CCD

module in short), which is a plug-in module for improving the

presentation ability of various CNN architectures.

Suppose the input feature map of a CCD module is

x ∈ R
C×H×W , where C denotes the channel number and

H × W means the spatial resolution. We divide the in-

put x to g groups along channel dimension, that is x =

[x1, x2, . . . , xg] , and perform the cascaded context depen-

dency for each group independently and parallelly. For each

group xi ∈ R
C
g ×H×W , we extract the cascaded context

ci ∈ R
C
g ×H×W using three adaptive average pooling opera-

tions. Next we calculate the dependency between xi and ci
and normalize it to facilitate training. The resulting output

will be resized to a range of (0, 1) to re-calibrate the orig-

inal xi. Generally, the process of our CCD module can be

summarized as:

y = cat (∀i∈gsig (N (f((xi, ci)))⊗ xi) , (1)

where “cat” indicates the concatenation operations; “sig”
denotes sigmoid activation function; “N” means normal-

ization; f(·) is the dependency function and “ ⊗ ” denotes

element-wise multiplication. In the following subsections,

we will present each component in detail.

3.1. Cascaded Context

We conduct our cascaded context ci using three scales of the

original xi. To achieve this, we adopt the average pooling op-

eration to obtain three scales of resolution: 4 × 4, 2 × 2, and

1×1. Notice that the 1×1 scale is the result of global average

pooling, making the resulting output contains a global context

of xi. Likewise, the other two contain the local context, fine

or coarse, of different scales of patches. All three outputs

are enlarged using the nearest interpolation to match the size

of H × W . We next aggregate the three outputs by summa-

tion to get the cascaded context ci ∈ R
C
g ×H×W . The re-

sulting cascaded context ci is divided by 3 to match the mag-

nitude of the original feature map. Remarkably, we eschew

the use of learnable layers for aggregation due to the reason

of efficiency and computational complexity. We emphasize

that while learnable parameters will certainly achieve better

cascaded context, but the computational burdens increase ac-

cordingly. The ablation study on different scale strategies is

presented in Section 4.2.

3.2. Feature Dependency

Following the recent work [1, 25] on feature dependency, we

formulate the pairwise dependency function as:

f (xp
i , c

p
i ) = xpT

i cpi , (2)

where p is the geometric position and xp
i , c

p
i ∈ R

C
g is the cor-

responding features. Some other dependency functions can

also be exploited, like cosine similarity function:

f (xp
i , c

p
i ) =

xpT

i cpi
max

(‖xp
i ‖2 ∗ ‖cpi ‖2 , ε

) , (3)

where ε is a small value (we set ε to 10−8 ) to avoid division

by zero. However, the exploitation of pairwise dependency

function is not the primary concern in our paper. We employ

Equation 2 as our dependency function by default.
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Model top-1 acc. top-5 acc. FLOPs (G) Parameters (M)

ResNet50 [22] 75.8974 92.7224 4.122 25.557

SE-ResNet50 [15] 77.2877(↑1.39) 93.6478 4.130 28.088

GE-ResNet50 [23] 76.2357(↑0.34) 92.9847 4.127 25.557
CBAM-ResNet50 [24] 77.2840(↑1.39) 93.6005 4.139 28.090

SK-ResNet50 [16] 77.3657(↑1.47) 93.5256 4.187 26.154

GC-ResNet50 [5] 74.8966(↓1.00) 92.2812 4.130 28.105

CCD-ResNet50 (ours) 77.3137(↑1.42) 93.6489 4.122 25.560

Table 1: Comparison results of single-crop classification accuracy (%) and complexity on the ImageNet validation set. The

best two performances are marked in bold.

3.3. Normalization

Suppose the resulting dependency between xi and ci in group
i is D ∈ R

H×W , we compute the mean μ and standard devi-
ation σ by

μ =
1

H ×W

H×W∑
i=1

Di, σ =

(
1

H ×W

H×W∑
i=1

(Di − μ)2
) 1

2

.

(4)

We normalize the dependency D over the spatial dimension, and ap-

ply an affine function to avoid distribution shifting. The normalized

dependency can be formulated as :

D = λ
D− μ

σ + ε
+ β, (5)

where ε is a small constant (10−5) for numerical stability, λ and β
are a pair of learnable parameters.

3.4. Efficiency

In pursuit of efficiency, our cascaded context dependency module

mainly relies on non-learnable operations. During the whole pro-

cess, we only introduce g pairs of λ and β. In all our experiments,

we set the group number g as 64, unless otherwise noted. The elegant

design makes our module extremely lightweight. For example, when

applying our module to the commonly used ResNet50 architecture,

we only introduce 2k (that is 16× 64× 2) parameters. Clearly, it is

negligible compared with the original parameter number (25.56M)

in ResNet50.

4. EXPERIMENTS

Besides efficiency, our proposed module is also powerful. In this

section, we systematically evaluate CCD module on ImageNet 2012

[12] and MS COCO [13] benchmarks for image recognition and ob-

ject detection tasks respectively. Extensive experimental results re-

veal the effectiveness of our proposed method.

4.1. Image Classification on ImageNet

We first compare our method with several other related modules on

the ImageNet dataset. ImageNet contains 1.28M training images,

and 50K validation images belong to 1000 predefined categories. We

train all models follow standard practice in [22, 26]. All training im-

ages are randomly cropped to 224×224 and horizontally flipped at a
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Fig. 1: The influence of group number on CCD module. Best

viewed in color.

possibility of 50%. We train all models using synchronous SGD with

momentum 0.9 and weight decay 1e-4. The learning rate is initiated

as 0.1 and decreased by a factor of 10 every 30 epochs. We train

from scratch for 100 epochs on a server with 8 Tesla V100 GPUs,

and each GPU has 32 images in a mini-batch (256 in total). All

experiments are implemented using PyTorch framework [27]. For

comparison, we compare our method with several SOTAs, including

SENet [15], SKNet [16], GENet [23], CBAM [24], etc. For fairness,

we integrate all these modules to ResNet50 and report the top-1 and

top-5 classification accuracy in Table 1.

Table 1 shows that integrating our proposed module with the

vanilla ResNet50 consistently improves the performance by 1.42%
top-1 classification accuracy, whereas almost no additional compu-

tations are introduced. When compared with other state-of-the-art

modules, like SE, CBAM, SK, etc., we achieve a result than on

par with or even better the all these modules but introduces much

fewer FLOPs and parameters. This phenomenon indicates that our

proposed module is powerful, demonstrating the efficacy of the cas-

caded context dependency that generates richer global and local rep-

resentational dependencies between features.

4.2. Ablation Study

To study the intrinsic properties of our method, we conduct a series

of ablation studies to disentangle the influence of each detail design

on our cascaded context dependency module.

Group number g. We evaluate the group number g in the range

of [8, 16, 32, 64, 128]. Figure 1 depicts the classification curve un-

der different number of groups in our module. Intuitively, with the
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Strategy top-1 top-5

baseline 75.8974 92.7224

[1, 4, 8] 77.0840 93.5897

[1, 2, 4]
∗

76.9371 93.4195

[1, 2, 4] 77.3137 93.6489

(a) The performance of different im-

plementations of cascaded context.

function top-1 top-5

baseline 75.8974 92.7224

Eq. [2] 77.3137 93.6489

Eq. [3] 77.1959 93.4563

(b) The performance of different im-

plementations of cascaded context.

sigmoid � � �
dependency � �
cascaded �
normalize �
top-1 75.90 75.91 76.79 77.31

top-5 92.72 92.80 93.35 93.65

(c) The ablation study of each components.

Table 2: Ablation studies on ImageNet validation set. We report the top-1 and top-5 accuracy (%) based on ResNet50. “*”

indicates that we remove the 4× 4 in conv4 x and further remove the 2× 2 in the conv5 x in ResNet50.

Detector Backbone AP50:95 AP50 AP75 APS APM APL GMac Parameters(M)

RetinaNet ResNet50 [22] 36.2 55.9 38.5 19.4 39.8 48.3 239.32 37.74

RetinaNet SE-ResNet50 [15] 37.4 57.8 39.8 20.6 40.8 50.3 239.43 40.25

RetinaNet CCD-ResNet50 (ours) 37.8 58.5 40.1 21.6 41.5 50.9 239.32 37.74

Cascade R-CNN ResNet50 [22] 40.6 58.9 44.2 22.4 43.7 54.7 234.71 69.17

Cascade R-CNN GC-ResNet50 [5] 41.1 59.7 44.6 23.6 44.1 54.3 234.82 71.69

Cascade R-CNN CCD-ResNet50 (ours) 42.5 61.1 46.4 24.7 45.9 56.5 234.71 69.17

Table 3: Object detection performance (%) on the MS-COCO validation dataset. The best ones are highlighted in “bold”.

increase of group number g, the top-1 accuracy also increases and

appears to saturate at the g value of 64. As the value of g continues

to increase, the performance gain decreases. Similar phenomenon

can also be observed in top-5 accuracy. Empirically, we set g to 64

in our module.

Cascaded context. The central philosophy of our module can

be distilled into how to capture the locality and globality in a fea-

ture map simultaneously. Driven by the success of using multi-scale

feature maps, we exhibit a considerably simple design that cascade

different scales of feature maps to get the cascaded context. Here,

we evaluate the influence of different scale strategies in our module

and report the results in Table 2a. Notably, the cascaded context de-

pendency module can always improve the performance of base CNN

architecture by a large margin, regardless of the specific strategy of

the cascaded context. Besides, we also notice that keeping the three

scales in all stages can achieve the best performance, indicating that

even the deep layers require the collaboration of globality and local-

ity.

Dependency function. Table 2b compares two dependency

functions in our CCD module. The improvements of these two are

similar, just a tiny fluctuation of less than 0.12% (77.3137% vs.
77.1959%). This observation indicates that our module is not sensi-

tive to the selection of feature dependency functions, suggesting that

the performance gain comes from the design rather than a certain

dependency instance.

Components ablation. We also present a detailed ablation

study on each component in Table 2c. In line with our expectations,

all the ablative variants of CCD module are instrumental, improv-

ing the performance of the original ResNet50 by a large margin.

Combining all these, we arrive at the best performance 77.31%.

4.3. Object Detection on MS COCO

We further evaluate our method for object detection on the MS

COCO benchmark to showcase the compatibility of our method

on other visual tasks. We train all models on the 80k training set

and evaluate on the 40k validation set. All models are trained

for 24 epochs with pre-trained backbones directly taken from Ta-

ble 1. Following the common practice [28], we report the mean

Average-Precision (mAP) for the detection performance. We em-

ploy RetinaNet [28] and Cascade R-CNN [19] as detectors with a

ResNet-50 (and corresponding variants) backbone in the detection

experiments.

Without increasing the complexity, our CCD module improves

RetinaNet by 1.6% mAP and Cascade R-CNN by 1.9% mAP. Like-

wise, our module consistently performs better than others (SE and

GC) by a large margin, with even fewer parameters and FLOPs.

In particular, our method outperforms SE module by 2.2% mAP

(19.4% vs. 21.6%) on small objects. The promising results on object

detection task show that our CCD module is conducive to improve

the performance of various visual tasks significantly.

5. CONCLUSION

In this paper, we present a new method, Cascaded Context Depen-

dency module (CCD in short), which captures the locality and glob-

ality in the feature maps concurrently and efficiently. For this pur-

pose, we exploit the feature dependencies between original features

and cascaded context. Our proposed method is gracefully designed

and computationally lightweight. We experimentally show the sig-

nificant improvements of our method for image recognition and ob-

ject detection tasks. Moreover, CCD is an insertable module that that

be easily integrated with various CNN architectures.
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