An Automated Framework for Real-time Phishing
URL Detection

Farhan Sadique®, Raghav Kaul®, Shahriar Badsha*, Shamik Sengupta§
Dept. of Computer Science and Engineering
University of Nevada, Reno, NV, USA
fsadique @nevada.unr.edu®, raghavkaul@nevada.unr.eduT, sbadsha@unr.edu®, sseng:{upta@unr.edu§

Abstract—An increasing number of services, including banking
and social networking, are being integrated with world wide
web in recent years. The crux of this increasing dependence
on the internet is the rise of different kinds of cyberattacks on
unsuspecting users. One such attack is phishing, which aims at
stealing user information via deceptive websites. The primary
defense against phishing consists of maintaining a black list of
the phishing URLs. However, a black list approach is reactive and
cannot defend against new phishing websites. For this reason, a
number of research have been done on using machine learning
techniques to detect previously unseen phishing URLs. While
they show promising results, any such implementation is yet to
be seen. This is because 1) little work has been done on developing
a complete end-to-end framework for phishing URL detection 2)
it is prohibitively slow to detect phishing URLs using machine
learning algorithms. In this work we address these two issues by
formulating a robust framework for fast and automated detection
of phishing URLSs. We have validated our framework with a real
dataset achieving 87% accuracy in a real-time setup.

Index Terms—phishing, malicious, url, online learning, ma-
chine learning, cybersecurity

I. INTRODUCTION

World wide web plays a major role in modern life. It offers
numerous functionalities including social networking, banking,
and e-commerce. The primary reason for widespread adoption
of internet is the flexibility it offers. For instance, we are
presently able to perform major financial operations from the
convenience of our homes. However, such flexibility comes at
a price in the form of cyberattacks. A large number of unsus-
pecting users fall victim to various cyberattacks every year.
McAfee and the Center for Strategic and International Studies
(CSIS) calculated the global annual cost of cybercrimes to be
almost 600 billion US dollars [1].

A major type of cyberattack, that affects the people and
businesses alike, is phishing [2]. The attacker of a phishing
attack tries to gather sensitive information of an user by
disguising as a trustworthy third party. Such an attack usually
consists of directing users to a fake website that resembles
another legitimate website. The URL of the fake, phishing
website is typically distributed via emails or instant messages.
Oftentimes it is very difficult or impossible for a user to detect
such fake websites just by looking at the content of the web
page. Phishing attacks cost a mid-sized company about 1.5
million US dollars on average [3].

This research is supported by the National Science Foundation (NSF), USA,
Award #1739032.

978-1-7281-3783-4/20/$31.00 ©2020 IEEE

It should be noted here that phishing URLs are part of a
broader set called malicious URLs. Other types of malicious
URLs include drive by download URLs, spam URLs etc. Even
though the rest of the work discusses detecting phishing URLSs
only, the generalized procedure can easily be tweaked for
detecting all kinds of malicious URLs.

The most popular technique used to detect phishing URLSs
is the use of blacklists [4]. A blacklist is simply a list of
malicious URLSs, periodically updated by community users or
cybersecurity experts. However, the Webroot Threat Report
estimates [5] that nearly 1.5 million phishing websites are
created every month. As a result it is not possible to blacklist
all phishing websites and corresponding URLs in a timely
manner. So, an automated framework to detect new phishing
URLs is required. Such a system should detect previously
unseen phishing URLs with high accuracy without any human
interaction.

Many approaches have been explored towards such an
end including machine learning [6]-[10]. A machine learning
approach begins with collection of a dataset. The dataset
includes different features and labels (benign vs. malicious)
of a large number of URLs. A classifier is then trained with
the collected dataset.

The underlying assumption is that a malicious URL has a
significantly different feature distribution than a benign URL.
As a result a good machine learning approach should be able
to differentiate between benign and malicious URLs based on
those features. This hypothesis has been verified in numerous
previous works [4], [11]-[15] using diverse dataset and state-
of-the-art machine learning algorithms.

A. Challenges & Motivation

While many of the previous works show promising results,
adoption of such a mechanism in the industry is yet to be seen.
This is due to the fact that -

1) A complete, standard framework for detecting malicious
URLSs has not been proposed.

2) It is prohibitively slow to detect malicious URLs using
machine learning algorithms in a real-time setup.

3) The URL space is highly unbalanced with many more
benign URLs than phishing URLs.

4) The URL space is dynamic and changes over time,
meaning the classifier must be updated periodically.

0335

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

5) The growth of the URL space is unbounded, which
means we cannot use traditional batch learning methods
to train on all URLs.

This work aims to tackle these challenges by introducing a
complete automated framework for phishing URL detection.
While the framework is built for detecting phishing URLSs
only, the general approach applies to identifying all types of
malicious URLs.

B. Contribution

The primary contribution of this work is introducing a
complete, automated, real-time framework to detect phishing
URLs. Other major contributions of this work are:

1) We formulate the design of a framework to automatically
detect phishing URLs.

2) We use an online or incremental learning method to
tackle the unbounded growth of the URL space.

3) We propose a delayed feature collection algorithm to
increase performance of our system.

4) We propose a selective sampling algorithm to further
improve the performance.

5) We test our system’s accuracy and performance with a
very diverse and unbiased dataset.

6) We analyze the feature importance to gain meaningful
insights into the dataset.

Our system is able to label an URL with 87% accuracy
without suffering from any performance bottleneck.

This work outlines the general approach and leaves room
for improvement to future researchers in this field. Since, our
work clearly outlines the compromise between accuracy and
performance of the detection process, it is possible to tune
this system to achieve acceptable accuracy without conceding
considerable speed or performance.

II. RELATED WORK

Many previous researchers have studied the detection of
phishing URLs and malicious URLSs in general. Many of these
works used machine learning approaches to detect malicious
URLs. The performance of their work depends primarily on
the feature set, the dataset and the particular algorithm used.

Ma et al. [12] compared three classifiers, namely Naive
Bayes (NB), support vector machine (SVM) and logistic
regression (LR) on a very good dataset. They used features
like bag of words (BOW), IP address, WHOIS information,
domain characteristics and geolocation. They cross verified the
results using two datasets created from 4 sources. However,
the simple classifiers used in their work is not suitable for
deployment. Furthermore, the dataset had a ratio of 1 : 3 for
malicious and benign URLSs. In reality any such a system will
see many more benign URLSs than malicious URLs.

Tan et al. [15] further tested many more classifiers including
AdaBoost (ADB), decision tree (DT), gradient boosted trees
(GDB), perceptrons (PE), K-nearest neighbor (KNN), and
random forest (RF). ADB performed best in their scenario.
However, the drawback of their work is they worked with a
very large dataset with very limited number of features (24).

Such a training often suffers from over fitting. In other words
their algorithm is comparable to a traditional blacklist because
of the massive dataset they used.

Sahingoz et al. [16] were one of the first to use natural
language processing (NLP) on URLs to collect features. They
also adopted a heuristic approach to detect common brand
names in URLs. Another novel contribution of their work
is detecting typosquatting. Typosquatting is a technique that
malicious websites use to catch typos in legitimate URLs.
They also collected a large dataset by querying a search
engine. Hence, it is susceptible to bias of user query behavior.
Furthermore, their dataset was balanced as some other works.
Finally, they only used 10% of the collected data because of
performance limitation.

Xiang et al. [13] introduced two new features in detecting
malicious URLs — 1) HTML content of the actual page and
2) PageRank [17] of the URL. Pagerank has proven to be a
very promising feature in detecting malicious URLs as they
usually have a very low PageRank. The novel contribution of
their work was detecting duplicate malicious websites really
fast from previously created hashes of visited websites. As a
result their algorithm can in theory detect the reused malicious
content in different URLs. However, their dataset was very
small and the heuristic algorithm to detect duplicate websites
was very specific.

Mamun et al. [18] used only lexical features derived from
the URL itself for fast detection of malicious URLs. They
hypothesized that the URL itself contains enough features to
differentiate between a benign and a malicious URL. However,
their benign URL dataset was highly biased with pages from
a handful high ranked websites. Moreover, a recent report
by WebRoot revealed that nearly 40 percent of all malicious
URLs are found on compromised good domains [19].

Zhao et al. [20] used time-varying features of a URL to
detect if it becomes malicious over-time. They also came up
with a good training metric to tackle the unbalanced nature
of the dataset with many more benign URLs than malicious
URLs. They were also the first to use an online learning
algorithm with selective sampling for fast detection. While
the selective sampling of malicious URLs was a significant
contribution they used an existing dataset with little to no
modification of the algorithm for URL detection.

Jeeva et al. [21] also used only lexical features derived
solely from the URL to differentiate between malicious and
benign URLs. However, their approach was statistical in
nature and they came up with 14 statistics of the dataset
to differentiate between malicious URLs manually. Although
really fast, this approach is prone to human error and will fail
to adapt to the ever changing nature of the world wide web.
Any ensemble technique like random forest should outperform
their algorithm in the long run.

ITII. SYSTEM ARCHITECTURE

The functional diagram in figure 1 shows the system archi-
tecture of our proposed system. The architecture is explained
in the following subsections:

0336

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

f Start

Get i-th
Feature sat

=1
Lexical Features

i=2
Host Features

Y

Classify URL

Score less

than benign YES—> label = benign FC)
threshold A
i=3
WHOIS Features NO
A 4
= Score greater ;
Input |=4 A YES—» label = malicious >

i URL ; GeolP Fastures than malicious kA)

threshold?

NG

i=0 N
MAX = 4

i=i+1 €N

Report
URL Label End

N

Training

Model

Update Model —O
with labelled data

X Get Label from
YES—> Human Classification O ::

Fig. 1. Functional Diagram of System Architecture

A. Overview of Data Flow

The process begins with an input URL. The URL can be
input by an user via an API that we built. Then, we collect
the 1% set of features (i = 1 in figure 1). The description of
the feature sets and how they are ordered is given in III-B.
We then try to classify the URL with this 15 set of features
only. Rather than getting a binary classification label € 0,1
we calculate its score € R and score € [0,1]. The score
denotes the probability of the URL being malicious.

It should be noted here we use an online/incremental
learning classifier instead of a batch learning classifier in our
system. This is because a batch learning classifier will become
obsolete, as the feature space of URLs change over time.
However, since our dataset grows in an unbounded manner, it
is impractical to retrain a batch learning classifier periodically.
On the other hand an online learning classifier can be updated
with one data sample, making it suitable for the task at hand.

This score is then used to decide if the URL can be
classified as either benign or phishing with high confidence.
If the confidence is low, the next set of features are collected
and the process continues till there are no more feature sets to
collect. Although, we worked with 4 sets of features, we can
easily extend the framework to include an arbitrary number of
feature sets.

If we fail to classify the URL with high confidence after
collecting all features, we request the label from a human. The
human-label can be requested from a system administrator or
decided from user votes. The label is considered ground truth

is used to update our classifier training model. If our classifier
can classify the URL with high confidence at any stage, it
stores the label and reports it to the user.

Performance Consideration: We do not collect all the
features right away because more time is required to collect
the latter feature sets than the former ones. So, we try not to
collect the latter features right away. This is further explained
in III-D

We also do not update our classifier model with all the
URLs. We only do so when our algorithm fails to classify it
completely. In that case we request to label to a human. We
than update our classifier with that URL’s features and label.
This selective sampling technique is explained in III-E.

B. Feature Sets

As seen in figure 1, we work with 4 sets of URL features:
lexical, host, GeolP, and domain WHOIS. Each feature set is
described below:

1) Lexical Features: Lexical features are based on the URL
string itself. Several examples of typical lexical features
are number of characters in the URL, number of dots in
the URL and number of symbols in the URL. They can
be related to not only the whole URL but specific parts
of it also like the domain, the filename or the query. We
collect several such features from the URL string itself.

2) Host Based Features: Host based features are based on
the server that hosts the webpage pointed by the URL.
The simplest such feature is the IP address that the URL
resolves to.

0337

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

3) Domain WHOIS Based Features: Any Regional Internet
Registry (RIR) like ARIN or APNIC maintains it’s own
domain WHOIS database that contains information on
the domain registrant. In addition to general information
like name of registrant, the database also includes the
creation and expiration dates of the domain registration.
These data can be queried using the RDAP [22] protocol.
We analyze these data to parse a great number of fea-
tures. Examples are ‘number of days before the domain
registration expires’ and ‘number of days passed after
creation of the domain’.

4) GeolP Based Features: GeolP features are obtained from
the IP address of the host. We used the GeoLite2 [23]
IP geolocation databases from MAXMIND to collect
various GeolP features of the host IP address. GeolP
features include autonomous system number (ASN),
country, city, latitutde, longitude etc.

These feature sets are used in our system to classify the
URLSs with reasonable accuracy. Since, our primary goal is to
propose and validate a framework, we choose to do so with
an adequate number of features. However, our process being
linear, it is possible to add more feature sets in future.

C. Online Machine Learning Classifier

Phishing URL detection is a dynamic problem. This means
we need to update our classifier model periodically. How-
ever, since the URL space grows without bound we cannot
train a batch learning classifier indefinitely. In contrast, an
online/incremental learning [24] classifier can be updated
iteratively.

If, wt,,_1 is a prediction model trained with n —1 instances
of data, an online learning algorithm can update it for the n*"
data instance with features xt,, and label yt,, as follows:
Wt = Wty_1+ fo(Xtn, yt,), where f, is some update func-
tion. On the other hand a batch learning algorithm achieves
the same as follows:
wty, = fo({xt1, xta, ... Xtn}, {yt1, yta, ... yt,}), which
is computationally infeasible because n grows without bound.

D. Delayed Feature Collection

Our system achieves improved performance during real-time
URL classification, because of how we collect the feature
sets. Our algorithm assigns a cost of collection to each
feature set. We calculate cost as the time required to collect
the corresponding set of features. We ignored the required
processor cycles from cost calculation because the feature
collection process is I/O limited, not processor limited.

On average our system collects the ‘lexical features’ of an
URL in 3 ms. In contrast it takes about 1453 ms to collect
the “WHOIS features’ of an URL on average. Thus, the cost
estimation and corresponding ordering of feature sets have
significant impact on the real-time performance of our system.

The relative ordering of the feature sets in figure 1 is based
on their respective cost. As shown in the figure, our algorithm
tries not to collect the more expensive feature sets unless
necessary. We try to classify the URLs with the less expensive

feature sets first before collecting the more expensive ones.
This improves the performance and responsiveness of our
system.

Algorithm 1 SELELCTIVE SAMPLING
> Classifier model for online learning
1: global clf
> Get i feature set of url u
2: procedure GETFEATURES(u, %)
> Update classifier with features x of url u
3: procedure FITONE(cIf, x, label)
> Probability that url « with features x is malicious
4: procedure PREDICTPROBA(cIf, x)
> Get label of url u from human classification
5: procedure REQUESTLABEL(u)

6: u > URL data sample in consideration
7 MAX 4 > Number of feature sets
8: e[MAX] > u is benign if score < €p]i]
9: eq[MAX] > u is malicious if score > e, |i]

> Initialize feature vector x of length n to all —1 (NaN)
10: 240
11: init float array x[n)
12: for j < 1 ton do

13: x[j] « -1

14: do

15: 14— 1+1

16: Xi,n; < GETFEATURES(u, 1)

17: for j < 1to n; do

18: x[j] « xi[j]

19: score < PREDICTPROBA(cIf, x)

20: while (ep[i] < score < enfi] or i < MAX)

21: if i > M AX then > Automatic classification failed
22: label = REQUESTLABEL(u)
23: FITONE(cIf, x, label)

E. Selective Sampling

We further employ selective sampling to improve the perfor-
mance of our real-time system. The concept was first explored
by Zhao et al. in [20]. However, we have developed a simpler
algorithm that generalizes to any online/incremental learning
classifier. The algorithm 1 shows the pseudocode for how we
did selective sampling.

The parameter sets malicious threshold, €, and benign
threshold ¢, lie in the heart of the selective sampling algorithm.
We need to maintain these thresholds after getting each feature
set (for each 7 € 1,2, 3,4 in our case).

For a particular ¢ and for a particular label (benign or
malicious), we can incrementally maintain the mean and the
variance of the probability scores using following formulae:

Ty :n_l(sn—i—(n—l) X Tp—1) ¢))

0338

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

1 _
n— 1Sn—1 + E(xn - xn71)2 (2)

Here x is n'"* probability score, T, is the mean and s is the
variance. We then calculate the standard deviation s,, = \/% .

Now if Z¥ and s’ are respectively the mean and standard
deviation of probability scores of only benign URLs for a
particular <. Then for a 95% confidence interval we caculate
the benign thresholds as:

=1 —2x s 3)

Similarly, for this particular ¢ the malicious threshold is:
Em =Ty +2 X 80 4

We maintain a record of these parameters for each ¢ in our
system.

The above equations depend on the parameter confidence
interval (95% in our example). We can decrease the confidence
interval to achieve better performance or vice versa. This is
because increasing the confidence interval means we will have
to collect the more expensive features (Whois and GeolP)
more often.

For example, in our tests we saw that it takes about 4060
ms to collect GeolP features in contrast to only 3 ms for
lexical features. Thus increasing the confidence interval has
significant impact upon the system’s performance.

IV. EXPERIMENTAL VERIFICATION AND RESULT

A. Dataset

We have collected a dataset of about 60000 benign URLSs
and 38000 phishing URLSs for this work. All these URLs are
collected from Phishtank.com [25]. Many previous such works
used web crawling to generate benign URLs out of highly
ranked websites only. This approach often results in a biased
dataset because the benign URLs are only sampled from a
small subset of all URLs.

Our dataset on the other hand include only verified benign
URLSs by Phishtank users. The advantage of using this dataset
is that these URLs were once reported by a suspecting user
as possible phishing URLs. Later other users of Phishtank
analyzed and verified them as not malicious. As a result these
benign URLs are a better representation of the real world
dataset with more common characteristics to phishing URLSs
than randomly crawled reputed URLs.

Furthermore, for a URL to be valid phishing URL it must
host a web-form of some sort to collect user data including
username and password. Randomly crawled websites will
often not have a sign-in or other such forms. Additionally,
sign in URLs often include words like ‘login’, ‘signin’ etc.
in the actual URL. Other random URLs will not have these
words in the URL text, creating noises in the dataset. Our
dataset does not suffer from such noise or biases.

TABLE 1
COMPARISON OF BATCH LEARNING CLASSIFIERS
Algorithm | Accuracy (%) | ROC AUC (%) | Time (s)

KNN 85.12 83.78 0.128
ADB 80.45 77.87 3.205
GDB 83.71 80.68 8.882
DT 84.72 84.19 0.666
RF 90.51 90.35 1.091
GNB 66.51 58.32 0.039
LD 78.08 74.79 0.335
QD 50.29 59.59 0.175
SVC 64.23 51.03 937.4
NuSVC 81.20 74.51 1578

Note: bold values show the best value in a column.

B. Comparison of Batch Learning Algorithms

We begin our experimentation with a comparison of 10
popular ‘batch’ classification algorithms - 1) K-Nearest Neigh-
bor (KNN) 2) AdaBoost (ADB) 3) GradientBoost (GDB)
4) Decision Tree (DT) 5) Random Forest (RF) 6) Gaussian
Naive Bayes (GNB) 7) Linear Discriminant Analysis (LD) 8)
Quadratic Discriminant Analysis (QDA) 9) C-Support Vector
(SVC) 10) Nu-Support Vector (NuSVC) using scikit-learn [26]
a Python [27] library.

The results are summarized in table I. The results clearly
show that Random Forest (RF) outperforms all other classifiers
for our dataset in reasonable time duration. The time duration
depends on the machine and should be considered for relative
comparison only.

Random Forest (RF) works best on our dataset primarily
because the dataset is sparse, with many missing feature
values. RF offers several other advantages for our particular
problem. Firstly, their are many categorical features (36 in
number) in our dataset. We do not need to use ‘one-hot
encoding” with RF for the categorical features. We save
considerable processing resource by not ‘one-hot encoding’
the categorical features. Secondly, RF works equally well with
unscaled (normalized) and scaled features. This property of RF
also saves us significant processing resource. Finally, since
RF is somewhat impervious to missing features (—1 in our
dataset), we can use the same classifier even after getting new
feature sets.

However, we cannot use the batch RF in our framework
because of the unbounded growth of our dataset. Rather, we
compare these benchmark results with different online learning
algorithms in IV-C.

C. Comparison of Online Learning Algorithms

Next, we compare 6 popular ‘online’ classification algo-
rithms: 1) Perceptron (PE) 2) Stochastic Gradient Descent
(SGD) 3) Passive Aggressive (PA) 4) Mondrian Tree (MDT)
5) Mondrian Forest (MDF) 6) Multi-Layer Perceptron (MLP).
For Mondrian Tree and Mondrian Forest we used scikit-garden

0339

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPARISON OF ONLINE LEARNING CLASSIFIERS
Algorithm | Accuracy (%) | ROC AUC (%)

PE 67.17 59.04
SGD 37.10 50.37
PA 63.45 49.98
MDT 82.79 82.42
MDF 87.47 86.63
MLP 80.77 77.65

Note: bold values show the best value in a column.

[28] and for others we used scikit-learn [26]. The results are
summarized in table II.

Mondrian Forest [29] is an online random forest algorithm.
It has comparable accuracy to batch random forest algorithm
while being remarkably faster than it. Moreover, it generates
better results with smaller dataset than other online random
forest algorithms [29]. The performance vs accuracy tradeoff
offered by Mondrian Forests is suitable for our system.

We do not compare the time taken by each algorithm
because an online learning algorithm will be trained per
sample and not in batches. The results in table II show that
Mondrian Forest (MDF), performs better than all other online
learning classifiers and has an accuracy score only second to
batch RE.

D. Feature Importance Analysis

We started experimentation with 142 features in total. Then
we used the ‘drop-column’ method to calculate the importance
of each feature. In this method, we calculate the importance
of a particular feature, by noting the change in accuracy score
after removing that feature from the dataset.

The 20 most important features in our dataset are shown in
figure 2. It is interesting to note that entropy of the URL string
is the most important feature with a contribution of 2.75% in
figure 2. This is because malicious URLs often have random
characters instead of dictionary words. As a result the entropy
of those strings are higher.

The second most important feature, that we found, is
the number of days since the domain registration has been
updated. As malicious websites are often newer than benign
websites, the recently updated domains tend to be malicious.
The third most important feature is the maximum number of
consecutive digits in URL path. The argument behind this is
the same as the one for URL entropy. A random URL string
usually has more digits than a regular string made up of words.

A key takeaway from figure 2 is that half of the top 20
features are lexical features. Lexical features are much less
expensive to collect, making our delayed feature collection
algorithm successful.

E. Delayed Feature Collection

The performance improvement of our delayed feature col-
lection module depends on the cost of collecting each feature
set. We have calculated the average cost of collecting lexical

Feature importances

lexical_url_entropy -
whois_days_updated
lexical_path_max_digit_sequence
geoip_asn_org
lexical_path_domain_ratio -
host_host
lexical_domain_digit_count
lexical_path_token_count
lexical_url_max_digit_sequence

lexical_url_max_symbol_sequence
lexical_file_symbol_count
lexical_domain_max_|letter_sequence
whois_whois_address_1
whois_whois_city
whois_months_updated
lexical_url_vowel_count

host_ip4

geoip_asn

lexical_path_entropy
lexical_query_url_ratio

0.000 0.005 0.010 0.015 0.020 0.025

Fig. 2. Top 20 Important Features

features, host features, Whois features and GeolP features
to be 3 ms, 155 ms, 1453 ms and 4060 ms respectively.
Therefore, it takes our system 3ms on average to collect
lexical features of an URL and so on. So, if our system
can label an URL using only lexical features it can save
4060 + 1453 + 155 = 5668 ms of time.

Our simulation results show that our system potentially
spends about 23% less time in collecting features because of
this algorithm. However, a portion of this saved time is spent
in repeatedly predicting the probability of this URL. Moreover,
this work is still in progress and we are working on improving
this algorithm.

E Cross Validation

To cross validate our findings we have used another dataset
of phishing URLs downloaded from OpenPhish.com [30]. We
removed our training URLs from that dataset and ended up
with 2664 URLs previously not seen by our classifier. Our
classifier achieved an accuracy of 86.6% validating that our
training set was not biased.

G. Complexity and Scalability

Figure 3 shows that the complexity of our URL classifica-
tion system is linear. The jumps in the graph are attributed to
offline URLs. Some, of the feature collection modules wait for
timeout when an URL is offline. We can see two such timeouts
at around 200s and 500s. Despite the noises, the graph is linear
on average.

Since the process is linear and the detection modules are
independent, our system is horizontally scalable. We can scale
up our system depending on the traffic.

0340

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

Time required vs Number of URLs Processed

600

500 4

W »

(=} (=]

o (=]
L L

Time required (s)
~N
o
o

100 A

400 600 800 1000
Number of URLs Processed

0 200

Fig. 3. Linear Complexity of System

V. CONCLUSION AND FUTURE WORK

In this work we have outlined a robust framework for
automated detection of phishing URLs. We have used online
learning to deal with the unbounded growth of URL space. We
have also incorporated selective sampling and delayed feature
collection to significantly improve the system performance.
Our system can detect previously unseen URLs with 87%
accuracy.

This work is currently in progress. We are currently work-
ing on collecting more feature sets including n-gram, DNS
query results, black list presence, bag of words, web page
content, web page network traffic etc. We are also working
on collecting more URLs to decrease the variance of the
probability scores. We are also working on the selective
sampling algorithm and unbalanced datasets. Finally, in future
we want to include time varying features of the URLs.

REFERENCES

[1]
[2]

J. Lewis, “Economic Impact of Cybercrime, No Slowing Down.”
McAfee, 2018.

T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer, “Social
phishing,” Communications of the ACM, vol. 50, no. 10, pp. 94-100,
2007.

“Enterprise Phishing Resiliency and Defense Report,” PhishMe, 2017.
D. Sahoo, C. Liu, and S. C. Hoi, “Malicious url detection using machine
learning: a survey,” arXiv preprint arXiv:1701.07179, 2017.

“Quarterly Threat Trends,” https: //www.webroot.com /us/en /business /-
resources /threat-trends /june-2019/, 2019, [Online; accessed 1-
September-2019].

H. Le, Q. Pham, D. Sahoo, and S. C. Hoi, “Urlnet: learning a url
representation with deep learning for malicious url detection,” arXiv
preprint arXiv:1802.03162, 2018.

Y.-L. Zhang, L. Li, J. Zhou, X. Li, Y. Liu, Y. Zhang, and Z.-H.
Zhou, “Poster: A pu learning based system for potential malicious url
detection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2599-2601.
R. Verma and A. Das, “What’s in a url: Fast feature extraction and
malicious url detection,” in Proceedings of the 3rd ACM on International
Workshop on Security and Privacy Analytics. ACM, 2017, pp. 55-63.

[3]
[4]
[5]
[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
(28]

[29]

[30]

J. Jiang, J. Chen, K.-K. R. Choo, C. Liu, K. Liu, M. Yu, and Y. Wang,
“A deep learning based online malicious url and dns detection scheme,”
in International Conference on Security and Privacy in Communication
Systems. Springer, 2017, pp. 438-448.

A. Astorino, A. Chiarello, M. Gaudioso, and A. Piccolo, “Malicious url
detection via spherical classification,” Neural Computing and Applica-
tions, vol. 28, no. 1, pp. 699-705, 2017.

A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature based
phishing url detection using online learning,” in Proceedings of the 3rd
ACM Workshop on Artificial Intelligence and Security. ACM, 2010,
pp. 54-60.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious urls,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 1245-1254.

G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-rich
machine learning framework for detecting phishing web sites,” ACM
Transactions on Information and System Security (TISSEC), vol. 14,
no. 2, p. 21, 2011.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning to
detect malicious urls,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 3, p. 30, 2011.

G. Tan, P. Zhang, Q. Liu, X. Liu, C. Zhu, and L. Guo, “Malfilter:
A lightweight real-time malicious url filtering system in large-scale
networks,” in 2018 IEEE ISPA/IUCC/BDCloud/SocialCom/SustainCom.
IEEE, 2018, pp. 565-571.

O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning
based phishing detection from urls,” Expert Systems with Applications,
vol. 117, pp. 345-357, 2019.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and
A. A. Ghorbani, “Detecting malicious urls using lexical analysis,” in
International Conference on Network and System Security. Springer,
2016, pp. 467-482.

“2019 Threat Report,” https://www-
cdn.webroot.com/9315/5113/6179/2019_Webroot_Threat_Report_
US_Online.pdf, Webroot, 2019.

P. Zhao and S. C. Hoi, “Cost-sensitive online active learning with
application to malicious url detection,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2013, pp. 919-927.

S. C. Jeeva and E. B. Rajsingh, “Intelligent phishing url detection using
association rule mining,” Human-centric Computing and Information
Sciences, vol. 6, no. 1, p. 10, 2016.

S. Hollenbeck and A. Newton, “Registration data access protocol (rdap)
query format,” Internet Requests for Comments, IETF, RFC 7842,
March 2015. [Online]. Available: https://tools.ietf.org /html/rfc7482

“GeoLite2 Free Downloadable Databases,” https:
//dev.maxmind.com/geoip/geoip2/geolite2/, [Online; accessed
19-September-2019].

T. Anderson, The theory and practice of online learning. Athabasca

University Press, 2008.

“Phishtank,” http://www.phishtank.com, accessed: 2019-10-30.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

G. Van Rossum and F. L. Drake Jr, Python tutorial. ~Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995.
“Scikit-garden: A garden for scikit-learn compatible trees .” [Online].
Available: https://github.com/scikit-garden

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian forests:
Efficient online random forests,” in Advances in neural information
processing systems, 2014, pp. 3140-3148.

“OpenPhish,” http://www.openphish.com, accessed: 2019-11-22.

0341

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 18,2020 at 22:06:23 UTC from IEEE Xplore. Restrictions apply.

		2020-03-09T10:08:28-0400
	Certified PDF 2 Signature

