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ABSTRACT

We design a 1.49993-approximation algorithm for the metric
traveling salesperson problem (TSP) for instances in which
an optimal solution to the subtour linear programming relax-
ation is half-integral. These instances received significant at-
tention over the last decade due to a conjecture of Schalekamp,
Williamson and van Zuylen stating that half-integral LP so-
lutions have the largest integrality gap over all fractional
solutions. So, if the conjecture of Schalekamp et al. holds
true, our result shows that the integrality gap of the subtour
polytope is bounded away from 3/2.
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1 INTRODUCTION

In an instance of the traveling salesperson problem (TSP) we
are given a set of n cities along with their pairwise symmetric
distances. The goal is to find a Hamiltonian cycle of mini-
mum cost. In the metric TSP problem, which we study here,
the distances satisfy the triangle inequality. Therefore the
problem is equivalent to finding a closed Eulerian connected
walk of minimum cost. It is NP-hard to approximate TSP
with a factor better than % [KLS13]. A classical algorithm

of Christofides [Chr76] from 1976 gives a %—approximation
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algorithm for TSP and remains the best known approxima-
tion algorithm for the general version of the problem despite
significant work [Wol80, SW90, BP91, Goe95, CV00, GLS05,
BEM10, BC11, SWvZ12].

Polynomial-time approximation schemes (PTAS) have been
found for Euclidean [Ar096, Mit99], planar [GKP95, AGK 198,
Kle05], and low-genus metric [DHMO07] instances. The case
of graph metrics has received significant attention. In 2011,
the third author, Saberi, and Singh [OSS11] found a % — €
approximation for this case. Momke and Svensson [MS11]
then obtained a combinatorial algorithm for graphic TSP with
an approximation ratio of 1.461. This approximation ratio was
later improved by Mucha [Muc12] to % ~ 1.444, and by Sebo
and Vygen [SV12] to 1.4.

In this paper we study metric TSP for instances in which
an optimal solution to the subtour linear programming relax-
ation is half-integral, i.e., when the optimal solution x satisfies
xe € {0,1/2,1} for all edges e. These instances are conjec-
tured to be “the hardest” instances of TSP by Schalekamp,
Williamson and van Zuylen.

Conjecture 1.1 ([SWvZ13]). The integrality gap for the subtour
LP is attained on half-integral vertices of the polytope.

The above conjecture is motivated by the fact that the worst
known integrality gap examples of TSP (and TSP-path) are
half-integral. Furthermore, as shown in [SWvZ13] the worst
case ratio of 2-matchings to optimal solutions of the subtour-
LP is attained by half-integral instances. Very little progress
has been made on half integral instances even though they
have been a subject of study for decades, [CR98, BC11, BS17,
HNR17, HN19].

Our main result is the following theorem:

Theorem 1.2. There is a randomized polynomial time algorithm
which when given any half-integral fractional solution x of the
subtour LP produces a tour with expected cost at most 1.49993
times the cost of x.

So, if Conjecture 1.1 holds affirmatively, the above theorem
implies that the integrality gap of the subtour-LP is at most
1.49993. Our result also has a direct consequence to the min-
imum cost 2-edge connected subgraph problem. About 20
years ago, Carr and Ravi [CR98] showed that the integrality
gap of the half-integral LP solutions of the min cost 2-edge
connected subgraph problem is at most 4/3. But, to the best
of our knowledge, no polynomial time algorithm with an ap-
proximate factor better than 3/2 is known. Our theorem also
implies a 1.49993 approximation algorithm for half-integral
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LP solutions of the minimum cost 2-edge connected subgraph
problem.

There are two well known lines of attack to metric TSP:
(i) Start from an optimal Eulerian subgraph and make it
connected by adding new edges while preserving the parity
of the degrees, or (ii) Start with an optimal connected sub-
graph, then correct the parities of vertex degrees by adding
the minimum cost Eulerian augmentation.

Here, we take the second approach. It turns out that in
approach (ii) the minimum cost Eulerian augmentation of
any connected graph is simply the min cost matching on odd
degree vertices which can be computed in polynomial time.
So, the main question is how to choose a spanning tree of
cost at most OPT such that the cost of the minimum Eulerian
augmentation is bounded away from OPT/2. Here we fol-
low the approach initiated in [OSS11]. We sample a random
spanning tree that does not cost more than the optimum in
expectation. More precisely, we sample from the maximum
entropy distribution of spanning trees with marginals equal
to the given LP solution, x, and then add the minimum cost
matching on odd degree vertices.

It was conjectured in [OSS11] that this algorithm beats
Christofides for general metric TSP, but the authors could
only justify a variant of this conjecture for graph metrics. To
bound the approximation factor for graph metrics, [OSS11]
showed that this random spanning tree “locally” looks like
a Hamiltonian cycle, e.g., each vertex has degree 2 with con-
stant probability, and, except in some special cases, each pair
of vertices have degree 2 simultaneously with constant prob-
ability. Roughly speaking, the analysis of [OSS11] is “local”
in the sense that it shows that there is a set F of edges with
x(F) > Q(n), such that each e € F is only contained in a con-
stant number of “local” (near) min cuts and all these (near)
min cuts have even number of edges in the random spanning
tree with constant probability.

Such a method provably fails for the problem on general
metrics since most of the cost of the LP may be concentrated
on edges which show up in many (near) min cuts. So, one
needs a more “global” analysis technique. In this paper we
take the first step towards a global amortized analysis. The
hard instances of TSP are those where the cost of the LP
is dominated by the edges which show up in many (near)
min cuts; in this case, there is no hope to show that all such
cuts are even simultaneously in a random spanning tree with
constant probability. Our high level framework is to build
a hierarchy over edges. Roughly speaking, a more “global”
edge shows up higher in the hierarchy. When an edge e is
even in its highest cuts in the hierarchy, we gain from e at
the expense of using descendants of ¢ in the hierarchy to pay
for lower cuts of e which may be odd. We then show that the
amount e gains when it reduces exceeds by a constant factor
the amount it may have to pay to fix cuts containing edges
going higher in the hierarchy.

Putting this together, we show that a variant of the max
entropy sampling algorithm beats Christofides if the under-
lying LP solution is half-integral. We expect that many of
our techniques can be generalized to apply to LP solutions
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that are not half-integral, however the most difficult barrier
to overcome seems to be that the structure of near minimum
cuts (all cuts in the LP of value within 2 and 2 + € for a fixed
€ > 0) is more complex than the structure of minimum cuts.

2 OUR ALGORITHM

Before we discuss our algorithm, we need a few definitions
and tools. Where V is the set of vertices, letc: V x V — R
denote the cost of going from u to v for any u,v € V. For a
graph G = (V,E) and a set S C V, we write
E(S):={{u,v} € E:u,ve S},
5(8):={{u,v} € E:ueS,veS}
For a vector x : E — R, and a set F C E, we write x(F) =
ecF Xe. For a graph G = (V,E) and S C V, we write G\ S
to be the graph where S and all edges incident to S are
removed, and we write G/S to denote the graph in which S

is contracted. For two sets S, T, we write S \. T to denote the
set difference.

2.1 Held-Karp Relaxation

The following linear program was first formulated by Dantzig,
Fulkerson and Johnson [DFJ54] and is known as the subtour
elimination polytope or the Held-Karp LP relaxation (see also
[HK70)).

min u/vc(u, 0)X (4,0}

s.t. _X{up) >2 vSCV
ueS,ves ! (1)
ver{u’v} =2 YueV
x{ulv}zo Yu,veV.

Assumption 2.1. Throughout the paper, we assume that we are
given a feasible half-integral solution of the Held-Karp LP, that is,
for each {u,v}, xy,, ,y € {0,0.5,1}.

Remark 2.2. We will often talk about the support graph G =
(V,E) of x, replacing any edge of value 1 with two parallel
edges. Therefore the number of edges crossing any minimum
cut is 4 (corresponding to fractional value 2), and the graph
is Eulerian. Henceforth, any reference to the graph G refers
to this support graph.

In our algorithm we will repeatedly consider subsets S of
vertices such that §(S) is a min-cut of x.

For any graph G = (V,E), Edmonds [Edm70] gave the
following description for the convex hull of spanning tree of
a graph G, known as the spanning tree polytope.

z(E)y=n—1
z(E(S)) < |S] -1 VSCV (2)
Ze > 0 Ve € E.

Edmonds [Edm70] proved that the extreme point solutions
of this polytope are the characteristic vectors of the spanning
trees of G.

We formally define tight sets in Section 2.4 but for now
assume S is tight if x(6(S)) = 2. In the half-integral case this
corresponds to |46(S)| = 4.
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Fact 2.3. If in the fractional solution x of the Held-Karp LP the set
S is a tight set, then the restriction of x to edges in E(S), that is,
the fractional solution {xe}.cp(s), is in the spanning tree polytope
on (S, E(S)).

ProOF. Since every min-cut has fractional value 2, and ev-
ery vertex has fractional degree 2 in any Held-Karp solution,
we have

2|5| -2
= 2B22 gy,
e€E(S) 2
For the same reason, the constraint (2) of the spanning tree
polytope holds for each S’ C S. m

It follows immediately that:

Fact 2.4. If S is a tight set w.r.t. x, then a random spanning tree
on S selected from a distribution whose marginals are x, for each
e € E(S) has expected cost ,cp (g XeCe-

2.2 Maximum Entropy Distribution

We say a distribution y over spanning trees is A-uniform or
maximum entropy if there are nonnegative weights A : E — R4
such that for any tree T,

PT]« A

Given a point z in the spanning tree polytope, for a con-
nected graph G = (V, E), Asadpour et al. [AGM*17] show
that there is an efficient algorithm that finds non-negative
Ae’s in a such a way that for every edge e € E and tree T
sampled from y, P [e € T] is (approximately) equal to z.

To sample from a distribution on spanning trees, we fol-
low [AGM*17, OSS11] and sample spanning trees using a
distribution

Theorem 2.5 ((AGM 17]). Let z be a point in the spanning tree
polytope of the graph G = (V,E). For any 0 < €, values A, for
all e € E can be found such that the corresponding A-uniform
spanning tree distribution, y, satisfies

P, [T] < (1+4+¢€)z, VeceE,

TeT T3e
i.e., the marginals are approximately preserved. Furthermore, the
running time is polynomial in n = |V|, —logmin,cf z, and
log(1/¢€).

We can now briefly explain the main algorithm of [OSS11]:
Given a feasible solution x of subtour-LP, define z = (1 —
1/n)x. Then, sample T from a A-uniform distribution with
marginals z and add a min-cost matching on the odd degree
vertices of T.

2.3 Min-cost Eulerian Augmentation

Once we have sampled a tree (or, as we shall see later, a tree
plus an edge), we will be finding the minimum cost Euler-
ian augmentation. For this purpose, we use the following
characterization of the O-join polytope due to Edmonds and
Johnson [E]73].
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Proposition 2.6. For any graph G = (V,E), cost function c :
E — Ry, and a set O C V with an even number of vertices, the
minimum weight of an O-join equals the optimum value of the
following integral linear program.
min  ¢(y)
st y(6(8)) >1
Ye > 0

VS C V,|SNO| odd 3)
Ve € E

2.4 Description of Algorithm

Our algorithm is a slight modification of the one studied
in [OSS11]. Given a feasible solution x of the subtour-LP,
without loss of generality, we assume that there exists an
edge e™ such that x,+ = 1. If such an edge does not exist, we
split a node v into two nodes v1, vy; connect 2 of the edges
out of v to v and the other two to v,. Then, we connect v to
v, with edge et of cost c(et) = 0 and x,+ = 1.

Given such a solution x our algorithm is as follows: Define
a fractional spanning tree z where z,+ = 0 and z, = x, for
any e # et. Then, we sample T from the A-uniform spanning
tree distribution y with marginals z for some € = 27" using
Theorem 2.5. Define T = T U {e*}; this gives a 1-tree. A 1-
tree is a union of a spanning tree and an edge. Finally, we add
a minimum cost Eulerian augmentation on the odd degree
vertices of T. Throughout we let T~ = T~ ¢*. T~ is an actual
spanning tree.

Figure 1: An example of two crossing sets.

There is an equivalent description of the above algorithm.
Before discussing this, we need to define three more concepts.

Definition 2.7. Consider a graph G = (V, E) with min-cuts of
value k.
o Anyset S C V such that |6(S)| = k (i.e., its boundary is a
min-cut) is called a tight set.
o Acut (S,S) is proper if |S| > 2 and |S| > 2.
o Two sets S and S crossifall of S\ S',S'\ S, SNS' and
V . (SUS') are non-empty.

See Algorithm 1 for an equivalent description of our algo-
rithm, which we will work with throughout the paper. As
the equivalence is not fundamental to our proof, we omit the
(simple) proof here.

Fact 2.8. In step 5 of the algorithm, we have e™ ¢ 6(S).

ProoOF. Say et € 6(S), and let et = {u,v}. Then, since
Xe+ = 1, {u, v} is a tight set. It also crosses S (as S is a proper
set). That is a contradiction. O
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Algorithm 1 Algorithm for Half-Integral TSP

1: Given a half-integral solution x of the subtour LP, with
an edge et with x,+ = 1.
2: Let G be the support graph of x.
3 SetT =0 > T will be a 1-tree
4: while there exists a proper tight set of G that is not
crossed (by a tight set) do
5. Let S be a minimal such set such thate® ¢ E(S) >
Note such a set always exists, as S, S are both proper tight
sets, so one does not have e'. In Fact 2.8 we show that
et ¢4(S).
Compute the maximum entropy distribution y of E(S)
Sample a tree from p and add its edges to T
Set G =G/S > Note we never contract e™.
: end while
10: Randomly sample a cycle from G (including e*) and add
ittoT > In Fact 3.3 we show G itself is a cycle
11: Compute the minimum O-Join on the odd nodes of T.
Shortcut it and output the resulting Hamiltonian cycle.

o ® N

A few remarks are in order. By Fact 2.4, E [c(T)] = ¢(x)
(up to an error of 27"). Therefore, to prove Theorem 1.2 all
we need to do is to bound the expected cost of the O-join by
c(x)(1/2 — ¢g) for some €y > 0. Also, crucial to our analysis
are the independence properties we get from our algorithm,
see the following and Fact 3.9.

Fact 2.9. Any tree chosen from a max-entropy distribution corre-
sponding to a proper tight set S which is not crossed is independent
of all other edges of T that we choose in different iterations of the
while loop in our algorithm.

3 TOOLS

In this section we state two main tools that we use in our anal-
ysis, namely the cactus representation of minimum cuts and
strongly Rayleigh probability distributions. We will conclude
this section by giving an overview of our proof.

3.1 Min-Cuts and the Cactus

To understand our algorithm and analysis it is useful to recall
the cactus representation [FF09] of the min-cuts of a graph.
We briefly recall some basic definitions and the recursive
construction of the cactus. We will rely on a number of basic
facts about min-cuts. For proofs, see [FF09]. Suppose G is a
k-edge connected graph.

Fact 3.1. If two tight sets S and S’ cross, then each of S\ S/,
S§'\S,SNS and SUS’ are tight. Moreover, there are no edges
from SN\ S to S’ \ S, and there are no edges from SNS' to SUS'.
Therefore, if two distinct tight sets S and S’ cross each other,
then 5(S)Né(S') = @.
The following fact is especially useful to us, since the
support graph of x is 4-edge-connected.

Fact 3.2. Suppose that every proper mincut is crossed by some
other proper mincut. Then k is even and G is a cycle, with k/2
parallel edges between each adjacent pair of vertices.
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Fact 3.3. In step 10 of the algorithm the remaining graph G is a
cycle of length at least 3 such that there are exactly two parallel
edges between each pair of consecutive vertices.

PrROOF. Let G be the graph which remains after the while
loop in the algorithm terminates. By the algorithm, et =
{u, v} is not contracted yet. G has at least 3 vertices, as oth-
erwise in the last of the while we contracted a set S where
e € 5(S) which contradicts Fact 2.8. If G has 3 vertices then
it must be a cycle. Otherwise, {u, v} is a proper tight set in
G, and it must be crossed. In this case by Fact 3.2 G is a cycle
of length at least 4. ]

Definition 3.4 (Cactus Graph). A loopless and 2-edge connected
graph C = (U, F) is a cactus if each edge belongs to exactly one
cycle.

Theorem 3.5 (Dinits, Karzanov, Lomonosov). Let G = (V,E)
be a loopless graph with min-cut size k > 1. There is a cactus
C = (U, F) and a mapping ¢ : V. — U such that the 2-element
cuts of C are in one to one correspondence with the min-cuts of G.
Equivalently, S is at tight set of G if and only if ¢(X) is a tight set
of C.

Our algorithm can be viewed as essentially constructing
a cactus representation of the min-cuts. More precisely, the
critical cuts of our algorithm (defined below) are in one to
one correspondence with the cycles of the cactus.

In the rest of this section we will more fully explore the
interaction between our algorithm and the structure of the
cactus representation of minimum cuts. From now on, as-
sume G is the 4-regular support graph of the half-integral LP
solution x and that we have executed our algorithm on G.

Critical sets and cuts: A tight set S selected in step 5 of
the algorithm is called a critical set and the corresponding
cut 6(S) := E(S,S) is called a critical cut. Vertices of G are
degenerate critical sets.

There is a natural hierarchy of critical sets associated with
the execution of the algorithm. The leaves of the hierarchy
are vertices of the original graph. If S and S’ are critical sets
such that S or a contracted version of S is a vertex in S/, then
S is a child of S’ (respectively S’ is the parent of S). If S is an
ancestor of S in the hierarchy of critical sets, then we say that
S is a higher critical set than S (resp. S is a lower critical set
than S). For example, in Fig. 3, critical set F is the parent of
and is higher in the hierarchy than critical sets A, B and C.

The root of the hierarchy is the graph G once we get to
step 10 of the algorithm.

Definition 3.6 (Going higher). An edge e in 6(S) goes higher
if the lowest critical set S’ such that S C S’ satisfies e € 6(S').

Note that by Fact 2.9 any edge going higher is independent
of all edges which do not.

Structure of critical cuts: Consider a critical set S chosen
in step 5 in the algorithm. We will abuse notation and, at
any time during the execution of the algorithm, refer to G
with vertex set V as the graph remaining at that time, after
contraction of all trees that have been sampled before S is
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Figure 2: Example execution on a half integral graph. In
the first figure, we visualize five tree operations in paral-
lel, which we may do since all these tight sets have size
4 and are not crossed by other tight sets. Similarly in the
second figure we do two operations in parallel. In the fi-
nal step, a cycle is chosen by picking two edges at ran-
dom. A, B,C, D, E are all “degree cuts" whereas F and G are
both “cycle cuts." t is an example top edge (as are all edges
picked in the first graph). a,¢ and b,/ are cycle partners
with respect to the cut F. ¢, f are companions.

Pick a cycle

™
A

Figure 3: An execution tree on this graph.

F

AN

A B C

considered. Consider the graph G’ := G/V \ S and let w
be the contracted vertex representing V \ S. There are two
possibilities for the structure of G:

e Case 1: There are no proper min-cuts inside S. In this
case, we call 5(S) a degree cut. In Fig. 2, A,B,C,D,E
are all degree cuts.!

1 These cuts correspond to cycles of length two in the cactus.
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e Case 2: There is a proper min-cut (Sg,Sg) such that
Sp € S. In this case, it (and every other proper min-cut
inside S) is crossed by some other min-cut (or would
be more minimal than S).

It follows that in G/, every proper mincut is crossed by
some other proper mincut and therefore, by Fact 3.2,
the graph is a cycle with two edges between each pair
of adjacent vertices in the cycle. In this case, we call
5(S) a cycle cut. For example, F and G in Fig. 2 are cycle
cuts.

We divide the 4 edges from w into two pairs, such that
each pair share an endpoint inside S. We call each such
pair cycle partners with respect to 6(S). Every other pair
of edges between two adjacent vertices in the cycle are
called companions.

For example, in Fig. 2, §(F) is a cycle cut and 4, ¢ and
b, h are cycle partners with respect to 6(F). e and f are
companions.

Cycle cuts correspond to cycles of length 3 or more in
the cactus.

Note that every edge has at most one companion but possibly
many partners depending on the underlying cactus.

Definition 3.7 (Highest critical cuts). For a vertex u and an
edge e = {u,v}, let Sy, be the highest critical set S such that
ueSandv ¢S, and let S, be the lowest critical set such that both
Sue and Sy . are (contracted) nodes in S,. Then 5(Sy ) and 8(Sy,e)
are the highest critical cuts containing e. If the edge e is clear from
context, we may drop e in the notation Sy, ..

Definition 3.8 (Bottom Edge and Top Edges). For an edge e, if
Se is a cycle cut, we say that e is a bottom edge and otherwise it
is a top edge.

For example, in Fig. 2, ¢, f, a, g, b, h are bottom edges (among
the labeled edges) and ¢ is a top edge. The following fact is
immediate:

Fact 3.9. Companion bottom edges e, f are in or out of T indepen-
dently of every other edge of T.

Min-cuts containing a particular edge: The set of min-cuts an
edge ¢ = (u,v) is on are the following:
(a) all critical degree cuts 6(S) such that e € 6(S). (This
includes the cuts (u, V ~\ u) and (v, V \ v).)

(b) For any set S such that 4(S) is a critical cycle cut, and
e is either in S or on 4(S), every cut of the cycle that
includes the edge e is a min-cut e is on.

It is easy to see that each of the above is a min-cut. To see
that there are no others, it suffices to observe by induction
that whenever a set S is contracted, we have accounted for
all min-cuts in which nodes inside S are partitioned between
the two sides of the cut.

Other facts: We end this part by recording the following
basic facts about structure of min cuts, and we will use them
throughout our proofs.

Fact 3.10. Suppose that S is a critical set. If some (contracted)
vertex v € S has two edges to w := V \. 'S, then S is a cycle cut.
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Prookr. This is immediate if |S| = 2, so suppose that |S| >
2. Then v has two edges to w, which has two edges to S\ v
which has two edges to w. Since S \ v is therefore a proper
min-cut but was not selected in step 5, it must be crossed
by some other set, which, by the earlier discussion of the
structure of critical cuts , means that 6(S) is a cycle cut. O

Fact 3.11. Suppose that S and S are two distinct tight sets. Then
6(S)Né(s) <2

Proor. By contradiction. Suppose that S and S’ are both
proper min-cuts and have §(S) N 6(S") > 3. Then by Fact 3.1,
they do not cross. Therefore it must be that, say, S C S’. But
in this case, if 6(S) Né(S’) > 3, since 5(S) and §(S’) are both
min-cuts, there can only be one edge from S to S’ \. S and at
most one edge from S’ \. S to V . (S U S’) which contradicts
5(8'\S) >4 i

Fact 3.12. Suppose that S and S’ are two critical sets such that
S C S Thenif 5(S)N6(S") =2, then S’ is a cycle cut.

ProoF. Once S is contracted, it has two edges to V \. &/,
and therefore by Fact 3.10 is a cycle cut. o

Fact 3.13. Suppose that S C S’ are two critical cycle cuts. Then
any two edges are cycle partners on at most one of these (cycle)
cuts.

PRrOOF. Suppose not. Then there is a pair of edges e and f
that are cycle partners on both. Suppose that ¢ and & are the
other pair of cycle partners on §(S) and that their endpoint
inside S is node u. Then (S’ \. S) U u is a min-cut that crosses
S, which is a contradiction to the selection of S. [Essentially
this means that in fact there is a larger cycle here.] ]

Fact 3.14. Say S is a critical set and exactly two edges of 6(S) are
bottom edges that do not go higher. Then the other two edges of
8(8) must go higher.

PROOF. Say 6(S) = {a,b,c,d} and suppose 4,b are bottom
edges that do not go higher. Say S’ is the parent of S in the
hierarchy of critical cuts. This implies that 5(S’) is a cycle
cut. So, 4,b are companions in this cycle. This implies that
either ¢, d are also companions or they are cycle partners in
5(8"). O

3.2 Strongly Rayleigh Distributions

Let B be the set of all probability measures on the Boolean
algebra 2F. Let y € Bg. The generating polynomial Su
R[{ye}ecE] of p is defined as follows:

su(y) = 1S

Ye-

We say y is a strongly Rayleigh distribution if g, # 0 over
all {ye}ecr € CF where Im(y,) > 0 for all e € E. Strongly
Rayleigh (SR) distributions were defined in [BBL09] where
it was shown any A-uniform spanning tree distribution is
strongly Rayleigh. In this subsection we recall several proper-
ties of SR distributions proved in [BBL09, OSS11] which will
be useful to us.
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Closure Operations. Strongly Rayleigh distributions are closed
under the following operations.

e Projection. For any y € Bg, and any F C E, the pro-
jection of y onto F is the measure yup where for any
ACF,

#le(A) u(S).

e Conditioning. For any e € E, {ule out} and {y|e in}.

T S:SNF=A

Negative Dependence Properties. An increasing function f :
2FE 5 R, is a function where for any A C B C E, we have
f(A) < f(B). For example, if E is the set of edges of a graph
G, then the existence of a Hamiltonian cycle is an increasing
function, and the 3-colorability of G is a decreasing function.

Definition 3.15 (Negative Association). A measure u € Bg
is negatively associated or NA if for any increasing functions
f,g:2F = R, that depend on disjoint sets of edges,

Ey [f]-Eulg] > Ey[f - 8]

It is shown in [BBL09, FM92] that strongly Rayleigh measures
are negatively associated.

Let y be a strongly Rayleigh measure on edges of G. For a set
A, let

X4=|ANS]|

be the random variable indicating the number of edges in A
chosen in a random sample S. The following facts immedi-
ately follow from the negative association property and the
fact that any tree has exactly n — 1 edges, see [OSS11] for
more details.

Fact 3.16. If y is a A-uniform spanning tree distribution on G =
(V,E), then forany S C E, p € R
(1) Ife ¢ S, then E;, [Xe|Xs > p] < Ey [Xe] and
By [Xe[Xs < p] > E, [X]
(2) Ife € S, then E, [Xe| Xs > p] > E, [Xe] and
Ey [Xe|Xs < p] < Ey [Xel.

Fact 3.17. For any set of edges Sand e ¢ S,
Ey [Xs] <Ey [Xs|Xe = 0] < Ep [Xs] + xe (€]

and
Ey [Xs] — xe < Ey [Xs|Xe = 1] < Ey [Xs]. )

Lemma 3.18. Let S = {eq, ..., e} bea set of k edges and suppose
that e ¢ S. Then there are k — 1 edges in S such that for each edge
e; among these k — 1

025 <Pleje Tle € T] < 05.

Proor. By Eq. (5), IP[ejle € T] < 0.5 for all e;. Suppose
that (after renaming) P [e1]e € T] and P [ez]e € T] are the
smallest among all 1 < i < k. Observe that by Eq. (5)
E [X,, + X,,|e € T] > 0.5. Therefore, the bigger one is at least
0.25. o
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Rank Sequence. The rank sequence of y is the sequence
]P[XE :0}'H)[XE :1},,H)[XE :m]

Let g, (y) be the generating polynomial of y. The diagonal
specialization of y, g(.) is a univariate polynomial obtained
by treating g(.) as a univariate polynomial (i.e., considering
g, y,...,y)). Observe that g(.) is the generating polyno-
mial of the rank sequence of p. If §(c) = 0 for ¢ € C, then
g(c,c,...,c) =0.50, if g(.) is a real stable polynomial then so
is §. Since a univariate polynomial with real coefficients is sta-
ble if and only if all of its roots are real, g(.) is a polynomial
with real roots.

Generating polynomials of probability distributions with
real roots are very well studied in the literature (see [Pit97]
and references therein). If §(.) is a real rooted univariate poly-
nomial of degree m with nonnegative coefficients, then coeffi-
cients of g(.) correspond to the probability density function of
the convolution of a set of m independent Bernoulli random
variables (up to a normalization). In other words, there are m
independent Bernoulli random variables By, . .., B;; with suc-
cess probabilities py, ..., pm € [0,1] such that the probability
that exactly k variables succeed is the coefficient of y* in g(.).

Fact 3.19 ([BBL09, Pit97]). The rank sequence of a strongly
Rayleigh measure is the probability distribution of the number
of successes in m independent trials for some sequence of success
probabilities py, ..., pm € [0,1].

Given this, we can apply the following theorem by Hoeffd-
ing [Hoe56], following the approach of [OSS11].

Theorem 3.20 ([Hoe56, Corollary 2.1]). Let ¢ : {0,1,...,m} —
R and 0 < p < m for some integer m > 0. Let By, ..., By be m
independent Bernoulli random variables with success probabilities
P1, -, Pm that minimizes (or maximizes)

E[g(By + -+ Bu)]
over all distributions in By, (p). Then, p1,...,pm € {0,x,1} for
some () < x < 1.

Lemma 3.21. Let S C E with |S| = 3. Furthermore, assume that
P(|SNT|>1] =1 Then, P[|SNT| =1] > } and
P(|SNT|=2] > 3.

Proor. By Fact 3.19, we can write the rank sequence of
|SN T| as a sum of 3 independent Bernoullis By, By, B3, and
since P[|SNT| > 1] = 1 we know that for one Bernoulli
p = 1. Without loss of generality let p; = 1. Then by The-
orem 3.20 we know that P[|[SNT|=1] and P[|SN T| = 2]
are minimized when py = p3 = % or pp = % and p3 = 0.

Therefore:
2
3 1 1
= > 1 — — = —
P[SNT| 1}7mm{<4),2} 5

PHSQTL:Qgzmm{2<i)(§),%}::g

The following two lemmas are proved using a similar
analysis.

]
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Lemma 3.22. Let S C Ewith [S| =2. Let  <E[|SNT|] < 3.
Then P[|SNT|=1] > 3.

Lemma 3.23. For a min-cut C, P [|T N C| even] > 13/27.
Lemma 3.24. Let S1,S, C E with |S; N Sy| = &. Let |S1| =
|Sa| = 2, or equivalently E[|S1 N T|] = E[|SaNT|] = 1. Then
P[I$1NT|=1A[SNT|=1] > £.

Proor. Let S = {e, f}. Then condition on e € T: this
occurs with probability 1. By Fact 3.16 we have

1

E[|fNT] |e€T]S§
Then condition on f ¢ T. Given the above, this happens with
probability at least % Similarly consider the event e ¢ T and

f € T. One of these occurs with probability 3. Therefore, in
either event we have:

1
5 SE[SnT] <

N W

And now by Lemma 3.22 both events occur simultaneously
with probability at least 1—36. o

4 OVERVIEW OF ANALYSIS

As already mentioned, our algorithm consists of two steps:
sample a 1-tree T, and then construct an optimal O-join for
the odd degree vertices in the 1-tree.

Given a feasible LP solution x, the choice y, = x,/2 for
each edge e € E (which gives y. := 1/4 in the half integral
case), yields an O-join solution of total cost at most OPT /2.
However, this is essentially Christofides” algorithm and guar-
antees only a 3/2 approximation.

The key to improving on this is the observation that con-
straint (3) in the O-join LP is not binding if the intersection
of the cut 6(S) with the tree is even.

Definition 4.1 (Even cuts). A cut 6(S) is even in T (or simply
“even” when T is understood) if |T N 6(S)| is even.

Thus, for every edge e with the property that every min-cut
that e is on is even, we can reduce y. to 1/6, since every non-
min-cut has at least 6 edges, and therefore this guarantees
that constraint (3) remains satisfied everywhere. This is the
gist of the approach taken in [OSS11].

Suppose that there are multiple “good" edges e with the
property that every min-cut they are on is even, say with
probability at least p (over the randomness in the selection of
T). Then for those outcomes T in which e has this property,
we could set y, := 1/6 and satisfy the O-join constraints. This
would save us ﬁc(e) on every such edge ¢ (the reduction
from 1/4 to 1/6) and thereby guarantee a reduction in the
cost of the O-join solution of , 'go0d- %c(e).

Unfortunately, in general, it is not possible to argue that
every min-cut an edge is on is even simultaneously in T
with constant probability. So, we will use a careful charging
scheme.

Definition 4.2 (Last Cuts). For an edge e, the last cuts of e are
the only (two) min-cuts containing e and edges going higher in the
graph right before contracting S,.
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Observe that the last cuts of a top edge are critical cuts,
but the last cuts of bottom edges are not critical.

Definition 4.3 (Even at Last). For an edge e we say e is even at
last if the two last cuts of e are even.

Equivalently, if e is a bottom edge, we say e is even at last if
all the min cuts containing e on the cycle defined by the graph
consisting of Se with V \. S, contracted are even. Otherwise, if
e = {u,v} is a top edge, then it is even at last if the critical cuts
Su, Sy are even simultaneously.

Fact 4.4. If a bottom edge e is even at last, then all (bottom) edges
f where Sy = Se are even at last.

Prookr. Since 6(S;) is a cycle cut, the edges inside S, form
a path, and thus, exactly one edge between each pair of
(possibly contracted) vertices inside S, is selected as part of
the tree on S, chosen in step 6 of the algorithm. If, e is even at
last, we must have exactly one of each pair of cycle partners
on 4(S) is in T; therefore, every pair of adjacent nodes in the
cycle have one edge connecting them in the tree. So, all cuts
on the cycle have exactly two edges in T. This implies every
bottom edge of this cycle is even at last. ]

Remark 4.5. By Fact 3.2, the companion of every bottom edge
e has exactly the same pair of last cuts as e.

Definition 4.6 (Good Edges). An edge e = (u,v) is good if it
is even at last with probability at least p for some constant p > 0.

Instead of proving that all min-cuts that a single edge is
on are even, we will instead prove that every minimum cut
contains at least one good edge. Each good edge e will then
be responsible for its last two cuts. This will allow edges to
be reduced when they are even at last, as all cuts lower in the
hierarchy are handled by other edges.

Theorem 4.7. There is a universal constant p > 1/27 such that
every every min-cut has at least one good edge.

The proof of the above theorem together with some strength-
ened statements will be in Section 5. The proof mainly ex-
ploits properties of strongly Rayleigh distributions.

As we hinted at, we will reduce the value of y. to 1/6
whenever an edge ¢ is even at last. However, since e may
also be on many other lower min-cuts, if we reduce y., the
solution may not be feasible ((3) may be violated) as the lower
min-cuts may be odd. To handle any lower min-cut C that e
is on, we show that, conditioned on e being even at last, the
probability that C is also even is at least q for some g > Q(1).
Therefore, we only need to worry about the lower cuts with
probability 1 — g each. In the bad event that a lower cut C
is odd, we will need to fix the solution to guarantee that
(3) still holds: our approach is to split the deficit introduced
in the O-Join constraint for C among the good edges that
do not go higher (see Definition 3.6). We then simply show
that in expectation each edge gains. This part of the proof
heavily exploits the properties of cactus representation of the
min-cuts that we discussed above.

We note that Theorem 4.7 on its own is not enough to
run our charging argument; so, we need a slightly stronger
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version. In particular, in some cuts we may need to have two
or three good edges.

5 PROBABILISTIC LEMMAS

In this section, we present three probabilistic lemmas which
show that in every min-cut there is at least one good edge,
(and in some there are even more). This immediately proves
Theorem 4.7.

Note the last cycle that we choose in step 10 of the algo-
rithm has all edges even at last so we don’t need to address it
in this section. Furthermore, by Fact 2.8, et does not belong
to any critical cut.

Lemma 5.1 (Bottom Edge Lemma). Suppose that e = (u,v) is
a bottom edge. Then e is good (where p > 3/16).

Figure 4: Illustration of edges in Bottom Edge Lemma.

Proor. If e is a bottom edge then S (= S, ,)) is a cycle
cut. By construction, when a tree on S, is selected in step 8 of
the algorithm, exactly one edge is chosen between every pair
of adjacent nodes in E(S,). So it suffices to consider the edges
in 5(S.). These divide up into two pairs of cycle partners
connecting S, to V \. S, say {a,b} and {c,d}. (See Fig. 4.)
Then by Lemma 3.24, setting S1 := {a,b} and S, := {c,d},
wehave P[|S;NT| =1and |S;NT| =1] > 3/16. i

Lemma 5.2 (Top Edge Lemma). In a critical cut 5(S) with one
edge that goes higher, of the remaining three edges in the cut, at
least two are good with p > %.

Proor. First, suppose that e is the edge that goes higher
from 6(S), and f, g and h are the other edges in 4(S).

If the other endpoint of one of these three edges, say Sy,
has no edge that goes higher then & is good. (See left side of
Fig. 5.) To see this, observe that we can condition on 4(Sy,)
being even which by Lemma 3.23 has probability at least
13/27. Given this event, |{f, g, h} N T| is either even or odd.
In either case, the event ¢ € T is an independent event that
occurs with probability 1/2. Therefore,

P [|6(S,) N T| even] - IP [e makes §(S) even | |5(S,) N T| even]
> 13 1
- 27 2
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Figure 5: Illustration of top lemma. The figure shows the
case where all three of S¢, Sg and S), have an edge that goes
higher (4, b, c respectively). It may be that some number of
these nodes do not have an edge going higher.

Therefore, at least two of f,g and h are good if at least two
of Sy, Sg and Sj; do not have an edge that goes higher.

Consider next the case that, say, S ¥ and S¢ both have an
edge that goes higher, but S, doesn’t. As before, h is good. We
claim that one of f and g is also good. To see this, sincee € T
is independent of f, g, € T, we observe using Lemma 3.21
that

11
Plec Tand |{f,gh}NT|=1] > 55
Next, apply Lemma 3.18 to a and b to conclude that for one
of a and b, say 4,
PlaeTleeT] > %

Therefore, as before, regardless of the even/odd status of
X U f after conditioning e in and f, g, & to 1, the cut can be
fixed by a, meaning we have p > 11—6.

Finally, if all three of S¢, Sg and Sy, have an edge that

goes higher, then again, condition e in and {f,g, h} NT| = 1.

Then apply Lemma 3.18 to 4, b and c to conclude that for
two of them, say a and b, their probability of being in T
given that e € T is at least 1/4. Therefore, each can fix their
corresponding cut (6(Ss) for a and §(Sg) for b) and both f
and g are good. ]

Lemma 5.3. For every critical cut S, there is an edge e € 6(S)
such that P [e even at last] > 1/27.

Proor. First, if there is a critical set S’ (S’ # S) such that
[6(S) N &(S")| = 2, then by Fact 3.14, there exist at least two
bottom edges in §(S) and by Lemma 5.1 they are good and
we are done. Furthermore, if there is an edge in §(S) that
goes higher then we are done by Lemma 5.2.
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Otherwise, assume S has at most one edge to any other
critical set and no edge goes higher. Recall that T~ =T —e™
is always a spanning tree. Let /' be the conditional measure
where [5(S) N T~ | = 1. Observe that in }//, first we sample
a tree? in G \ S, and then we independently add an edge in
4(S). Therefore, by Fact 3.16, P, [e € T) < 1/2. Thus, for at
least one edge e € 6(S), we have 1/4 < Py [eeT]<1/2.In
the special case that P [|6(S) N T| = 1] = 0, we just let e be
an arbitrary edge in §(S). Say, {e} = 4(S) N (S’). It remains
to prove that P, [6(S),(S’) even] > 1/27 since S, S’ are the
last cuts of e. Therefore

P5(S),6(S") even

= 1-1[§(S) or 5(S') odd]

= 1-P[4(S) odd] — P [5(S") odd] + P [6(S),5(S’) odd]

> 13/27 —P[5(S) odd] + P [[TN&(S)| = 1 AS(S') odd]
by Lemma 3.23. First, note if P [|T N J§(S)| = 1] = 0, then we
get that P[|[TNH(S)| =2] =1 (since P[|5(S)NT|>1] =1,
and E[|6(S)NT|] = 2). So, the RHS is 13/27 and we are
done.

Otherwise,

P [|ITNS(S)| =1A8(S") odd]
P [5(5’) odd‘\Tﬁ&(S)\ - 1] PTNSS)| =1]

1
> L P(TNES) =1].

The inequality is because edge e can make §(S’) odd by
being in/out of the tree and that has probability at least 1/4.
Therefore,

IP [5(S),6(S") even]
> 13/27 - P[5(5) odd] + (P[TN5(S)| = 1]
— 13/27- Z]P (ITA8(S)| = 1] = P[ITN6(S)| = 3].

Finally, by Eq. (5), the RHS attains its minimum value when
T N6(S)| is sum of 4 Bernoullis with success probabilities
1,1/3,1/3,1/3. O

6 PROOF OF MAIN THEOREM

Recall that every good edge is even on top with probability at
least p. The following statement is the main technical result
of this section.

Lemma 6.1. There is a (random) feasible O-join solution such that
for every good edge e,

E [y] <1/4— p/240,
and for every bad edge y, = 1/4 with probability 1.

Before, proving the above statement we use it to prove
Theorem 1.2.

2Note T is not a spanning tree in G \. S, that is why we need to look at T~

’
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Proor ofF THEOREM 1.2. Consider the trivial O-join solu-
tion ¥’ where y, = 1/2 if e is good and y, = 1/6 otherwise.
Note that this is a valid O-join by Theorem 4.7. Now, define
z = ay + (1 — a)y’ for some a that we choose later. It follows
that for any good edge e,

Elz] <a(3 — 5b)+(1—a)

1
4 240 2’
and for a bad edge f:

E [zf] = zx% +(1 —a)%

So, for p = 5 and a = % we obtain E [z,] < 0.249962. Since
any edge e is chosen in T with probability 1/2 (up to a 27")
error), we pay at most 1/2 + E [z.] for any edge ¢ whereas
x pays 1/2. Therefore, we get a 0.749962 /0.5 approximation
algorithm. ]

So, in the rest of this section we prove Lemma 6.1.

O-join construction for good edges: For each good edge e,
define B, to be an independent Bernoulli random variable
which is 1 with probability p/p., where p is the lower bound
on the probability that any good edge is even on top, and p,
is the actual probability that ¢ is even on top. If e, f are bottom
edge companions, then we let By = B, (with probability 1).
Note that this still makes selection of e, f independent of B,
and any other edge of the graph.

We then construct an O-join solution for each 1-tree T
using the following three step process:

(1) Initialize y, := 1/4 for each edge e € E.

(2) Next, if e is even at last in T and B, = 1, reduce y. by

re(T) where:

B if eis a bottom edge.

T, if e = {u,v} is a good top edge and there are
exactly 2 good top edges in both 6(S,) and
4(Sy) that do not go higher.

73 if e is a good top edge that does not meet

the previous criteria.

B, 7, T3 are parameters we will set later. For now, we
just assume 73 < 7 < B < 1/12. When r.(T) > 0, we
say that e is reduced.

(3) On each cut C that is odd, let A(C) := ,cc 1e(T) be the
amount by which edges on that cut were reduced in
step 2, and let G¢ be the set of good edges on C such
that C is one of their last cuts. Now, for an edge e € G¢,

let C' (and C) be the last cuts of e. Then increase v,
A(C) A(C)
|Gel” |Ger|
is one of e’s top cuts, e is not even on top in T and
therefore is not reduced in step 2.

by max { } Notice that in this case, since C

By construction, this is a valid O-join solution since on
every min-cut we began with at least 4 edges crossing every
cut with y. = 1/4 and then guaranteed that every reduction
on an odd cut in step 2 was compensated for by a matching
increase on that cut in step 3. (The ultimate gain of course
will come from the fact that many cuts will be even and hence,
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there will not need to be an increase.) All non-min-cuts have
at least 6 edges on them, each of value at least 1/6 (after
reduction) and are therefore satisfied in (3).

In the rest of the proof, it is enough to show that for any
good edge ¢, E [y.] < 1/4 — p/240. We complete the proof
using the following two lemmas.

Lemma 6.2. If B > 51, /4, then for any good top edge e = {u, v},
1
E[y.] < i pmin{tw — /2,15 —5B/12}.

Proor. Let C := 6(Sy) and C' := 6(Sy). Recall that, since e
is a top edge, C and C’ are critical cuts. Let Hc (resp. Her) be
the good edges in C (resp. C’) that go higher. Note that |Hc|
and |H¢| is either 0 or 1 by Fact 3.12. We consider 3 cases:

Case (i): |G¢| = |Gcr| = 2. In the worst case, there is an edge,
say f € Hc and an edge ¢ € Hcr. If f is a bottom edge,
then

E {rf(T)] =pB-p and P[Cisodd|f reduced] =1/2
since
IP [parity of |f N T| = parity of |(6(S,) N~ f)NT|] =1/2,

by Fact 3.9. Therefore, the expected reduction in step 2
on C is at most

1 . . 11 B-p
E [rf(T)] Gel P [C is odd|f reduced] = Bp 3=
On the other hand, if f is a top edge, then the expected

reduction in step 2 on C is at most

1 : L5 _pp

E|r/(T)] — P <tp---2<PP

[rf( )] Gl [C is odd|f reduced] < 1pp 58S 17

where we use Lemma 3.21 and the fact that edge f

is independent of the rest of edges in C to infer that

, P[Cis odd|f reduced] < 5/8. The same reasoning
applies to g, so we get

Elye] < ;- np+2- 22,
Case (ii): |Gc| > 3 or |G| > 3 (or both). Again, in the worst
case, there is an edge, say f € Hc and an edge g € Hc.
By the same reasoning as above, E [y,] is largest if f and
g are bottom edges. In this case, the same calculation
as above gives,

1 . 1
E [rf(T)] "TGdl -IP[C is odd| f reduced] < Bp - Gl

’

N[ —

and similarly for g, so
1 Bp (1 1
< - EE(-4+2).
Elpe] < 7 -wp+5 (2+3>

Case (iii): |H¢| + |[Her| < 1. In the worst case, |He| = 1 and
|He| = 0 and f € Hc is a bottom edge. Note that in
this case we may have G = {e}. But the advantage is
that we never increase y, to fix C’ since Hor = @. Then,

1 11 By
Elvel =g —wp+bp gz st/a-mr+
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Figure 6: Cases (i) is on the left and case (ii) is on the right.
Orange edges are good. On the left, y. is reduced by ©
with probability p and pays half the burden on both sides;
on the right y, is reduced by 73 with probability p and pays
half the burden on one side and one third of the burden
on the other.

Note that if case (iii) does not happen, then by Lemma 5.2 we
have |Gc¢|, |Ger| > 2. So, either (i) or (ii) will happen. o

Lemma 6.3. If 313 < 213, then for any (good) bottom edge e,
Ely] <1/4—pmin{B/4,36/4 — 1, B —41/3}.

PROOF. Say f is the companion of e. Let S = S, and S’
be the parent of S in the hierarchy of critical cuts. Say the
last cuts of e (and f) are C = {e, f,a,b} and C' = {e, f, g, h}.
In other words 4, b are partners and g, i are partners. Note
that |G¢| = |G| = 2 because all edges {a,b,g,h} go to the
higher critical cut Se.

Case (i): 2 and g go higher than S. We have a,g € 5(S’). So,
by Fact 3.12, §' is also a cycle cut. This means that b
and /1 are companions and a4 and g are cycle partner
pairs on 6(S'). (See Fig. 7). Edge e has to increase to fix
the cuts C,C’ whenever a,b, g or I are decreased and
the corresponding cut is odd. The expected increase in
Ye due to reductions on 4, b, g, h divides into two types.
We start with b, h: By Fact 3.9 and the fact that B, =
By, we know that b and h are always reduced at the
same time. Furthermore, conditioned on b (and /) being
reduced, we have

parity of |T N C| = parity of [T NC'|.

This is simply because b (and &) are reduced only when
they are even at last which implies |T N {a,g}| = 1. So,
we can fix the reduction of b, h simultaneously when
we increase e (or f). In other words, it is enough to only
take into account the expected increase of y. due to b,
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Figure 7: Case (i) of Lemma 6.3.

ie.,
E I, (D) -IP[|CN T|odd|b reduced] = Bp - L 1 @
|Gcl 2 4

Now, we calculate the expected increase due to 4, g: We
compute the charge due to 2 and the same will hold for
g. Again, by Fact 3.9, b and & are chosen independently
ofa, g ie,P[|TNC| odd|a reduced] < 1/2. Therefore,
the expected increase due to a is

E[rqo(T)] 11 _pp

< .=t

Gel -PP[|CNT| odd|a reduced] < Bp - 55 )
using 13, T2 < B. Therefore, altogether,

Ewa<— ﬁp+3ﬁp

Case (ii): Only one edge, say 4, goes higher than S. In this
case, by the same reasoning as above,
E[ra(T)] -P[|CNT| is odd|a reduced] < Bp - L 1,
|Gc| 2 2
since b is independent of a and it can be chosen to
correct the parity.
For the remaining three edges {b, g, I}, by Lemma 5.2
either two or three of b, ¢ and h are good. If two are
good, then each has an expected reduction of at most
Top or three are good and each has an expected reduc-
tion of at most 3p.
Therefore, altogether
1 W P
E [ye] S pr+ L+ L 5 - max{27, 373}
<1_ W
4
by the assumptlon of the lemma.
Case (iii): 2, ¢ and b, h are companions. This case follows the
same analysis as case (i) but gains because in this case
a, g are also reduced simultaneously.
Case (iv): No edge goes above S, {a,b, g, h} are top edges.
Some number of these edges are good; if more than
two are good we pay 473 (at most) with probability p
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and otherwise we pay 21, (at most) with probability p .
Then:

L 4
E [y] < 1 —Bp+ = \G | max{2m, 413} < = ,‘B + TZP

To finish the proof we just need to argue that we exhausted all
cases. By Fact 3.11, among {a,b, g, h} at most two go higher.
By Fact 3.13, from each pair of cycle partners, i.e., {a,b} or
{g,h}, at most one goes higher. Therefore, if case (i) does not
happen, we have at most one that goes higher. If (i), (ii) do
not happen, then no edge goes higher. So, by Fact 3.14 either
all four edges in {a,b, g, h} are bottom edges, i.e., case (iii),
or none are bottom edges, i.e., case (iv). |

To finish the proof of Lemma 6.1, let § =1/12, 1, = 7/120
and 13 = 7/180 chosen to satisfy 13 < 70 < B, B > 512/4 and
313 < 21. Plugging in these numbers into Lemma 6.2 and
Lemma 6.3 we obtain that E [y.] < 1/4 — p/240 for any good
edge e as desired.
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