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ABSTRACT

Autonomous vehicles are heavily reliant upon their sensors to per-
fect the perception of surrounding environments, however, with
the current state of technology, the data which a vehicle uses is con-
fined to that from its own sensors. Data sharing between vehicles
and/or edge servers is limited by the available network bandwidth
and the stringent real-time constraints of autonomous driving ap-
plications. To address these issues, we propose a point cloud feature
based cooperative perception framework (F-Cooper) for connected
autonomous vehicles to achieve a better object detection precision.
Not only will feature based data be sufficient for the training pro-
cess, we also use the features’ intrinsically small size to achieve
real-time edge computing, without running the risk of congesting
the network. Our experiment results show that by fusing features,
we are able to achieve a better object detection result, around 10%
improvement for detection within 20 meters and 30% for further
distances, as well as achieve faster edge computing with a low
communication delay, requiring 71 milliseconds in certain feature
selections. To the best of our knowledge, we are the first to intro-
duce feature-level data fusion to connected autonomous vehicles
for the purpose of enhancing object detection and making real-
time edge computing on inter-vehicle data feasible for autonomous
vehicles.
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1 INTRODUCTION

Connected autonomous vehicles (CAV) provide a promising solu-
tion to improving road safety. This relies on vehicles being able
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Figure 1: Occlusion and truncation situations naturally oc-
cur in point clouds data.

to perceive road conditions and detect objects precisely in real-
time. However, accurate and real-time perception is challenging
in the field. It involves processing high-volume and continuous
data streams from various sensors with strict timing requirements.
Moreover, the perception accuracy of a vehicle is often affected
by the limited view and scope of the sensors. Edge computing can
help CAVs achieve better situational awareness via combining and
processing information collected from multiple CAVs with more
powerful machine learning technologies [32, 35]. The goal of inte-
grating edge computing and CAVs is to efficiently analyze massive
amount of data in real time under limited network bandwidth.

An autonomous vehicle edge computing system consists of three
layers: vehicle, edge, and cloud [18]. Each autonomous vehicle is
equipped with onboard edge device(s) that integrates the needed
functional modules for autonomous driving, including localization,
perception, path planning, and vehicle control. Autonomous vehi-
cles can communicate with roadside edge servers, and eventually
reach the cloud through wireless networks, e.g., the dedicated short
range communication (DSRC) [7], 5G or millimeter-wave commu-
nication technologies [34]. This provides a perfect opportunity
to develop a cooperative perception system in which vehicles ex-
change their data with nearby edge servers. It is here that data
are fused and processed to further extend the individual vehicle’s
perception range; beyond line-of-sight and beyond field-of-view.

1.1 Motivation

Having a single source of data input for autonomous vehicles is
risky in real-world environments, as sensors are just another com-
ponent of the vehicle that is susceptible to failure. In addition,
sensors are also limited by their physical capabilities such as scan
frequency, range, and resolution. Perception gets even worse when
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Figure 2: Convolutional feature maps in a classical CNN.

sensors are occluded, as shown in Fig. 1. In the left LIDAR image,
only three vehicles (yellow boxes) are recognized by Car 1. When
it cooperatively detects with Car 2, four more vehicles (either oc-
cluded or truncated) are detected, as shown in red boxes in the right
image, which are not detected using its own data.

Among related works on cooperative perception for autonomous
vehicles [6, 26], we find that their main focus is on improving the
individual vehicle’s precision, overlooking benefits from coopera-
tive perception. Potential issues involved in cooperative perception,
such as accuracy of local perception results, impact on networks,
format of data to be exchanged, and data fusion on edge servers, are
not addressed. When it comes to 3D object detection, Lidar is one of
the most important components of autonomous driving vehicles as
it generates 3D point clouds to capture the 3D structures of scenes.
This data gives precise location in 3D space with respect to the
LiDAR, and by extension, the car.

Based on our best acknowledge, the state of the art 3D object de-
tection precision based on monocular LiDAR (Light Detection and
Ranging) data comes from VoxelNet [37], SECOND [36] and PointR-
CNN [31], etc. For example, PointRCNN achieves 75.76% mAP
(mean average precision) on the KITTI moderate benchmark [8],
and 85.94%, 68.32% on easy and hard benchmarks, respectively.
That implies the simple fusion of object detection results from dif-
ferent cars would yield errors. Although fusing raw LiDAR data
from two vehicles can improve the car detection precision [3], it is
challenging to send the huge amount of LiDAR data generated by
autonomous vehicles in real time. Solutions that increase vehicle’s
perception precision as well as maintaining or reducing computa-
tional complexity and turnaround time are rare in the literature.

1.2 Proposed Solution

We propose a method that improves the autonomous vehicle’s detec-
tion precision without introducing much computational overhead.
An useful insight is that modern object detection techniques for
autonomous vehicles, both image based [19, 27] and 3D LiDAR data
based [22, 36], commonly adopt a convolutional neural network
(CNN) [12, 33] to process raw data, and leverage a region proposal
network (RPN) [27] to detect objects. We argue that the capacity
of feature maps is not fully explored, especially for 3D LiDAR data
generated on autonomous vehicles, as the feature maps are used
for object detection only by single vehicles.

To this end, we introduce a feature based cooperative perception (F-
Cooper) framework that realizes an end-to-end 3D object detection
leveraging feature-level fusion to improve detection precision. Our
F-Cooper framework supports two different fusion schemes: voxel
feature fusion and spatial feature fusion. While the former achieves
almost the same detection precision improvement when compared
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to the raw-data level fusion solution [3], the latter offers the ability
to dynamically adjust the size of feature maps to be transmitted.
A unique characteristic of F-Cooper is that it can be deployed and
executed on in-vehicle and roadside edge systems.

Aside from being able to improve detection precision, data needed
for feature fusion is only one hundredth of the size of the origi-
nal data. For a typical LiDAR sensor, each LiDAR frame contains
about 100,000 points, which is about 4 MB. Such huge amount data
would become a severe burden for any existing wireless network
infrastructure. In stark contrast to the large volume of raw LiIDAR
data, the size of features generated by a CNN can be as low as 200
Kb after compression techniques is applied. Empirical evidences
from our experiments demonstrate that transmitting these features
only takes dozens of milliseconds, which makes real-time edge
computing feasible. Such a negligible cost also enables feature-level
fusion to become an ideal choice for connected autonomous ve-
hicles to improve detection precision while keeping a reasonable
communication time.

1.3 Main Contributions

To the best of our knowledge, we are the first to propose feature map
fusion based 3D object detection for CAVs on the edge. Through
our experimentation and analysis, we have proved that not only
does feature fusion provide an enhanced perception, it also allows
for data to be compressed without losing detection value.

With this data compression factor, we are able to state with
confidence that our feature fusion strategies are suited for au-
tonomous vehicles On-Edge. Due to the fact that vehicles have
a limited amount of computational resources on-board, we look
towards the edge for more powerful and reliable computational
power. Should an autonomous vehicle require extra perception, it
only needs to send its compressed feature data and receive either a
detection result or a compressed, fused feature map, or even both.
By cutting out the computational step, we are effectively pushing
the heavy workload onto the edge and mitigating any downsides
to data sharing.

As proven in our experiments, both the data size and network
transmission time are small enough that even in the most congested
areas, vehicle data transmission will still be smooth. Both voxel
feature fusion and spatial feature fusion perform better than the
baseline for single vehicles without fusion, both the fusion and non-
fusion baseline are derived from the same detection model. While
spatial feature fusion data can be dynamically adjusted for a smaller
compression size than voxel feature fusion data, the latter is capable
of detection improvement on par with raw-data level fusion [3].
With each strategy holding its own special advantages, we believe
that our F-Cooper framework makes a substantial contribution that
allows improvement no matter whether deployed in-vehicle or on
roadside edge systems.

2 TOWARDS FEATURE BASED FUSION OF
VEHICLE DATA

2.1 Convolutional Feature Maps

With 3D points cloud data, the details for the location of each
point are used to calculate the relationship between a car and its
surrounding environment. Each frame in 3D points cloud data



F-Cooper: Feature based Cooperative Perception for Autonomous Vehicle Edge Computing System Using 3D Point Clouds

is processed in the same way, and one common key step in the
process is to generate feature maps from points cloud data. Due
to the popularity of CNN based solutions to object detection for
autonomous driving vehicles [4, 15, 25], in this paper, we focus on
the feature maps generated by the convolutional layers in CNN.

As a CNN network processes raw 3D points cloud data [28], we
are able to extract the processed feature maps from the CNN. These
feature maps provide the essential information for object detection.
Fig. 2 depicts the convolutional layers in a classical CNN. First, we
send the original data as input to a convolutional layer which is
composed of several filters with each filter generating a feature
map. All these generated feature maps are considered as the output
of the first layer and will be sent to the second convolutional layer
as input data. Recursively, previous layer’s outputs are fed as input
into the next layer.

2.2 Features for Fusion

Features are a well established and integrated part of any CNN, and
due to the nature of CNN, it is opaque by nature. When working
with feature maps, we need to ensure that coincident issues are dealt
with and explored. For example, depending on the specifications
of the convolutional layers in a CNN network, the resulting voxel
features may be located equal-distant from other voxels, making
lossless fusion impossible without additional run-time cost.

To confirm the usefulness of features for fusion, we must answer
the following three essential questions. (1) Do features possess the
necessary means for fusion? (2) Are we able to communicate the
data between autonomous vehicles effectively through features?
(3) If features satisfy both of the two prior requirements, then how
hard is it for us to obtain feature maps from autonomous vehicles?
To analyse these questions and their implications, we provide an
in-depth analysis in the sections below.

2.2.1 Fusion Characteristics. Inspired by the works that have
been dedicated to fusing feature maps generated by different lay-
ers, such as Feature Pyramid Network (FPN) [17] and Cascade
R-CNN [2], we find that it is possible to detect objects in different
feature maps. For example, FPN adopts a top-down pyramid struc-
ture feature maps for detection. These networks are very adept in
compounding the efficiency of feature fusion.

Taking the inspiration from these works, we make the assump-
tion that cars compatible for fusion will use the same detection
model. This is important as we see only the most reliable detection
model being used for self driving. With this assumption in place,
we now look at the fusion characteristics.

As feature maps are available from the CNN, we are able to ensure
that all extracted feature maps are obtained with the same format
and data type. Next, as feature maps extracted from 3D points cloud
also contain location data, we are able to fuse the feature maps
from different autonomous vehicles as long as there exists a single
point of overlap in between the two vehicles. However, when we
faced the issue of equal-distant location alignment, we needed to
adjust our fusion algorithm to accommodate such situations. To
achieve this goal, we let each car send its GPS and IMU data to allow
for the transformation calculations towards point clouds fusion,
i.e., transforming the view seen by a sender to the view seen by a
receiver. We are clear that GPS and IMU cannot provide enough
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accurate details to perspective transformation. However, there are
existing methods that allow for accurate alignment of two vehicles
into the same 3D space. We will discuss this further in the discussion
section.

2.2.2 Compression and Transmission. Another advantage of
feature maps over raw data is the transmission process between
vehicles. Raw data might come in many different formats, they
all achieve a single purpose, and that is to preserve the original
state of the data captured. For example, LIDAR data taken from a
driving session would store all the points cloud along the path of the
driving session. However, this storage format records unnecessary
data along with the essential data; feature maps avoid this issue.
As the raw data is being processed by the CNN network, all the
extraneous data is being filtered out by the network, leaving behind
only information that is potentially capable of being used for object
detection by the network. These feature maps are stored in sparse
matrices, which only store the data deemed useful, with a 0 stored
in the matrix for any data filtered out.

The data size advantage can be further compounded through
lossless compression such as the gzip compression method as seen
in [14]. Adding in the nature of sparse matrix, we are able to com-
bine the two to achieve compressed feature data that is no bigger
than 1 MB, making features a great option for deploying On-Edge
fusion.

2.2.3 Generic and Inherent Properties. All autonomous driv-
ing vehicles must base their decisions on the data that their sensors
generate. The raw data is generated from the physical sensors on
the vehicle before getting forwarded to the onboard computing
device. From there, the raw data is fed through a CNN based deep
learning network to process the raw data and ultimately make the
driving decisions.

During this process, we are able to pull the extracted features for
sharing. By doing so, we are effectively able to obtain the feature
maps of the raw data without needing extra computation time or
power from the onboard computing device. With the CNN based
network being used by almost all known autonomous driving vehi-
cles to date, the feature extraction is generic and does not require
further processing before fusion.

Thanks to the means by which autonomous vehicles process
data, we are able to directly take the processed feature maps from
the raw LiDAR points cloud data for the purpose of fusion, as this
inherently provides location data. As long as the LiDAR sensor has
been calibrated to the standards needed for autonomous driving,
then we should have a feature map that is capable of retaining the
relative locations of all things in relation to the vehicle.

3 F-COOPER: FEATURE BASED
COOPERATIVE PERCEPTION

Inspired by the advantages of feature map fusion in 2D object detec-
tion and the feature maps generated by 3D object detection based
on LiDAR data, we propose the Feature based Cooperative Percep-
tion (F-Cooper) framework for 3D object detection. Our F-Cooper
fuses feature maps generated from two LiDAR data sources ori-
ented in two different aspects. Fusing feature maps (rather than raw
data) will not only address privacy issues, but also greatly reduce



SEC ’19, November 7-9, 2019, Arlington, VA, USA

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, Song Fu

’ Y
! Spatial R !
Sparse patial egion .
. Fused Convolutional |----- »{| Feature  ----»| Proposal [---»| Detection !
---»  Voxel Layer Network Results 1
Feature Y — '
_________________________________ /
Paradigm I: Voxel Feature Fusion (VFF)
Voxel | | | mm e omm omm omm e o e e e mm mm o e e e mm e e e e mm e e e e N
Feature
-3 \
Sparse Spatial 1
LIDAR data from Car 1 Convolutional ----» Fgam,e
e \L Fused I
usel Region " 1
9----) Spatial  +----» Proposal [--» D;;Zﬁ'gn 1
= _ Voxel Feature| 5 voxel Feature Network .
. Encoding Feature }
- Sparse Spatial 1
1 |Convolutional [----- »Feature 1
LIDAR data from Car 2 ] Layer 1
N X4
~ o e o o o -

Paradigm Il: Spatial Feature Fusion (SFF)

Figure 3: Architecture of the feature based cooperative perception (F-Cooper). F-Cooper has multiple vehicles’ (using two here
for illustration) LiDAR data inputs which are processed by the VFE layers respectively to generate voxel features. To fuse 3D
features from two cars, two fusion paradigms are designed: voxel features fusion and spatial features fusion. In Paradigm I,
two sets of voxel features are fused first and then spatial feature maps are generated. In Paradigm II, spatial features are first
obtained locally on individual vehicles and then fused together to generate the ultimate feature maps. Symbol (P indicates
where the fusion takes place in each paradigm. An RPN is employed for object detection on the ultimate feature maps in both
paradigms. We use dashed arrows to denote data flow and bold red lines to present fusion connections. Best viewed in color.

the network bandwidth requirement. In F-Cooper, we present two
schemes for feature fusion: Voxel Feature Fusion (VFF) and Spatial
Feature Fusion (SFF). As shown in Fig. 3, the first scheme directly
fuses the feature maps generated by the Voxel Feature Encoding
(VFE) layer, while the second scheme fuses the output spatial fea-
ture maps generated by the Feature Learning Network (FLN) [37].
SFF can be viewed as an enhanced version of VFE, i.e., SFF extracts
spatial features locally from voxel features available on individual
vehicles before they are transmitted into the network.

3.1 Voxel Features Fusion

As with pixels in a bitmap, a voxel represents a value on a regular
cube in three-dimensional space. Within a voxel, there may be zero
or several points cloud generated by a LiDAR sensor. For any voxel
containing at least one point, a voxel feature can be generated by
the VFE layer of VoxelNet [37].

H(XVV ,y‘,‘ ,Z‘,' )
Key Value
(xl;,ywzn) [0.12,0.43, ..., 0.86]
(x,,:,yyz,zy) [0.66, 0.23, ..., 0.10]
(x,,y,;,zl ) [0.03,0.97, ..., 0.23]
(x,, Tt ] [0.56, 0.60, ..., 0.47]

Figure 4: A 128-dimensional feature is generated for each
non-empty voxel in LiDAR data. For computational effi-
ciency and data balance, we randomly sample 35 points
from the voxels containing more than 35 points. The points
within a voxel are then provided to the Voxel Feature En-
coding (VFE) layer which produces a 128-dimensional vector.
An empty voxel containing no points has no feature.
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Suppose the original LIDAR detection area is divided into a voxels
grid. Of these voxels, we will obtain a vast majority of empty voxels
with the remaining ones containing critical information. All non-
empty voxels are transformed by a series of full connection layers
and converted into a fixed-size vector, with a length of 128. The
fixed-sized vector is often referred to as feature map. An example
feature map derived from 3D point cloud data is shown on the right
part of Fig. 6. For example, as shown in Fig. 4, only four voxels are
non-empty amongst the twelve voxels present, and each of the four
selected voxels becomes a 128-dimensional vector.

1 Maxout
M-
' ;

Car1
Pl | L3
,,,,, I7
Car2 ole 5d
cabsa'c‘sbfcs”

Figure 5: Voxel features fusion. When two voxels share the
same location, we use maxout function to fuse them.

For memory/compute efficiency, we save the features of non-
empty voxels into a hash table where the voxel coordinates are used
as the hash keys. As our focus is primarily on autonomous driving,
we only store non-empty voxels into our hash table. Combining the
fact that our 3D point clouds are of outside driving scenarios, which
yields around a few thousand voxels, searching the hash table for
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voxel fusion becomes an non-factor in the overall speed of our
framework. In VFF, we explicitly combine the features of all voxels
from two inputs, as depicted in Fig. 5. Specifically, the Voxel 3 from
Car 1 and Voxel 5 from Car 2 share the same calibrated location.
While the two cars are located in different locations physically, they
share the same calibrated 3D space, with different offsets indicating
the relative physical location of each car in said 3D calibrated space.
To this end, we employ the element-wise maxout scheme to fuse
Voxel 3 and Voxel 5.

Taking inspiration from convolutional neural networks, using
maxout [11] for latent scale selection, we extract the obvious fea-
tures while suppressing the features that does not contribute to
detection in 3D space, thus achieving lower data size. In our ex-
periments, we use the maxout to decide which feature is most
prominent when comparing the data in between vehicles. We de-
note these two voxel features as V3 and Vs, respectively, and V? as
the i-th element in the voxel. The fused features V can be presented
as follows.

V! = max (V;,Vs") JVi=1,---,128 1)

The key insight behind our maxout strategy is that it emphasizes
important features and removes trivial ones. Also, as maxout is a
simple floating-point operation, it introduces no extra parameters.
Such a negligible additional computational overhead can be ignored
when compared to the overall improvement on object detection
precision.

Naturally, we expect voxels from two cars are able to be perfectly
matched. However, this is impractical for real-world applications,
even slight bias between voxels would explicitly lead to mismatches.
Here, we showcase four different mismatched situations in Fig. 5.
The green dot Cs indicates the center of the voxel 3 from Car 1 and
the diamonds Csg, Csp, Cs¢, Cs4 denote the possible centers of the
voxel 5 from Car 2. In case (a), the center of Voxel 5, denoted as Csg,
falls within Voxel 3. In case (b), the center Cs;, falls on one side of
the voxel 3, meaning Voxel 5 connects with two voxels from Car 1.
In case (c), Cs. falls along an edge of Voxel 3, which implies Voxel
5 intersects with four voxels from Car 1. In case (d), Csq4 falls on a
corner point of Voxel 3 and connects with eight voxels. For case (a),
we fuse the voxel 3 and voxel 5 directly using maxout. For cases
(b,c,d), we fuse Voxel 5 with all the connected voxels from Car 1,
and give the results to the connected voxels, respectively.

3.2 Spatial Feature Fusion

VFF needs to consider the features of all voxels from two cars, which
involves a large amount of data exchanged between vehicles. To
further reduce the network traffic, as well as keeping the benefits of
feature based fusion, we design a spatial feature fusion (SFF) scheme.
Compared to VFF, SFF fuses spatial feature maps, which are sparser
when compared to voxel features and thus more easily compressed
for communication. Fig. 3 intuitively showcases the relationship
between VFF and SFF. Different from VFF, we pre-process the voxel
features on each vehicle to get the spatial features. Next we fuse the
two source spatial features together and forward the fused spatial
features to a RPN for region proposal and object detection.

As shown in Fig. 6, the spatial feature maps of a LIDAR frame
is generated by the Feature Learning Network [37]. The output of
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Figure 6: Example of spatial feature maps. H; and W; rep-
resent the size of the LIDAR bird-eye view for each vehicle’s
detection range, while C indicates the channels number. It is
worth noting that we fuse spatial features in a channel-wise
manner, where the channels indicate the corresponding ker-
nel numbers used in CNN.

the feature learning network is a sparse tensor, which has a shape
of 128 X 10 X 400 x 352. In order to integrate all the voxel features,
we adopt three 3D convolutional layers, and sequentially obtain
smaller feature maps with more semantic information and a size of
64 X 2 X 400 x 352. However, the generated features cannot fit into
the required shape of the conventional region proposal network.
To this end, we must reshape the outputs to the 3D feature maps of
size 128 X 400 X 352 before we can forward them to RPN. For SFF,
we generate a bigger detection range with size W x H, where W >
Wi, H > Hi. Next we fuse the overlapped regions while retaining
the original features in the non-overlapped regions. Suppose a GPS
records the real-world location of Car 1 as (x1,y;) and Car 2 as
(x2,y2), then we can get the position of the left-top corner. And if

(xz + Hi,y2 — %) belongs to Car 2’s feature maps with the left-

top corner being representative of the feature maps of Car 1, then
it is easy for us to determine the overlapped areas. Similar to VFF
adopting the maxout strategy, we also employ maxout for SFF to
fuse the overlapped spatial features.

As indicated in Fig. 7, the top left corner of Car 2’s feature maps

can be presented as (xg +Hi,,y2 — %) if the car moves towards

left. Suppose the corner point falls in the region of Car 1’s feature
map, then we can fuse the overlapped features in the same manner
as the voxel fusion strategy.

Finally, we adopt region proposal network to propose potential
regions on the fused feature maps. Paradigm II in Fig. 3 holistically
showecases the pipeline of our SFF.

Recent work like SENet [13] indicates that different channels
share different weights. That is to say some channels in feature
maps contribute more toward classification/detection while other
channels being redundant or unneeded. Inspired by this, we opt
to select partial channels, out of all 128 channels, to transport. We
assume that autonomous vehicles are assembled with the same
well-trained detection model as in real-world applications. After ex-
tensive experimentation, we demonstrate that transporting part of
channels can further reduce the time consumption of transmission
while keeping the comparable detection precision in our experi-
mental analysis in Section 4.
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Car1

Car2 Hy

Figure 7: For spatial features fusion, we use maxout to fuse
the two spatial features. The left-top is the spatial feature
maps generated by Car 1, and the left-bottom is the spatial
feature maps generated by Car 2. After fusion, the fused fea-
ture maps contain the key features (marked in red and green
boxes) of both feature maps.

3.3 Object Detection Using Fused Features

For detecting vehicles, we feed the synthetic feature maps to a
Region Propose Network (RPN) for object proposal. Next a loss
function is applied for network training.

3.3.1 Region Proposed Network. As indicated in Fig. 3, once we
get the spatial feature maps, regardless of whether we adopt voxel
fusion paradigm or spatial fusion paradigm, we send it to the re-
gion proposal networks (RPN) [37]. After passing through the RPN
network, we will obtain two generated outputs for a loss func-
tion (Section 3.3.2): (1) a probability score p € [0, 1] of the pro-
posed region of interests, and (2) the locations of proposed regions
P = (Py, Py, Pz, P, Py, Py, Py), where (Px,Py,Pz) indicates the
center of the proposed region and (P;, Py, Py, Pg) means the length,
width, height and rotation angle, respectively.

3.3.2  Loss Function. The loss function is comprised of two parts:
classification loss L5 and regression loss Lyeg.

Suppose a 3D ground-truth bounding box can be presented as
G = (Gx, Gy, Gz,Gr, Gy, Gy, Gg), where (Gx, Gy, GZ) represents
the central point of the box, and (G, Gy, Gp,, Gg) denotes the length,
width, height and yaw rotation angle, respectively. Our proposed
method will generate a vector P to represent the predicted 3D box.
In order to minimize the loss between our prediction and the ground
truth, we regress our predicted boxes by minimizing the differences
(Ax, Ay, Az, Al, Aw, AD) [10] as:

-P Gy—P -P
Ax:Gx x,Ay: Ll y,Az:Gz z
Py Py Py
G G G
Al = log 2L ,Aw =log —w ,Ah =log Zh @)
Py P, Py,
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1
where Py = ((Pl)2 + (PW)Z) ? is the dialog of length and width .

Suppose our model proposes Npos positive anchors and Nyeq
negative anchors, we define the loss function as follows:

Nney
L=a Leis (Pii'le ’0)
neg ; g
1 Npus
+h Lets (Phos: 1) )
Npos ; pos
1 Nneg
+ Lreg (P1.GY)
Npos ;

where pl,, g and p;, o5 are the probability of positive anchors and neg-
ative anchors respectively, and N4 and Npos denote the number
of proposed negative and positive anchors respectively. In regres-
sion loss, G' indicates the ith ground truth while P! means the
corresponding predicted anchor. We use « and f to balance these
three losses. We employ a binary cross entropy loss for classification
Loss and Smooth-L1 loss function [9, 27].

4 PERFORMANCE EVALUATION
4.1 Datasets

KITTI [8] is a well-known vision benchmark suite project which
contains labeled data that allows for autonomous vehicles to train
detection models and evaluate detection precision .

As we focus on 3D object detection, we use the 3D Velodyne
point cloud data provided by the KITTI dataset. The cloud point
data provides 100K points per frame and is stored in a binary float
matrix. The data includes 3D location of each point and associated
reflectance information. However, as KITTI data is recorded from
single vehicles, we must utilize different time segments from the
same recording to emulate data generated from two vehicles. As a
result, KITTI data is only suitable for certain test scenarios.

To address this issue, we equip two vehicles, named Tom & Jerry
(T&J), with necessary sensors, such as LIDARs (Velodyne VLP-16),
cameras (Allied Vision Mako G-319C), radars (Delphi ESR 2.5),
IMU&GPSes (Xsens MTi-G-710 kit), and edge computing devices
(Nvidia Drive PX2) to gather desired data on the campus of our
institution. Our vehicles have 16-beam Velodyn LiDAR sensors that
store data in binary raw Ethernet packets. As our vehicles can move
independently of each other, we are able to test the entire gamut of
scenarios in a real-world environment with our two vehicles. Both
datasets provide data that allows 3D object detection. The dataset
is available at https://github.com/Aug583/F-COOPER.

4.2 Test Scenarios

From these two datasets, we are able to fully test or simulate an
array of different common scenarios such as those detailed below.

Road intersections. One of the most common places for cars to
congregate and thus cause occlusion is a busy road intersection. As
the optical based LIDAR and camera sensors are blocked by vehicles
in front of them, the information becomes severely limited. Due to
this fact, we included this scenario as one of our test cases.



F-Cooper: Feature based Cooperative Perception for Autonomous Vehicle Edge Computing System Using 3D Point Clouds

SEC 19, November 7-9, 2019, Arlington, VA, USA

(a) Car 1 (Receiver)

(b) Car 2 (Sender)

(c) Fusion Detection Result on Car 1

Figure 8: Comparing detection precision on voxel-feature fusion cases when two cars drive forward in parallel . In (a) and (b),
the top line is detection results on LIDAR data, while the middle and bottom lines are left and right camera images respectively.
In (c), the top line is the result of our voxel fusion and the bottom line is the result of Cooper [3].

Multi-lane roads. Another common place is a multi-lane road.
Such roads feature the combination of high speed driving and T-
junctions, both of which are prone to accidents. To ensure our
F-Cooper framework is capable in such extreme situations, we also
included this scenario in our experiments.

Campus parking lots. Last but not least, as our main objective is to
enhance perception through fusion, we need to test our framework
in a crowded situation with many obstacles. As congested zones are
best represented by a crowded parking lot, we choose busy campus
parking lots as our main test scenario to evaluate the accuracy of
F-Cooper in a real-life environment.

4.3 Experiment Setup

To evaluate F-Cooper, over 200 sets of data were collected and tested
in our experiments. We separate our tests into four categories, based
on the methods used to process the LIDAR data, methods (1) through
(3) are derived from the same detection model: (1) Non-fusion as
baseline, (2) F-Cooper with VFF, (3) F-Cooper with SFF, and (4) raw
point clouds fusion method - Cooper [3]. Feature fusion takes place
in random cases of the above four categories with a heavier focus
on busy campus parking lots as it is the most difficult scenario due
to significant occlusions. Within each category, we further divide
our experiments by considering the distances between objects and
the sensing vehicle. We treat objects that are within 20 meters away
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from a vehicle as high-priority objects and those beyond 20 meters
as low-priority objects in the parking lot environment.

As our LiDAR sensor has only 16 beams, the resulting point cloud
data is relatively sparse, compared to higher-end LiDAR sensors. To
mitigate the negative impacts of sparse data, we limit the detection
range to [0,70.4] by [-40,40] by [-3,1] meters along the X, Y, and Z
axles. We do not use data beyond the detection ranges. In addition to
the vehicle’s detection range, we also set the voxel size as vp = 0.4
meter, vy = 0.2 meter, vy = 0.2 meter, and thus D; = 10, H; = 400,
and W = 352. In our experiments, the F-Cooper framework runs
on a computer with a GeForce GTX 1080 Ti GPU.

4.4 Top-Level Evaluation of F-Cooper

To evaluate F-Cooper, we analyze each component individually as
well as against other frameworks. Starting with VFF, we can see
the results of fusion from two cars in Fig. 8 and Fig. 9, with data
receiving vehicle (Car 1) and data transmitting vehicle (Car 2). In the
figure, we have the LiDAR representation with the detection results
on the top and the right-camera in the middle and the left-camera
at the bottom. Both the baseline detection and the fusion detection
use 0.5 as a confidence threshold, meaning if the confidence level is
above this score, we mark the boundary box for that object. As we
can see in column (c) of Fig. 8 and Fig. 9, we have the voxel fusion
result on the top and the raw data fusion result on the bottom.
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(a) Car 1 (Receiver)

(b) Car 2 (Sender)

(c) Fusion Detection Result on Car 1

Figure 9: Comparing detection accuracy on spatial-feature fusion cases when two cars approach each other from opposing
directions. (a) shows the detection results of car 1, (b) shows the detection results of car 2, while (c) is the results on spatial

feature fused data and raw fused data.

Through all of our marked bounding boxes, we have distinguished
them in three levels of importance to the receiving car: yellow,
green and red. The cars marked in yellow represent those that
have already been detected by the receiving car originally. The cars
marked in green represent those detected by only the sender and
not the receiver. The cars marked in red represent those undetected
by neither the sender nor the receiver but detected after feature
fusion.

Taking a closer look at Fig. 8, which details two cars driving
forward in parallel, we can see that Car 1 was able to detect four
vehicles while Car 2 was able to detect three vehicles. However, in
both cases, neither Car 1 nor Car 2 was able to detect cars further
away. This was caused by a combination of factors such as occlusion
and distance. Through VFF, we are able to detect cars previously
occluded to Car 1 or was completely undetected by either cars.

Similarly, Fig. 9 depicts two cars approaching each other from
opposing directions. In this figure, we can see that Car 1 detects
three vehicles while Car 2 detects four. However, when SFF was
conducted, we can see that spatial fusion only enhanced perception
by two detections for Car 1 where as raw data fusion enhanced
detection by three. A closer inspection reveals that the right most

new detection from SFF was not detected in the raw data fusion.

From this comparison, we can see that while VFF is similar in
precision to raw data fusion, SFF is able to perform better for near
cars when compared to VFF.
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4.5 Detection Precision Analysis

Having taken an overview of the precision of our two feature fusion
methods, we dive into the details of how each method performs
against each other as well as against the baseline, and the Cooper
approaches [3].

The data that we use for this analysis comes from both datasets
to test all of our listed scenarios. In all our experiments, we report
our results using Intersection over Union (IoU) threshold at 0.7
for vehicles. Then, we calculate the precision by comparing the
detected vehicles with the ground truth.

In Table 1, we observe that in our baseline test, baseline with-
out fusion on Car 1 achieve a good “Near” detection precision for
the road scenarios but fall off sharply in precision in their “Far”
detection. As mentioned before, the “Near” and “Far” cut off is 20
meters from the car as the center. Next, looking at how the baseline
performs in parking lot scenarios where the most occlusions take
place, we can see that again, the “Near” precision is much better
than the “Far”. This is understandable as the lasers reach out further,
it returns a much sparser point cloud.

Moving on to our method testing, we compare the precision
against both the baseline and raw fusion [3]. It should be noted that
we only compared against fusion methods instead of non-fusion
detection methods as the former yields a meaningful comparison
whereas the latter is not relatable in the same context. For our
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Scenario Dataset | Baseline w/o fusion | F-Cooper (VFF) | F-Cooper (SFF) | Cooper [3]
Near| Far Near| Far Near| Far Near| Far
Multi-lane roads KITTI 63.22| 22.37 77.46| 58.27 50.00| 57.14 77.46| 71.42
Road Intersections | T&J 78.37| 19.60 80.21| 72.37 73.68| 53.33 80.21| 72.37
Parking Lot1 T&J 58.33| 33.33 66.67| 62.54 66.67| 33.33 66.67| 70.58
Parking Lot2 T&J 66.67| 18.85 72.25| 46.42 72.25| 25.00 75.50] 50.00
Parking Lot3 T&]J N/A | 45.81 N/A | 66.41 N/A | 66.41 N/A | 66.41
Parking Lot4 T&J 100 | N/A 100 | 48.83 100 | 33.33 100 | 48.83

Table 1: Precision comparison between F-Copper and Cooper on Car 1: Average precision (in %). "N/A" means no vehicle exits

in the corresponding scenarios.

road scenarios, we see that VFF achieves a similar precision to
Cooper (a raw data fusion solution). This signifies that VFF is as
capable as raw data fusion method for near object detection,
but without collecting others point clouds.

Interestingly, as we look at the SFF precision, we can see a drastic
difference in between the “Near” and “Far” precision. While SFF
does not outperform VFF, it was still able to perform better than the
baselines in most scenarios. However, it must be noted that SFF is
more sparse than both voxel features and raw data by a considerable
margin. When we factor in the fact that spatial features are derived
from the voxel features, it is normal to have the better precision
in the regions where the data is naturally denser, i.e., “Near” the
vehicle where the LiDAR point cloud data is the densest.

To distinguish the differences in how well VFF and SFFs perform
in the “Near” and “Far” categories respectively, Fig. 10 shows the
cumulative distribution functions of increase in detection precision.
Additionally, in the “Far” category, VFF was able to achieve a 40%
detection precision increase for almost 85% of the time; it is also able
to increase detection precision by 60% for 30% of the time. Looking
at SFF, we do see an increase in detection precision, however, it
is not as great of an increase as VFF shows. When it comes to the
“Near” category, however, SFF was able to perform as well as VFF
if not better in some cases. In Fig. 10, SFF and VFF are both at
50% chance to increase detection precision by 20%. But, as we look
deeper, we find that SFF outperforms VFF slightly at 30% chance to
increase precision by 30%.

0.8F r g 1

CDF

0.4 7
s VFF-Near |
|——VFF-Far !

0.2 ——SFF-Far |
7" SFF-Near,

. | ‘ ‘
0 20 40 60 80

Increase in detection accuracy (%)

Figure 10: Cumulative Distribution Function vs. detection
precision improvement.
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We conclude from this test that our detection range is able to be
extended with an overall average increase in detection precision due
to the extra features being harvested. As our features may target the
same object multiple times, the detection confidence scores also see
a notable increase. The reason why detection results become more
precise after fusion is due to the points from different cars becoming
fused, thus making the originally sparse data representation of a 3D
object less sparse and more “outlined”. This allows for the detection
model to have a higher precision. Moreover, as single cars have a
limited range on their LIDAR beams, multi-car fusion allows for
points in the distance to be registered by the receiving car. Through
fusion, the missing points in the distance are provided by the other
cars, and thus allowing for the recipient car to enhance its detection
results. Our detection precision may increase even further with
more vehicles sharing data, solving the issue of missing detection
on some of our target cars.

4.6 Sensitivity and Resilience

As feature fusion relies heavily on location information for fusion,
alignment has a big impact on the final detection precision of the
fusion. To understand the sensitivity and resilience of F-Cooper, we
will not only study missed detections, but also compare the changes
of confidence level of each detected target.

In real world situations, all sensors are built within a specific
acceptable error tolerance. However, these small discrepancies in
between different sensors may cause the same object in 3D space to
be labeled at slightly different locations by different cars. As SFF is
by nature sensitive to the position of the features, we need to deal
with this phenomenon in our fusion. When we integrate our GPS
and IMU data, we observe yields of less than 10 cm of positional
error [1]. Additionally, when we explained the nature of voxel and
spatial fusion in Sections 3.1 and 3.2, we noticed the discrepancies
in location based data fusion. To test the resilience of our fusion
methods against sensor drift, we conducted procedural artificial
skewing of our GPS readings as seen in Fig 11.

In Fig. 11, we have part (a) showing the scenarios and part (b)
and (c) displaying the effects of GPS drifting on VFF and SFF. First,
in both VFF and SFF, we can see that there are two tables, one
with a drift of 0 meters and the other with a drift of 0.1 meters to
simulate drift. The target cars are then separated into “Far” and
“Near” groups with respect to the location of each vehicle, “Far” is
shaded dark while “Near” is not shaded.

When we focus on the missed detections, the experiment results
indicate location drifting does not significantly affect the detection
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(a) real-world test

Voxel Feature Fusion
(b) VFF detection results

Spatial Feature Fusion

(c) SFF detection results

Figure 11: GPS reading drifting impact on F-Cooper. (a): intuitive detection result. (b): numeric detection results of VFF. (c):
numeric detection results of SFF. The table exhaustively showcases the detection confidence value on each car.

accuracy of SFF. On the other hand, if we look at the confidence
score of each detected target, we find that VFF strategy is not too
sensitive to GPS drifting. Taking all of the changes from all of
our target scores of VFF, the average of increase and decrease in
our confidence scores balance out, indicating that GPS drifting
slightly affects VFF. Considering the same scores of SFF, we see
that the average of change becomes worse, when compared to VFF,
indicating that SFF is more sensitive to GPS drifting than VFF.

During our experimentation, SFF performed worse than VFF in
the “Far” category. After careful investigation on our experimental
setup and methodology, we concluded the following: Compared
to raw point cloud fusion and voxel feature fusion, spatial feature
fusion is relatively low in feature map resolution. This factor is
exponentially amplified during detection for objects in “Far” cat-
egory as well as for detection of small objects. In retrospect, we
realize that for feature extraction on small object, we are even more
susceptible to location distance. Furthermore, smaller objects may
suffer from missing features after extraction. In point cloud data,
when fusing from different angles and perspectives, we are at a
higher risk of merging features from different aspects, therein caus-
ing a detection conflict. We believe that to overcome this issue, we
need to propose a voxel feature extraction method that allows for
surgical extraction of features from point clouds.

4.7 F-Cooper On-Edge

Even though point clouds can be simplified to coordinate values,
we still need to consider the gap between data generated by au-
tonomous vehicles and the limited wireless networking resources,
such as the limited bandwidth provided by DSRC.

Due to this limitation, we cannot simply transmit raw data for
the purpose of fusion, as that would congest the network as well as
consume valuable on-board computing resources. With F-Cooper,
we are able to eliminate this limitation.

4.7.1 Transmission. First, both VFF and SFF are fusion methods
that allow for enhanced perception, with VFF achieving close to
raw data fusion and SFF achieving better “Near” detection results
than our baseline. Second, both of our feature fusion methods allow
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for a final compression size of less than 1 MB, which is well within
DSRC limits.
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Channels used for fusion

Figure 12: Detection precision of selective channels on spa-
tial feature fusion. The channels here indicate the corre-
sponding kernel numbers used in CNN.

Due to the limitations of DSRC, F-Cooper restricts the frequency
of data exchange between vehicles to 1Hz (1 fusion per second).
Given the nature of 3D detection and the situations that we envision,
it is not necessary to have a continuous stream of data of more than
1Hz to achieve enhanced precision. For the majority of cases, only
one frame of data is needed to provide crucial supplement to the
recipient vehicle. In the case of obstructed views, the feature fusion
on a single frame, from different perspectives, will be enough to
provide ample warning.

With VFF achieving better results, why do we still need SFF?
To answer this question, we analyze the impact of different spatial
feature maps on the detection results. As shown in Fig. 12, derived
from Fig. 9, we have the indexes of channels used in SFF as well
as their respective detection precision for each of the 5 vehicles in
the scene. We have 0-127 channels representing full feature maps
usage, while 55-99 channels representing the range of key channels
contributing the most to SFF results, 95-99 channels represent a
minimal set of required channels to obtain a reasonable detection
result. This finding is crucial for deploying fusion strategies
on the edge.
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4.7.2  Computation. Due to the small number of channels being
used to detect vehicles, we are able to reduce the amount of data that
needs to be encoded for compression and transmission. Looking
at Fig. 13 and Fig. 14, we have the graphs depicting both the data
volume and processing time for each of our fusion strategies.

—— ]
[ Jrawwio C. ]
I raw w/ C.
I VF wio C.
N sF wiC. ]
VFw/ C.
[ SF (55-99) w/ C.

2 3 4 5
Case

Figure 13: Comparison (C.) on data volume using different
fusion approaches.

From Fig. 13 we see that the raw point cloud data is about 2 MB
when taken directly from our defined LiDAR range as mentioned
in the experiment setup section. Similarly, the original data volume
for spatial feature is 72.1 MB and 1 to 1.3 MB for voxel feature.
However, both voxel and spatial data is capable of being compressed
to less than 1 MB as shown in the figure. When combining the data
from Fig. 12 and Fig. 13, we can see that with a 55-99 channel SFF
compressed, we achieve the highest compression results for all five
cases, the average of which is 250 KB. Additionally, if we are to
use 95-99 channel SFF, then the end result will achieve an even
higher compression. At the same time, SFF is capable of achieving
a similar precision while being capable of a far better compression.
With this, we can now analyze in Fig. 14 for how this strategy fares
in time consumption.

Firstly, it should be noted that as vehicles are communicating
with each other for data transmission and computation, they are
eating up valuable computational resources, so to achieve the best
result when it comes to augmenting their perception based on
the data from nearby vehicles, edge computing becomes the most
important factor.

As shown in Fig. 14, the total time used for both the raw fu-
sion and SFF strategies are both close to the 1 second mark. Here,
the total time we state includes the time for both data process-
ing/transmission and object detection. This can become quite the
issues when compounding this factor with the fact that a single
vehicle may need to process the same request from other vehicles
at the same time, causing a waste of computational resources. How-
ever, when we cut down the total time to just the transmission time
needed for the vehicle to transmit and receive the result to and
from an edge node, then we have a very feasible method of reliably
enhancing perception with no downsides, especially since trans-
mitting features to an edge computing node will not compromise
any privacy.
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Hence, our fastest strategies only requiring less than a tenth of a
second to send and receive results from an edge computing device;
the vehicle will only be responsible for sending the data needed for
feature fusion without needing to consume computation resources
on decoding, fusing and computing the results from other vehicles.

4.8 Summary of Experimental Analysis

We adopted an On-Edge end to end framework, F-Cooper, and
achieved a satisfactory collaborative perception towards enhancing
detection. Both of our strategies, VFF and SFF, performed better
than our single car detection results in almost all of our tests. In
addition to better precision, our methods were also lightweight
and versatile enough to be deployed in On-Edge systems without
adjustments to the current infrastructure of autonomous vehicles.

We also discover that F-Cooper can be leveraged to achieve a
reasonable tradeoff in a vehicular edge computing system, consider-
ing not only latency and prediction compensation but also data size
and network bandwidth. In our experiments, F-Cooper helps detect
more objects that are unclear in the distance. This allows for a less
constrained latency range as the fusion allows for distant objects to
be detected before the car in question reaches that point in space. In
addition, with regards to CNN channel selection and compression,
our resulting data sizes make low latency transfers a possibility.
We endeavor to continue researching even more powerful meth-
ods in future works. Lastly, we are only simulating the latency on
DSRC channels as that is the most immediate networking medium.
However, there are also 5G and millimeter-wave vehicular com-
munications techniques [34] coming into play, allowing for much
smaller latency. Latency is a massive issue, and we are not able to
solve the real time challenges fully with our current methodology,
but we will continue to strive in our future works.

5 RELATED WORK

The exploration of object data fusion has prevailed for years. Usu-
ally, data fusion methods can be grouped into 3 categories: low
level, feature level and high level data fusion [30].

In the era of high level fusion, several works are conducted to
fuse the detection results in pursuit of improving detection pre-
cision. The work by [26] exploits a high level sensor data fusion
architecture named Car2X-based perception. Their pioneering work
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delivers one vehicle’s consistent results for fusion with the results
generated by the host vehicle. High level fusion on multi-sensors
has been well investigated to facilitate the development of 3D ob-
ject detection. [6] proposed to detect and track moving objects
using fused results from multiple sensors. Recently, Crowd sourc-
ing, which has been learned in an automated manner [24], has
shown competitive perception precision. Sensors from various ve-
hicles are typically crowd-sourced, as cooperators, to provide wider
spatial coverage as well as disambiguation. However, their inability
to explore undetected objects and the lack of semantic information
communication caused the limited success of cooperative percep-
tion system. To this end, Qi et al. presented Cooper [3], which
fuses original calibrated raw LiDAR data from multiple vehicles to
improve 3D detection precision in a low-level data fusion method.

Though data fusion has been adopted in many areas, such as
object detection and object tracking [21], the idea of fusing data
from multiple sources data On-Edge has been explored by only a
few authors. An inspiring work is [29], where the authors developed
a shared real-time situational awareness system by aggregating
crowd sourcing and edge computing together. Another related work
is [20], which employ collaborative learning On-Edge computing.
However, the challenges that edge computing needs to face in the
specific application of object detection are not mentioned in this
paper.

Our fusion strategy is different from previous feature-level data
fusion methods. For example, [17] fuses features from different
convolutional layers in one detection model, [5, 16] fuse features
from different sensors within one veihcle. In pursuit of better repre-
sentation ability, we fuse processed LiDAR features from multiple
vehicles. We argue that fusing features from different perspectives
is a better solution to improve detection precision. Similar to our
work, AVR [23] extends vision of multiple vehicles by communicat-
ing short range stereo camera data. The method uses metadata for
localization in 3D map, allowing for a much more precise calibra-
tion. Unlike aforementioned works, we present a feature level data
fusion method in pursuit of lightweight On-Edge deployment for
connected autonomous vehicles. Our methods are fully suited for
On-Edge deployment since the amount of transmitted data is signif-
icantly reduced and it effectively takes the advantage of On-Edge
computing capacity. Finally, our method is based on intermediate
features, which can detect more possible objects than high-level
data fusion.

6 DISCUSSIONS

While it is faster to implement high-level data fusion, there is a
fundamental flaw associated with this action. As high-level fusion
is fusing object detection results from individual cars, we cannot
avoid the issue of what if no car senses enough information to
detect a critical object. An example would be if car A and car B both
detect half of an object, but neither can detect the whole object due
to missing half of the point cloud data. Because neither detected
the object, the high-level fusion result will exclude the object.
Another issue involved in data fusion is perspective transforma-
tion, in which a receiver needs to estimate its position relative to
a sender, so the sender’s data can be mapped into the receiver’s
local coordinate system. Existing solutions, e.g., AVR (augmented

99

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, Song Fu

vehicular reality) [23], have been proposed for precise fusion. AVR,
with an offline sparse 3D map as the benchmark, can provide an
accurate relative localization among vehicles, and thus increase
data fusion precision.

Although it is outside the scope of the paper, the fusion of infor-
mation from different vehicles at the edge opens the door to security
vulnerabilities. A prime example can be a malicious vehicle sending
phantom vehicle information. This might benefit the malicious ve-
hicle by making space for itself through sending fake information.
However, to the general public, this poses a serious driving hazard
as they could potentially incur an accident from trying to avoid the
phantom vehicle. In addition, we must acknowledge that a vehicle
might be unintentionally malicious due to the potential of faulty
sensors. This poses the question of how does a vehicle trust the
information provided by another vehicle.

Towards these two issues, we assume that all sources are valid
and trustworthy for experimentation purposes; however, these
issues must be addressed. One possible approach is to have the edge
perform the fusion and check the past history of how trustworthy
of individual vehicles, and to have the edge perform authentication
of newly registered vehicles.

7 CONCLUSIONS

In this paper, we proposed F-Cooper, which provides both a new
framework for applications On-Edge servicing autonomous vehi-
cles as well as new strategies for 3D fusion detection. Through
experiment testing and analysis, we conclude that not only does
F-Cooper perform at the same level as Cooper, but it also has the
added benefits of being more lightweight and computationally inex-
pensive. Both voxel features and spatial features have their separate
advantages and special uses. Compounded with their great fusion
detection enhancing capabilities, both strategies are well suited for
autonomous vehicles On-Edge.

Voxel feature fusion out performs spatial feature fusion, but
likewise, spatial feature fusion can be adjusted to be more suited
for compression and data transfer. As both methods achieve a high
detection perception enhancement over the baseline, both are viable
for fusion. When we consider the size difference between raw data
generated by each autonomous vehicle and only features from the
3D LiDAR data, it becomes clear that the latter is much more suited
towards networks with a limited bandwidth.

When we apply F-Cooper to real-world scenarios, our exper-
imental results on both the data volume and transmission time
fall well within acceptable range for On-Edge computation and
communication. Thus, from our evaluation, we believe that our
proposed F-Cooper framework will add improvement to connected
autonomous vehicle system, no matter where or how it is deployed
for either in-vehicle or on roadside edge computing.
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