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ABSTRACT

Autonomous vehicles are heavily reliant upon their sensors to per-

fect the perception of surrounding environments, however, with

the current state of technology, the data which a vehicle uses is con-

fined to that from its own sensors. Data sharing between vehicles

and/or edge servers is limited by the available network bandwidth

and the stringent real-time constraints of autonomous driving ap-

plications. To address these issues, we propose a point cloud feature

based cooperative perception framework (F-Cooper) for connected

autonomous vehicles to achieve a better object detection precision.

Not only will feature based data be sufficient for the training pro-

cess, we also use the features’ intrinsically small size to achieve

real-time edge computing, without running the risk of congesting

the network. Our experiment results show that by fusing features,

we are able to achieve a better object detection result, around 10%

improvement for detection within 20 meters and 30% for further

distances, as well as achieve faster edge computing with a low

communication delay, requiring 71 milliseconds in certain feature

selections. To the best of our knowledge, we are the first to intro-

duce feature-level data fusion to connected autonomous vehicles

for the purpose of enhancing object detection and making real-

time edge computing on inter-vehicle data feasible for autonomous

vehicles.
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1 INTRODUCTION

Connected autonomous vehicles (CAV) provide a promising solu-

tion to improving road safety. This relies on vehicles being able
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Figure 1: Occlusion and truncation situations naturally oc-

cur in point clouds data.

to perceive road conditions and detect objects precisely in real-

time. However, accurate and real-time perception is challenging

in the field. It involves processing high-volume and continuous

data streams from various sensors with strict timing requirements.

Moreover, the perception accuracy of a vehicle is often affected

by the limited view and scope of the sensors. Edge computing can

help CAVs achieve better situational awareness via combining and

processing information collected from multiple CAVs with more

powerful machine learning technologies [32, 35]. The goal of inte-

grating edge computing and CAVs is to efficiently analyze massive

amount of data in real time under limited network bandwidth.

An autonomous vehicle edge computing system consists of three

layers: vehicle, edge, and cloud [18]. Each autonomous vehicle is

equipped with onboard edge device(s) that integrates the needed

functional modules for autonomous driving, including localization,

perception, path planning, and vehicle control. Autonomous vehi-

cles can communicate with roadside edge servers, and eventually

reach the cloud through wireless networks, e.g., the dedicated short

range communication (DSRC) [7], 5G or millimeter-wave commu-

nication technologies [34]. This provides a perfect opportunity

to develop a cooperative perception system in which vehicles ex-

change their data with nearby edge servers. It is here that data

are fused and processed to further extend the individual vehicle’s

perception range; beyond line-of-sight and beyond field-of-view.

1.1 Motivation

Having a single source of data input for autonomous vehicles is

risky in real-world environments, as sensors are just another com-

ponent of the vehicle that is susceptible to failure. In addition,

sensors are also limited by their physical capabilities such as scan

frequency, range, and resolution. Perception gets even worse when
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Figure 2: Convolutional feature maps in a classical CNN.

sensors are occluded, as shown in Fig. 1. In the left LiDAR image,

only three vehicles (yellow boxes) are recognized by Car 1. When

it cooperatively detects with Car 2, four more vehicles (either oc-

cluded or truncated) are detected, as shown in red boxes in the right

image, which are not detected using its own data.

Among related works on cooperative perception for autonomous

vehicles [6, 26], we find that their main focus is on improving the

individual vehicle’s precision, overlooking benefits from coopera-

tive perception. Potential issues involved in cooperative perception,

such as accuracy of local perception results, impact on networks,

format of data to be exchanged, and data fusion on edge servers, are

not addressed. When it comes to 3D object detection, Lidar is one of

the most important components of autonomous driving vehicles as

it generates 3D point clouds to capture the 3D structures of scenes.

This data gives precise location in 3D space with respect to the

LiDAR, and by extension, the car.

Based on our best acknowledge, the state of the art 3D object de-

tection precision based on monocular LiDAR (Light Detection and

Ranging) data comes from VoxelNet [37], SECOND [36] and PointR-

CNN [31], etc. For example, PointRCNN achieves 75.76% mAP

(mean average precision) on the KITTI moderate benchmark [8],

and 85.94%, 68.32% on easy and hard benchmarks, respectively.

That implies the simple fusion of object detection results from dif-

ferent cars would yield errors. Although fusing raw LiDAR data

from two vehicles can improve the car detection precision [3], it is

challenging to send the huge amount of LiDAR data generated by

autonomous vehicles in real time. Solutions that increase vehicle’s

perception precision as well as maintaining or reducing computa-

tional complexity and turnaround time are rare in the literature.

1.2 Proposed Solution

We propose amethod that improves the autonomous vehicle’s detec-

tion precision without introducing much computational overhead.

An useful insight is that modern object detection techniques for

autonomous vehicles, both image based [19, 27] and 3D LiDAR data

based [22, 36], commonly adopt a convolutional neural network

(CNN) [12, 33] to process raw data, and leverage a region proposal

network (RPN) [27] to detect objects. We argue that the capacity

of feature maps is not fully explored, especially for 3D LiDAR data

generated on autonomous vehicles, as the feature maps are used

for object detection only by single vehicles.

To this end, we introduce a feature based cooperative perception (F-

Cooper) framework that realizes an end-to-end 3D object detection

leveraging feature-level fusion to improve detection precision. Our

F-Cooper framework supports two different fusion schemes: voxel

feature fusion and spatial feature fusion. While the former achieves

almost the same detection precision improvement when compared

to the raw-data level fusion solution [3], the latter offers the ability

to dynamically adjust the size of feature maps to be transmitted.

A unique characteristic of F-Cooper is that it can be deployed and

executed on in-vehicle and roadside edge systems.

Aside from being able to improve detection precision, data needed

for feature fusion is only one hundredth of the size of the origi-

nal data. For a typical LiDAR sensor, each LiDAR frame contains

about 100,000 points, which is about 4 MB. Such huge amount data

would become a severe burden for any existing wireless network

infrastructure. In stark contrast to the large volume of raw LiDAR

data, the size of features generated by a CNN can be as low as 200

Kb after compression techniques is applied. Empirical evidences

from our experiments demonstrate that transmitting these features

only takes dozens of milliseconds, which makes real-time edge

computing feasible. Such a negligible cost also enables feature-level

fusion to become an ideal choice for connected autonomous ve-

hicles to improve detection precision while keeping a reasonable

communication time.

1.3 Main Contributions

To the best of our knowledge, we are the first to propose feature map

fusion based 3D object detection for CAVs on the edge. Through

our experimentation and analysis, we have proved that not only

does feature fusion provide an enhanced perception, it also allows

for data to be compressed without losing detection value.

With this data compression factor, we are able to state with

confidence that our feature fusion strategies are suited for au-

tonomous vehicles On-Edge. Due to the fact that vehicles have

a limited amount of computational resources on-board, we look

towards the edge for more powerful and reliable computational

power. Should an autonomous vehicle require extra perception, it

only needs to send its compressed feature data and receive either a

detection result or a compressed, fused feature map, or even both.

By cutting out the computational step, we are effectively pushing

the heavy workload onto the edge and mitigating any downsides

to data sharing.

As proven in our experiments, both the data size and network

transmission time are small enough that even in the most congested

areas, vehicle data transmission will still be smooth. Both voxel

feature fusion and spatial feature fusion perform better than the

baseline for single vehicles without fusion, both the fusion and non-

fusion baseline are derived from the same detection model. While

spatial feature fusion data can be dynamically adjusted for a smaller

compression size than voxel feature fusion data, the latter is capable

of detection improvement on par with raw-data level fusion [3].

With each strategy holding its own special advantages, we believe

that our F-Cooper framework makes a substantial contribution that

allows improvement no matter whether deployed in-vehicle or on

roadside edge systems.

2 TOWARDS FEATURE BASED FUSION OF
VEHICLE DATA

2.1 Convolutional Feature Maps

With 3D points cloud data, the details for the location of each

point are used to calculate the relationship between a car and its

surrounding environment. Each frame in 3D points cloud data
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is processed in the same way, and one common key step in the

process is to generate feature maps from points cloud data. Due

to the popularity of CNN based solutions to object detection for

autonomous driving vehicles [4, 15, 25], in this paper, we focus on

the feature maps generated by the convolutional layers in CNN.

As a CNN network processes raw 3D points cloud data [28], we

are able to extract the processed feature maps from the CNN. These

feature maps provide the essential information for object detection.

Fig. 2 depicts the convolutional layers in a classical CNN. First, we

send the original data as input to a convolutional layer which is

composed of several filters with each filter generating a feature

map. All these generated feature maps are considered as the output

of the first layer and will be sent to the second convolutional layer

as input data. Recursively, previous layer’s outputs are fed as input

into the next layer.

2.2 Features for Fusion

Features are a well established and integrated part of any CNN, and

due to the nature of CNN, it is opaque by nature. When working

with feature maps, we need to ensure that coincident issues are dealt

with and explored. For example, depending on the specifications

of the convolutional layers in a CNN network, the resulting voxel

features may be located equal-distant from other voxels, making

lossless fusion impossible without additional run-time cost.

To confirm the usefulness of features for fusion, we must answer

the following three essential questions. (1) Do features possess the

necessary means for fusion? (2) Are we able to communicate the

data between autonomous vehicles effectively through features?

(3) If features satisfy both of the two prior requirements, then how

hard is it for us to obtain feature maps from autonomous vehicles?

To analyse these questions and their implications, we provide an

in-depth analysis in the sections below.

2.2.1 Fusion Characteristics. Inspired by the works that have

been dedicated to fusing feature maps generated by different lay-

ers, such as Feature Pyramid Network (FPN) [17] and Cascade

R-CNN [2], we find that it is possible to detect objects in different

feature maps. For example, FPN adopts a top-down pyramid struc-

ture feature maps for detection. These networks are very adept in

compounding the efficiency of feature fusion.

Taking the inspiration from these works, we make the assump-

tion that cars compatible for fusion will use the same detection

model. This is important as we see only the most reliable detection

model being used for self driving. With this assumption in place,

we now look at the fusion characteristics.

As featuremaps are available from the CNN,we are able to ensure

that all extracted feature maps are obtained with the same format

and data type. Next, as feature maps extracted from 3D points cloud

also contain location data, we are able to fuse the feature maps

from different autonomous vehicles as long as there exists a single

point of overlap in between the two vehicles. However, when we

faced the issue of equal-distant location alignment, we needed to

adjust our fusion algorithm to accommodate such situations. To

achieve this goal, we let each car send its GPS and IMU data to allow

for the transformation calculations towards point clouds fusion,

i.e., transforming the view seen by a sender to the view seen by a

receiver. We are clear that GPS and IMU cannot provide enough

accurate details to perspective transformation. However, there are

existing methods that allow for accurate alignment of two vehicles

into the same 3D space.Wewill discuss this further in the discussion

section.

2.2.2 Compression and Transmission. Another advantage of

feature maps over raw data is the transmission process between

vehicles. Raw data might come in many different formats, they

all achieve a single purpose, and that is to preserve the original

state of the data captured. For example, LiDAR data taken from a

driving session would store all the points cloud along the path of the

driving session. However, this storage format records unnecessary

data along with the essential data; feature maps avoid this issue.

As the raw data is being processed by the CNN network, all the

extraneous data is being filtered out by the network, leaving behind

only information that is potentially capable of being used for object

detection by the network. These feature maps are stored in sparse

matrices, which only store the data deemed useful, with a 0 stored

in the matrix for any data filtered out.

The data size advantage can be further compounded through

lossless compression such as the gzip compression method as seen

in [14]. Adding in the nature of sparse matrix, we are able to com-

bine the two to achieve compressed feature data that is no bigger

than 1 MB, making features a great option for deploying On-Edge

fusion.

2.2.3 Generic and Inherent Properties. All autonomous driv-

ing vehicles must base their decisions on the data that their sensors

generate. The raw data is generated from the physical sensors on

the vehicle before getting forwarded to the onboard computing

device. From there, the raw data is fed through a CNN based deep

learning network to process the raw data and ultimately make the

driving decisions.

During this process, we are able to pull the extracted features for

sharing. By doing so, we are effectively able to obtain the feature

maps of the raw data without needing extra computation time or

power from the onboard computing device. With the CNN based

network being used by almost all known autonomous driving vehi-

cles to date, the feature extraction is generic and does not require

further processing before fusion.

Thanks to the means by which autonomous vehicles process

data, we are able to directly take the processed feature maps from

the raw LiDAR points cloud data for the purpose of fusion, as this

inherently provides location data. As long as the LiDAR sensor has

been calibrated to the standards needed for autonomous driving,

then we should have a feature map that is capable of retaining the

relative locations of all things in relation to the vehicle.

3 F-COOPER: FEATURE BASED
COOPERATIVE PERCEPTION

Inspired by the advantages of feature map fusion in 2D object detec-

tion and the feature maps generated by 3D object detection based

on LiDAR data, we propose the Feature based Cooperative Percep-

tion (F-Cooper) framework for 3D object detection. Our F-Cooper

fuses feature maps generated from two LiDAR data sources ori-

ented in two different aspects. Fusing feature maps (rather than raw

data) will not only address privacy issues, but also greatly reduce
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Figure 3: Architecture of the feature based cooperative perception (F-Cooper). F-Cooper has multiple vehicles’ (using two here

for illustration) LiDAR data inputs which are processed by the VFE layers respectively to generate voxel features. To fuse 3D

features from two cars, two fusion paradigms are designed: voxel features fusion and spatial features fusion. In Paradigm I,

two sets of voxel features are fused first and then spatial feature maps are generated. In Paradigm II, spatial features are first

obtained locally on individual vehicles and then fused together to generate the ultimate feature maps. Symbol
⊕

indicates

where the fusion takes place in each paradigm. An RPN is employed for object detection on the ultimate feature maps in both

paradigms. We use dashed arrows to denote data flow and bold red lines to present fusion connections. Best viewed in color.

the network bandwidth requirement. In F-Cooper, we present two

schemes for feature fusion: Voxel Feature Fusion (VFF) and Spatial

Feature Fusion (SFF). As shown in Fig. 3, the first scheme directly

fuses the feature maps generated by the Voxel Feature Encoding

(VFE) layer, while the second scheme fuses the output spatial fea-

ture maps generated by the Feature Learning Network (FLN) [37].

SFF can be viewed as an enhanced version of VFE, i.e., SFF extracts

spatial features locally from voxel features available on individual

vehicles before they are transmitted into the network.

3.1 Voxel Features Fusion

As with pixels in a bitmap, a voxel represents a value on a regular

cube in three-dimensional space. Within a voxel, there may be zero

or several points cloud generated by a LiDAR sensor. For any voxel

containing at least one point, a voxel feature can be generated by

the VFE layer of VoxelNet [37].

128

V1

V2

V3

V4

H

H H

H
   Key    

       [0.12, 0.43, ..., 0.86]
[0.66, 0.23, ..., 0.10]
[0.03, 0.97, ..., 0.23]
[0.56, 0.60, ..., 0.47]

    

Figure 4: A 128-dimensional feature is generated for each

non-empty voxel in LiDAR data. For computational effi-

ciency and data balance, we randomly sample 35 points

from the voxels containing more than 35 points. The points

within a voxel are then provided to the Voxel Feature En-

coding (VFE) layerwhich produces a 128-dimensional vector.

An empty voxel containing no points has no feature.

Suppose the original LiDAR detection area is divided into a voxels

grid. Of these voxels, we will obtain a vast majority of empty voxels

with the remaining ones containing critical information. All non-

empty voxels are transformed by a series of full connection layers

and converted into a fixed-size vector, with a length of 128. The

fixed-sized vector is often referred to as feature map. An example

feature map derived from 3D point cloud data is shown on the right

part of Fig. 6. For example, as shown in Fig. 4, only four voxels are

non-empty amongst the twelve voxels present, and each of the four

selected voxels becomes a 128-dimensional vector.

1

Car1

Car2

Maxout

2

3
4

5 6

7

1

2

3 5

4

7

6

Maxout

Figure 5: Voxel features fusion. When two voxels share the

same location, we usemaxout function to fuse them.

For memory/compute efficiency, we save the features of non-

empty voxels into a hash table where the voxel coordinates are used

as the hash keys. As our focus is primarily on autonomous driving,

we only store non-empty voxels into our hash table. Combining the

fact that our 3D point clouds are of outside driving scenarios, which

yields around a few thousand voxels, searching the hash table for
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voxel fusion becomes an non-factor in the overall speed of our

framework. In VFF, we explicitly combine the features of all voxels

from two inputs, as depicted in Fig. 5. Specifically, the Voxel 3 from

Car 1 and Voxel 5 from Car 2 share the same calibrated location.

While the two cars are located in different locations physically, they

share the same calibrated 3D space, with different offsets indicating

the relative physical location of each car in said 3D calibrated space.

To this end, we employ the element-wisemaxout scheme to fuse

Voxel 3 and Voxel 5.

Taking inspiration from convolutional neural networks, using

maxout [11] for latent scale selection, we extract the obvious fea-

tures while suppressing the features that does not contribute to

detection in 3D space, thus achieving lower data size. In our ex-

periments, we use the maxout to decide which feature is most

prominent when comparing the data in between vehicles. We de-

note these two voxel features as V3 and V5, respectively, and V
i as

the i-th element in the voxel. The fused featuresV can be presented

as follows.

V i =max
(
V i
3 ,V

i
5

)
,∀i = 1, · · · , 128 (1)

The key insight behind ourmaxout strategy is that it emphasizes

important features and removes trivial ones. Also, asmaxout is a
simple floating-point operation, it introduces no extra parameters.

Such a negligible additional computational overhead can be ignored

when compared to the overall improvement on object detection

precision.

Naturally, we expect voxels from two cars are able to be perfectly

matched. However, this is impractical for real-world applications,

even slight bias between voxels would explicitly lead to mismatches.

Here, we showcase four different mismatched situations in Fig. 5.

The green dotC3 indicates the center of the voxel 3 from Car 1 and

the diamonds C5a ,C5b ,C5c ,C5d denote the possible centers of the

voxel 5 from Car 2. In case (a), the center of Voxel 5, denoted asC5a ,

falls within Voxel 3. In case (b), the center C5b falls on one side of

the voxel 3, meaning Voxel 5 connects with two voxels from Car 1.

In case (c), C5c falls along an edge of Voxel 3, which implies Voxel

5 intersects with four voxels from Car 1. In case (d), C5d falls on a

corner point of Voxel 3 and connects with eight voxels. For case (a),

we fuse the voxel 3 and voxel 5 directly using maxout. For cases

(b,c,d), we fuse Voxel 5 with all the connected voxels from Car 1,

and give the results to the connected voxels, respectively.

3.2 Spatial Feature Fusion

VFF needs to consider the features of all voxels from two cars, which

involves a large amount of data exchanged between vehicles. To

further reduce the network traffic, as well as keeping the benefits of

feature based fusion, we design a spatial feature fusion (SFF) scheme.

Compared to VFF, SFF fuses spatial feature maps, which are sparser

when compared to voxel features and thus more easily compressed

for communication. Fig. 3 intuitively showcases the relationship

between VFF and SFF. Different from VFF, we pre-process the voxel

features on each vehicle to get the spatial features. Next we fuse the

two source spatial features together and forward the fused spatial

features to a RPN for region proposal and object detection.

As shown in Fig. 6, the spatial feature maps of a LiDAR frame

is generated by the Feature Learning Network [37]. The output of

H1

W1

H1

W1
C

Figure 6: Example of spatial feature maps. H1 and W1 rep-

resent the size of the LiDAR bird-eye view for each vehicle’s

detection range, whileC indicates the channels number. It is

worth noting that we fuse spatial features in a channel-wise

manner, where the channels indicate the corresponding ker-

nel numbers used in CNN.

the feature learning network is a sparse tensor, which has a shape

of 128 × 10 × 400 × 352. In order to integrate all the voxel features,

we adopt three 3D convolutional layers, and sequentially obtain

smaller feature maps with more semantic information and a size of

64 × 2 × 400 × 352. However, the generated features cannot fit into

the required shape of the conventional region proposal network.

To this end, we must reshape the outputs to the 3D feature maps of

size 128 × 400 × 352 before we can forward them to RPN. For SFF,

we generate a bigger detection range with sizeW ×H , whereW >
W1,H > H1. Next we fuse the overlapped regions while retaining

the original features in the non-overlapped regions. Suppose a GPS

records the real-world location of Car 1 as (x1,y1) and Car 2 as

(x2,y2), then we can get the position of the left-top corner. And if(
x2 + H1,y2 −

W1
2

)
belongs to Car 2’s feature maps with the left-

top corner being representative of the feature maps of Car 1, then

it is easy for us to determine the overlapped areas. Similar to VFF

adopting themaxout strategy, we also employmaxout for SFF to
fuse the overlapped spatial features.

As indicated in Fig. 7, the top left corner of Car 2’s feature maps

can be presented as
(
x2 + H1, ,y2 −

W1
2

)
if the car moves towards

left. Suppose the corner point falls in the region of Car 1’s feature

map, then we can fuse the overlapped features in the same manner

as the voxel fusion strategy.

Finally, we adopt region proposal network to propose potential

regions on the fused feature maps. Paradigm II in Fig. 3 holistically

showcases the pipeline of our SFF.

Recent work like SENet [13] indicates that different channels

share different weights. That is to say some channels in feature

maps contribute more toward classification/detection while other

channels being redundant or unneeded. Inspired by this, we opt

to select partial channels, out of all 128 channels, to transport. We

assume that autonomous vehicles are assembled with the same

well-trained detection model as in real-world applications. After ex-

tensive experimentation, we demonstrate that transporting part of

channels can further reduce the time consumption of transmission

while keeping the comparable detection precision in our experi-

mental analysis in Section 4.
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Car1
(x1,y1)

Car2
(x2,y2)

y
x

Figure 7: For spatial features fusion, we use maxout to fuse

the two spatial features. The left-top is the spatial feature

maps generated by Car 1, and the left-bottom is the spatial

feature maps generated by Car 2. After fusion, the fused fea-

turemaps contain the key features (marked in red and green

boxes) of both feature maps.

3.3 Object Detection Using Fused Features

For detecting vehicles, we feed the synthetic feature maps to a

Region Propose Network (RPN) for object proposal. Next a loss

function is applied for network training.

3.3.1 Region Proposed Network. As indicated in Fig. 3, once we

get the spatial feature maps, regardless of whether we adopt voxel

fusion paradigm or spatial fusion paradigm, we send it to the re-

gion proposal networks (RPN) [37]. After passing through the RPN

network, we will obtain two generated outputs for a loss func-

tion (Section 3.3.2): (1) a probability score p ∈ [0, 1] of the pro-

posed region of interests, and (2) the locations of proposed regions

P = (Px , Pw , Pz , Pl , Pw , Ph , Pθ ), where
(
Px , Py , Pz

)
indicates the

center of the proposed region and (Pl , Pw , Ph , Pθ )means the length,

width, height and rotation angle, respectively.

3.3.2 Loss Function. The loss function is comprised of two parts:

classification loss Lcls and regression loss Lr eд .
Suppose a 3D ground-truth bounding box can be presented as

G =
(
Gx ,Gy ,Gz ,Gl ,Gw ,Gh ,Gθ

)
, where

(
Gx ,Gy ,Gz

)
represents

the central point of the box, and (Gl ,Gw ,Gh ,Gθ ) denotes the length,

width, height and yaw rotation angle, respectively. Our proposed

method will generate a vector P to represent the predicted 3D box.

In order to minimize the loss between our prediction and the ground

truth, we regress our predicted boxes by minimizing the differences

(Δx ,Δy,Δz,Δl ,Δw,Δθ ) [10] as:

Δx =
Gx − Px

Pd
,Δy =

Gy − Py

Pd
,Δz =

Gz − Pz
Ph

Δl = log

(
Gl

Pl

)
,Δw = log

(
Gw

Pw

)
,Δh = log

(
Gh

Ph

)

Δθ = Gθ − Pθ

(2)

where Pd =
(
(Pl )

2 + (Pw )2
) 1
2
is the dialog of length and width .

Suppose our model proposes Npos positive anchors and Nneд

negative anchors, we define the loss function as follows:

L = α
1

Nneд

Nneд∑
i=1

Lcls

(
pineд , 0

)

+ β
1

Npos

Npos∑
i=1

Lcls

(
pipos , 1

)

+
1

Npos

Nneд∑
i=1

Lr eд
(
P i ,Gi

)
(3)

wherepineд andp
i
pos are the probability of positive anchors and neg-

ative anchors respectively, and Nneд and Npos denote the number

of proposed negative and positive anchors respectively. In regres-

sion loss, Gi indicates the ith ground truth while P i means the

corresponding predicted anchor. We use α and β to balance these

three losses.We employ a binary cross entropy loss for classification

Loss and Smooth-L1 loss function [9, 27].

4 PERFORMANCE EVALUATION

4.1 Datasets

KITTI [8] is a well-known vision benchmark suite project which

contains labeled data that allows for autonomous vehicles to train

detection models and evaluate detection precision .

As we focus on 3D object detection, we use the 3D Velodyne

point cloud data provided by the KITTI dataset. The cloud point

data provides 100K points per frame and is stored in a binary float

matrix. The data includes 3D location of each point and associated

reflectance information. However, as KITTI data is recorded from

single vehicles, we must utilize different time segments from the

same recording to emulate data generated from two vehicles. As a

result, KITTI data is only suitable for certain test scenarios.

To address this issue, we equip two vehicles, named Tom & Jerry

(T&J), with necessary sensors, such as LiDARs (Velodyne VLP-16),

cameras (Allied Vision Mako G-319C), radars (Delphi ESR 2.5),

IMU&GPSes (Xsens MTi-G-710 kit), and edge computing devices

(Nvidia Drive PX2) to gather desired data on the campus of our

institution. Our vehicles have 16-beam Velodyn LiDAR sensors that

store data in binary raw Ethernet packets. As our vehicles can move

independently of each other, we are able to test the entire gamut of

scenarios in a real-world environment with our two vehicles. Both

datasets provide data that allows 3D object detection. The dataset

is available at https://github.com/Aug583/F-COOPER.

4.2 Test Scenarios

From these two datasets, we are able to fully test or simulate an

array of different common scenarios such as those detailed below.

Road intersections. One of the most common places for cars to

congregate and thus cause occlusion is a busy road intersection. As

the optical based LiDAR and camera sensors are blocked by vehicles

in front of them, the information becomes severely limited. Due to

this fact, we included this scenario as one of our test cases.
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(a) Car 1 (Receiver) (b) Car 2 (Sender) (c) Fusion Detection Result on Car 1

Figure 8: Comparing detection precision on voxel-feature fusion cases when two cars drive forward in parallel . In (a) and (b),

the top line is detection results on LiDAR data, while themiddle and bottom lines are left and right camera images respectively.

In (c), the top line is the result of our voxel fusion and the bottom line is the result of Cooper [3].

Multi-lane roads. Another common place is a multi-lane road.

Such roads feature the combination of high speed driving and T-

junctions, both of which are prone to accidents. To ensure our

F-Cooper framework is capable in such extreme situations, we also

included this scenario in our experiments.

Campus parking lots. Last but not least, as our main objective is to

enhance perception through fusion, we need to test our framework

in a crowded situation with many obstacles. As congested zones are

best represented by a crowded parking lot, we choose busy campus

parking lots as our main test scenario to evaluate the accuracy of

F-Cooper in a real-life environment.

4.3 Experiment Setup

To evaluate F-Cooper, over 200 sets of data were collected and tested

in our experiments.We separate our tests into four categories, based

on themethods used to process the LiDAR data, methods (1) through

(3) are derived from the same detection model: (1) Non-fusion as

baseline, (2) F-Cooper with VFF, (3) F-Cooper with SFF, and (4) raw

point clouds fusion method - Cooper [3]. Feature fusion takes place

in random cases of the above four categories with a heavier focus

on busy campus parking lots as it is the most difficult scenario due

to significant occlusions. Within each category, we further divide

our experiments by considering the distances between objects and

the sensing vehicle. We treat objects that are within 20 meters away

from a vehicle as high-priority objects and those beyond 20 meters

as low-priority objects in the parking lot environment.

As our LiDAR sensor has only 16 beams, the resulting point cloud

data is relatively sparse, compared to higher-end LiDAR sensors. To

mitigate the negative impacts of sparse data, we limit the detection

range to [0,70.4] by [-40,40] by [-3,1] meters along the X, Y, and Z

axles.We do not use data beyond the detection ranges. In addition to

the vehicle’s detection range, we also set the voxel size as vD = 0.4

meter,vH = 0.2meter,vW = 0.2meter, and thusD1 = 10,H1 = 400,

andW1 = 352. In our experiments, the F-Cooper framework runs

on a computer with a GeForce GTX 1080 Ti GPU.

4.4 Top-Level Evaluation of F-Cooper

To evaluate F-Cooper, we analyze each component individually as

well as against other frameworks. Starting with VFF, we can see

the results of fusion from two cars in Fig. 8 and Fig. 9, with data

receiving vehicle (Car 1) and data transmitting vehicle (Car 2). In the

figure, we have the LiDAR representation with the detection results

on the top and the right-camera in the middle and the left-camera

at the bottom. Both the baseline detection and the fusion detection

use 0.5 as a confidence threshold, meaning if the confidence level is

above this score, we mark the boundary box for that object. As we

can see in column (c) of Fig. 8 and Fig. 9, we have the voxel fusion

result on the top and the raw data fusion result on the bottom.
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(a) Car 1 (Receiver) (b) Car 2 (Sender) (c) Fusion Detection Result on Car 1

Figure 9: Comparing detection accuracy on spatial-feature fusion cases when two cars approach each other from opposing

directions. (a) shows the detection results of car 1, (b) shows the detection results of car 2, while (c) is the results on spatial

feature fused data and raw fused data.

Through all of our marked bounding boxes, we have distinguished

them in three levels of importance to the receiving car: yellow,

green and red. The cars marked in yellow represent those that

have already been detected by the receiving car originally. The cars

marked in green represent those detected by only the sender and

not the receiver. The cars marked in red represent those undetected

by neither the sender nor the receiver but detected after feature

fusion.

Taking a closer look at Fig. 8, which details two cars driving

forward in parallel, we can see that Car 1 was able to detect four

vehicles while Car 2 was able to detect three vehicles. However, in

both cases, neither Car 1 nor Car 2 was able to detect cars further

away. This was caused by a combination of factors such as occlusion

and distance. Through VFF, we are able to detect cars previously

occluded to Car 1 or was completely undetected by either cars.

Similarly, Fig. 9 depicts two cars approaching each other from

opposing directions. In this figure, we can see that Car 1 detects

three vehicles while Car 2 detects four. However, when SFF was

conducted, we can see that spatial fusion only enhanced perception

by two detections for Car 1 where as raw data fusion enhanced

detection by three. A closer inspection reveals that the right most

new detection from SFF was not detected in the raw data fusion.

From this comparison, we can see that while VFF is similar in

precision to raw data fusion, SFF is able to perform better for near

cars when compared to VFF.

4.5 Detection Precision Analysis

Having taken an overview of the precision of our two feature fusion

methods, we dive into the details of how each method performs

against each other as well as against the baseline, and the Cooper

approaches [3].

The data that we use for this analysis comes from both datasets

to test all of our listed scenarios. In all our experiments, we report

our results using Intersection over Union (IoU) threshold at 0.7

for vehicles. Then, we calculate the precision by comparing the

detected vehicles with the ground truth.

In Table 1, we observe that in our baseline test, baseline with-

out fusion on Car 1 achieve a good “Near” detection precision for

the road scenarios but fall off sharply in precision in their “Far”

detection. As mentioned before, the “Near” and “Far” cut off is 20

meters from the car as the center. Next, looking at how the baseline

performs in parking lot scenarios where the most occlusions take

place, we can see that again, the “Near” precision is much better

than the “Far”. This is understandable as the lasers reach out further,

it returns a much sparser point cloud.

Moving on to our method testing, we compare the precision

against both the baseline and raw fusion [3]. It should be noted that

we only compared against fusion methods instead of non-fusion

detection methods as the former yields a meaningful comparison

whereas the latter is not relatable in the same context. For our
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Scenario Dataset Baseline w/o fusion F-Cooper (VFF) F-Cooper (SFF) Cooper [3]

Near Far Near Far Near Far Near Far

Multi-lane roads KITTI 63.22 22.37 77.46 58.27 50.00 57.14 77.46 71.42

Road Intersections T&J 78.37 19.60 80.21 72.37 73.68 53.33 80.21 72.37

Parking Lot1 T&J 58.33 33.33 66.67 62.54 66.67 33.33 66.67 70.58

Parking Lot2 T&J 66.67 18.85 72.25 46.42 72.25 25.00 75.50 50.00

Parking Lot3 T&J N/A 45.81 N/A 66.41 N/A 66.41 N/A 66.41

Parking Lot4 T&J 100 N/A 100 48.83 100 33.33 100 48.83

Table 1: Precision comparison between F-Copper and Cooper on Car 1: Average precision (in %). "N/A" means no vehicle exits

in the corresponding scenarios.

road scenarios, we see that VFF achieves a similar precision to

Cooper (a raw data fusion solution). This signifies that VFF is as

capable as raw data fusion method for near object detection,

but without collecting others point clouds.

Interestingly, as we look at the SFF precision, we can see a drastic

difference in between the “Near” and “Far” precision. While SFF

does not outperform VFF, it was still able to perform better than the

baselines in most scenarios. However, it must be noted that SFF is

more sparse than both voxel features and raw data by a considerable

margin. When we factor in the fact that spatial features are derived

from the voxel features, it is normal to have the better precision

in the regions where the data is naturally denser, i.e., “Near” the

vehicle where the LiDAR point cloud data is the densest.

To distinguish the differences in how well VFF and SFFs perform

in the “Near” and “Far” categories respectively, Fig. 10 shows the

cumulative distribution functions of increase in detection precision.

Additionally, in the “Far” category, VFF was able to achieve a 40%

detection precision increase for almost 85% of the time; it is also able

to increase detection precision by 60% for 30% of the time. Looking

at SFF, we do see an increase in detection precision, however, it

is not as great of an increase as VFF shows. When it comes to the

“Near” category, however, SFF was able to perform as well as VFF

if not better in some cases. In Fig. 10, SFF and VFF are both at

50% chance to increase detection precision by 20%. But, as we look

deeper, we find that SFF outperforms VFF slightly at 30% chance to

increase precision by 30%.

Figure 10: Cumulative Distribution Function vs. detection

precision improvement.

We conclude from this test that our detection range is able to be

extendedwith an overall average increase in detection precision due

to the extra features being harvested. As our features may target the

same object multiple times, the detection confidence scores also see

a notable increase. The reason why detection results become more

precise after fusion is due to the points from different cars becoming

fused, thus making the originally sparse data representation of a 3D

object less sparse and more “outlined”. This allows for the detection

model to have a higher precision. Moreover, as single cars have a

limited range on their LiDAR beams, multi-car fusion allows for

points in the distance to be registered by the receiving car. Through

fusion, the missing points in the distance are provided by the other

cars, and thus allowing for the recipient car to enhance its detection

results. Our detection precision may increase even further with

more vehicles sharing data, solving the issue of missing detection

on some of our target cars.

4.6 Sensitivity and Resilience

As feature fusion relies heavily on location information for fusion,

alignment has a big impact on the final detection precision of the

fusion. To understand the sensitivity and resilience of F-Cooper, we

will not only study missed detections, but also compare the changes

of confidence level of each detected target.

In real world situations, all sensors are built within a specific

acceptable error tolerance. However, these small discrepancies in

between different sensors may cause the same object in 3D space to

be labeled at slightly different locations by different cars. As SFF is

by nature sensitive to the position of the features, we need to deal

with this phenomenon in our fusion. When we integrate our GPS

and IMU data, we observe yields of less than 10 cm of positional

error [1]. Additionally, when we explained the nature of voxel and

spatial fusion in Sections 3.1 and 3.2, we noticed the discrepancies

in location based data fusion. To test the resilience of our fusion

methods against sensor drift, we conducted procedural artificial

skewing of our GPS readings as seen in Fig 11.

In Fig. 11, we have part (a) showing the scenarios and part (b)

and (c) displaying the effects of GPS drifting on VFF and SFF. First,

in both VFF and SFF, we can see that there are two tables, one

with a drift of 0 meters and the other with a drift of 0.1 meters to

simulate drift. The target cars are then separated into “Far” and

“Near” groups with respect to the location of each vehicle, “Far” is

shaded dark while “Near” is not shaded.

When we focus on the missed detections, the experiment results

indicate location drifting does not significantly affect the detection
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(a) real-world test (b) VFF detection results (c) SFF detection results

Figure 11: GPS reading drifting impact on F-Cooper. (a): intuitive detection result. (b): numeric detection results of VFF. (c):

numeric detection results of SFF. The table exhaustively showcases the detection confidence value on each car.

accuracy of SFF. On the other hand, if we look at the confidence

score of each detected target, we find that VFF strategy is not too

sensitive to GPS drifting. Taking all of the changes from all of

our target scores of VFF, the average of increase and decrease in

our confidence scores balance out, indicating that GPS drifting

slightly affects VFF. Considering the same scores of SFF, we see

that the average of change becomes worse, when compared to VFF,

indicating that SFF is more sensitive to GPS drifting than VFF.

During our experimentation, SFF performed worse than VFF in

the “Far” category. After careful investigation on our experimental

setup and methodology, we concluded the following: Compared

to raw point cloud fusion and voxel feature fusion, spatial feature

fusion is relatively low in feature map resolution. This factor is

exponentially amplified during detection for objects in “Far” cat-

egory as well as for detection of small objects. In retrospect, we

realize that for feature extraction on small object, we are even more

susceptible to location distance. Furthermore, smaller objects may

suffer from missing features after extraction. In point cloud data,

when fusing from different angles and perspectives, we are at a

higher risk of merging features from different aspects, therein caus-

ing a detection conflict. We believe that to overcome this issue, we

need to propose a voxel feature extraction method that allows for

surgical extraction of features from point clouds.

4.7 F-Cooper On-Edge

Even though point clouds can be simplified to coordinate values,

we still need to consider the gap between data generated by au-

tonomous vehicles and the limited wireless networking resources,

such as the limited bandwidth provided by DSRC.

Due to this limitation, we cannot simply transmit raw data for

the purpose of fusion, as that would congest the network as well as

consume valuable on-board computing resources. With F-Cooper,

we are able to eliminate this limitation.

4.7.1 Transmission. First, both VFF and SFF are fusion methods

that allow for enhanced perception, with VFF achieving close to

raw data fusion and SFF achieving better “Near” detection results

than our baseline. Second, both of our feature fusion methods allow

for a final compression size of less than 1 MB, which is well within

DSRC limits.
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Figure 12: Detection precision of selective channels on spa-

tial feature fusion. The channels here indicate the corre-

sponding kernel numbers used in CNN.

Due to the limitations of DSRC, F-Cooper restricts the frequency

of data exchange between vehicles to 1Hz (1 fusion per second).

Given the nature of 3D detection and the situations that we envision,

it is not necessary to have a continuous stream of data of more than

1Hz to achieve enhanced precision. For the majority of cases, only

one frame of data is needed to provide crucial supplement to the

recipient vehicle. In the case of obstructed views, the feature fusion

on a single frame, from different perspectives, will be enough to

provide ample warning.

With VFF achieving better results, why do we still need SFF?

To answer this question, we analyze the impact of different spatial

feature maps on the detection results. As shown in Fig. 12, derived

from Fig. 9, we have the indexes of channels used in SFF as well

as their respective detection precision for each of the 5 vehicles in

the scene. We have 0-127 channels representing full feature maps

usage, while 55-99 channels representing the range of key channels

contributing the most to SFF results, 95-99 channels represent a

minimal set of required channels to obtain a reasonable detection

result. This finding is crucial for deploying fusion strategies

on the edge.
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4.7.2 Computation. Due to the small number of channels being

used to detect vehicles, we are able to reduce the amount of data that

needs to be encoded for compression and transmission. Looking

at Fig. 13 and Fig. 14, we have the graphs depicting both the data

volume and processing time for each of our fusion strategies.

Figure 13: Comparison (C.) on data volume using different

fusion approaches.

From Fig. 13 we see that the raw point cloud data is about 2 MB

when taken directly from our defined LiDAR range as mentioned

in the experiment setup section. Similarly, the original data volume

for spatial feature is 72.1 MB and 1 to 1.3 MB for voxel feature.

However, both voxel and spatial data is capable of being compressed

to less than 1 MB as shown in the figure. When combining the data

from Fig. 12 and Fig. 13, we can see that with a 55-99 channel SFF

compressed, we achieve the highest compression results for all five

cases, the average of which is 250 KB. Additionally, if we are to

use 95-99 channel SFF, then the end result will achieve an even

higher compression. At the same time, SFF is capable of achieving

a similar precision while being capable of a far better compression.

With this, we can now analyze in Fig. 14 for how this strategy fares

in time consumption.

Firstly, it should be noted that as vehicles are communicating

with each other for data transmission and computation, they are

eating up valuable computational resources, so to achieve the best

result when it comes to augmenting their perception based on

the data from nearby vehicles, edge computing becomes the most

important factor.

As shown in Fig. 14, the total time used for both the raw fu-

sion and SFF strategies are both close to the 1 second mark. Here,

the total time we state includes the time for both data process-

ing/transmission and object detection. This can become quite the

issues when compounding this factor with the fact that a single

vehicle may need to process the same request from other vehicles

at the same time, causing a waste of computational resources. How-

ever, when we cut down the total time to just the transmission time

needed for the vehicle to transmit and receive the result to and

from an edge node, then we have a very feasible method of reliably

enhancing perception with no downsides, especially since trans-

mitting features to an edge computing node will not compromise

any privacy.

Figure 14: Comparison on time consuming using different

fusion approaches.

Hence, our fastest strategies only requiring less than a tenth of a

second to send and receive results from an edge computing device;

the vehicle will only be responsible for sending the data needed for

feature fusion without needing to consume computation resources

on decoding, fusing and computing the results from other vehicles.

4.8 Summary of Experimental Analysis

We adopted an On-Edge end to end framework, F-Cooper, and

achieved a satisfactory collaborative perception towards enhancing

detection. Both of our strategies, VFF and SFF, performed better

than our single car detection results in almost all of our tests. In

addition to better precision, our methods were also lightweight

and versatile enough to be deployed in On-Edge systems without

adjustments to the current infrastructure of autonomous vehicles.

We also discover that F-Cooper can be leveraged to achieve a

reasonable tradeoff in a vehicular edge computing system, consider-

ing not only latency and prediction compensation but also data size

and network bandwidth. In our experiments, F-Cooper helps detect

more objects that are unclear in the distance. This allows for a less

constrained latency range as the fusion allows for distant objects to

be detected before the car in question reaches that point in space. In

addition, with regards to CNN channel selection and compression,

our resulting data sizes make low latency transfers a possibility.

We endeavor to continue researching even more powerful meth-

ods in future works. Lastly, we are only simulating the latency on

DSRC channels as that is the most immediate networking medium.

However, there are also 5G and millimeter-wave vehicular com-

munications techniques [34] coming into play, allowing for much

smaller latency. Latency is a massive issue, and we are not able to

solve the real time challenges fully with our current methodology,

but we will continue to strive in our future works.

5 RELATEDWORK

The exploration of object data fusion has prevailed for years. Usu-

ally, data fusion methods can be grouped into 3 categories: low

level, feature level and high level data fusion [30].

In the era of high level fusion, several works are conducted to

fuse the detection results in pursuit of improving detection pre-

cision. The work by [26] exploits a high level sensor data fusion

architecture named Car2X-based perception. Their pioneering work
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delivers one vehicle’s consistent results for fusion with the results

generated by the host vehicle. High level fusion on multi-sensors

has been well investigated to facilitate the development of 3D ob-

ject detection. [6] proposed to detect and track moving objects

using fused results from multiple sensors. Recently, Crowd sourc-

ing, which has been learned in an automated manner [24], has

shown competitive perception precision. Sensors from various ve-

hicles are typically crowd-sourced, as cooperators, to provide wider

spatial coverage as well as disambiguation. However, their inability

to explore undetected objects and the lack of semantic information

communication caused the limited success of cooperative percep-

tion system. To this end, Qi et al. presented Cooper [3], which

fuses original calibrated raw LiDAR data from multiple vehicles to

improve 3D detection precision in a low-level data fusion method.

Though data fusion has been adopted in many areas, such as

object detection and object tracking [21], the idea of fusing data

from multiple sources data On-Edge has been explored by only a

few authors. An inspiring work is [29], where the authors developed

a shared real-time situational awareness system by aggregating

crowd sourcing and edge computing together. Another related work

is [20], which employ collaborative learning On-Edge computing.

However, the challenges that edge computing needs to face in the

specific application of object detection are not mentioned in this

paper.

Our fusion strategy is different from previous feature-level data

fusion methods. For example, [17] fuses features from different

convolutional layers in one detection model, [5, 16] fuse features

from different sensors within one veihcle. In pursuit of better repre-

sentation ability, we fuse processed LiDAR features from multiple

vehicles. We argue that fusing features from different perspectives

is a better solution to improve detection precision. Similar to our

work, AVR [23] extends vision of multiple vehicles by communicat-

ing short range stereo camera data. The method uses metadata for

localization in 3D map, allowing for a much more precise calibra-

tion. Unlike aforementioned works, we present a feature level data

fusion method in pursuit of lightweight On-Edge deployment for

connected autonomous vehicles. Our methods are fully suited for

On-Edge deployment since the amount of transmitted data is signif-

icantly reduced and it effectively takes the advantage of On-Edge

computing capacity. Finally, our method is based on intermediate

features, which can detect more possible objects than high-level

data fusion.

6 DISCUSSIONS

While it is faster to implement high-level data fusion, there is a

fundamental flaw associated with this action. As high-level fusion

is fusing object detection results from individual cars, we cannot

avoid the issue of what if no car senses enough information to

detect a critical object. An example would be if car A and car B both

detect half of an object, but neither can detect the whole object due

to missing half of the point cloud data. Because neither detected

the object, the high-level fusion result will exclude the object.

Another issue involved in data fusion is perspective transforma-

tion, in which a receiver needs to estimate its position relative to

a sender, so the sender’s data can be mapped into the receiver’s

local coordinate system. Existing solutions, e.g., AVR (augmented

vehicular reality) [23], have been proposed for precise fusion. AVR,

with an offline sparse 3D map as the benchmark, can provide an

accurate relative localization among vehicles, and thus increase

data fusion precision.

Although it is outside the scope of the paper, the fusion of infor-

mation from different vehicles at the edge opens the door to security

vulnerabilities. A prime example can be a malicious vehicle sending

phantom vehicle information. This might benefit the malicious ve-

hicle by making space for itself through sending fake information.

However, to the general public, this poses a serious driving hazard

as they could potentially incur an accident from trying to avoid the

phantom vehicle. In addition, we must acknowledge that a vehicle

might be unintentionally malicious due to the potential of faulty

sensors. This poses the question of how does a vehicle trust the

information provided by another vehicle.

Towards these two issues, we assume that all sources are valid

and trustworthy for experimentation purposes; however, these

issues must be addressed. One possible approach is to have the edge

perform the fusion and check the past history of how trustworthy

of individual vehicles, and to have the edge perform authentication

of newly registered vehicles.

7 CONCLUSIONS

In this paper, we proposed F-Cooper, which provides both a new

framework for applications On-Edge servicing autonomous vehi-

cles as well as new strategies for 3D fusion detection. Through

experiment testing and analysis, we conclude that not only does

F-Cooper perform at the same level as Cooper, but it also has the

added benefits of being more lightweight and computationally inex-

pensive. Both voxel features and spatial features have their separate

advantages and special uses. Compounded with their great fusion

detection enhancing capabilities, both strategies are well suited for

autonomous vehicles On-Edge.

Voxel feature fusion out performs spatial feature fusion, but

likewise, spatial feature fusion can be adjusted to be more suited

for compression and data transfer. As both methods achieve a high

detection perception enhancement over the baseline, both are viable

for fusion. When we consider the size difference between raw data

generated by each autonomous vehicle and only features from the

3D LiDAR data, it becomes clear that the latter is much more suited

towards networks with a limited bandwidth.

When we apply F-Cooper to real-world scenarios, our exper-

imental results on both the data volume and transmission time

fall well within acceptable range for On-Edge computation and

communication. Thus, from our evaluation, we believe that our

proposed F-Cooper framework will add improvement to connected

autonomous vehicle system, no matter where or how it is deployed

for either in-vehicle or on roadside edge computing.
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