Analyzing Variation Among IoT Botnets Using
Medium Interaction Honeypots

Bryson Lingenfelter
Dept. of Computer Science and Eng.
University of Nevada, Reno
Reno, USA
blingenfelter @ nevada.unr.edu

Abstract—Through analysis of sessions in which files were
created and downloaded on three Cowrie SSH/Telnet honeypots,
we find that IoT botnets are by far the most common source of
malware on connected systems with weak credentials. We detail
our honeypot configuration and describe a simple method for
listing near-identical malicious login sessions using edit distance.
A large number of IoT botnets attack our honeypots, but
the malicious sessions which download botnet software to the
honeypot are almost all nearly identical to one of two common
attack patterns. It is apparent that the Mirai worm is still the
dominant botnet software, but has been expanded and modified
by other hackers. We also find that the same loader devices deploy
several different botnet malware strains to the honeypot over the
course of a 40 day period, suggesting multiple botnet deployments
from the same source. We conclude that Mirai continues to be
adapted but can be effectively tracked using medium interaction
honeypots such as Cowrie.

Index Terms—Botnet, Honeypot, Internet of Things, Mirai,
Cowrie

I. INTRODUCTION

Shortly after the Mirai malware made headlines in 2016 due
to its usage in a 620 Gbps attack against krebsonsecurity.com
[1], the botnet code was publicly released as open source
software. The original version of Mirai targeted vulnerable
Internet of Things (IoT) devices using a short wordlist based
on default username and password combinations, amassing an
army of hundreds of thousands of connected devices using
just these credentials. The release of Mirai’s source code
has resulted in numerous clones and modifications by other
malicious actors which have expanded upon the attacks present
in the original version of Mirai. Despite receiving much
attention after the 2016 attacks, IoT security is still a major
issue and new botnets appear regularly. As a result, there is a
need to keep track of developments in IoT botnets so current
attacks can be appropriately dealt with.

Honeypots are a popular technique for capturing malicious
activity. They provide a sandbox environment for malicious
actors to attack, recording each action for later analysis. Hon-
eypots have been used for a wide range of tasks, such as attack

This research is supported by the National Science Foundation (NSF), USA,
Award #1739032.

978-1-7281-3783-4/20/$31.00 ©2020 IEEE

Iman Vakilinia
School of Computing
University of North Florida
Jacksonville, USA
i.vakilinia@unf.edu

Shamik Sengupta
Dept. of Computer Science and Eng.
University of Nevada, Reno
Reno, USA
ssengupta@unr.edu

pattern comparison, root cause identification, risk assessment,
attack frequency analysis, and attack origins analysis [2].
Medium interaction honeypots such as Cowrie [3] provide a
fake shell and virtual file system to the attacker, such that
the attacker can enter commands and see believable output
without having access to a real system [4]. This is an ideal
environment for tracking the state of IoT botnets, which are
easy to capture samples from because they are automated and
not able to perform honeypot detection as thoroughly as a
real attacker. We collect data using the open source Cowrie
honeypot, which is a continuation of the Kippo honeypot.
Kippo/Cowrie honeypots have previously been used to cluster
login sessions based on session time and attacker skill [5], and
visualize attacker location and common commands [6].

In this paper we describe a honeypot configuration based on
the Cowrie SSH/Telnet honeypot for capturing remote login
sessions and downloaded files, expanding from our previous
work analyzing password attempts [7]. For our analysis, we
look at sessions which created and downloaded files. Login
session analysis has previously been done using high inter-
action honeypots and classifying each command as part of
a specific state [8]. We instead describe a simple method
for clustering these sessions using edit distance to enumerate
identical attack patterns. In light of these sessions almost
universally being associated with the Mirai malware, we
provide discussion of Mirai’s functionality. Previous work pro-
vides complete description of the original malware’s behavior,
architecture, and attack methods [9], [10]; we instead focus on
how much Mirai has been modified. There is some existing
work in this area. Y. Liu and H. Wang [11] use branch name,
configuration, IP addresses, attack methods, and credential
dictionaries to distinguish between binary files from different
Mirai variants. Other work describing Mirai has identified
versions which target different ports and devices [10].

Using our clustering results, we note how many different
Mirai variants attack our honeypots and how much they differ
from one another and the publicly available Mirai source code
in terms of commands entered, choice of filler words, and
downloaded files. We aim to provide an idea of the amount of
variation present in Mirai attacks both in terms of number
of distinct variants and variation amount. We also provide
analysis of variation in files from apparently identical malware

0761

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

loaders as well as identical IP addresses and find that many IP
addresses serve as loader servers for multiple strains of Mirai-
based botnets. Finally, we provide information on other attacks
observed by the honeypot to give some perspective regarding
the prevalence of Mirai.

II. METHODOLOGY
A. Honeypot Configuration

Malware data was collected from 3 honeypots running
the Cowrie SSH/Telnet honeypot [3], the continuation of the
popular Kippo honeypot. The Cowrie honeypot is a medium-
interaction honeypot which provides a dummy shell imple-
mented in python to the attacker with a virtual filesystem
and prefab command outputs. Cowrie can be used to emulate
an IoT system by setting the prefab outputs to be consistent
with actual IoT devices, and is therefore a good environment
for observing IoT botnets without the overhead of a high-
interaction honeypot. Cowrie has also been modified multiple
times during its development specifically in response to issues
where sessions from the Mirai malware didn’t result in a file
download, making it particularly good for capturing samples
of Mirai.

We made minimal alterations to Cowrie’s default config-
uration as of February 2019. Cowrie’s userdb was modified
slightly to allow login for the three default cowrie users
(root, tomcat, and oracle) given any password. Additionally,
the honeypot was configured to accept both ssh and telnet
connections on ports 22/2222 and 23/2223, respectively. This
was done to allow as much traffic as possible. Each honeypot
had an Apache webserver running on port 80 associated with
a registered domain name and static web page. Finally, each
honeypot had a Postfix mailserver running on port 25 with
several valid email accounts set up. Each portion of the
honeypot (login, web, and mail) ran on a separate virtual
machine and received traffic through port forwarding. For the
analysis in this paper, only the Cowrie component is necessary.

22, 2222 — 2222
23,2223 «+ 2223 cowrle.json
>
Cowrie
80 — 80 % access.log o~
> >
Internet
pfsense Apache ELK
25 4+ 25
Virtual Environment Postfix

Fig. 1. Configuration of the honeypot used for data collection. Three
honeypots were deployed in this manner.

To aggregate logs from the web and ssh servers, we used
Filebeat to ship logs to a server running the ELK stack,
composed of Elasticsearch, Logstash, and Kibana. Logstash
is used to transform the JSON data generated by Cowrie and

the Combined Log Format data generated by Apache into the
format used by the Elasticsearch search and analytics engine.
We make an ssh server available on the Postfix machine by
forwarding port 22222 on the pfsense router to port 22 on
the mail server. We also make the ELK machine accessible
through ssh over port 22 from the internal network, allowing
access to Elasticsearch and Kibana via an ssh tunnel through
the mail server. This allows us to remotely access ELK without
needing to expose the server publicly.

B. Dataset

Every event Cowrie adds to its log has a structure defined
by the event type, such as cowrie.login.success and
cowrie.command.input. Each event, regardless of type,
has a session id field that can be used to identify events
generated by the same session. To collect the data for this
paper, we enumerated every unique session id associated with
a cowrie.session.file_download event and used
Elasticsearch to collect all other events for these ids. The
file download event is used for both downloads from remote
servers and files created during the login session, so we
consider both for our analysis. The data was collected over
a period of 40 days, from 4 February 2019 to 15 March 2019,
and consists of 84,602 unique login sessions. These sessions
account for 21.2% of the 398,233 session dataset; that is,
roughly 20% of the time a connection was initiated with a
honeypot it resulted in a successful login followed by a file
creation or download. These login sessions resulted in a total
of 312 unique files collected by the honeypot.

C. Attack Pattern Comparison

To identify identical attack patterns, each session was en-
coded as a list of the first argument for each command entered
by the attacker. For example, if an attacker logged in, typed
cat /proc/mounts followed by echo test, then ended
the session, the encoded list would be ["cat", "echo"].
A command containing ; (which most shells treat as end
of line), but not commands with && or ||, was split into
multiple commands. If the first argument was a shell such
as /bin/busybox or /bin/bash we instead use the
second argument, which is the first argument to the shell
being called. To identify identical attack patterns, Levenshtein
distance between lists of arguments was used as a similarity
metric. Levenshtein distance computes the number of edits
(substitution, insertion, and deletion) required to match two
sequences of non-equal length, providing a rough estimation of
similarity between login sessions. Edit distance has previously
been used for applications such as root cause analysis [12].
The metric was normalized by dividing by its upper bound,
the largest number of arguments in either session. This metric
does not consider state or different but functionally identical
commands, but is sufficient for identifying connections from
bots using the same code. Based on the results shown in Figure
2, we consider attack patterns identical if their normalized
distance is less than 0.25

0762

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

Occurances
Qccurances

B

Distance Distance

Fig. 2. Histogram of distance measures for the two most common attack
patterns. For both patterns, there is a clear distinction between distances less
than .25 and distances greater than .25.

III. SESSION ANALYSIS

The two most common attack patterns seen on the honeypot
are closely related to publicly available Mirai loader code.
These two attack patterns account for 97.7% of the dataset, as
well as 244 out of the 312 unique files. 236 of these files were
identified as strains of the Mirai IoT botnet malware by at least
one antivirus software used by the VirusTotal antivirus report
aggregator [13]. Of the remaining eight, six were identified
by at least one source as Gafgyt, another earlier IoT botnet
malware with behavior very similar to Mirai [14] [15], and
the other two were not flagged as malware by any antivirus
at the time we submitted them for analysis. The two attacks
are entirely accounted for by 125 unique IPs, of which 16 are
common to both attacks.

To better understand the observed botnet loader sessions,
we provide a brief description of Mirai’s spreading function-
ality. The Mirai botnet grows through scanning of randomly
generated IPs by infected devices. When an infected device
detects another vulnerable device, it sends the credentials it
used to access that vulnerable device to a report server. After
a certain period of time, a loader device then connects to
the compromised device using the reported credentials and
downloads and executes the Mirai malware to add the device
to the botnet. A visual depiction of this behavior is provided
in Figure 3.

Report Server Loader Server

-~ | ®
®
I

(T— —>® ’
—>
E® 0
Brute-force
scan Honeypot

Botnet

Fig. 3. Diagram showing how scans from a Mirai botnet result in attempted
infection by a loader device.

The second most common attack pattern, which accounts

for 23.4% of the observed sessions, appears to directly use the
loader server code from the public release of the Mirai source
code [16]. The loader attempts to find a writable directory by
repeatedly redirecting output from echo to a file in one of
several different directories, attempting to read the file using
cat to see if this succeeded, then removing the file with rm.
After finding a writable directory in this manner, determining
the system’s cpu architecture by reading the header for the
echo system binary using cat, and checking for wget
and tftp, the loader downloads a file using wget then
attempts to execute it. In the publicly released Mirai loader,
the downloaded file is a variant of Mirai for the compromised
system’s cpu architecture. We note that all malware collected
by the honeypot was compiled for x86 systems, which is
consistent with the x86_64 architecture displayed by Cowrie.

The most common attack pattern follows the same logic as
the Mirai source code, but does not use the same commands.
Instead of using echo to save raw hex to a file, this pattern
uses > to create empty files in several directories then attempts
to cd to those directories if the redirection was successful.
Unlike in the original Mirai loader, the attacker in this case
does not remove any of the created files. Additionally, this
pattern uses read to obtain a binary file header if cat
fails. However, after a writable directory is found and the
cpu architecture is determined the loaders are identical. This
pattern is far more common than the previous pattern, and
accounts for 74.3% of the observed sessions.

Most of the differences internal to each attack pattern are
related to the first commands entered by the loader. We define
these commands as everything coming before the first >
for the most common pattern and everything coming before
the first echo for the second most common pattern. All
loaders generally begin with enable, shell, and sh, in
which the attacker attempts to gain access to privileged-mode
commands and run a Bourne shell [17]. Minor variations on
these commands show up in different loaders, as shown in
Table 1. It appears that different attackers use the same loader
structure, but make minor modifications to the first commands
run by the loader.

TABLE I
INITIAL COMMANDS FOR MOST COMMON ATTACK PATTERN

Occurrences Command Sequence
10,339 enable, system, linuxshell, shell, sh
92 enable, system, shell, ping, sh, sh
51,867 enable, system, shell, sh
147 enable, system, shell, sh, linuxshell
305 shell, sh
117 system, shell, sh

Every loader following the second pattern then checks the
response to an arbitrarily chosen filler keyword which is titled
TOKEN_QUERY in the Mirai source code [16]. The expected
response to this query, titled TOKEN_RESPONSE in the Mi-
rai source code, is TOKEN_QUERY: applet not found.
This is the response generated by the IoT devices targeted by
Mirai, which use the Busybox shell. We observed a total of

0763

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

45 unique choices for this variable, 34 of which showed up
in the most common attack pattern and 12 of which showed
up in the second attack pattern (1 was used for both). After
receiving TOKEN_RESPONSE from the victim device, loaders
following the second attack pattern almost always then use ps
and cat /proc/mounts to further fingerprint the system.
The first pattern always forgoes these checks.

The IP addresses observed in the most common two attack
patterns follow an exponential distribution. In both patterns,
the majority of IP addresses were seen under 100 times,
but the most common IP addresses were seen upwards of
10,000 times. This is shown in Figure 4, which plots the IP
distribution on a logarithmic scale. Although there are a large
number of active botnets, a small portion of them account for
the majority of malicious file uploads on the honeypot.

Qccurances (log scabe)
Qcourances (log scabe)

IP Address

IP Address

Fig. 4. Frequency of IP addresses for most common two attack patterns,
plotted on a logarithmic scale.

These two patterns do not account for every strain of Mirai
loader seen on the honeypot. A far less common attack which
accounts for just .415% of the dataset (315 sessions from
1 IP), is near identical to the original Mirai source code
with substantial modifications to the first few commands.
Additionally, Mirai sessions which did not use echo or >
to create files and did not result in an attempted file download
are not included in the dataset.

IV. FILE ANALYSIS

Manual inspection of the binary files downloaded by the
two forms of Mirai loader demonstrates a large amount
of variation in binaries even for identical loaders. At least
11.9% of the files are packed, with that percentage of files
containing “packed with the UPX executable packer,” the
most popular binary packer among malware authors [18].
Some malware contains specific identifiers, such as “Botnet
Made By greek.Helios,” “Botnet Made By R2F,” and “Edit
by ZerOx.” 22.1% of the collected files contain the string
“/ctrlt/DeviceUpgrade_1,” indicative of an attack targeting
CVE-2017-17215 [19]. Additionally, 13.1% of the files were
compiled for 64 bit systems and 86.9% were compiled for 32
bit systems. To categorize the malware, we use the choice
of TOKEN_QUERY, which is apparent in both loaders. In
addition to appearing at the beginning of the session for
the second attack pattern, for both attacks TOKEN_QUERY is
placed after some commands so that successful completion
of the command will be followed by TOKEN_RESPONSE.

Mirai variants commonly, though not always, use differ-
ent filler words in their loader. Figure 5 shows the dis-
tance matrix for TOKEN_QUERY for the second most com-
mon attack pattern, from which it can be seen that similar
choices of TOKEN_QUERY in the loader correspond to near-
identical loaded malware. Lines separate different choices of
TOKEN_QUERY, and shaded cells indicate similarity between
files. Distances between malware samples are calculated using
ssdeep, a context-triggered piecewise hashing algorithm [20].

dacidyl13t

TOKEN_QUERY

B
e 4
7
Yy,

TOKEN_QUERY

Fig. 5. Distance matrix of ssdeep hashes for Mirai samples from second
attack pattern, grouped by choice of TOKEN_QUERY. Darker blues indicate
a higher similarity score.

Ssdeep is not robust for detecting functionally identical files
which don’t have identical bytes or modifications which alter
the context triggering [21]. For example, we found through
static analysis that the “iDosYou” strain is near identical to
the “daddyl33t” strain with a few additional subroutines in
the middle of the binary, but ssdeep indicates these files have
0% similarity. However, ssdeep has very good precision [21]
and malware considered highly similar are therefore likely to
represent very minor modifications of the same code. This
can be seen in Figure 5 in that files with different values for
TOKEN_QUERY are never detected as similar by ssdeep. For
the filler words accounting for the most variance in file hashes,
however most of the unique files observed are near identical.
For most of the files collected from the “iDosYou” loader,
which accounted for the most unique files in the second most
common pattern, the only apparent difference is a single IP
which varies from sample to sample. This suggests that this
same malware is associated with many different loader servers.

To better understand the scope of attacks against the honey-
pot, each session was reduced to a mapping between IP and the
hash of the file downloaded during the session. This analysis
was done separately for each attack pattern. The data does

0764

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

0 —w PR w L

10 4 . .

20 . - -

40 4 "o

IP Address
-
'

60

701 -

8000

6000

4000

2000

File hash

Fig. 6. Mapping between IP addresses and file hashes for the most common attack pattern. White indicates the IP and file never appeared together, otherwise
the color ranges from dark purple (IP and hash appeared together few times) to yellow (IP and hash appeared together many times).

not display a one-to-one mapping between IP address and file

hash; some IPs download different files in other sessions, and iDdosYou 1 .
some files are downloaded by multiple IPs. Interestingly, for KALON
the most common attack pattern the cardinality of the file set ECCHI
is larger than the cardinality of the IP set. This can be seen 2 YOMP 1
in Figure 6, which provides a weighted mapping between IP 2 HADES 1
addresses and files. & daddy|33t | B
8‘ HORIZON -
é AndSmOkeDoinks .
1] 10 20 30 40 50 60 o
P —— < - 4 WASTED | .
. Nikita |
.] L]] YEET
ol b I - "= = a"
L] yami
?Gl '-‘..u - 5000 é%%%gé%g%ééégﬁ
L) - > 8 = B ESF 5 8 £ & w -
T 5 &8 &= < > T oM
" 4000 2 3 8 I 2 x 2 S 3
w 'I.. = ¥ T = = 9 e g
o_1 = 2 = s
o 30 " n - g
= l o - 3000 s
be " FN_BINARY Name
a ~ . 2000
40 1
L 1000
o L Fig. 8. Mapping between TOKEN_QUERY and FN_BINARY for the second
a® pattern.
50 .
L]
: L] L]
- "
g . is clear that many IPs are downloading highly distinct variants
- - T) of Mirai. One IP address, for example, downloaded five unique

Fig. 7. Mapping between IP addresses and file hashes for the second most
common attack pattern. The first column is an empty file hash (no file was
downloaded).

It appears common for attackers to change the botnet con-
nected to a loader device, resulting in the same IP attacking the
honeypot with several different strains of the Mirai malware.
It is far more rare, in contrast, for different IP addresses to
download the same malware to the honeypot. While many
unique files are presumably minor updates to existing files, it

files to the honeypot. Three of the five were signed in ASCII
by one of two authors. One was packed with UPX, and
two contain strings indicating an attack attempting to exploit
CVE-2017-17215. Another IP downloaded 29 unique files,
demonstrating similar variation in packing and attack methods.
We surmise that attackers deploy different strains over time to
expand their botnets further, or different hackers take over the
same loader device. We again note that 16 of the 125 unique
IPs associated with the two most common attacks launched
both the most common attack pattern and the second most
common attack pattern, indicating that the same IP addresses

0765

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

TOKEN_QUERY Name

Tsunami
IROIM
xbox
UPPOC
Amakano
BOTNET u u
MIDORII
kirai [|

40 t';u 60 ?;}

IP Address

Fig. 9. Mapping between IP address and TOKEN_QUERY variable for the most common attack.

are used for different botnet architectures entirely.

An entirely different relationship between file hash and IP
address is apparent in the second most common attack pattern.
Unlike the first pattern, in which every session results in a file
being downloaded to the system, file downloads frequently
fail to be captured in the second attack. This can be seen
in the mapping between IP address and file hash, shown in
Figure 7. The majority of IP addresses show up in the first
column, representing an empty hash (meaning no files were
downloaded). Additionally, the number of unique files is no
longer greater than the number of unique IPs for this attack.

Another observation from the two Mirai loader attacks is
the mapping between TOKEN_QUERY and the name of the
downloaded binary (FN_BINARY), shown in Figure 8. In the
leaked Mirai source code, these two variables are defined
as “ECCHI” and “dvrHelper” (we note that this is different
from the samples of Mirai collected before its release, where
“MIRAI” was used rather than “ECCHI” [14]). Mirai variants
are sometimes named after their choice for TOKEN_QUERY,
as we have done in this paper. While the mapping between
TOKEN_QUERY and FN_BINARY is fairly diagonal, there are
a few cases where two FN_BINARY variables map to the same
TOKEN_QUERY and vice versa. This seems to indicate that
malware is further modified by other attackers, resulting in
variants of variants. We also suggest some malware authors
chose to use the same TOKEN_QUERY variable as existing
strains.

The TOKEN_QUERY variable can be further used to show
that the same IP addresses are launching a wide range of
attacks. As shown in Figure 9, there is not a clear relationship
between IP address and the choice of this variable. Unlike the
mapping between IP address and file hash, which is mostly di-
agonal, the mapping between IP address and TOKEN_QUERY
is scattered. Most filler words are associated with a large range
of loader server IPs and many IPs are associated with two or
more loader strains. This is consistent with our observation
from mapping between IP address and file hash that the same
IP addresses are launching a variety of different attacks.

w ES v o ~ @
-
-

Occurances (linear scale)

N

-

200 300

IP Address

400 500

Fig. 10. Frequency of IP addresses for the ssh brute-force attack, plotted on
a linear scale.

V. OTHER ATTACKS

By removing common Mirai attacks from our dataset,
we can gain a better understanding of attacks against the
honeypot which are not related to IoT botnets. Accounting
for the common three Mirai patterns leaves 1.879% of file-
downloading sessions unaccounted for. Most of these are an
ssh-based attack which accounted for 1.55% of the unique
sessions. This attack was short and simple; an attacker logged
in, tried several methods of keeping the server from tracking
their bash history, uploaded an ssh public key, then logged
out. Due to the sandbox nature of the Cowrie honeypot, the
ssh key would be saved but unusable for remote login. Despite
only accounting for under 2% of the dataset, this attack had
by far the largest number of unique IPs. Of the 1,312 unique
sessions, 564 were from unique IPs. This is more than four
times the number of IPs observed by the most common two
attack patterns, despite those patterns accounting for almost
the entire dataset.

The majority of the remaining sessions (.171% of the total
dataset; 145 sessions from 9 IPs) appear to be a simplified

0766

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

version of the Mirai loader. The attacker uses the same few
initial test commands as the Mirai loader, but instead of
performing any further checks using echo, rm, and output
redirection, the attacker simply downloads a bash script that
attempts to download binaries compiled for different archi-
tectures until one works. The remaining 133 sessions in the
dataset vary widely in attack type. In two different attack
patterns, accounting for 19 sessions, the attacker logs in using
ssh and downloads a perl script which tries to add the honeypot
to an IRC-based botnet. In one attack pattern, accounting for
2 sessions, an attacker logs in using ssh and downloads a
coin-mining malware. In a few particularly strange sessions,
the attacker spends three minutes repeatedly downloading and
attempting to run a shell script similar to the one downloaded
by the simplified mirai loader.

VI. CONCLUSION

Mirai remains a major security issue, with botnet attacks on
vulnerable telnet ports being by far the most common attack
to download or create files. We also observe ssh attacks and
older, IRC-based botnet attacks, but these are by far in the
minority. We show that the Cowrie honeypot is an effective
system for collecting samples of Mirai and Mirai sessions,
and identical loader sessions can be found by using simple
edit distance between command sequences. From the data
collected by our honeypots, we find that a relatively small
number of loader devices running an even smaller number of
loader code bases are responsible for a wide range of botnet
attacks based on Mirai. We conclude that Mirai is directly
or indirectly responsible for a vast number of attacks on IoT
devices, but can be easily tracked using medium interaction
honeypots and sequence matching.

For future work, analysis could be expanded by faking
different operating systems using Cowrie to collect a wider
range of files. Additionally, more in-depth analysis of the
collected files would be needed to gain a better understanding
of how much downloaded files vary between strains. While
ssdeep shows which files are nearly identical, it is not robust
enough for complete analysis and a more flexible solution is
necessary. A longer time frame and consideration of sessions
which don’t result in file downloading would also assist
analysis.

REFERENCES
[1] B. Krebs. (2016, September) Krebsonsecurity hit with record ddos. [On-

line]. Awvailable: https://krebsonsecurity.com/2016/09/krebsonsecurity-
hit-with-record-ddos/

[2] M. Nawrocki, M. Wihlisch, T. C. Schmidt, C. Keil, and
J. Schonfelder, “A survey on honeypot software and data
analysis,” CoRR, vol. abs/1608.06249, 2016. [Online]. Available:

http://arxiv.org/abs/1608.06249

[3] M. Oosterhof. Cowrie. [Online]. Available: github.com/cowrie/cowrie

[4] G. Wicherski, “Medium interaction honeypots,” in German Honeynet
Project, 2006.

[5] D. Fraunholz, D. Krohmer, S. D. Anton, and H. Dieter Schotten,
“Investigation of cyber crime conducted by abusing weak or default
passwords with a medium interaction honeypot,” in 2017 International
Conference on Cyber Security And Protection Of Digital Services (Cyber
Security), June 2017, pp. 1-7.

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

I. Koniaris, G. Papadimitriou, and P. Nicopolitidis, “Analysis and visu-
alization of ssh attacks using honeypots,” in Eurocon 2013, July 2013,
pp. 65-72.

L. Vakilinia, S. Cheung, and S. Sengupta, “Sharing susceptible passwords
as cyber threat intelligence feed,” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018, pp. 1-6.

D. Ramsbrock, R. Berthier, and M. Cukier, “Profiling attacker behavior
following ssh compromises,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07), June 2007,
pp. 119-124.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, 2017, pp. 1093-1110. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity 17/technical-
sessions/presentation/antonakakis

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.
Y. Liu and H. Wang, “Tracking mirai vari-
ants.” Virus Bulletin, 2018. [Online]. Auvailable:
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-
Liu-Wang.pdf

F. Pouget and M. Dacier, “Honeypot-based forensics,”
in AusCERT Asia Pacific Information technology Security
Conference 2004, Brisbane, Australia, 2004. [Online]. Available:
http://www.eurecom.fr/publication/1417

Virustotal. [Online]. Available: virustotal.com

MalwareMustDie. (2016, August) Mmd-0056-2016 - linux/mirai,
how an old elf malcode is recycled.. [Online].
Available: http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-

linuxmirai-just.html

G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and
the iot zombie armies,” in MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), Oct 2017, pp. 267-272.
Mirai-source-code. [Online]. Available:
https://github.com/jgamblin/Mirai-Source-Code/

S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet
worm for iot devices,” Rapidity Networks, October 2016. [Online].
Available: https://security.rapiditynetworks.com/publications/2016-10-
16/hajime.pdf

K. A. Roundy and B. P. Miller, “Binary-code obfuscations in prevalent
packer tools,” ACM Computing Surveys (CSUR), vol. 46, no. 1, p. 4,
2013.

Huawei router hg532 - arbitrary command execution.
Available: https://www.exploit-db.com/exploits/43414

J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital Investigation, vol. 3, pp. 91-97, Sep. 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.diin.2006.06.015

Y. Li, S. C. Sundaramurthy, A. G. Bardas, X. Ou, D. Caragea, X. Hu,
and J. Jang, “Experimental study of fuzzy hashing in malware clustering
analysis,” in 8th Workshop on Cyber Security Experimentation and
Test (CSET 15). Washington, D.C.: USENIX Association, 2015. [On-
line]. Available: https://www.usenix.org/conference/csetl5/workshop-
program/presentation/li

[Online].

0767

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:04:09 UTC from IEEE Xplore. Restrictions apply.

