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Abstract—To secure cyber infrastructure against intentional
and potentially malicious threats, a growing collaborative effort
between cybersecurity professionals and researchers from institu-
tions, private industries, academia, and government agencies has
engaged in exploiting and designing a variety of cyber defense
systems. Cybersecurity researchers and designers aim to maintain
the confidentiality, integrity, and availability of information and
information management systems through various cyber defense
systems that protect computers and networks from hackers who
may want to steal financial, medical, or other identity-based
information. The Cooperative Cyber-defense has been recognized
as an essential strategy to fight against cyberattacks. Cyber-
security information sharing among various organizations and
leveraging the aggregated cyber information to build proactive
cyber defense system is nontrivial for organizations. However,
building such cyber defense system is challenged by two issues: (1)
organizations are reluctant to share their private information to
others (2) even when they agree on a solution where information
can be shared in privacy preserving manner, the obfuscated cyber
threat information has to be processed to build the trained model
for future prediction of any new or unknown cyber incident.
To address these issues, in this paper, we propose a privacy
preserving protocol where organizations can share their private
information as an encrypted form with others and they can
learn the information for future prediction without disclosing
any private information. More specifically we propose a privacy
preserving decision tree algorithm, where each organization can
build and learn the decision tree based on overall organizations’
training spam/ham email data without disclosing any private
information of any party. Once the building of a decision tree is
done, the organizations can predict if any new email is spam or
ham locally.

Keywords- Privacy, Cyber Threat Information Sharing,
Machine Learning, Prediction

I. INTRODUCTION

Conventional vs. Cooperative Cyber-defense: The revolu-
tion of Information and Communication Technologies (ICT)
has brought economic prosperity in recent years. However,
securing the cyberspace from malicious attackers has been a
critical concern. Due to increasing rate of cyber crimes and
complexity of cyber-threats, the organizations face difficulty
in effectively tackling cybersecurity issues alone. Though an
organization’s sole security investigation may lead to devel-
oping potential cyber-defense solutions, this reactive approach
may not help in better understanding the cybersecurity land-
scape and take proactive measures to reduce future exploits.
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The recently proposed cyber-threat information (CTI) sharing
scheme is envisioned to help the organizations in enhancing
their security standpoints. In addition to organizations’ own
internal efforts, such sharing could complement their cyber-
security handling tactics and benefit in various means such
as: (1) fostering cyber situational awareness, (2) developing
proactive defense mechanisms, (3) clarity in understanding
the threat landscape, malicious actors, security loopholes etc.
Thus, organizations collaborations could decrease the time of
threat detection, while increasing the accuracy of detection [1],
[2] at the same time.

The mechanisms for timely sharing actionable cybersecurity
information such as detection signatures or vulnerabilities
are paramount for enabling the cooperative cyberdefence
[3]. There are also other approaches which aim to facilitate
automatic sharing such as TAXII [4]. The Cybersecurity
Information Sharing (CIS) has been encouraged worldwide
by the governments through a number of legal initiatives [5].
For instance, the CIS act has proposed a structure managed
by governments which will gather as well as distribute cy-
bersecurity threat information. The CIS partnership which is
similar to the earlier effort. lunched in 2013 in UK, is a
joint industry-government initiative to share the cybersecurity
related information. Additionally, in 2015 the International
Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) published an international
standard to provide guidance in the sensitive information
exchange. This standard also serves for the implementation of
information security management within information sharing
communities.

The Scope of Collaborative Security: According to [6], the
collaborative security has been defined as “ instead of centrally
managed policies, the organizations or nodes may share and
gather cybersecurity related knowledge from other organiza-
tions or nodes to make the security related decisions”. The aim
of this collaboration is to make the decisions more effectively
as the more information are available the more accurate deci-
sion can be made using that information. So the ”collaborative
security” is the joint effort among different security systems
by sharing various security related information to make more
reasonable and effective decisions. The collaborative security
system has been applied in many security related domains
such as anti spam, anti malware, intrusion detection etc. The
application of collaborative security may range from desktop
to mobile environment.
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A. Motivation

Due to the availability of the large amount of data in cyber
infrastructure and the increasing number of cyber criminals
attempting to gain unauthorized access to the data, different
machine learning based techniques are necessary to build
proactive cyber defense system which will help to defend
against any intrusion before harming the system by making
right decision or prediction of unusual behaviour or anomalies.
This can be achieved by learning the existing dataset where
there is information about the various intrusions or attacks
as well as their responses. Once the system finishes learning
from the trained dataset, it is able to detect if new intrusion
happens.

The number of security incidents worldwide is increasing
and the security community relies on the ability to detect
and to react to such threats. Historically, information security
is a continuous cycle where vulnerabilities are discovered,
exploited by malicious actors, and patched by the information
security community. As new vulnerabilities and exploits are
observed, signatures or patterns indicating malicious activity
are created. These signatures are used by Intrusion Detection
Systems (IDS) to detect malicious activity in networks. The
IDS create alarms for human analysts for which to decide on
what action to be taken. Unfortunately, many of these alarms
are False Positive (FP), that is wrongly raised alarms. Applying
Machine Learning (ML) approaches to event classification can
provide great benefits to the daily operation of a Security
Operation Center (SOC) [2].

Any organization can get benefits if it can receive various
types of CTI data from other organizations. By sharing CTI
the organization can learn to be aware of varieties of threats
and can prepare itself before actually getting compromised
by those threats. Therefore, more the organizations share their
information with each other, more they learn about the existing
threats and the way to deal with them. This is how they can
increase their accuracy of prediction of any activities being
malicious or not.

However, collaboration through threat intelligence exchange
still has certain challenges: (1) the possibility of information
exploitation as the sharing organizations may not trust other
participants, (2) concerns of privacy of sensitive information
which may get exposed to attackers or other competitors, (3)
organizations’ reputation might get negatively affected if the
vulnerability information can identify an organization.

Therefore, we formulate the problem statement as how to
develop a learning mechanism of CTI in privacy preserving
manner so that no private information is leaked to any party
and at the same time organization can make decisions from
the learned model from the new activity.

B. Contributions

The main contributions of this paper can be summarized as
follows.
• We propose a privacy preserving collaborative cyber

threat information sharing and learning framework where
multiple organization can share and learn each others’

information in a privacy preserving manner to detect
future malicious incidents.

• We propose a privacy preserving learning algorithm based
on decision tree where organizations can learn the global
decision tree which includes other organizations’ infor-
mation without revealing their local data. Based on this
global tree the organizations can make predictions or
classifications on newly arrived threat information. As an
example of application, we test the framework to learn the
decision tree on spam email dataset in privacy preserving
manner which can be used to detect if any new email is
spam or ham without disclosing any private information.

II. RELATED WORK

The existing work shows a notable attempts to explore
the paradigm of collaborative security and review associated
methods. However, the scopes of such attempts are often
restricted to specific domains, which lack systematic analysis
and classification. The coalitional approaches for cybersecurity
information sharing and the underlying privacy challenges
have been studied in [7]–[11]. A framework for privacy
preservation of cybersecurity information sharing has been
proposed by [9]. This scheme uses group signature to hide
the identities of the organizations. However, this scheme does
not protect the participants’ information. [7] has modeled the
privacy issue in cybersecurity information sharing as a game
between organizations and attackers. Although such a model
helps the organizations to decide their sharing strategy, it does
not provide any practical solution to protect the underlying
information. The [6] presented a collection of collaborative
security related research. The main issue is that they lack
detailed and insightful analysis with summarization. The [12]
presented common building blocks of collaborative intrusion
detection system which specifically includes the information
sharing as well as system security. They also presented the
privacy preservation scheme during sharing any security re-
lated information. The challenges in collaborative intrusion
detection system were shown in [13]. They surveyed various
coordinated attacks that traditional intrusion detection systems
cannot detect. Zhou et al. introduced a new kind of intrusion
detection system through a collaborative lens. Besides above
research works, there early research which looked into spe-
cific aspects of collaborative security, however, they did not
consider the entirety of the topic. The [14] surveyed multiple
categories of collective anomalies, and present key challenges
for each category. They also investigated a series of methods
to handle these collective anomalies as well as a thorough
comparison between these methods. The [15], for example,
discussed one particular field in collaborative intrusion detec-
tion systems which is alert correlation. Their research surveyed
a considerable number of applied approaches of alert correla-
tion and presented the strengths and weaknesses respectively.
Caruana and Li [16] also conducted a survey of spam filtering
approaches, specifically those dealing with collaboration, and
provided a summary of the practical applications.
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III. PRELIMENARIES

A. Homomorphic Encryption

In our privacy preserving protocol, we use ElGamal cryp-
tosystem [17] to leverage their homomorphic properties while
performing the computations. The ElGamal encryption scheme
is a probabilistic public key encryption algorithm which
is composed of key generation, encryption and decryption.
Specifically we have used the distributed version [18] of
ElGamal cryptosystem which supports both homomorphic
addition and multiplication. It has been very effective in some
of existing researches of privacy preserving applications [19]–
[23] along with other similar types of homomorphic encryption
based applications [24], [25]. The ElGamal cryptosystem and
its distributed variant work as follows. We assume there are
n users in the system. Each i-th user has its own public key
yi and secret key xi. The distributed ElGamal cryptosystem
consists of the following algorithms.
Key generation: A common public key is used in the
distributed ElGamal cryptosystem as follows:

PK =

n∏
i=1

yi = gx1+···+xn (1)

Encryption: To encrypt a plaintext message m ∈ G: an
integer r is randomly chosen from Z∗q ; then the ciphertext
computation becomes: c1 = gr and c2 = gm · PKr.

The encrypted message is E(m) = (c1, c2).
Decryption: A common decryption key is not computed.
Each user computes and broadcasts a partially decrypted value,
and the final plaintext is revealed by combining all partially
decrypted values. For the ciphertext (c1, c2), decryption pro-
ceeds as follows:

• Each i-th user computes c1
xi ;

• All users broadcast commitment of computed values
H(c1

xi);
• Each i-th user broadcasts c1

xi and checks if each cxi
1

matches with H(cxi
1 );

• Each user computes
c2∏n

i=1 c1
xi

=
c2

cx1+···+xn
1

= gm.

Finally, m can be revealed by computing a discrete logarithm.
Homomorphic Property ElGamal encryption has an inherited
homomorphic property [26], which allows multiplication and
exponentiation to be performed on a set of ciphertexts without
decrypting them, such as addition homomorphic computation

E(m1)× E(m2) = (gr1 , gm1 · pkr1)× (gr2 , gm2 · pkr2)
(2)

= (gr1+r2 , gm1+m2 · pkr1+r2)

= E(m1 +m2)

and multiplication homomorphic computation:

E(m1)
m2 = (gr1 , gm1 · pkr1)m2 (3)

= (gr1·m2 , gm1·m2 · pkr1·m2)

= E(m1 ·m2)

B. Decision Tree

Decision tree algorithm is a renowned classification algo-
rithm. In a decision tree, the nodes are representing the object
attributes and categories. The edges are the possible outcome
of a decision, and each leaf node is assigned a category. To
classify an object into a category, the algorithm begins from
the root of the decision tree and the object is checked for
the corresponding attribute at each internal node. Then, the
algorithm goes down the tree along the edge corresponding
to the objects value for that attribute. This traversal of a tree
proceeds till a leaf node is reached. Thus, an object’s category
is decided based on its path from the root to a leaf of the
decision tree.

The ID3 algorithm receives a set of samples and generates
a decision tree in a top-down manner. It begins at the root
and specifies the best attribute which makes the optimal
classification of the objects. Then, an edge is created for
every possible value of the attribute. Recursively, this process
generates the other nodes and their corresponding edges. Once
all of the attributes are examined, then the tree construction is
finished. The information theory is used to decide the attribute
that gives the best prediction at each internal node. The
attribute that decreases the entropy of the category information
the most is selected as the best attribute. Assume that there are
k categories c1, ..., ck, and a set T of objects whose categories
are known. Let T (ci) be the set of objects with category ci.
Then the information needed to classify an object in T is:

E(T ) =

k∑
i=1

(−|T (ci)|
|T |

· log |T (ci)|
|T |

) (4)

Lets consider the objects contain n attributes A1...An. To
access the prediction quality of any attribute A we need to
calculate the information needed to classify an object in T
given its value for attribute A. Assume that A can have p
values a1ap. Then the information of T given A is:

E(T |A) =

p∑
i=1

(
|T (ai)|
|T |

· E(T (ai))) (5)

The information gain of attribute A can be written as

G(A) = E(T )− E(T |A) (6)

The best attribute A is then the one that has the maximum
gain, i.e., minimum E(T |A), among all considered attributes.

IV. SYSTEM MODEL

In our proposed model, we assume there are total t or-
ganizations {O1, O2, ..., Ot} who collaborate with each other
by sharing their aggregated information to learn the decision
tree in privacy preserving manner. They encrypt their own
information, and send the ciphertexts to a Central Server
(CS) which has enough computation power to perform homo-
morphic operations. The CS finds the encrypted results and
sends it back to the organizations without learning any private
information of the organizations. We assume the parties in our
system are semi-honest but curious, which means they follow
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Fig. 1. System model for key generation

Fig. 2. Server performs homomorphic operations to get the encrypted aggre-
gated results. This encrypted result is sent to the corresponding organization
which then can decrypt using certain protocol and use the decrypted result to
build the decision tree.

the protocol but try to learn as much as information they can.
Figure 1. shows the system model for key generation where
the organizations generate their own key pairs and send the
public keys to the CS. Then the CS aggregates the individual
public keys to get the master public key which is broadcast
to all organizations. This master public key is used to encrypt
individual private information. Upon receiving the encrypted
information, the CS then performs homomorphic operations
to get aggregated encrypted results which then are shared
among the organizations. The organizations then collaborate
to decrypt the results with the help of CS using their own
secret keys without revealing any private information to CS or
other organizations. Finally based on the decrypted results the
organizations can build the decision tree which can be used to
predict any future events related to cyber threat such as email
spam detection. The main architecture of our proposed model
is shown in Figure 2.

V. PRIVACY PRESERVING COLLABORATIVE DECISION
TREE

In this section we present privacy preserving ID3 based
decision tree algorithm. Note that, the ID3 algorithm requires
to compute logarithm and computing a logarithm privately is
in general a complex task and requires specialized protocols
to be applicable in practice [27]. Instead of computing a
logarithm securely we choose to go a different well known
splitting measure to avoid secure computation of logarithms.
Our protocols will be based on the Gini index, which is
another common splitting measure that can be implemented

using simple arithmetic only. The Gini index measures the
probability of incorrectly classifying transactions in T if
classification is done randomly according to the distribution
of the class values in T [28], and is given by

E(T ) = 1−
∑
i

( |T (ai)|
|T |

)2
(7)

E(T |A) =

p∑
i=1

(
|T (ai)|
|T |

· E(T (ai)))

=
1

|T |

p∑
i=1

(
|T (ai)| ·

(
1−

k∑
j

( |T (ai.cj)|
|T (ai)|

)2))
=

1

|T |

(
p∑

i=1

|T (ai)| −
p∑

i=1

k∑
j

(
|T (ai.cj)|

)2)
(8)

A. Initialization

Each organization Ok generates its own secret and public
key pairs (xk, yk) where xk and yk = gxk (g is a generator
which is public parameter) represent its secret and public
key respectively. Then the Ok sends the yk to CS. The CS
generates master public key as follows:

PK =

t∏
k

yk = g
∑

xk (9)

Then the CS broadcasts the PK to all organizations to encrypt
their own aggregated results which they dont want to share in
plaintext.

B. Protocol

Step 1: Each organization ok has to compute |T (ai)| and
(|T (ai, cj)|)2 from their own dataset and share with other
organizations to get aggregated results. Therefore, all orga-
nizations jointly need to compute as follows:

A =

t∑
k

pk∑
ik=1

|T (aik)| (10)

and

B =

t∑
k

pk∑
ik=1

qk∑
jk

(
|T (aik .cjk)|

)2
(11)

Step 2: The ok encrypts its own
∑p

i=1 |T (ai)| and∑p
i=1

∑k
j

(
|T (ai.cj)|

)2
as

Ck
11, C

k
21 = grk , g

∑pk
ik=1 |T (aik

)| · PKrk

Ck
12, C

k
22 = grk , g

−
∑pk

ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

· PKrk

(12)

Step 3: The organizations sends the ciphertexts to CS. Then
the CS performs homomorphic additions as,

C11, C12 =

t∏
k

(grk , g
∑pk

ik=1 |T (aik
)| · PKrk)

= g
∑t

k rk , g
∑t

k

∑pk
ik=1 |T (aik

)| · PKrk

(13)
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C21, C22 =

t∏
k

(grk , g

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

· PKrk)

= g
∑t

k rk , g
−

∑t
k

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

· PKrk

(14)

C31, C32 = (C21, C22) · (C21, C22)

= g
∑t

k 2rk , g

∑t
k

∑pk
ik=1 |T (aik

)|−
∑t

k

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

· PK2
∑

rk

(15)

For each attribute A the CS calculates the ciphertexts
using equation 15 and gets the minimum one using encrypted
comparison protocol. Then the attribute with minimum value
is selected as root node. To find the minimum attribute we
use the process described in [29] where two private values
for example a1 and a2 can be compared with the involvement
of t organizations without revealing any of the private values.

Step 4: After performing homomorphic additions, the CS
broadcasts C31 and C32 to all organizations for preparing the
decision tree. Then each ok hides their own secret keys into
the ciphertexts as Cxk

31 and shares it to other organizations.
Therefore each organization ok has Cx1

31 , ..., C
xt
31 which are

used to decrypt the the cphertexts (C31, C32). Finally each ok
decrypts the ciphertexts as

D(C31, C32) =
C32∏t

k(C31)xk

= g

∑t
k

∑pk
ik=1 |T (aik

)|−
∑t

k

∑pk
ik=1

∑qk
jk
|
(
|T (aik

.cjk )|
)2

(16)

To get the exponent, the organization performs discrete log as
log

D(C31,C32)
g .

Theorem 1. If the organizations and the CS
follow the protocol we have that D(C31, C32) =

g

∑t
k

∑pk
ik=1 |T (aik

)|−
∑t

k

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

Proof. From equation 16 we have,

D(C31, C32) =
C32∏t

k(C31)xk

=
g

∑t
k

∑pk
ik=1 |T (aik

)|−
∑t

k

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

PK2
∑

rk∏t
k(g

∑t
k 2rk)xk

= g

∑t
k

∑pk
ik=1 |T (aik

)|−
∑t

k

∑pk
ik=1

∑qk
jk

(
|T (aik

.cjk )|
)2

(17)

VI. PRIVACY ANALYSIS

This section provides the privacy analysis of our proposed
protocol for each stage. More specifically in this section, we
discuss what information the participants are able to learn
and how far they can achieve to harm the system if they are
malicious. We have followed the structure

Theorem 2. Proposed protocol is private and no entity is able
to learn any private information from the protocol.

Proof. At the initialization stage, each organization generates
its own secret and public key pair, then share only the
public key with CS to produce a master public key
according to equation 9. Note that in this process none
of the organizations reveals any private information except
their own public key with CS. In the main protocol part,
each organization ok encrypts their own information as

E(
∑p

i=1 |T (ai)|) and E(
∑p

i=1

∑k
j

(
|T (ai.cj)|

)2
) using the

master public key PK and broadcasts the ciphertexts to CS
as shown in equation 12. The CS performs homomorphic
addition on these ciphertexts over all organizations as
shown in equation 13 and 14 to get E(

∑t
k

∑pk

ik=1 |T (aik)|)

and E(−
∑t

k

∑pk

ik=1

∑qk
jk

(
|T (aik .cjk)|

)2
). Finally the

CS performs another homomorphic addition to get

E(
∑t

k

∑pk

ik=1 |T (aik)| −
∑t

k

∑pk

ik=1

∑qk
jk

(
|T (aik .cjk)|

)2
).

During these process the CS learns nothing except the
ciphetexts and their resultant ciphertexts after performing
the homomorphic operations. This resultant ciphertext is
broadcast to all organizations where the organizations
collaborate with each other to decrypt the results. According
to step 4 the organizations collaborate with CS by raising the
ciphertest C31 to the power of their own secret key xk and the
the organization ok uses equation 16 to decrypt the results.
During this process none of the secret keys is disclosed to
any other party and the organizations perform the decryption
locally.

VII. PERFORMANCE ANALYSIS

Our experimental analysis is divided into two main sections.
First, we discuss the complexity of the proposed protocols
in terms of computation and communication costs. Then
based on the complexities, we run experiments and show
the actual time and bandwidth taken by the protocol on our
specific settings. In the complexity analysis, we analyze the
encryption/ decryption and the data transmission costs for the
single execution of the protocol. We consider one encryption
in ElGamal cryptosystem is equivalent to 2me where me

represents modular exponentiation. Let, one homomorphic
addition, homomorphic multiplication and discrete logarithm
for decryption represented as ha, hm and

√
Tme respectively

where T represents the size of the plaintext. We consider the
units of computation and communication costs as seconds and
bits respectively. To test the performance of our protocol we
experimented on spam email classification using the proposed
privacy preserving decision tree learning. More specifically,

0712
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:02:38 UTC from IEEE Xplore.  Restrictions apply. 



6

we gather the dataset of spam/ham emails. Then we randomly
split the dataset into 20 different subsets which represent 20
different organizations who are supposed to share their private
information with others in privacy preserving manner and learn
the decision tree over all dataset from other organizations
without knowing any private information of others. In this
experiment we used spam assassin dataset 1. Then we consider
each email as bag of words. For each subset of dataset
in each organization, we create the decision table as the
words as features and the value of the features are either 1
or 0 depending on the presence of that particular word in
the email. Each organization holding the subset of dataset
will perform the intermediate computations and share the
results as encrypted form with the server. Upon receiving
the encrypted aggregated results over all organiations’ dataset
from the server, the organization can generate the decision
tree by decrypting the results locally. In below we discuss
the computation and communication complexities in which
the time and bandwidth are represented as seconds and bits
respectively.

A. Computation Complexity

According to the protocol, we have two main sections
which are initialization and privacy preserving collaborative
learning protocol. In the initialization protocol, the server
collects all the public keys and produce master public key
for all organizations. In this computation server perform k
multiplication over the public parameter as shown in equation
9. Therefore the computation complexity of initialization is
k seconds. In the main protocol of section VI-B, each orga-
nization performs two encryptions as shown in equation 14
with the complexity of 2me seconds. According to step 3, the
server performs three different homomorphic additions where
two of them are for t organizations. Therefore, the complexity
becomes 2ha × t + ha seconds. Then the server finds the
minimum results among the n ciphertexts which results the
complexity of n seconds. After the final resultant ciphertexts
are broadcast to the organizations, they decrypt the results
locally, as described in step 4 which gives the complexity
of me + t × me, since each organization hides their secret
keys xk by raising the ciphertext to the power of xk (as
shown in step 4) and performing t modular exponentiation.
Finally, the organization performs discrete logarithm which
takes

√
T × me seconds. Therefore, the total complexity of

decryption becomes O(me + t × me +
√
T × me) seconds.

Finally, the total computation costs of each organization and
server become k + 2me + me + t × me +

√
T × me and

2ha × t+ ha + n seconds.

B. Communication Complexity

For communication complexity we assume that the cipher-
texts exchanged between the parties are of l bits. At the
initialization phase the server receives the public keys from
all organizations. Therefore it takes t × l bits and l bits for
server and each organization respectively to receive the public

1http://spamassassin.apache.org/publiccorpus/.

Fig. 3. Computation cost of server and each organization interms of increasing
total number of organizations.

parameters for server from the organizations. In the main
protocol, each organization sends two pairs of ciphertexts to
the server as shown in step 3 and the communication costs
becomes 4l bits for each organization. The server receives
from t organization which results in 4l × t bits to receive
the ciphertexts. After performing homomorphic operations the
server broadcasts a pair of ciphertext which are received by
each organizations of 2l bits. During the decryption process,
the server and each organization exchange another set of
ciphertexts (shown in step 4). In this process the bandwidth
requirements becomes 2l bits for each organizations and 2l×t
bits for the server. Therefore the total data require for each
organization and server are 7l and 7t× l bits respectively.

C. Efficiency
Table 1 shows the performance results of our proposed

protocol to build the decision tree for server and each or-
ganization. We consider there are 20 organizations, therefore
t = 20. We also consider that there are n = 20 different
ciphertexts among which the server has to run the comparison
protocol to find the minimum value without learning the actual
value. In our experimental setup one modular exponentiation
and one homomorphic addition take 2× 10−5 and 5.7× 10−5

seconds respectively. Based on this setup, in our protocol,
the server and each organization take 20 seconds to finish
the protocol or to learn the build the decision tree locally
in each organization’s side. Once the decision tree building
is complete the organization can use the tree to predict if
any new email is spam or ham. Since the prediction can be
done locally without applying any privacy preserving protocol,
the efficiency of prediction protocol is out of our scope.
Figure 1 shows the scalability of our proposed protocol with
increasing the number of organizations. It shows that for each
organization, the computation time increases if the number
of organization increases. However in our experiment, the
computation time of server didnt increase since the number
of ciphertexts for comparison protocol was fixed which was
20.

VIII. CONCLUSION

We proposed a privacy preserving protocol to learn the
decision tree algorithm which can be applied in proactive cyber
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TABLE I
COMPUTATION COMPLEXITY AND TIME (t = 20)

Computation Complexity Communication Complexity
Server 2ha × t+ ha + n 7l

Organization k + 2me +me + t×me +
√
T ×me 7t× l

Cost in Seconds Cost in MB
Server 20 0.0008

Organization 20 0.01

defense by classifying if an email in an organization is spam or
ham. Although this is a simple approach to learn the decision
tree over a suitable dataset but the challenges remain in learn-
ing the tree in privacy preserving manner without disclosing
any private information while sharing them with other parties.
Our proposed protocol can address these challenges and learn
the decision tree over email dataset without disclosing any
private information of organization. This protocol can also be
applied to build the deicison trees from other types of cyber
threat datasets as long as the features are of numerical values
(such as phishing data) as the homomorphic encryptions can
not be applied to fractional numbers. The proposed model can
be of a great use for proactive cyber defense system as it can
learn the dataset in privacy preserving manner by building the
tree. In future, we are interested to build collaborative and
proactive cyber defense system using unsupervised machine
learning algorithms in privacy preserving manner. The privacy
analysis and experimental results of proposed protocol show
that it is private as well as practical.
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