Insights Into Malware Detection via Behavioral
Frequency Analysis Using Machine Learning

Aaron Walker
Department of Computer Science and Engineering
University of Nevada, Reno
Reno, U.S.A.
awalker @unr.edu

Abstract—The most common defenses against malware threats
involves the use of signatures derived from instances of known
malware. However, the constant evolution of the malware threat
landscape necessitates defense against unknown malware, making
a signature catalog of known threats insufficient to prevent
zero-day vulnerabilities from being exploited. Recent research
has applied machine learning approaches to identify malware
through artifacts of malicious activity as observed through
dynamic behavioral analysis. We have seen that these approaches
mimic common malware defenses by simply offering a method
of detecting known malware. We contribute a new method of
identifying software as malicious or benign through analysis of
the frequency of Windows API system function calls. We show
that this is a powerful technique for malware detection because
it generates learning models which understand the difference
between malicious and benign software, rather than producing
a malware signature classifier. We contribute a method of sys-
tematically comparing machine learning models against different
datasets to determine their efficacy in accurately distinguishing
the difference between malicious and benign software.

Index Terms—Malware Detection, Malware Behavioral Anal-
ysis, Machine Learning, Dynamic Analysis, Zero-Day

I. INTRODUCTION

Malware, or malicious software, threaten computer systems
and applications at home as well as the office, infecting
a host system whether that system is mobile or stationary.
If the software matches a signature of a known malware,
that software can be safely quarantined or deleted from the
system - hopefully before any damage is done. The practice of
signature-based malware detection is sufficient for protecting
a system against known malware. Unfortunately, signature-
based defense only works against known malware. Antivirus
companies analyze newly discovered malware and release
signatures to their customers to protect them against emergent
threats, but until a signature is released for a newly identified
malware there will be no defense against infection. Advanced
Persistent Threat actors (APT) have frequently exploited long-
standing security vulnerabilities for a number of years without
detection. Clearly, we can see that defense involving only
known threats is insufficient to ensure the confidentiality,
availability, and integrity of computing systems, applications,

This research is supported by the National Science Foundation(NSF), USA,
Award #1739032.

Shamik Sengupta
Department of Computer Science and Engineering
University of Nevada, Reno
Reno, U.S.A.
ssengupta@unr.edu

and data. However, we believe that there is not a “one size fits
all” approach to analyzing malware with machine learning.
In our research we found a lack of analysis regarding the
meaning of why several different machine learning approaches
can identify malware with high accuracy on specific datasets. It
is not always clear how machine learning models for detecting
malware address the issues of false positive and false negative
classification. We show that malware and benign software
contain many of the same Windows API function calls which
define their behavior on a host computer. Analysis of only
the presence of these function calls is therefore not sufficient
to divide malware from benign software. In this paper we
will show that analysis of the frequencies of these API calls
provides a powerful means of understanding the difference be-
tween malicious and benign activity. Furthermore, our interest
is in observing what machine learning algorithms can teach us
about malware as well as our understanding of how to identify
malware. Our research leads us to discover the relationship
between the system calls used as features in the models. This
paper presents a first step on the path to revise the way we
think about the behavior of malware and what that could mean
for the next generation of malware analysis systems.
Contribution: Our contributions in this paper include:

e We show that the analysis of Windows API system
function call frequencies observed through the behav-
ioral analysis of malicious and benign software provides
machine learning models which have higher real-world
accuracy due to an understanding of the differences
between malicious and benign behaviors.

e« We provide an analysis of models created by several
linear and non-linear machine learning algorithms along
with different datasets of malicious and benign software
samples to examine their relative efficacy in the clas-
sification of malicious and benign software through the
evaluation of Windows API call frequencies.

Section II presents an overview of related work. Section
IIT describes the malware behavior analysis methodology we
employed including the hardware and software setup, malware
dataset, and analysis of the observed API calls. Section IV
discusses our machine learning approach, including an expla-
nation of the algorithms used and a comparison of the accuracy

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

of the resulting models. Finally, Section V concludes the paper.

II. RELATED WORK

Machine learning is widely used in the field of cybersecurity
and there are a number of different machine learning algo-
rithms available for research [8], including decision tree [13]
and logistic regression [7], to name but a few. Static analysis
of malware involves inspection of the code at rest and has been
shown to be successful in the classification of malware family
[15]. This includes the examination of the register, operation
codes, Portable Executable structured information and more.
Dynamic analysis has proven effective in cases where static
analysis would fail due to encryption or dynamic code loading
[11], making this approach more attractive for the extraction
of features for machine learning.

Dynamic analysis typically involves the use of a sandbox
environment, such as Cuckoo Sandbox [1] which reports
behaviors in terms of system API calls. Smith et al. [14]
demonstrated the potential for understanding malicious API
calls through machine learning algorithms. The large number
of Windows API calls found in malicious as well as benign
software samples frustrates the process of feature selection for
machine learning algorithms. One approach is to categorize
the function calls based on their general function [12] [9] and
then evaluate the entropy of these categorial functions based
on Information Gain [3], which essentially is a measure of
how much information a randomly chosen data element in a
set will teach us about another randomly chosen element in
a set. Heuristic N-Grams analysis also adopts the Information
Gain technique and has been shown to be effective in distin-
guishing malware from benign software [6]. This shows that
while both benign and malicious software perform many of
the same Windows API calls, their relative frequencies are
distinguishable.

Another approach for selecting which Windows API calls
to use as features involves narrowing the scope of analyzed
malware samples to model specific malware families, such
as WannaCry ransomware [5]. Malware family classification
can be enhanced with machine learning models, as shown in
[9], however here we also see the same issues with feature
extraction and definition. Malware authors are aware of the
attempts of researchers and system defenders to identify ma-
licious software and often employ anti-analysis features [10].
As a result there has been research into image processing with
Deep Learning — in this way, machine learning has been used
in malware classification based upon image processing using
an extracted local binary pattern [4]. There is no currently
defined methodology for accurate, non-biased feature extrac-
tion of malicious behavior observed through dynamic analysis;
therefore it is not reasonable to assume that bias is restricted
without a systematic approach for the comparison of machine
learning models with differing datasets.

III. MALWARE BEHAVIOR ANALYSIS

In order to programmatically observe the behavior of mal-
ware in an isolated environment, we designed an environment

to allow for the installation of Cuckoo and the analysis of
known malware samples in a virtual machine sandbox per the
installation instructions provided by Cuckoo [1]. Our goal was
to focus on the evaluation of potentially malicious software
affecting Windows operating systems.

A. Setup and Malware Dataset

Cuckoo was configured per the installation guide found
on the Cuckoo website [1], including two 64-bit Windows 7
virtual machines installed on the Ubuntu host. Cuckoo sup-
ports many virtualization software solutions but does assume
the usage of VirtualBox by default, so for ease of setup we
chose this platform. VirtualBox is a free system virtualization
product developed by Oracle and it easily integrates with
Cuckoo for administration of the virtual machines.

Known malware samples were acquired from Malpedia [2],
a curated online resource of malicious software containing
multiple versions of malware samples seen over time. This al-
lows for the observation of evolving behaviors as the methods
of exploiting system and application vulnerabilities changes
with new generations of malware. Malpedia samples often
include references to third party analysis of the malware as
well as identified malware family and threat actor affiliation.
This information is quite valuable for those desiring to create
custom signatures in Cuckoo for malware family attribution.

B. Methodology

Once the analysis has been performed, Cuckoo generates
a report of the observed activity, including but not limited to
changes to the registry, newly spawned processes, file creation
and access, virtual memory access, HTTP communication to
an external IP, and much more. These behavioral events are
captured as a number of Windows API calls and can be
referenced programmatically through created JSON files.

One example of a Windows API call is the GetComput-
erNameW function. The activity shown here is the usage of
the GetComputerNameW Windows function which retrieves
the NetBIOS name of the local computer. The signature
matched is identified as “antivm_queries_computername” and
the function of this call is indeed to query for the name of the
computer. For the full set of malware samples we analyzed,
we found that this particular API call was committed a total
of 38,867 times.

IV. MACHINE LEARNING APPROACH

Our dataset consists of the Windows application program-
ming interface (API) function calls observed by our Cuckoo
malware behavioral analysis environment as described in Sec-
tion III. The API calls recorded in our dataset represent the
activities performed by 7,401 malware samples. Windows API
functions are called by applications in order to operate in a
Windows environment [20]. Analysis of API calls made by
an application in a Windows environment therefore presents a
concrete record of all behaviors performed by that application.

In our behavioral analysis we identified a number of
Windows API calls and their frequencies which correspond

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

to the actions performed by malware on a system, such
as registry changes, code injection into running processes,
file modification, etc. It is important to note that it is not
trivial to analyze API calls for malicious behavior. In addition
to known malware samples, we also performed behavioral
analysis against a set of thirty known benign software samples.
These benign software samples consist of a mixture of
application installers, Java applications, Microsoft Word docu-
ments, and similar executable files. Analysis of malicious and
benign software samples in Cuckoo resulted in the observation
of over 138 million API calls, with 264 unique referenced
functions. Of these 264 API calls we found that 84 unique API
functions were found in malware but not in benign software.
Unfortunately, these 84 APIs were called in only a small
fraction of the malware samples and therefore are not useful
as a “smoking gun” for determining if a given application
is malicious if its behavior includes these particular function
calls. Therefore, we concluded that the best usage for applying
a machine learning model in malware analysis would be to
examine the relative frequencies of these 264 APIs across
malicious and benign software. It is important to note that the
frequency of the API calls largely vary. For example, we found
a greater number of the “GetAsyncKeyState” Windows API
call in comparison to the “GetCursorPos” call. This is likely
due to a greater interest in software to react to a computer
user’s mouse button usage [18] than in the screen coordinates
of the mouse cursor [19]. This suggests that while particular
Windows API functions may be selected as features in a
machine learning model to identify malware, there is reason to
analyze what such a decision really means for understanding
the behavior of the identified malicious software. Our approach
was to apply several machine learning algorithms to three
different sized malware sample sets and compare them. Our
goal was to identify the algorithmic approach which should
most reliably classify malicious software from benign software
through analysis of the frequency of Windows API calls.

A. Methodology

Eight machine learning algorithms were evaluated on the
set of values describing the Windows APIs called for each
malicious and benign sample:

e Logistic Regression (LR)

Linear Discriminant Analysis (LDA)
K-Nearest Neighbors (KNN)

Classification and Regression Trees (CART)
Gaussian Naive Bayes (NB)

Support Vector Machines (SVM)

Decision Tree

Random Forest

Our desire was to use a mixture of linear (LR and LDA)
and non-linear (KNN, CART, NB, and SVM) algorithms to
determine which would be good for our dataset. The applica-
bility of classification trees to relationship models led us to
further break CART down into Decision Tree and Random
Forest classifiers using the Scikit-Learn Python library for
visualization as shown in [17]. Our implementation included
Python and the SciPy platform using a random number seed

which was reset before each run to ensure that the results were
directly comparable as shown in [16].

Through the use of a Python program we were able to
compare each of these algorithms as they attempted to classify
a given software sample as malicious or benign through the
evaluation of the relationships between the API frequencies in
known malicious and benign software samples. Once such a
training model was created for each algorithm, these models
were used to classify a testing subset of unevaluated software.
The accuracy of the training models against the test subset for
each algorithm was then compared to determine the best per-
forming algorithm. In addition to evaluating different machine

TABLE I
THREE DATASETS

Dataset Malware Count Benign Count
Large Sample 7,400 30
Medium Sample 853 30
Small Sample 30 30

learning algorithms, the decision was made to evaluate each
upon different sample sizes of malicious and benign software.
The Large Sample dataset contains the API frequencies of all
7,400 malware samples from our known malware dataset along
with the API frequencies of thirty known benign software sam-
ples. The Medium Sample dataset consists of 853 randomly
selected known malware samples along with our thirty known
benign software samples. The Small Sample dataset consists
of an equal number of known malicious and known benign
samples, again with a randomly selected subset of the original
7,400 malware samples. Table I summarizes the three datasets
used to test the accuracy of the algorithms against different
ratios of known malicious to known benign software.

We utilized a 70/30 split for training and validation for each
dataset, which trains each machine learning model on 70%
of the dataset and then tests 30% to determine accuracy. 10-
fold cross validation was used to estimate the accuracy of the
machine learning algorithms.

Given its high relative accuracy across our datasets, we
chose to further evaluate our models generated with KNN
to break down their confusion matrices. A confusion matrix
considers the total number of elements in the validation dataset
and then further classifies these elements into the following
categories: true positive, false positive, true negative, and
false positive. Since we are attempting to classify malware,
a true positive result would reflect that an actual malware
was identified as malicious. Likewise, a false positive would
involve the classification of benign software as malicious.
Therefore, our most successful models would generate the
highest number of true positives and true negatives.

Additionally, we also observed high accuracy with CART.
This intrigued us due to the possibility of relationship mod-
eling using decision trees and lead us to include a deeper
dive into the accuracy of different decision tree models.
Our Decision Tree implementation utilizes two methods for
determining a root node with the goal of comparing these

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

two methods for different accuracies. Equation 1 describes
the Gini Index, which is a metric used to determine how often
a randomly chosen feature would be incorrectly identified. In
our case, each API frequency is evaluated as a feature and the
one with the lowest Gini Index is identified as an appropriate
root node for a tree.

Gini(E)=1-Y P} (1)
i

Equation 2 describes our second method for determining a root
node for a tree. Here entropy is used to determine the impurity
of a feature as a measure of information gain. In this way the
feature with highest calculated entropy will be selected as the
root node of a tree.

H(X)=- Zp(l'i)lOng(mi) 2)

J
B. Results

1) Large Sample: Table II shows most of our algorithms
are extremely close to purporting 100% accuracy. This is likely
due to the much larger number of malware samples included
in this dataset skewing the learning algorithm’s perception
to understand mostly malicious behavior. This leads us to
conclude that four models for the Large Sample are overfit,
with the notable exception of NB which appears to under-
perform for each of our datasets. We also observed that KNN
gave us 9 false positives and 2,220 true positives according
to the model. Figure 1 illustrates the Decision Tree model

TABLE I
COMPARISON OF ALGORITHMS FOR LARGE SAMPLE

Linear/Non-linear Algorithm Mean Standard Deviation
Linear LR 0.995193 0.002470
Linear LDA 0.981541 0.010784

Non-linear KNN 0.995963 0.002499
Non-linear CART 0.995001 0.002878
Non-linear NB 0.241691 0.023089
Non-linear SVM 0.995963 0.002499

for the Large Sample as a series of branching nodes. Each
node describes a value for a particular Windows API, followed
by the Gini Index value, the number of software samples
(malicious or benign) which made a call to this particular
Windows API, a tuple which delineates the number of benign
software from the number of malicious software samples, and
finally a classification of Malware or Benign as predicted by
the learning model.

The Decision Tree model for the Large Sample reported
99.59% accuracy with gini index with one true negative, three
false negatives, eight false positives, and 2,217 true positives.
We also observed zero true negatives, zero false negatives, nine
false positives, and 2,220 true positives with 99.6% accuracy
using entropy. Utilizing Random Forest for the Large Sample
we observed two true negatives, zero false negatives, seven
false positives, and 2,220 true positives with 99.69% accuracy.

The decision trees created show a pronounced bias toward
identifying malware as opposed to identifying benign software
samples. This is likely due to the much higher amount of
malware samples in the Large Sample. This apparent overfit
is what led us to continue evaluating these algorithms with a
smaller dataset.

Fig. 1. Decision Tree for Large Sample

2) Medium Sample: In the Medium Sample we observe
results which appear to be much less overfit than what was
seen from the Large sample. Table III shows a much different
algorithm comparison than what was seen for the Large
Sample. Of interest is that NB performed similarly to the
Large Sample, with a much lower accuracy than the other
algorithms. As with the Large Sample we see that KNN
and SVM perform with the highest accuracy. The confusion
matrix for KNN shows us that this algorithm gave us one true
negative, three false negatives, ten false positives and 251 true
positives according to the model. Our Decision Tree model

TABLE III
COMPARISON OF ALGORITHMS FOR MEDIUM SAMPLE

Linear/Non-linear ~ Algorithm Mean Standard Deviation
Linear LR 0.954654 0.027075
Linear LDA 0.881914 0.058108

Non-linear KNN 0.964410 0.020299
Non-linear CART 0.959572 0.025247
Non-linear NB 0.737916 0.060903
Non-linear SVM 0.966023 0.019854

decreased accuracy by approximately 8% using Gini, with four
true negatives, sixteen false negatives, seven false positives,
and 238 true positives. This is in contrast to our model using
entropy, which decreased by approximately 2% with nine true
negatives, four false negatives, two false positives, and 250 true
positives. This suggests that the use of entropy to determine a
root node works much better than the Gini approach for the
API frequency data being categorized. Our Random Forest
model decreased accuracy by approximately 4% with one true
negative, one false negative, ten false positives, and 253 true
positives. The lack of true negatives in this result suggest that
either a small amount of benign software was provisioned into
the test dataset or this model continues to suffer from overfit.

Figure 3 illustrates a decision tree generated by our model
for the Medium Sample. Here we see quite a difference from

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

the tree for the Large Sample, as there is much less bias toward
identifying malware versus benign software. This tree appears
to not suffer from as much overfit as we saw in the Large
Sample. As a whole, the machine learning algorithms created
models which seem to be more accurate for the Medium
Sample than for the Large Sample.

Fig. 2. Decision Tree for Medium Sample

3) Small Sample: For the Small Sample we observe that our
models are underfit. We have a proportionately high ratio of
true negatives to true positives reported, along with a relatively
higher number of false negatives. The overall accuracy of
our models has reduced significantly as a result. Table IV
shows a greater amount of outliers as opposed to our previous
sample datasets, reducing the overall accuracy. Of interest
is that NB has increased in accuracy in comparison to its
performance in the larger datasets while others, especially
SVM have greatly reduced accuracy. As noted earlier, KNN
and SVM had previously performed with comparable accuracy.
Here we can see that KNN performed with 36% greater
accuracy than SVM. Furthermore, KNN gave us eight true
negatives, six false negatives, zero false positives and four
true positives according to the model. Interestingly, as seen

TABLE IV
COMPARISON OF ALGORITHMS FOR SMALL SAMPLE

Linear/Non-linear ~ Algorithm Mean Standard Deviation
Linear LR 0.695 0.180901
Linear LDA 0.67 208806

Non-linear KNN 0.715 0.264622
Non-linear CART 0.81 0.185472
Non-linear NB 0.79 0.115758
Non-linear SVM 0.355 0.180901

with the Smaller Sample we note that here our decision trees
created with entropy have greater accuracy than those using
the Gini Index. Our decision tree made with Gini had an
accuracy of approximately 83.33% with a confusion matrix
showing seven true negatives, two false negatives, one false
positive, and eight true positives. Comparatively, our model
using entropy resulted in an accuracy of approximately 94.44%
along with eight true negatives, one false negative, zero false
positives, and nine true positives. This suggests that as the
sample datasets become smaller and the ratio between malware

and benign software samples becomes more equal, entropy is
a much better deciding measure for a root node. Furthermore,
our Random Forest model suffers from reduced accuracy with
this Small Sample dataset. Eight true negatives and eight true
positives are offset by two false negatives and zero false
positives. There is a progressive increase in false negatives
as our sample size and disparity between malicious and non-
malicious software samples has decreased. Our Decision Tree
for the Small Sample illustrates a bias toward classifying soft-
ware as benign. This indicates the increase in false negatives
as our models are now clearly underfit.

gini= 0,32

Fig. 3. Decision Tree for Small Sample

C. Discussion

Our research shows that the analysis of the varying fre-
quencies of Windows API calls made between malicious and
benign software can be used for classification with extremely
high accuracy depending on the machine algorithm used
and characteristics of the dataset. Our Large Sample dataset
(reported 99% accuracy) trained the models to recognize the
most malicious activity from the features because the data
was highly biased toward understanding the Windows API call
frequencies as malicious behavior. Our Small Sample dataset
(reported 88% accuracy) contained an equal number of mali-
cious and benign software samples, resulting in a bias toward
understanding the feature properties as benign indicators —
likely due to a higher number of benign samples in the training
dataset for the model not producing enough distinguishing
features between the classes. Using the Goldilocks analogy,
the Medium Sample dataset (reported 96% accuracy) was a
“just right” middle-ground which captured more true negatives
and true positives for malware classification based solely on
Windows API call frequency.

Our research also shows that the malware analysis machine
learning models generated by various algorithms are subject
to varying accuracy depending on the data used to build those
models as well as the algorithms selected. For example, Naive-
Bayes did not produce strong models for us, possibly due
to the conditional independence assumption inherent in the
algorithm. Furthermore, decision trees trained on our dataset
using entropy to determine the root note were much more
accurate than those using Gini. Indeed, our research suggests
that there is no “one size fits all” for malware detection
using machine learning. As noted previously, recent work
has shown the efficacy of using machine learning algorithms
to identify malware based upon observed behavior through

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

dynamic analysis. Our research supports the viability of this
approach for malware detection, with the added caveat that
it is simple to overfit or underfit machine learning models to
the malware behavior data. Considering that there is currently
no universal dataset for malware behavior or a recognized
unbiased approach to creating models in a consistent manner,
we find that it is imperative for researchers to employ exhaus-
tive investigation into varied machine learning algorithms and
techniques when evaluating the efficacy of a model’s ability
to identify malware so as to not fall victim to the bias of a
given dataset or methodology.

We also believe it is worthwhile to consider not simply the
accuracy score of a machine learning algorithm but also what
meaning can be derived from the produced model. Decision
trees in particular give us information about the relation
between features when observed visually. The differences
in the trees described in Figures 9, 14, and 19 provide an
opportunity to analyze the logic employed by the machine
learning algorithm in developing the model. As the model
learns to understand malicious behavior, we have discovered
the possibility of using the relationship between feature values
as an indication of how to understand what patterns exist in
the dynamic analysis of malware. This suggests that there
is potential for fingerprinting dynamically observed malicious
activity based upon common Windows API calls made which
perform actions that are typically malicious in nature because
they serve a typically malicious purpose. This is a different
approach from recognizing the frequencies of API calls made
by malware in that we would not be concerned with just one
or more function calls - our concern would be in what these
function calls tell us about the malicious or benign intent of
the software.

V. CONCLUSION

We have analyzed two linear and four non-linear machine
learning algorithms and compared their relative accuracies
against datasets with different proportions of malicious and
benign software. In this way, we have shown that the efficacy
of a machine learning model is dependent upon the machine
learning algorithm and the type of data that model is built
upon. Different machine learning models provide differing
results and it would appear that some are better than others
for analyzing system calls as features. Malicious and benign
software share many of the same behaviors — read/write
data, open/close files, attempt network connections, etc., albeit
in different relative frequencies. We have shown that these
frequencies can be modeled to give us the ability to distinguish
malware from benign software as well as help us to understand
the relationship between these behaviors through analysis of
decision trees.

REFERENCES

[1] Cuckoo Foundation. ”Automated Malware Analysis.” Cuckoo Sandbox
- Automated Malware Analysis. 2014. Accessed March 10, 2019.
https://cuckoosandbox.org/.

[2] Plohmann, Daniel, M. ClauB}, S. Enders, and E. Padilla. "Malpedia: a
collaborative effort to inventorize the malware landscape.” Proceedings
of the Botconf (2017).

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

Gandotra, Ekta, Divya Bansal, and Sanjeev Sofat. "Zero-day malware
detection.” In 2016 Sixth International Symposium on Embedded Com-
puting and System Design (ISED), pp. 171-175. IEEE, 2016.

Luo, Jhu-Sin, and Dan Chia-Tien Lo. "Binary malware image classifi-
cation using machine learning with local binary pattern.” In 2017 IEEE
International Conference on Big Data (Big Data), pp. 4664-4667. IEEE,
2017.

Chen, Qian, and Robert A. Bridges. ”Automated behavioral analysis
of malware: A case study of wannacry ransomware.” In 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 454-460. IEEE, 2017.

Darshan, SL Shiva, MA Ajay Kumara, and C. D. Jaidhar. "Windows
malware detection based on cuckoo sandbox generated report using
machine learning algorithm.” In 2016 11th International Conference on
Industrial and Information Systems (ICIIS), pp. 534-539. IEEE, 2016.
Kumar, B. Jyothi, H. Naveen, B. Praveen Kumar, Sai Shyam Sharma,
and Jaime Villegas. “Logistic regression for polymorphic malware
detection using ANOVA F-test.” In 2017 International Conference on
Innovations in Information, Embedded and Communication Systems
(ICIIECS), pp. 1-5. IEEE, 2017.

Liu, Qiang, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor
CM Leung. ”A survey on security threats and defensive techniques of
machine learning: A data driven view.” IEEE access 6 (2018): 12103-
12117.

Pektas, Abdurrahman, and Tankut Acarman. “Malware classification
based on API calls and behaviour analysis.” IET Information Security
12, no. 2 (2017): 107-117.

Jain, Aruna, and Akash Kumar Singh. “Integrated Malware analysis
using machine learning.”” In 2017 2nd International Conference on
Telecommunication and Networks (TEL-NET), pp. 1-8. IEEE, 2017.
Feng, Pengbin, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma.
”A Novel Dynamic Android Malware Detection System With Ensemble
Learning.” IEEE Access 6 (2018): 30996-31011.

Daku, Hajredin, Pavol Zavarsky, and Yasir Malik. "Behavioral-Based
Classification and Identification of Ransomware Variants Using Machine
Learning.” In 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pp. 1560-1564. IEEE, 2018.

Roseline, S. Abijah, and S. Geetha. "Intelligent Malware Detection using
Oblique Random Forest Paradigm.” In 2018 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
pp. 330-336. IEEE, 2018.

Smith, Michael, Joey Ingram, Christopher Lamb, Timothy Draelos,
Justin Doak, James Aimone, and Conrad James. "Dynamic Analysis
of Executables to Detect and Characterize Malware.” In 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 16-22. IEEE, 2018.

Sun, Bowen, Qi Li, Yanhui Guo, Qiaokun Wen, Xiaoxi Lin, and Wenhan
Liu. "Malware family classification method based on static feature
extraction.” In 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), pp. 507-513. IEEE, 2017.

Brownlee, Jason. ”Your First Machine Learning Project in Python
Step-By-Step.” Machine Learning Mastery. March 04, 2019. Accessed
March 10, 2019. https://machinelearningmastery.com/machine-learning-
in-python-step-by-step/.

Koehrsen, Will. "How to Visualize a Decision Tree from a Random
Forest in Python Using Scikit-Learn.” Towards Data Science. August 19,
2018. Accessed March 10, 2019. https://towardsdatascience.com/how-
to-visualize-a-decision-tree-from-a-random-forest-in-python-using-
scikit-learn-38ad2d75f21c.

Windows-Sdk-Content. ”GetAsyncKeyState Function.” Microsoft
Docs. December 04, 2018. Accessed March 10, 2019.
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-
winuser-getasynckeystate.

‘Windows-Sdk-Content. ”GetCursorPos Function.” Microsoft
Docs. December 04, 2018. Accessed March 10, 2019.

https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-
winuser-getcursorpos.

Kennedy, John, Michael Satran, and Mark LeBlanc. "API Index -
Windows Applications.” Windows Applications — Microsoft Docs.
May 30, 2018. Accessed March 23, 2019. https://docs.microsoft.com/en-
us/windows/desktop/apiindex/api-index-portal.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:03:20 UTC from IEEE Xplore. Restrictions apply.

