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ABSTRACT

In this paper, we present a cascaded context dependency mod-
ule, which is a highly lightweight module that can improve
the performance of deep convolutional neural networks for
various visual tasks. Inspired by the feature pyramid work in
object detection and the context dependency work in image
recognition, we consider to cascade the contexts of multi-
scale feature maps to aggregate the locality and globality in
a local region. We further extract the dependency between
original input and cascaded contexts for feature recalibration.
Without employing learnable layers, our method introduces
almost no additional parameters and computations. Further-
more, Our module can be seamlessly plugged into many
existing CNN architectures to improve the performance. Ex-
periments on ImageNet and MS COCO benchmarks indicate
that our method can achieve results on par with or better than
related work. Qualitatively, we achieve an absolute 1.42%
(77.3137% vs. 75.8974%) top-1 classification accuracy im-
provement based on ResNet50 on ImageNet 2012 validation
set with negligible computational overhead. Besides, our
method yields significant gains on the MS COCO benchmark
for the object detection task. All codes and models are made
publicly available .

Index Terms— CNN, lightweight, context dependency,
multi-scale

1. INTRODUCTION

Capturing the properties of locality and globality concurrently
is a central importance in deep neural networks [1, 2]. In
computer vision, CNNs achieve this by stacking a series of
convolutional layers sequentially, enlarging the receptive field
from small to large [3].

While convolutional layers operate the features in a local
receptive field, they consider no communication with other
features that are not in the range of receptive field. To meet the
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requirement of globality, a CNN architecture has to progres-
sively and recursively propagate features in a large or even
global range using multiple convolutional layers. That is, the
shallow layers consider the features more locally, whereas the
deep layers infer feature more globally [4]. Unambiguously,
this is a departure from the primary conception that locality
and globality should be captured concurrently. Furthermore,
the final extracted global concepts may bias toward the most
informative local features, and differ from the essential global
concepts.

In this paper, we propose cascaded context dependency
module, a simple yet effective module that captures the fea-
ture dependency on both local region and global range. Moti-
vated by the feature dependency work in [1, 5], we calculate
the dependencies between the original features and extracted
context. An apparent distinction is that our extracted context
is obtained from different scales of the original feature maps
using pooling operations. By doing so, we naturally integrate
the contexts from different scales together. We consider three
different scales of contexts: fine, coarse, and global, which
are easily achieved by adaptively average pooling operations.
The three contexts are then merged to achieved our cascaded
contexts, aggregating locality and globality naturally.

A second property of our method is the transformation
operation on the feature dependency. Rather than leverag-
ing learnable layers to transform the dependencies, we fol-
low the work in normalization layers [6, 7, 8] that utilize
the normalization statistics, but operated in groups. This ap-
proach in our module exhibits considerably simpler designs
and fewer computations than [1, 5] while efficiently process
the obtained dependency. Concurrent with our work, some
efforts [9, 10, 11] also considers normalization statistics for
different visual tasks. However, they are different from us
essentially.

We evaluate our module on ImageNet 2012 [12] image
classification and MS COCO [13] object detection tasks,
compared with a range of related work. Consistently, our
method yields a systematic improvement with negligible
computational overhead. Integrating our cascaded context
dependency module into base CNN architectures, we sur-
pass the original counterpart by a large margin and achieve
a performance that on par with or even better than related

ICIP 2020



insertable modules. Our proposed module is designed as
an external module independent of the original networks,
making it easy to be integrated with various existing CNN
architectures. Experimental results have demonstrated that
our module can improve the performances of various CNN
architectures, and for different vision tasks.

2. RELATED WORK

Context Dependency. Features not only respond in a local
region, but may also own a long-range feature dependency
[1, 14]. In pursuit of long-range feature dependency, Non-
Local Network [1] introduces a non-local block, which is a
general non-local operation calculating the dependency for
each pair of features. However, the pairwise computation is
heavy. Recently, [5] simplified the non-local operation by ex-
ploiting the dependency between original feature maps and
the global context. We also notice that some attention mod-
ules [15, 16] consider the context dependency inherently.
Multi-scale aggregation. Multi-scale aggregation holds
prevalence for a long time. A most distinct example in CNNs
is the spatial pyramid pooling [17]. To eliminate the limi-
tation of fixed input size of earlier CNNs, [17] proposed a
spatial pyramid pooling strategy that is adaptively pooling
the feature maps to three scales and feed to the finial fully-
connected layers. The simple but effective strategy dramat-
ically improves the CNN capability for image classification
and object detection tasks. Similar to [17], Feature Pyra-
mid Network [18], Cascaded R-CNN [19] and Multi-scale
Network [20] also consider the use of multi-scale interme-
diate feature maps for low-level/high-level feature semantics
fusion and feature map resolution compensation. In this pa-
per, we follow previous efforts and leverage the multi-scale
aggregation for our local and global context fusion.
Normalization. Normalization layers [6, 8, 7] have been
an integral part of recent deep neural networks. Inspired by
Batch Normalization [6], a series of normalization algorithms
have been proposed. To overcome the problem of small batch
size in Batch Normalization, Layer Normalization [7] nor-
malizes all channels for each sample and avoids the depen-
dency on a batch of samples. Group Normalization [21] di-
vides channels into several groups and normalizes each group
individually. Inspired by these work, we also employ normal-
ization statistics in our module.

3. METHOD

We present the Cascaded Context Dependency Module (CCD
module in short), which is a plug-in module for improving the
presentation ability of various CNN architectures.

Suppose the input feature map of a CCD module is
x € REXHEXW \where C denotes the channel number and
H x W means the spatial resolution. We divide the in-
put x to g groups along channel dimension, that is x =

[£1,%2,...,24] , and perform the cascaded context depen-
dency for each group independently and parallelly. For each

C
group z; € Ra*H*W e extract the cascaded context
o . . .
¢; € Ra*HxW using three adaptive average pooling opera-

tions. Next we calculate the dependency between x; and ¢;
and normalize it to facilitate training. The resulting output
will be resized to a range of (0, 1) to re-calibrate the orig-
inal x;. Generally, the process of our CCD module can be
summarized as:

y = cat (Viegsig (N (f((zi, i) @ 1) M

where “cat” indicates the concatenation operations; “sig”

denotes sigmoid activation function; “A” means normal-
ization; f(-) is the dependency function and “ ® ” denotes
element-wise multiplication. In the following subsections,
we will present each component in detail.

3.1. Cascaded Context

We conduct our cascaded context ¢; using three scales of the
original x;. To achieve this, we adopt the average pooling op-
eration to obtain three scales of resolution: 4 x 4, 2 x 2, and
1 x 1. Notice that the 1 x 1 scale is the result of global average
pooling, making the resulting output contains a global context
of z;. Likewise, the other two contain the local context, fine
or coarse, of different scales of patches. All three outputs
are enlarged using the nearest interpolation to match the size
of H x W. We next aggregate the three outputs by summa-
tion to get the cascaded context ¢; € R5 W The re-
sulting cascaded context ¢; is divided by 3 to match the mag-
nitude of the original feature map. Remarkably, we eschew
the use of learnable layers for aggregation due to the reason
of efficiency and computational complexity. We emphasize
that while learnable parameters will certainly achieve better
cascaded context, but the computational burdens increase ac-
cordingly. The ablation study on different scale strategies is
presented in Section 4.2.

3.2. Feature Dependency

Following the recent work [1, 25] on feature dependency, we
formulate the pairwise dependency function as:

fat ) =

T
) 7

et @

. . .. c .
where p is the geometric position and 2%, ¢ € R's is the cor-
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responding features. Some other dependency functions can
also be exploited, like cosine similarity function:

pT
fal, ) = Ll 3)

maz (||27 |, *l|e7ll5 )

where ¢ is a small value (we set £ to 10~% ) to avoid division
by zero. However, the exploitation of pairwise dependency
function is not the primary concern in our paper. We employ
Equation 2 as our dependency function by default.
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Model top-1 acc. top-5 acc. | FLOPs (G) Parameters (M)
ResNet50 [22] 75.8974 92.7224 4.122 25.557
SE-ResNet50 [15] 71.2877(11.39)  93.6478 4.130 28.088
GE-ResNet50 [23] 76.2357 (10.34)  92.9847 4.127 25.557
CBAM-ResNet50 [24] | 77.2840(41.39y  93.6005 4.139 28.090
SK-ResNet50 [16] 77.3657 1147y  93.5256 4.187 26.154
GC-ResNet50 [5] 74.8966(11.00)  92.2812 4.130 28.105
CCD-ResNet50 (ours) | 77.3137(41.42)  93.6489 4.122 25.560

Table 1: Comparison results of single-crop classification accuracy (%) and complexity on the ImageNet validation set. The

best two performances are marked in bold.

3.3. Normalization

Suppose the resulting dependency between z; and ¢; in group
iis D € RT*W we compute the mean y and standard devi-
ation o by

1 HxW 1 HxW %
- Dio=-—— D; —p)? ) .

(C))
‘We normalize the dependency D over the spatial dimension, and ap-
ply an affine function to avoid distribution shifting. The normalized
dependency can be formulated as :

D—u
o Te + B, ©)

D=2\

where ¢ is a small constant (10~?) for numerical stability, A and 3
are a pair of learnable parameters.

3.4. Efficiency

In pursuit of efficiency, our cascaded context dependency module
mainly relies on non-learnable operations. During the whole pro-
cess, we only introduce g pairs of A and (5. In all our experiments,
we set the group number g as 64, unless otherwise noted. The elegant
design makes our module extremely lightweight. For example, when
applying our module to the commonly used ResNet50 architecture,
we only introduce 2k (that is 16 x 64 x 2) parameters. Clearly, it is
negligible compared with the original parameter number (25.56M)
in ResNet50.

4. EXPERIMENTS

Besides efficiency, our proposed module is also powerful. In this
section, we systematically evaluate CCD module on ImageNet 2012
[12] and MS COCO [13] benchmarks for image recognition and ob-
ject detection tasks respectively. Extensive experimental results re-
veal the effectiveness of our proposed method.

4.1. Image Classification on ImageNet

We first compare our method with several other related modules on
the ImageNet dataset. ImageNet contains 1.28M training images,
and 50K validation images belong to 1000 predefined categories. We
train all models follow standard practice in [22, 26]. All training im-
ages are randomly cropped to 224 x 224 and horizontally flipped at a
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Fig. 1: The influence of group number on CCD module. Best
viewed in color.

possibility of 50%. We train all models using synchronous SGD with
momentum 0.9 and weight decay le-4. The learning rate is initiated
as 0.1 and decreased by a factor of 10 every 30 epochs. We train
from scratch for 100 epochs on a server with 8 Tesla V100 GPUs,
and each GPU has 32 images in a mini-batch (256 in total). All
experiments are implemented using PyTorch framework [27]. For
comparison, we compare our method with several SOTAs, including
SENet [15], SKNet [16], GENet [23], CBAM [24], etc. For fairness,
we integrate all these modules to ResNet50 and report the top-1 and
top-5 classification accuracy in Table 1.

Table 1 shows that integrating our proposed module with the
vanilla ResNet50 consistently improves the performance by 1.42%
top-1 classification accuracy, whereas almost no additional compu-
tations are introduced. When compared with other state-of-the-art
modules, like SE, CBAM, SK, etc., we achieve a result than on
par with or even better the all these modules but introduces much
fewer FLOPs and parameters. This phenomenon indicates that our
proposed module is powerful, demonstrating the efficacy of the cas-
caded context dependency that generates richer global and local rep-
resentational dependencies between features.

4.2. Ablation Study

To study the intrinsic properties of our method, we conduct a series
of ablation studies to disentangle the influence of each detail design
on our cascaded context dependency module.

Group number g. We evaluate the group number g in the range
of [8,16, 32,64, 128]. Figure 1 depicts the classification curve un-
der different number of groups in our module. Intuitively, with the
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Strategy top-1 top-5 function top-1 top-5 sigmoid v v v

baseline | 75.8974 92.7224 baseline | 75.8974 92.7224 dependency v v

[1,4,8] 77.0840 93.5897 Eq. [2] 77.3137  93.6489 cascaded v

[1,2,4]" | 76.9371 93.4195 Eq. [3] 77.1959 93.4563 normalize v

[1,2,4] 773137 93.6489 (b) The p-erformance of different im- :gg:é gggg ;;z(l) ;g;g ;;2;
plementations of cascaded context.

(a) The performance of different im-
plementations of cascaded context.

(c) The ablation study of each components.

Table 2: Ablation studies on ImageNet validation set. We report the top-1 and top-5 accuracy (%) based on ResNet50. “*”
indicates that we remove the 4 x 4 in conv4_x and further remove the 2 x 2 in the conv5_x in ResNet50.

Detector Backbone APs50.05 APso  AP75 | APs APy APp GMac  Parameters(M)
RetinaNet ResNet50 [22] 36.2 55.9 38.5 194 398 48.3 | 239.32 37.74
RetinaNet SE-ResNet50 [15] 374 57.8 398 | 206 40.8 50.3 | 23943 40.25
RetinaNet CCD-ResNet50 (ours) 37.8 58.5 40.1 21.6 41.5 509 | 239.32 37.74

Cascade R-CNN ResNet50 [22] 40.6 58.9 442 | 224 437 547 | 23471 69.17
Cascade R-CNN GC-ResNet50 [5] 41.1 59.7 446 | 23.6 44.1 54.3 | 234.82 71.69
Cascade R-CNN | CCD-ResNet50 (ours) 42.5 61.1 464 | 247 459 56.5 | 234.71 69.17

Table 3: Object detection performance (%) on the MS-COCO validation dataset. The best ones are highlighted in “bold”.

increase of group number g, the top-1 accuracy also increases and
appears to saturate at the g value of 64. As the value of g continues
to increase, the performance gain decreases. Similar phenomenon
can also be observed in top-5 accuracy. Empirically, we set g to 64
in our module.

Cascaded context. The central philosophy of our module can
be distilled into how to capture the locality and globality in a fea-
ture map simultaneously. Driven by the success of using multi-scale
feature maps, we exhibit a considerably simple design that cascade
different scales of feature maps to get the cascaded context. Here,
we evaluate the influence of different scale strategies in our module
and report the results in Table 2a. Notably, the cascaded context de-
pendency module can always improve the performance of base CNN
architecture by a large margin, regardless of the specific strategy of
the cascaded context. Besides, we also notice that keeping the three
scales in all stages can achieve the best performance, indicating that
even the deep layers require the collaboration of globality and local-
ity.

Dependency function. Table 2b compares two dependency
functions in our CCD module. The improvements of these two are
similar, just a tiny fluctuation of less than 0.12% (77.3137% vs.
77.1959%). This observation indicates that our module is not sensi-
tive to the selection of feature dependency functions, suggesting that
the performance gain comes from the design rather than a certain
dependency instance.

Components ablation. We also present a detailed ablation
study on each component in Table 2c. In line with our expectations,
all the ablative variants of CCD module are instrumental, improv-
ing the performance of the original ResNet50 by a large margin.
Combining all these, we arrive at the best performance 77.31%.

4.3. Object Detection on MS COCO

We further evaluate our method for object detection on the MS
COCO benchmark to showcase the compatibility of our method
on other visual tasks. We train all models on the 80k training set

and evaluate on the 40k validation set. All models are trained
for 24 epochs with pre-trained backbones directly taken from Ta-
ble 1. Following the common practice [28], we report the mean
Average-Precision (mAP) for the detection performance. We em-
ploy RetinaNet [28] and Cascade R-CNN [19] as detectors with a
ResNet-50 (and corresponding variants) backbone in the detection
experiments.

Without increasing the complexity, our CCD module improves
RetinaNet by 1.6% mAP and Cascade R-CNN by 1.9% mAP. Like-
wise, our module consistently performs better than others (SE and
GC) by a large margin, with even fewer parameters and FLOPs.
In particular, our method outperforms SE module by 2.2% mAP
(19.4% vs. 21.6%) on small objects. The promising results on object
detection task show that our CCD module is conducive to improve
the performance of various visual tasks significantly.

5. CONCLUSION

In this paper, we present a new method, Cascaded Context Depen-
dency module (CCD in short), which captures the locality and glob-
ality in the feature maps concurrently and efficiently. For this pur-
pose, we exploit the feature dependencies between original features
and cascaded context. Our proposed method is gracefully designed
and computationally lightweight. We experimentally show the sig-
nificant improvements of our method for image recognition and ob-
ject detection tasks. Moreover, CCD is an insertable module that that
be easily integrated with various CNN architectures.
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