
Automated Structured Threat Information
Expression (STIX) Document Generation with

Privacy Preservation
Farhan Sadique∗, Sui Cheung†, Iman Vakilinia‡, Shahriar Badsha§, Shamik Sengupta¶

Department of Computer Science and Engineering
University of Nevada, Reno, NV, USA

∗fsadique@nevada.unr.edu, †scheung@unr.edu, ‡ivakilinia@unr.edu, §sbadsha@unr.edu, ¶ssengupta@unr.edu

Abstract—The traditional approach to cybersecurity is strug-
gling to defend against modern, dynamic and rapidly evolving
cyber-attacks. Automated generation of cyber-threat intelligence
(CTI) along with effective and real-time sharing of the CTI
is required by organizations to prevent major cyber-attacks. It
is nearly impossible to achieve comparable defense individually
without cybersecurity information sharing. The first step towards
this end is to collect cyber threat data and to represent that
data in a standardized format. There is plenty of raw cyber
threat data available to organizations in the form of firewall logs,
malware signatures, spam emails, etc. However, the automated
conversion of these data into a standard format has not been
studied before. In this paper, we introduce a novel, privacy-
preserving, mechanism to represent raw cyber threat-data in
Structured Threat Information Expression (STIX) format in an
automated manner. A complexity analysis shows that this process
is suitable for large-scale deployments. This general guideline
can be followed to represent all types of threat data in a
standardized format. This will help the security administrators
get a broad picture of the threat landscape and enable them
to share these data with a cybersecurity information sharing
platform for advanced analytics.

Index Terms—cybersecurity automation, STIX, cybersecurity
information sharing

I. INTRODUCTION

Conventional cybersecurity measures rely heavily on the
creation of signatures and static rules to identify and block
threats. This renders the network vulnerable to the rapidly
evolving cyber threat landscape. The risk is exacerbated by
the emergence of organized and state-backed cyberattack cam-
paigns, which have left even big firms practically defenseless
[1]. Consequently, a new approach towards cybersecurity is
essential to thwart organized cyber-attack campaigns proac-
tively, to anticipate and mitigate large-scale exploitations and
to respond faster to emerging cyber threats. The new approach
should address the two major limitations of the traditional
approach: (1) the delay in signature development, and (2)
the time required to disseminate this information to interested
parties.

Real-time cybersecurity information sharing coupled with
automated Cyber Threat Intelligence (CTI) generation is en-
visioned to take care of both the concerns. The automated

This research is supported by the National Science Foundation (NSF), USA,
Award #1739032.

generation of CTI from raw cyber threat data would make the
signature development much faster by omitting dependence on
human interaction. This coupled with real-time sharing of this
information via a centralized platform can achieve improved
defense against recent dynamic attacks.

This work is part of a project called CYBersecurity infor-
mation EXchange with Privacy (CYBEX-P) [2]. CYBEX-P in-
tends to achieve both these goals of real-time cybersecurity in-
formation sharing and automated generation of CTI. CYBEX-
P is a cybersecurity information sharing platform with a robust
operational and administration structure. It provides the service
of structured information exchange. Moreover, it addresses the
inefficiency of managing defense against cyber-attacks by an
individual entity by collaborative effort. So, it can protect busi-
ness organizations more effectively from future cyber-attacks.
Furthermore, it allows for assessing the threat landscape by
providing the security status of systems and devices together,
to prevent large-scale cyber-attack campaigns.

In relation, it is assumed that an abundance of cyber threat
data is already available with concerned entities in the form of
firewall logs, spam emails, malware signatures, etc. While the
necessary data is either readily available or easily generated,
it is very challenging to incorporate these with a central
cybersecurity information sharing platform because:

1) The data do not have a standardized or normalized
format. For instance, consider two firewalls by two
different vendors. Even though, they contain the same
type of data they are in different formats hence cannot
be analyzed together.

2) Different types of data are not easily correlated. For
example, a malicious IP address may show up in both
a spam email and a firewall log. However, spam email
filters and firewalls usually work separately; so these
data are never correlated.

3) The data are too large in volume to be sorted manually
by any security administrator.

4) The data are not centrally located rather distributed
across different devices across the organization.

5) The data contain privacy-sensitive information related to
the organization. Hence, different policies of the orga-
nization hinder the sharing of such data with external
entities.

847978-1-5386-7693-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

2

Therefore, to tackle the above challenges, we need an
automated process to generate effective CTI from the raw
cyber threat data. Additionally, the process should deal with
different types and formats of data and should work from
a central location of its own. Furthermore, we need a stan-
dardized representation of these data to share them with other
organizations. Finally, as there is sensitive information in the
collected data, the automation mechanism should be equipped
with a privacy-preserving handler which manages the sharing
of sensitive information.

To represent the data uniformly we consider the standard-
ized format Structured Threat Information Expression (STIX)
[3]. STIX is a language and serialization format that enables
organizations to exchange CTI in a consistent and machine-
readable manner.

In this paper, we define STIX automation as the process
of automatically collecting cyber threat data, with privacy
preservation, in the form of STIX document, to take care of
the challenges mentioned earlier. In conjunction, we propose
a novel framework for the automation of CTI generation and
their effective representation using STIX.

While STIX incorporates the capability to represent threat
data into effective CTI, it does not provide any guideline to
automate the production of CTI from different kinds of threat
data. Our system automates the production of STIX document
directly from raw cyber threat data taking care of all the five
challenges mentioned previously.

The novel contribution of our work is the inclusion of a
privacy-handler in the process. Such an integrative approach
ensures improved the privacy of the data because sensitive
information is removed as the CTI is generated. Therefore,
intentional or unintentional sharing of this data will not harm
the organization in any way. Such automation of CTI gener-
ation with integrated privacy-handling has not been studied
before. Furthermore, we perform a performance test of our
architecture. The test reveals that the architecture is scalable
and suitable for large deployments.

II. RELATED WORK

Extensive research has been done on the automation of
security in the computer systems. A comprehensive study of
the autonomic systems capable of detecting and mitigating
security threats at runtime has been done in [4]. The security
and privacy challenges in the automation of security have been
studied in [5]. Al-Nashif et al. [6] have introduced a multi-
level intrusion detection system (ML-IDS) which exploits
autonomic computing to automate the control and management
of intrusion detection system. Webster et al. [7] have provided
a framework for extracting features of computer systems’
malicious activities. Panacea [8] has been introduced to apply
machine learning techniques to automatically and systemati-
cally classify attacks detected by an anomaly-based network
intrusion detection system. Lacoste et al. [9] investigated the
automation of security in the cloud infrastructure where they
classified the cloud infrastructure threats and presented an
autonomic design for the cloud security management. Finally,
CyTIME [10] has been discussed as an automation framework

for writing security rules that closely complements our work.
Even so, our work differs from their work as STIX Automation
system produces STIX 2.0 data from raw cyber threat data
whereas CyTIME works with STIX 2.0 data collected using
a TAXII client to generate security rules automatically. In
essence, none of these works have considered the modeling
of threat data exchange in a structured format. In this work,
we investigate the automated generation of STIX 2.0 document
from raw cyber threat data, which has not been done before.

On the other hand, plenty of research has been conducted for
cybersecurity information sharing [11]–[16]. Various protocols
and specifications such as TAXII, STIX, CybOX, OpenIOC,
VERIS, MAEC, SCAP, and IODEF have been developed to
provide a common platform for sharing cybersecurity infor-
mation [17]–[19]. Authors in [12] discuss the effectiveness of
cybersecurity information sharing and formulate it as a risk-
based decision-making model with a directed graph.

Security and privacy challenges in cybersecurity informa-
tion sharing have been studied in [13], [15], [20], [21]. A
cryptographic privacy-preserving framework based on group
signature scheme for sharing cybersecurity information has
been presented in [15]. An attribute-based cybersecurity in-
formation exchange platform using attribute-based encryption
have been introduced in [13]. Authors in [20] have investigated
the trade-off between sharing cybersecurity information and
privacy cost in a dynamic 3-way game model between attacker,
organizations, and cybersecurity information sharing platform.
Vakilinia et al. [11] have studied the application of STIX to
share a set of vulnerable passwords in brute-force attempts.

Motivated from the above works, we present a framework
to automatically generate effective CTI as STIX documents
from raw threat data.

III. PRELIMINARIES

A. Overview of STIX 2.0

One of the challenges threat-sharing organizations face
is the ability to structure cyber threat information, yet not
lose the human judgment and control involved in sharing.
STIX is an information model and serialization for Cyber
Threat Intelligence (CTI) [3]. STIX standardizes CTI data in a
machine-readable specification to support cyber threat analysis
and information sharing. In this paper, we have used STIX
version 2.0.

STIX is a graph-based information model where graph
nodes are described as STIX Domain Objects (SDO), and
graph edges are described as STIX Relationship Objects
(SROs). Graph-based models provide a consistent, structured,
and flexible data representation which allows information
exchange. STIX 2.0 defines twelve different STIX Domain
Objects and two STIX Relationship Objects [22].

The suitable SDO for representing raw threat data is called
observed data. Irrespective of the data type an observed data
object has some common properties: type, id, created by ref,
created, modified, first observed, last observed, and num-
ber observed.

In addition to these common fields, an observed data
contains a structured representation of raw threat data and their

848

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 1: STIX 2.0 data structure

properties in the cyber domain. For that purpose, an observed
data object contains one or more cyber observable objects
(COO). Examples of COOs are IP address, email message,
network traffic data, etc.

While a COO contains the raw threat data, it does not
contain any information on the time of observance or source
of the data. This information is contained in the observed
data object that houses the COO. A single observed data may
contain more than one COO if the COOs are related by context
and represent a single event.

B. STIX 2.0 and JSON

STIX 2.0 does not introduce a new file format. Instead,
it primarily uses JavaScript Object Notation (JSON) as the
serialization format. In fact, the mandatory-to-implement se-
rialization for STIX 2.0 is JSON. STIX 2.0 documentation
specifies the necessary properties and corresponding data types
of an SDO. For the rest of the paper, we will use the
term STIX to denote STIX 2.0. JSON makes STIX format
simultaneously human-readable and machine-readable. The
figure 1 shows the structure of a STIX observed data object
in JSON serialization. It contains a simple COO in the objects
field that represents an IP address.

IV. STIX AUTOMATION METHODOLOGY

Fig. 2: STIX automation process flowchart

The flowchart in figure 2 shows the proposed framework
for STIX automation. The novel approach in our system is
that it incorporates a privacy handler into the data conversion
module. This integrated approach ensures greater protection of

sensitive information and makes it easier to share these data
with other parties. The life-cycle of the data in our system
along with the privacy handling mechanism is described in
detail below:

A. Raw Threat Data
The input to the process is machine generated raw threat

data. Examples of raw threat data are firewall and IDS/IPS
logs, system logs, emails, malware signatures, suspicious
URLs, etc. These threat data are automatically generated as a
direct or indirect consequence of an event and contain relevant
information to that event. As an illustration, the event of
receiving a network packet makes a firewall generate a packet
log message.

B. Data Collection
The data collector module of our STIX automation system

collects the raw threat data from their specific sources as they
are being generated. There are numerous types of raw threat
data sources available to us. Moreover, the threat data can
be delivered in different formats including plain text, XML,
JSON, etc. Additionally, there are different ways to collect the
data from their respective sources including TCP stream or as
plain text files. The data collector module in our system takes
care of these diverse considerations.

The data collector has separate plugin modules for each
data source type. For example, some modern devices support
exporting real-time data via web sockets whereas others have
built-in API to export data on demand. In case of conventional
network and Linux devices, we used the popular syslog
protocol [23] to transfer device logs to our collector. In some
exceptional cases, we had to collect the data as text files
directly from the source server.

C. Data Classification
After collecting raw threat data from respective sources,

the collector passes the data onto our classifier module. The
collector maintains an internal buffer of the data and transfers
one event at a time to the classifier. The classifier then
classifies that data into the appropriate category based on the
source. Whenever a particular data source is integrated via
collector configuration, it is given a particular category value.
The classifier later uses this category value to classify the data
from heterogeneous sources.

The first thing our classifier module does is to identify
the type of these data in line with STIX documentation. The
second task of the classifier is to identify the formatting of the
data later required for parsing. It is required because the same
type of data can be represented in different formats depending
on the particular software, operating system, device or vendor.
This is demonstrated by the apparent dissimilarity in the logs
of two different firewalls which nevertheless contain the same
information.

D. STIX Conversion
The next stage in the STIX automation process is STIX

conversion. The data that the STIX converter receives is
already classified into appropriate categories. The conversion

849

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

4

module converts the data into corresponding STIX document.
As discussed in section III The suitable STIX domain object
(SDO) for raw threat data are observed data. An observed
data contains one or more cyber observable objects.

We have used the Python programming language for parsing
and converting raw data. The parsing scripts are written by us
and are available from our GitHub repository [24]. On the
other hand, OASIS TC maintains an official Python library1

for STIX serialization. We have used built-in object definitions
in the STIX library. However, we have added custom objects
or custom properties to predefined objects whenever necessary.
The function for creating observed data performs the correct
serialization of the different properties of threat data. It also
incorporates data validation and error checking.

Protecting Sensitive Information
As the threat data may convey private information, it is

not always possible to share such information in a raw
format. Thus, we need a mechanism to protect the sensitive
information before sharing. To this end, we classify the data
into four categories based on sensitivity:

Level 0. These data are not sensitive and are transferred
without encryption. Examples are a virus file, a malicious IP
address, and a malicious URL. Fuzzy Hashing2 is used to
check the homologies of larger data like files/emails. Fuzzy
Hashing reduces the dimensionality of high-dimensional data
and hashes input items so that similar items map to the same
buckets with high probability.

Fig. 3: STIX representation of a spam email where the name
and email address of recipient are masked using MD5

Level 1. These data have sensitive information about the
source organization which might be exploited by the attacker
for reconnaissance. For instance, consider that the source
wants to share information about a new attack on its database
server, however sharing the detailed information about the

1https://github.com/oasis-open/cti-python-stix2
2https://ssdeep-project.github.io/ssdeep/index.html

server network configuration, version and the model of the
database server helps an attacker to have a better understating
of the victims underlying network infrastructure. Thus, the
source applies masking or generalization techniques (such as
k-anonymity [25]) to hide the underlying sensitive information.

For instance, figure 3 shows the STIX representation of a
spam email message. Here, the destination email address and
the name of the recipient contain privacy-sensitive information.
That is why these values are masked by the source organization
using md5 hash. On the other hand, the message source and
the message body are related to the spammer and are shared
as plain text.

Level 2. For this set of data, encryption is used to hide
information for access control. In this case, only subscribers
who have access to the key can decrypt the message. For
instance, consider a new unpatched vulnerability has been
detected, and such information should not be shared with the
public.

Level 3. By sharing such information the subscribers are
only able to find out if the other party has received the same
message or not and no more information can be inferred.
Private Set Intersection (PSI) [26] protocols are applied for
this purpose. For instance, consider that an organization has
received an unknown email which it cannot classify as SPAM
or benign. As the email might be a normal message, the or-
ganization cannot share the message with other organizations.
Hence, organizations initiate the PSI protocol to know if the
message has been received by any other organization.

E. STIX Document

The output from our STIX automation system is a STIX
document as shown in figure 1. The data are serialized in JSON
as discussed in section III. Members of Cyber Threat Intelli-
gence Technical Committee have built the JSON schemas. As
a result, the STIX documents output from our system adheres
to the predefined schema. This STIX document can now be
stored in a suitable database or transferred to other systems.

V. DEMONSTRATION

This section describes a practical implementation of STIX
automation. We have used a generalized structure to demon-
strate the feasibility of the STIX automation process. For
this demonstration, we have considered three different kinds
of threat data: malicious emails, firewall logs, and login
credentials from brute force. First, we describe the architecture
of our system followed by a detailed discussion of the STIX
automation of each data source.

A. System Architecture

Figure 4 shows the architecture of our system. This archi-
tecture identifies the position of the STIX automation module
in a typical security system. It also clarifies the data flow in the
system to aid the integration of the STIX automation module
into an existing system.

Our system pipeline consists of three stages. Firstly, every
attack that an attacker makes on our system is considered
an event. An event can be as simple as receiving a single

850

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

5

malicious packet or can be as complex as receiving a malware
attached to an email. In the second stage, the event is recorded
as threat data in our data collection module. Finally, these
threat data are passed onto the analysis and alert sub-system.
The analysis and alert subsystem performs further analysis
on the threat data depending on the particular needs of the
organization.

Fig. 4: System architecture

The data collection sub-system further consists of three
parts. The first part is a research honeypot that we set up
for this work. The honeypot collects different kinds of raw
threat data depending on the type of attack. The second part is
the STIX automation module. The STIX automation module
interfaces directly with the sources of raw threat data. This
module collects raw threat data from our honeypot and outputs
appropriate STIX document. Finally, the STIX documents are
stored in a central database for future use.

B. Technical System Description

Figure 5 shows the network design of our system. We have
set up a honeypot on a virtualized environment with Kernel-
based Virtual Machine (KVM). KVM is an open source,
full virtualization solution for Linux that can run multiple
virtual machines. On top of KVM, we have set up three more
hosts using Quick Emulator (QEMU). QEMU is another open
source hosted hypervisor for Linux that performs hardware
virtualization. We have kept the hosts separate because of
security reasons. Running them in separate hosts ensures that
data in one server is not threatened even if another server is
compromised.

The three hosts have three different services running in
them. The first one is an SSH server that is facing the internet
and listening on the default port making it an easy target
for brute force or dictionary attacks. The server records the
attacker’s IP address along with the usernames and passwords
that are used for login attempts.

The second server in the honeypot is an email server that
hosts some dummy email addresses. We purchased two do-
mains for this work. The dummy email addresses are registered
under those two domains. These email addresses are published
on different dummy sites on the internet.

Finally, the third server in the honeypot is a web server. This
web server hosts two dummy static websites. We have posted

Fig. 5: Network diagram of data collection sub-system

our honeypot email addresses to these websites to make them
discoverable by web-crawlers and attackers.

Additionally, there is a network firewall configured in front
of the honeypot network. The firewall acts as the gateway for
all the servers in the honeypot. This firewall filters incoming
and outgoing packets to allow access to only the required ports
in a particular server. It also serves as a threat data source by
logging all network layer activities and by generating network
layer threat alerts.

Our STIX automation server runs on a different network
than the honeypot server. This server also uses the firewall as
the gateway. The STIX automation server periodically collects
the raw threat data from the firewall and other servers using
different methods as examined in section IV.

C. STIX Automation of Firewall Log Data

Firewalls are principal sources of cyber threat data in
many organizations. Firewalls log all incoming and sometimes
outgoing network packets depending on the configuration.
Following is a detailed explanation of how STIX automation
is performed on this data source:

a) Raw Threat Data: In reference to figure 2, the input
to the STIX automation process is raw threat data. In our
project we have set up an iptables firewall, in a Linux host,
that captures all packets destined to our honeypot network.
The firewall generates one syslog [23] message describing
each received packet. A sample syslog message generated by
iptables looks like that shown in fig 7.

The parameters of interest in the message are either IP
header fields or transport layer header fields (TCP in this
example). The same data are included in other firewall logs in
a different arrangement.

b) Data Collection: The second step in STIX automation
is data collection. The syslog protocol supports the logging
of syslog messages in a remote server over a network. We
have used this facility to collect syslog messages directly
into our collector module. The collector stores the messages
temporarily in its storage. It transfers the messages to the data
classifier one at a time and deletes them afterward.

c) Data Classification: The next step after data collec-
tion is data classification. When the collector receives the
syslog message from the firewall, it tags the data with a unique

851

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 6: STIX representation of firewall log

Fig. 7: Sample log message generated by iptables firewall

label. The classifier then makes use of this label to identify the
data as a syslog message that contains packet log generated
by an iptables firewall.

d) STIX Conversion: Next, the STIX conversion module
parses the plaintext syslog message using Python. Most of the
TCP/IP header field values are extracted as is except for the
timestamp. This is because STIX 2.0 timestamp field must be
a valid RFC 3339 [27] formatted timestamp using the format
YYYY-MM-DDTHH:mm:ss[.s+]Z in UTC timezone.

The suitable cyber observable object to represent a network
packet is the STIX network-traffic object. All these data can be
included in the aforementioned network-traffic COO as shown
in figure 6.

Since the data is collected from a honeypot, it does not
contain any privacy-sensitive information. For this reason, it
is classified as privacy level 0 and represented without any
modifications.

e) STIX Document: The output of our STIX automation
system is a STIX document. Figure 6 shows the final repre-
sentation of the firewall log in STIX format. We have shown
only the objects property of an observed data here because
the other properties are the same as shown in figure 1.

There are three cyber observable objects in this example.
The network-traffic COO references two other COOs each of
type ipv4-addr which contain the source and destination IP
addresses. The timestamp is not present in the figure because
the timestamp is included in the observed data object that
encloses this cyber observable object.

Most of the properties in the network-traffic COO are self-
explanatory except for the src flags hex field. Its value spec-
ifies the source TCP flags as the hexadecimal representation
of the union of all TCP flags of the packet.

D. Evaluation & Scalability

To show the feasibility of our STIX Automation process
we used the public Scan 34 dataset [28] by the honeynet
project. This dataset contains about 400000 lines of iptables
firewall log. We randomly selected parts of this dataset, of
various lengths, and fed it into the system for evaluation. The
evaluation metric that we used is the time our system takes
to process N log messages. We have measured the time taken
from input to finally storing in the database. A line of best fit
is drawn among the data points. The result is shown in figure
8.

Fig. 8: Evaluation of Complexity

The test was done with a run-of-the-mill computer, to
show the complexity of our mechanism and hence forecast
the scaling and growth of the system. For this reason, the
processing was done using a single core and the absolute times
are of less interest here.

It can be inferred from the test that the complexity is linear
because the processing time grows linearly with the input size.
This is desirable in a system like this which is going to deal
with a large volume of data. This makes the system suitable
for horizontal scaling using distributed computing systems.
Furthermore, each log message is processed independent of
each other making the process ideal for distributed computing.

852

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

7

VI. CONCLUSION

In this work, we have studied STIX automation to facilitate
and accelerate the process of detecting threats. To achieve
this goal, we have presented an architecture which receives
threat data as input, normalizes the data, classifies attacks, and
outputs relevant STIX document. We have also investigated
this framework over three kinds of threat data to demonstrate
the feasibility of the methodology.

STIX automation benefits an organization in multiple ways.
First of all, the centrally collected cyber threat data allows for
further processing such as aggregation and correlation. This
would significantly help security administrators get a better
insight into the security status of their system. Additionally,
the standard representation of cyber threat data is required for
an organization to share these data with other organizations
via a cybersecurity information sharing platform. Furthermore,
many organizations already have vast amounts of cyber threat
data but have little to no use for them because they are not
centrally located or represented in the same manner. Our
system allows for the retrospective use of these data for
advanced analysis.

STIX automation thus paves the way for total automation
of cybersecurity, from the collection of raw threat data to the
configuration of necessary parameters, along with instanta-
neous sharing of such data. This more efficient and robust
approach towards cybersecurity, with reduced dependence on
human interaction, is required to protect organizations from
modern dynamic cyberattacks.

REFERENCES

[1] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[2] “CICI: CE: Implementing CYBEX-P: Helping Organizations to
Share with Privacy Preservation,” https://www.nsf.gov/awardsearch/
showAward?AWD ID=1739032, July 2017.

[3] S. Barnum, “Standardizing cyber threat intelligence information with
the structured threat information expression (stix),” MITRE Corporation,
vol. 11, pp. 1–22, 2012.

[4] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey of self-
protecting software systems,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 8, no. 4, p. 17, 2014.

[5] D. M. Chess, C. C. Palmer, and S. R. White, “Security in an autonomic
computing environment,” IBM Sys. journal, vol. 42, pp. 107–118, 2003.

[6] Y. Al-Nashif, A. A. Kumar, S. Hariri, Y. Luo, F. Szidarovsky, and
G. Qu, “Multi-level intrusion detection system (ml-ids),” in Autonomic
Computing, 2008. ICAC’08. International Conference on.

[7] G. D. Webster, Z. D. Hanif, A. L. Ludwig, T. K. Lengyel, A. Zarras,
and C. Eckert, “Skald: a scalable architecture for feature extraction,
multi-user analysis, and real-time information sharing,” in International
Conference on Information Security. Springer, 2016, pp. 231–249.

[8] D. Bolzoni, S. Etalle, and P. H. Hartel, “Panacea: Automating attack
classification for anomaly-based network intrusion detection systems,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2009, pp. 1–20.

[9] M. Lacoste, A. Wailly, and H. Debar, “Self-defending clouds: Myth and
realities,” C&ESAR 2012, p. 45, 2012.

[10] E. Kim, K. Kim, D. Shin, B. Jin, and H. Kim, “Cytime: Cyber
threat intelligence management framework for automatically generating
security rules,” in Proceedings of the 13th International Conference on
Future Internet Technologies. ACM, 2018, p. 7.

[11] I. Vakilinia, S. Cheung, and S. Sengupta, “Sharing susceptible pass-
words as cyber threat intelligence feed,” in Military Communications
Conference (MILCOM), MILCOM 2018-2018 IEEE. IEEE, 2018.

[12] J. L. Hernandez-Ardieta, J. E. Tapiador, and G. Suarez-Tangil, “Infor-
mation sharing models for cooperative cyber defence,” in Cyber Conflict
(CyCon), 2013 5th International Conference on. IEEE, 2013, pp. 1–28.

[13] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Attribute based sharing
in cybersecurity information exchange framework,” in Performance
Evaluation of Computer and Telecommunication Systems (SPECTS),
2017 International Symposium on. IEEE, 2017.

[14] L. Dandurand and O. S. Serrano, “Towards improved cyber security
information sharing,” in Cyber Conflict (CyCon), 2013 5th International
Conference on. IEEE, 2013, pp. 1–16.

[15] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Privacy-preserving cyber-
security information exchange mechanism,” in Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), 2017 Interna-
tional Symposium on. IEEE, 2017.

[16] I. Vakilinia and S. Sengupta, “A coalitional cyber-insurance framework
for a common platform.”

[17] “Standards and tools for exchange and processing of
actionable information,” https://www.enisa.europa.eu/publications/
standards-and-tools-for-exchange-and-processing-of-actionable-information/.

[18] J. Steinberger, A. Sperotto, M. Golling, and H. Baier, “How to exchange
security events? overview and evaluation of formats and protocols,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 2015, pp. 261–269.

[19] P. Kampanakis, “Security automation and threat information-sharing
options,” IEEE Security & Privacy, vol. 12, no. 5, pp. 42–51, 2014.

[20] I. Vakilinia, D. K. Tosh, and S. Sengupta, “3-way game model for
privacy-preserving cybersecurity information exchange framework,” in
Military Communications Conference (MILCOM), MILCOM 2017-2017
IEEE. IEEE, 2017, pp. 829–834.

[21] I. Vakilinia and S. Sengupta, “A coalitional game theory approach
for cybersecurity information sharing,” in Military Communications
Conference, MILCOM 2017-2017 IEEE. IEEE, 2017, pp. 237–242.

[22] “STIXTM Version 2.0. Part 2: STIX Objects. Edited by Rich Piazza,
John Wunder, and Bret Jordan.” 19 July 2017. OASIS Committee
Specification 01. http://docs.oasis-open.org/cti/stix/v2.0/cs01/part2-
stix-objects/stix-v2.0-cs01-part2-stix-objects.html. Latest version:
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html.

[23] R. Gerhards, “The syslog protocol,” Tech. Rep., March 2009. [Online].
Available: https://doi.org/10.17487/rfc5424

[24] F. Sadique, “Cici,” https://github.com/qclassified/cici/, 2018.
[25] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[26] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on ot extension.” in USENIX Security Symposium, vol. 14.

[27] G. Klyne and C. Newman, “Rfc 3339: Date and time on the internet:
Timestamps,” The Internet Society, Request for Comments Jul, 2002.

[28] A. Chuvakin =, “Scan 34 - the honeynet project,” http://log-sharing.
dreamhosters.com/SotM34-anton.tar.gz, February 2005.

853

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:00:35 UTC from IEEE Xplore. Restrictions apply.

