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Abstract—Privacy preservation is one of the greatest concerns
when data is shared between different organizations. On the
one hand, releasing data for research purposes is inevitable.
On the other hand, sharing this data can jeopardize users’
privacy. An effective solution, for the sharing organizations, is
to use anonymization techniques to hide the users’ sensitive
information. One of the most popular anonymization techniques
is k-Anonymization in which any data record is indistinguishable
from at least k-1 other records. However, one of the fundamental
challenges in choosing the value of k is the trade-off between
achieving a higher privacy and the information loss associated
with the anonymization. In this paper, the problem of choosing
the optimal anonymization level for k-anonymization, under pos-
sible attacks, is studied when multiple organizations share their
data to a common platform. In particular, two common types
of attacks are considered that can target the k-anonymization
technique. To this end, a novel game-theoretic framework is
proposed to model the interactions between the sharing orga-
nizations and the attacker. The problem is formulated as a static
game and its different Nash equilibria solutions are analytically
derived. Simulation results show that the proposed framework
can significantly improve the utility of the sharing organizations
through optimizing the choice of k value.

I. INTRODUCTION

In the big data era, vast amounts of data are constantly being
generated, collected, and analyzed because of the ease of gen-
erating and distributing data in its digital formats. Companies
and organizations use the accumulated data to personalize their
services, optimize their decision making, and to predict future
trends of the users [1]. However, these practices raise many
public concerns about the users’ privacy especially as this data
contains many personal and sensitive information. In response,
organizations usually deploy powerful security mechanisms
to protect the stored data against different cyber attacks [2].
Similarly, encryption-based security systems were shown to
be effective when data is shared between different locations
of the same organization, e.g., patients’ remote monitoring [3].

However, as organizations often need to share or publish
the stored data, e.g., sharing electronic health records between
different organizations, traditional security mechanisms cannot
be used to protect the users’ privacy as they are applied
locally. This shortcoming was the main enabler for using data
anonymization techniques to hide the sensitive information
within a dataset. For instance, information such as the name,
address, and phone number can be removed before sharing
the data. However, it was shown that the remaining data,
after removing the sensitive information, can still be used to
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identify the users by figuring out the unique characteristics
in this data [4]. Therefore, more effective anonymization
techniques have been proposed in literature to preserve the
privacy while withstanding possible attacks. The key idea
behind such techniques is to ensure that the records of the
shared datasets are indistinguishable. This can be achieved by
removing some information from the dataset to decrease the
probability of identifying individual records. Examples of such
techniques include k-anonymization [5], [-diversity [6], and ¢-
closeness [7]. For instance, in k-anonymization the dataset is
anonymized such that each record is indistinguishable from at
least k — 1 other records [5]. Both [-diversity and ¢-closeness
are extensions to k-anonymization which make more changes
to the dataset in order to make it harder to differentiate the
records and the attributes.

However, even such models were shown to be prone to
specific attacks such as background knowledge attack [8],
in which the attacker uses background knowledge such as
demographic information and public records to increase its
probability of identifying the records. Since, such types of
attacks affect k-anonymization, [-diversity, and t¢-closeness,
and that k-anonymization is the basic technique behind I-
diversity, and t-closeness, this work will mainly focus on k-
anonymization. Another popular type of attacks that affects
k-anonymization, is the homogeneity attack [9] in which the
attacker can reveal the private information when all the values
of sensitive attributes are the same in one equivalence class.

One way to increase the privacy achieved by k-
anonymization is to increase the value of k as this implies
the need for differentiating each record from a bigger number
of records. However, increasing the value of k will increase
the information loss, i.e., more information will be removed
from the data. This, in turn, will reduce the value of the shared
information, when received by other organizations. Therefore,
the organizations need to carefully choose the value of &
to maximize the privacy while minimizing information loss,
which represents a real challenge. In [10], the authors proposed
two algorithms to reduce the information loss associated with
using k-anonymization. However, these algorithms depend on
the structure of the data and cannot be generalized. To this end,
choosing the optimal value of k, in k-anonymization, remains
an open problem in privacy preserving.

In this work, we propose a game-theoretic model to de-
termine the value of k, in k-anonymization. Game theory
is a powerful mathematical framework that enables to study
the interactions between parties with opposing goals [11].
The key idea, here, is that each organization will choose the
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value of k that maximizes its outcome based on the expected
attacks. Meanwhile, attackers can choose between different
types of attacks based on their expected outcomes, when an
organization chooses a specific k. While game theory has been
used, in literature, to study the privacy [12] and [13], such
works do not apply to data anonymization and, hence, the
problem of finding k requires its own analysis.

The main contribution of this paper is to develop a novel
game-theoretic framework that allows the organizations to
determine the optimal value of k, in k-anonymization. In
particular, we consider a scenario in which more than one
organization share their data to a common platform. Each orga-
nization gets a reward from the common platform based on the
level of anonymization, i.e., a higher level of anonymization
will increase the information loss, and, hence, decrease the re-
ward. The framework considers two types of de-anonymization
attacks which are background knowledge and homogeneity
attack. We formulate the problem as a static non-zero-sum
game in which the organizations are considered as defenders
that seek to optimize the choice of k, and an attacker that
optimizes the selection of its attack, based on the choice of k.
For the formulated problem, we analyze the different cases of
achieving a Nash equilibrium by considering both the cases
in which pure equilibrium is possible, and the general case
of mixed-strategy Nash equilibrium. Simulation results show
that the proposed approach can enable the organizations to
determine their optimal & value in face of the expected attacks.

The rest of the paper is organized as follows. Section II
provides the game formulation and defines the defender’s and
attacker’s utilities. In Section III, the equilibrium analysis
is derived for the formulated game. Simulation results are
discussed in Section IV. Finally, conclusions are drawn in
Section V.

II. GAME FORMULATION
A. Players

Organizations: We consider a scenario in which a group
of organizations share anonymized datasets with a common
platform, a data collector. All organizations are assumed to
use k—anonymization technique to make their shared data
anonymous. The goal of organization ¢ is to choose the best
value of k; to maximize its payoff, given other organizations
k values and the possible attacks on the data. Let D be the
set of all organizations’ actions.

Attacker: An attacker targets the dataset, at the data collec-
tor side, in order to reveal the private information. We assume
the attacker can anticipate the level of anonymization used, by
analyzing the structure of the dataset. The attacker has three
actions to choose from. Let a« € A = {B, H, N} represents
the attacker’s possible actions which can be B, performing
background knowledge attack, H performing homogeneity
attack, or N, no-attack.

B. Payoffs
Each player wants to maximize its outcome (payoff func-
tion) based on its action and other players’ actions. Each

player’s payoff is given by its utility function which defines
its outcome in light of the combined actions of all the players.

Organizations: The utility of each organization is given as
a function in the reward it gets from the data collector, r;(k;),
the cost for applying the anonymization technique, ¢;(k;), the
probability of data breach, b;(k;, k_;,a), and the trust factor
T'(k;), where k_; refers to the other organizations’ actions.
Let u; be the utility of organization ¢, it can then be given by:

ui(kiyk—iya) = ri(ki) - (L= bi(ki, ki, a)) — ci(ki) + T(ki),

(1
where the first term represents the probability of receiving the
reward based on all the players’ actions.

Next, we discuss, in details, each term in (1). First, the

reward function r;(k;) is defined as a declining function in k;
such that when the level of anonymization increases, the data
collector will give less reward to the organization as the data
will be less informative. We propose to define r;(k;) as:
1
k;
where R; is the value of the information at organization
i. By using (2), when k; = 1, i.e, no anonymization,
the organization can obtain the full value of the reward as
r;(1) = R;. For every k; > 1, the reward will be declining
such that, for large values of k;, e.g., k; > 10, any increase in
k; will cause small decrease in r;. This can be interpreted as
when the anonymization level increases, the information will
be less useful up to some point where the increased k; will
have a small effect on the information loss (reward). This can
be captured by the heavy tail of the function in (2).

Next, we study effect of choosing k; on the cost function
ci(k;). We propose to define the cost as a function in the
computational cost, for each organization, as it executes the k-
anonymization procedure. The computational cost was shown
in [14] to depend on the nature of the data under consideration
and was proven to be:

O(nm + 2tin-fout (. to.m
+ (tin +t0ut) A 1Og(tin +t0ut) (tin'toul + (tin +toul) log(tin +tout)))) )

Ri, 2

where n denotes the total number of rows, m is the total
number of columns, tj, is the number of different input row
types, toue 1S the number of different output row types such
that ti, /tow = k.

Here, we use this time complexity to represent the cost
associated with k-anonymization in (1) as follows:

ci(k) = 5(n.m + 2tin-tout (tm.tom.m + (tin + tow)- log(tin

+ tout) (tin-tout + (tin + tout) log(tin + tout))))v

where (8 is a conversion factor from the time complexity to
its equivalent monetary value.

Next, the trust factor is defined as how much each organi-
zation can trust the common platform (the data collector) to
secure the data. This trust factor is chosen to depend on the
value of k; such that T'(k;) = ~-k;, where, ~ is the co-efficient
of trust.
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Finally, we consider the breach probability for each organi-
zation’s shared data, b;(k;, k_;,a). In [15], it was shown that
the information breach probability can be given by:

_pla)
N ak; + 1’
Where, p(a) is probability of a successful attack, based on the
attack type, and o > 0 is a measure of information security.
Note that, in [15], the probability of breach is given as a
function in the organization’s investment. Here, we assume
that k; represents the organization’s investment in protecting
the privacy of its shared data.

Equation (3) represents the organization’s own probability
of breach. In case of multiple organizations sharing to the same
platform, this probability will increase as an attacker can link
information from different datasets to identify the records [16].
Here, we propose to model this interdependency similar to
[17] such that the interdependent probability between two
organizations is given as:

b(CL, kl)

3)

1220

p(a)
Cak;+1 ):

bla, ki k_g) =1— -
(a, ki, k—;) 41

“4)

Substituting (4) in (1), the utility of any organization can
then be given as:

R p(a)
Ui(ki,k—iaa)*kfi‘(lf ak;i—i—l) )
=P k) + ke

Ozk_i + 1

Attacker: For the case of two organizations, the attacker’s
utility can be given in terms of its probability of achieving the
reward from the information and the cost to apply its attack.
Thus, we define the attacker’s utility u, as follows:

ua(klv ka, a) = b(aa k1, kQ)Ra - Ca(a)v (6)

where R, is the reward for revealing the real data that can be
achieved based on the combined breach probabilities of the
datasets and c,(a) is the cost of performing each type of the
attack.

Note that (4) can be rewritten as:

S ) N ) RS ) B )
bwmwﬂmm+nWww4>wh+”mb+%
and, thus, the attacker’s utility in (6) can be given as:

_(_pla) p(a)
g (K1, ke,a) = ((ak1 +1)  (ake+1) ®)
B p(a) p(a) —
(ks 1) Ty 7)) P~ (@)

Here, according to the nature of homogeneity attack, the
attacker will benefit if the two organizations are using the same
anonymization level. This is because of the similar structure
of the shared data. In this case, the probability of a successful
attack will be higher. Let p(H;) be the success probability
of the homogeneity attack when the organizations use the

same anonymization level. Similarly, let p(H,) be the success
probability of the homogeneity attack when the organizations
use different anonymization levels, such that p(H,) > p(Hy).
We assume p(B) > p(Hg) > 0, i.e., the success probability
of background attack is higher than that of the homogeneity
attack with different anonymization levels, that is because
the attacker can link between the shared data and have extra
information (background knowledge). However, p(B) can be
higher or lower than p(Hy).

The cost of performing the background knowledge attack is
assumed to be higher than that of the homogeneity attack, i.e.,
ca(B) > ¢o(H) > 0. This is because the attacker will spend
more time collecting the background information and linking
the similar information. Note that, when the attacker chooses
not to attack, its utility w,(V, k1, k2) will equal zero. This
choice will be superior to the attacker if the cost of performing
the attack exceeds the reward from revealing the information.

After considering the success probabilities of the different
attack types, we reconsider the organizations’ utilities in (5).
We notice that each organization can obtain a fraction of the
reward R, that depends on the attack’s success probability. Let
§=4-(1- p:]?xﬂ)) (11— Z‘]‘C‘aj‘(ﬂ) be the minimum fraction
of R; that an organization can achieve based on the maximum
success probability of the available attacks, i.e., pmax(a). We
refer to 0 R; as the minimum profit factor.

To this end, we define a game G= {N, D, A, U} such that
N is the set of the players which include all the organizations
as well as the attacker and U/ is the set of the all players’
utilities. The goal of each player is to take actions to maximize
its utility given the actions of other players. When no player
can improve its utility by unilaterally changing its actions, the
game is said to be at equilibrium. The notion of equilibrium,
in game theory, is referred to as Nash equilibrium [18]. Nash
equilibrium can either be pure Nash equilibrium, or mixed-
strategy Nash equilibrium. A pure strategy equilibrium, is
when every player has only one action/ strategy at equilibrium.
On the other hand, a mixed Nash equilibrium represents a
probability distribution over each player’s set of available
actions [19]. Next, we study the possible cases of equilibrium,
both pure and mixed strategies for the proposed game.

III. PROPOSED GAME SOLUTION

The studied game is a finite static non-zero-sum game which
is known to have a Nash equilibrium, either pure or mixed-
strategy. For the sake of analytical tractability, we consider
the case where each organization can choose between two k
values, i.e., kr and kp. These values represent choosing low
and high values for &, respectively. Based on these values, each
organization will have two minimum profit factors § and dy,
corresponding to the choice of k;, and kg, respectively.

Let p; be the probability of the first organization to choose
k1, such that it chooses ky with probability 1 — p;. Similarly,
the second organization can choose kz, and ky with probabili-
ties po and 1—po, respectively. The attacker, on the other hand,
will have a probability distribution of gp, g, ¢y of choosing
the actions B, H, and NV, respectively. We start the analysis
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by considering the cases in which the game G can have a pure
strategy Nash equilibrium.

Proposition 1. Let ki = argmax, & — ¢;(k;) + 7 - ki
Then, the tuple (k},k*,;, N) constitute a pure strategy Nash

equilibrium for G when the attacker is not able to achieve a
positive utility.

Proof. We note that, the attacker’s utility for no-attack is zero,
i.e., ug(k1, ke, N) = 0. The attacker can only turn to this
choice if all the other actions yield a negative utility, i.e., all
the utility instances for choosing B and N with the different
combinations of kr and kg, for each organization, will be
result in a negative attacker’s utility. Therefore, choosing the
action NV will be a dominant strategy for the attacker. In this
case, each organization’s utility will be:

ui(kiy k—iy N) = — — ci(ki) + v - ki, 9
which clearly depends only on the organization’s action and
not on the other players’ actions. In this case, each organiza-
tion will chose the value of k that maximizes its utility in (9).
Hence, k] = argmaxy, 1: —¢i(k;) + v - ki, it will represent
the optimal organization’s choice under no-attack scenario. In
this case, no player will have an incentive to change its choice
and, therefore, the actions tuple (k}, k* ;, N) is a pure strategy

Nash equilibrium for the game. O

From Proposition 1, the attacker’s probability qn of choos-
ing the action N will be either 1 or 0 based on whether the
action N dominates the other actions or it is being dominated
by another action. Therefore, we will consider only two actions
for the attacker, i.e., B and H which can be selected by the
probabilities ¢ and 1 — ¢, respectively when ¢qx = 0. Similarly,
for the organizations, we note the similarity in their actions
and utilities, thus, they will have the same equilibrium profile
which can be given by p for selecting k;, and 1—p for selecting
kpr.

Similar to the attacker, each organization can have a
dominant strategy under some circumstances and, hence, the
probability p can be either 0 or 1 based on the dominant
strategy. This is shown in the next proposition.

Proposition 2. Each organization will have a dominant strat-
egy when the value of R; is large enough such that the min-
imum profit factor is the dominant term in the organization’s
Ltl‘ilil’y, ie, g R; > ’}/~]<}H—Ci(kiH) and o R; > ’y'k‘L—Ci(kJL).
The dominant strategy can then be given as the solution of:

kX = arg max §; R; — ci(ky)+~ ki, i€{L,H}

Proof. The values of d R; and é g R; represent the minimum
fractions of the reward each organization can achieve, under
the attacker’s maximum probability of success. When the
values of R; are large enough to make these minimum profit
factors higher than the rest of the utilities, each organization
can expect that any other attacker’s action will not lower
its utility. Thus, the organization can determine its dominant
strategy while neglecting the attacker’s effect. O

Note in Proposition 2, a high reward can eliminate the
attacker’s effect, however, determining the optimal £ value
depends on the other factors of the utility.

To this end, when no player has a dominant strategy,
the players will need to consider the mixed-strategy Nash
equilibrium in order to determine the probability of choosing
each action. These mixed strategies can be calculated when
the players are indifferent between choosing their actions, i.e.,
the expected utility of choosing each action will be the same.
For instance, the organizations can choose their p such that
the attacker’s expected utility from choosing the action B will
equal to that of choosing the action H. The attacker’s expected
utility from choosing the action B can be given by:

E(ua(kh kQa B)) =p-p- Ua(kL, kln B) +p : (1 - p)
ug(kp, kg, B) + (1 —p) - p
ua(k;H,k‘H,B). (10)
The expected utility of choosing the action H can be written
in a similar way to (10). For the attacker to be indifferent
between its actions, its expected utility for choosing B must
equal that of choosing H. Solving both equations together, an

organization’s probability of choosing k, i.e., p can then be
given as the solution of the quadratic equation:

p?(B) — p*(Hs)

( 2p°(B) — 2p°(Ha) p*(B) —pQ(Hs)> R
( a

C!kL + 1)(akH + 1) (akL + 1)2 (akH + 1)2
2 (p(B) —p(Ha)  p*(B) —p*(Ha) | p*(B) —p*(Hs)
P (akr +1)  (akL + D(akg +1) | (akg +1)2
p(B) — 2 p(Hs) + p(Ha) 2p(B) — 2p(Hs)
N (kg + 1) )2 et ( (aks +1)
~ p*(B) — p*(Hs)

)Rafca(B)Jrca(H):O. (11)

(ak: H+ 1)2
Note that, only one solution to (11) will represent a valid
probability, and the other solution will be rejected. After
calculating the probability p, the attacker’s probability ¢ can be
calculated in a similar way by considering the expected utility
of one of the organizations. Note that, due to the symmetry
between the organizations, considering the utilities of both
organizations will be redundant. For an organization to be
indifferent between its actions, its expected utilities must be
the same for both of its actions. Therefore, the attacker can
choose the probability ¢ by solving the equation:

0= (s Crar B 1) = s o )+ (G o )
—ui(ky, kg, H) —wi(kr, kr, H) +u1(kL,kH,H)>)/

(Ul(kkaHvB) —ui(kr, kg, H) —ui(kn, kg, B) +ui(km,

kg, H) +p(u1(kLJ€L»B) —ui(kp, kr, H) —u1(kr, ku, B)+
ui(kr, kg, H) —ui(ky,kr, H) +u1(ky, kg, B) + ui(kq,

b H) = kb 1)) (1)

Given the value of p from (11), the value of ¢ can be
uniquely computed from (12). The mixed strategy equilibrium
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can then be given as (p,1 — p) for the organizations and
(¢, 1—q) for the attacker. Note, in this section, the solution of
a single stage game was introduced. In future work, we will
consider a dynamic game, i.e., a game that changes over time,
e.g., [20], in which the players’ trust evolve over time.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we set the value of k;, = 4 and
kg = 7 such that kg is slightly higher than k; to better
highlight the effect of these values on the utilities. Other
system parameters are set to o = 1, v = 0.6, and 3 = 1076,
The success probabilities of the different attacks are assumed
to be P(Hy) = 0.3, P(H;) = 0.7, and P(B) = 0.6. We
assume similar dataset structures between the organizations,
so that, the cost function is only affected by the choice of k.

First, we solve the formulated game G using the analysis in
Section III. We allow the values of the reward R to change
from 16 to 25. These values represent the monetary rewards
the data collector will give to the organizations as a reward
for sharing the data. Here, we use abstract values, however, in
a real-life scenario, the data collector needs to estimate these
values to be proportional to the cost. The equilibrium strategies
for both the attacker and defender are shown in Tables I and II,
respectively. We note that, when the values of R are less than
17, the attacker cannot achieve a positive utility, and, hence,
it will choose not to attack. This situation corresponds to the
case of Proposition 1 and the defender’s utility is calculated
using (9). In this case, the defender will have a pure strategy
of choosing k. For the values of R between 18 and 21, both
the attacker and the defender will have mixed strategies, i.e.,
choosing their actions with certain probabilities. Finally, for
large values of R, the attacker will benefit only if it performed
the background knowledge attack, in this case the defender can
choose between the two values of k with ky being superior,
i.e., it has a higher probability to be chosen.

Fig. 1 shows the expected utilities calculated using the
equilibrium strategies in Tables I and II. These utilities are
compared to the case where one player chooses random
probabilities while the other plays its equilibrium strategy.
From Fig. 1, we can see that when a player deviates from the
equilibrium strategy, to a random strategy, it cannot achieve
a higher utility. This corroborates the importance of studying
Nash equilibrium as it represents the best each player can do
given their opponent’s actions. We can also see from Fig. 1
that the players’ utilities do not exhibit a monotonic increase
in R as the utility depends on the players’ actions.

In Fig. 2, we show the effect of the success probability of the
background knowledge attack, i.e., p(B) on the equilibrium
strategies of the players. Note that, the values of p(B) are
chosen to start at 0.4 to satisfy the assumption p(B) > p(Hy).
The equilibrium strategies in Fig. 2 are calculated in a similar
way to the values in Tables I and II. The simulation parameters
are the same as Fig. 1 and the value of R is fixed to 19. This
value was chosen as the attacker has almost equal probability
of choosing its actions under this value. From Fig. 2, we
can see that when p(B) is slightly higher than p(Hy) i.e.,
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Fig. 2. The defender’s and the attacker’s equilibrium probabilities at different
success probabilities for background knowledge attack p(B) values.

p(B) = 0.4 the attacker will have a high value of ¢ which
corresponds to the probability of choosing the background
knowledge attack. At the same point, the defender will be
choosing kz with slightly higher probability. However, as the
value of p(B) increases, the defender will prefer to use kg
more which lowers the attacker’s utility and force it to switch
to the homogeneity attack because of its lower cost. This can
be seen as the value of g decreases when p(B) = 0.5. As p(B)
increases more, it will become closer to p(Hy) and in this case,
the defender will stick more to choosing kz as it achieves
more trust in protecting the data. Meanwhile, the attacker will
choose the background knowledge attack with slightly higher
probability.

In Fig. 3, we study the effect of the success probability of
the homogeneity attack, for similar values of k, i.e., p(Hy)
on the equilibrium strategies of the players. Similar to Fig.
2, the values of p(H,) are starting at 0.4 so that p(Hg) >
p(Hg). The simulation parameters are the same as Fig. 2 and
p(B) = 0.6. From Fig. 3, we can see that when p(H) is less
than p(B) i.e., p(Hs) < 0.6, the attacker will have a higher
probability of choosing the background knowledge attack. This
probability will decrease as p(Hy) is equal to p(B) or higher.
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TABLE I
ATTACKER’S EQUILIBRIUM STRATEGIES
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TABLE 11
DEFENDER’S EQUILIBRIUM STRATEGIES

R 16 | 17 18 19 20

21 22 23 24 25

kr, 0 0.2187 | 0.2125 | 0.2070

0.2019 | 0.1973 | 0.1937 | 0.1893 | 0.1857
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Fig. 3. The defender’s and the attacker’s equilibrium probabilities at different
success probabilities for homogeneity attack p(H) values.

In this case, the attacker will prefer to choose the homogeneity
attack with higher probability especially with the increase in
its success probability. For the same range of probabilities, the
defender will choose kg with higher probability. However, this
probability will decrease as p(H) increases.

V. CONCLUSIONS

In this paper, we have studied the problem of determining
the optimal value of k for the k—anonymization technique. We
have formulated the problem using a game-theoretic model
that involves three players which are an attacker and two
organizations sharing data with a common platform, a data
collector. In particular, we have considered two common types
of attacks that can affect k-anonymization techniques. We
have defined the players’ utilities resulting from the interac-
tions between the three players. Then, we have provided the
mathematical derivation of the different Nash equilibria, for
the proposed game. Simulation results have shown that the
proposed model can help the organizations to maximize their
utilities, under attack, through choosing the optimal %k values.
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