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Abstract
We report on a quantum–classical simulation of the single-band Hubbard model using two-site
dynamical mean-field theory (DMFT). Our approach uses IBM’s superconducting qubit chip to
compute the zero-temperature impurity Green’s function in the time domain and a classical
computer to fit the measured Green’s functions and extract their frequency domain parameters.
We find that the quantum circuit synthesis (Trotter) and hardware errors lead to incorrect
frequency estimates, and subsequently to an inaccurate quasiparticle weight when calculated from
the frequency derivative of the self-energy. These errors produce incorrect hybridization
parameters that prevent the DMFT algorithm from converging to the correct self-consistent
solution. To avoid this pitfall, we compute the quasiparticle weight by integrating the quasiparticle
peaks in the spectral function. This method is much less sensitive to Trotter errors and allows the
algorithm to converge to self-consistency for a half-filled Mott insulating system after applying
quantum error mitigation techniques to the quantum simulation data.

1. Introduction

Dynamical mean-field theory (DMFT) is a widely used theoretical framework for modeling strongly
correlated electron systems, with specific applications in modeling the Mott transition [1], correlated
Hund’s metals [2], electron–lattice interactions [3, 4], and advanced electronic structure calculations [5]. In
simplified terms, DMFT maps the interacting lattice problem onto an impurity problem embedded in a
bath of non-interacting electrons, i.e. the Anderson impurity model. To accurately approximate the
properties of the original lattice model, the embedding is performed self-consistently. This methodology
treats the local electronic correlations exactly, while correlations occurring on longer length scales are
treated at a mean-field level that retains their dynamics. DMFT becomes exact in the limit in infinite
dimensions [1], provided that one can account for the continuum of energy levels constituting the
mean-field bath.

The effectiveness of DMFT is dependent on the impurity solver employed, and several advanced
numerical methods have been developed for strongly correlated materials including exact diagonalization
(ED) [6], quantum Monte Carlo (QMC) [7], and real-time dynamics with matrix product states (MPS) [8].
Each method has its limitations, however. For example, ED approximates the bath with a series of discrete
energy levels. It is, therefore, limited by the exponential growth of the Hilbert space and can typically
handle only a small number of bath levels before exhausting the memory available on a classical computer.
QMC is limited by the fermion sign problem, which restricts simulations to relatively high temperatures for
many models, especially when multiple orbitals are active or when Hund’s interactions are included [9]. In
comparison to ED, MPS methods suffer less from this exponential memory scaling when using a star
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Figure 1. Flowchart for the two-site DMFT calculation implemented on a hybrid classical/quantum system. This loop is
repeated until two successive values of V are within some threshold of each other.

geometry for the underlying impurity problem, but suffer from entanglement and normalization issues for
other geometries [8]. These examples reflect the broader fact that the classical approaches to exact solutions
for strongly correlated systems all suffer from some sort of exponential growth in complexity (e.g. the
exponential growth of storage required to store quantum many-body wavefunctions), resulting in an
inability to make predictions for larger systems [10]. In a quantum computer, however, the state of the
system can be stored and manipulated in qubits. This aspect reduces the simulation problem complexity
from exponential in the number of particles to polynomial, giving quantum computers in principle an
enormous advantage over classical computers for conducting these simulations.

In the future, large-scale fault-tolerant quantum computers will enable direct Hamiltonian simulations
of many-body systems with thousands of particles. In particular, using quantum computers for strongly
correlated electron systems is a valuable and scalable solution as demonstrated by several recent theoretical
analyses (see, e.g. [11–13]). In the current era of noisy intermediate-scale quantum (NISQ) [14] hardware,
however, the number of available qubits, their connectivity, and noise prohibit direct implementations of
such scalable quantum simulation algorithms. But even with all of their imperfections, NISQ devices can
still be leveraged for simulating quantum dynamics in a hybrid quantum–classical algorithmic approach.
For example, variational algorithms [15–17] use quantum hardware to find expectation values of complex
quantum observables such as Hamiltonians while classical computers use those values to update variational
parameters in the direction that minimizes the expectation values. DMFT simulations fit naturally into such
a hybrid quantum–classical scheme. In the DMFT setting, quantum hardware can be used to solve the
impurity problem which is then post-processed by a classical computer to extract the value of hybridization
parameters in a self-consistent manner, see figure 1. Importantly, useful results that approach the
thermodynamic limit can be obtained from DMFT with only a few impurity orbitals [13]. Moreover,
DMFT simulations on an NISQ device are sensible because the impurity is a small part of the lattice. Thus,
DMFT will require fewer qubit resources compared to a direct simulation of say, the Hubbard model. It has
also been shown that DMFT’s limitations, e.g. a small set of correlated orbitals and no momentum
dependence of the self-energy can be overcome on quantum computers [13].

Here, we report on an implementation and benchmark of the two-site DMFT scheme described in
reference [18]. Specifically, we employ one of IBM’s superconducting qubit chips to solve the impurity
problem by measuring the impurity Green’s function in the time domain, while the remainder of the
DMFT self-consistency loop is executed on a classical computer. For each circuit run on the quantum
computer, we execute the maximum number of shots allowed by IBM, 8192. We find that the Trotter error
associated with the discretization of the time-evolution leads to inaccurate frequency estimates in the fit
procedure, which in turn introduces an unphysical pole in the self-energy and incorrect quasiparticle
weights. These erroneous frequencies, along with noise from the quantum chip, prevent the DMFT
algorithm from converging to the correct self-consistent solution. To overcome this issue, we instead
determined the quasiparticle weight by integrating the spectral function. We find that this method is much
less sensitive to gate noise and Trotter error and allows the DMFT algorithm to converge to self-consistency
for a half-filled Mott insulator.

A similar approach to the two-site quantum–classical DMFT simulation and its implementation on a
noiseless quantum simulator was given in reference [19]. However, only recently have implementations for
existing quantum hardware begun to appear [20]. Though attempting to achieve the same goal—an
implementation of two-site DMFT on a real quantum computer—our approach differs from that in
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reference [20] in multiple ways. For one, we apply a Trotterized unitary to directly obtain impurity Green’s
function data in the time domain. In contrast, the authors in [20] use variational quantum eigensolver
(VQE) [15] to implement exact diagonalization. Their method depends on the scalability of the VQE to
larger and more complex systems, which is not well known, and these VQE methods are meant to treat
Hamiltonians with only a few noncommuting terms [13]. Also, to handle the unphysical poles in the
self-energy arising from frequency shifts in the frequency domain representation of the impurity Green’s
function, the authors of [20] use a regularization technique to restore the frequency cancellation expected to
arise in the Dyson equation. We instead use a different method of calculating quasiparticle weight, which is
not explicitly dependent on the self-energy. Another difference is that we iterate the DMFT loop to
self-consistency, whereas reference [20] only states that it can be done and did not implement it.

This paper is organized as follows: section 2 introduces the single-band Hubbard Hamiltonian, its
mapping onto an Anderson impurity model, and discusses the general DMFT method used to solve the
problem. Section 3 presents the methods implemented to solve the two-site DMFT problem using a hybrid
quantum classical scheme. Our findings are presented in section 4. These include our variational state
preparation procedure as well as the fact that Trotter errors and noise lead to an unphysical pole in the self
energy, giving incorrect quasiparticle weights, and our method to circumvent this issue. Section 4 also
includes our results for the Mott insulating phase, which were obtained after iterating the hybrid
quantum–classical algorithm to self-consistency. Finally, section 5 provides some concluding remarks.
Appendix A recounts some of the alternative (unsuccessful) methods we explored to more reliably calculate
the quasiparticle weight.

2. Model & formalism

We implemented a two-site DMFT simulation of the single-band Hubbard Hamiltonian

H = −t
!

⟨i,j⟩,σ

"
c†i,σcj,σ + h.c.

#
− µ

!

i,σ

n̂i,σ + U
!

i

n̂i,↑ n̂i,↓ . (1)

Here, ⟨· · ·⟩ denotes a sum over nearest neighbors, c†i,σ (ci,σ) creates (annihilates) a spin-σ (= ± 1
2 ) electron

on site i, t is the nearest-neighbor hopping integral, µ is the chemical potential, U is the local Hubbard
repulsion between electrons, and n̂i,σ = c†i,σci,σ is the number operator.

The DMFT method maps equation (1) onto an Anderson impurity model

HAIM =

Nbath!

i=0,σ

(ϵi − µ) n̂i,σ + Un̂0,↑ n̂0,↓ +

Nbath!

i=1,σ

Vi

"
c†0σci,σ + c†i,σc0,σ

#
, (2)

where i = 0 corresponds to the impurity site and i = 1, . . . , Nbath correspond to the bath sites, Vi is the
hybridization term that allows hopping between the bath and impurity sites, and ϵi are the bath site
energies. We consider equation (1) in infinite dimensions on a Bethe lattice with a bandwidth W = 4t∗ .
DMFT is exact in this limit when Nbath →∞. In what follows, however, we consider the so-called two-site
problem with Nbath = 1. While it is a simplified problem, two-site DMFT allows one to recover qualitative
results for the Mott transition [18].

The central quantity in DMFT is the retarded impurity Green’s function

iGimp(t) = θ(t)⟨GS|{cσ(t), c†σ(0)}|GS⟩, (3)

where θ(t) is the Heaviside step function, and |GS⟩ denotes the ground state of the system. The impurity
Green’s function gives the response of the system when a particle is added to or removed from the impurity
site. This quantity can be used to compute many useful quantities, e.g. the spectral function and self energy.
In the paramagnetic phase, Gimp(t) is spin symmetric, and so it is sufficient to only compute Gimp(t) for one
spin configuration.

In the frequency domain Gimp(ω) can be expressed as

Gimp(ω) =
1

ω + µ−∆(ω)− Σimp(ω)
, (4)

where ∆(ω) = V2

ω−(ϵ1−µ) is the so-called hybridization function that describes the coupling of the impurity
to the bath, and Σimp is the impurity self-energy. In the non-interacting limit (U = 0), the Green’s function
reduces to

G(0)
imp(ω) =

1
ω + µ−∆(ω)

. (5)
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The self-energy can be calculated using equations (4) and (5) together with Dyson’s equation

Σimp(ω) = G(0)
imp(ω)−1 − Gimp(ω)−1. (6)

We solve this problem for the case of a strong Coulomb repulsion at half-filling, where ϵ0 − µ = U
2 and

ϵ1 − µ = 0 [18]. This simplification means that we only need to concern ourselves with the self-consistency
condition for the hybridization parameter V.

Equations (3)–(6) give the outline of our two-site DMFT protocol, which is also sketched in figure 1.
Specifically, we carry out the following steps:

(a) Fix U and ϵi − µ to the values appropriate for half-filling, and initialize V to some nonzero initial
value.

(b) Measure the impurity Green’s function in the time domain.

(c) Fourier transform iGimp(t) to obtain Gimp(ω).

(d) Obtain the spectral function from Gimp(ω) and the self-energy from G(0)
imp(ω) and Gimp(ω).

(e) Calculate the quasiparticle weight Z by integrating the quasiparticle peaks in the spectral function.

(f) Calculate the update to the hybridization parameter V by taking the square root of Z (this simple
square root update method is possible because of the properties of two-site DMFT and the Bethe
lattice).

(g) Repeat steps (b)–(f) with the new value of V until a self-consistent V is reached.

3. Methods

3.1. Hardware needs & error mitigation
Quantum computing simulations of a fermionic system require two qubits for every orbital in the problem,
each one to encode the occupancy of the up and down spins on each orbital. Our two-site DMFT protocol
will therefore require four qubits. We further require an ancillary qubit to perform a single-qubit
interferometry measurement scheme, as described in references [19, 21, 22], bringing the total number of
qubits required to five. We pick a particular subset of qubits on the device that matches the required
connectivity to implement our time dynamics circuitry. There is also the circuitry required to prepare the
ground state, for which we include the already chosen connectivity between qubits being used for the time
dynamics circuitry, and variationally find optimal single qubit rotations between the CNOT gates allowed
by connectivity (see section 4.1 and figure 2).

To extract the time dynamics of the impurity Green’s function, we implemented the time evolution
operator U(t) = e−iHAIMt using elementary single and two-qubit gates. There are several approaches that can
achieve such a decomposition. We opted to implement this using the first order Trotter–Suzuki expansion
as opposed to methods such as qubitization [23] or the linear combinations of unitary operations (LCU)
[24–26]. While both LCU and qubitization methods achieve a superior scaling in terms of the number of
gates needed to implement U(t) for a given t and synthesis error ϵ, we make this choice due to the hardware
constraints of current quantum devices. Unlike qubitization and LCU, which require multiple ancillas and
the ability to implement advanced controlled unitary operations, Trotterization can be implemented in a
more resource-efficient way at the price of increased noise. We also employed several error mitigation
techniques to improve our simulations. Specifically, we used the exponential error extrapolation described
in references [27, 28] to reduce the noise generated by the relatively large number of CNOT gates required
to implement a single Trotter step. We also applied the assignment error reduction method described in the
supplementary information of reference [29] to characterize and correct for qubit readout (assignment)
errors.

3.2. Jordan–Wigner transformation
To compute quantities of interest on a quantum computer, we first transformed the fermionic creation and
annihilation operators to spin operators [30, 31] using the Jordan–Wigner transformation [30]. In our four
qubit system (excluding the ancilla qubit used for measurement), the first two qubits encode the spin-down
information for sites one and two, while the third and fourth qubits encode the corresponding information
for the spin-up occupation. We then represented the creation operator as σ− = X− iY, following reference
[19]. After applying the Jordan–Wigner transformation, the transformed operators are
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Figure 2. The circuit used to prepare the ground state using only three CNOT gates and eight single qubit rotations. The
parameters {θi} are varied to maximize the fidelity between the output state of this circuit and the ground state of the system.

c†1↓ = σ−1 =
1
2

(X1 − iY1) ,

c†2↓ = Z1σ
−
2 =

1
2

Z1 (X2 − iY2) ,

c†1↑ = Z1Z2σ
−
3 =

1
2

Z1Z2 (X3 − iY3) ,

c†2↑ = Z1Z2Z3σ
−
4 =

1
2

Z1Z2Z3 (X4 − iY4) .

(7)

Here, Xi, Yi, or Zi denote operations where a Pauli operator acts on the ith qubit while identity operators act
on the remaining qubits. In this representation, the two-site Anderson impurity model is given by

HAIM =
U
4

(Z1Z3 − Z1 − Z3)+
ϵ0 − µ

2
(Z1 + Z3)− ϵ1 − µ

2
(Z2 + Z4)

+
V
2

(X1X2 + Y1Y2 + X3X4 + Y3Y4), (8)

where we have neglected any identity terms.

3.3. Trotter expansion of the time evolution operator
As mentioned in section 3.1, we used a first order Trotter–Suzuki expansion to implement the time
evolution operator over higher order methods. The first order Trotter–Suzuki expansion [32, 33] gives

U(t) = e−iHAIMt ≈
"

e−i V
2 (X1X2+Y1Y2)∆te−i V

2 (X3X4+Y3Y4)∆te−i U
4 Z1Z3∆t

× e−i
(

ϵ0−µ
2 −U/4

)
Z1∆te−i

(
ϵ0−µ

2 −U/4
)

Z3∆tei ϵ1−µ2 Z2∆tei ϵ1−µ2 Z4∆t

$n

+ O(∆t2), (9)

where t is the total time, n is the number of time steps taken, and ∆t = t
n . In constructing the circuits

corresponding to one Trotter step, we utilized the Cartan subalgebra rotation method for each of the V
terms [34–36], thus reducing CNOT gate costs for the two V terms from six CNOTs each to three CNOTs
each.

3.4. Measurement scheme and procedure
To obtain the values of the impurity Green’s function in the time domain, we used a single-qubit
interferometry scheme, as proposed in references [19, 21, 22]. We first re-write equation (3) in terms of the
greater G>imp(t) = −i⟨c0σ(t)c†0σ(0)⟩ and lesser G<imp(t) = i⟨c†0σ(0)c0σ(t)⟩ Green’s functions. We then use the
Jordan–Wigner transformation [equation (7)] to recast these as

G>imp(t) =
−i
4

%
⟨U†(t)X1U(t)X1⟩ − i⟨U†(t)X1U(t)Y1⟩ + i⟨U†(t)Y1U(t)X1⟩+ ⟨U†(t)Y1U(t)Y1⟩

&
(10)

and

G<imp(t) =
i
4

%
⟨X1U†(t)X1U(t)⟩+ i⟨X1U†(t)Y1U(t)⟩ − i⟨Y1U†(t)X1U(t)⟩+ ⟨Y1U†(t)Y1U(t)⟩

&
. (11)

After measuring the retarded impurity Green’s function Gimp(t) at each Trotter step, we least-squares fit
iGimp(t) on a classical computer using the the scipy package [37] and a function of the form

iGimp(t) = 2 [α1 cos(ω1t)+ α2 cos(ω2t)] , (12)
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which is a simplification due to the assumed particle-hole symmetry in our system [19]. The Fourier
transform of equation (12) is straightforward with

Gimp(ω + iδ) = α1

'
1

ω + iδ + ω1
+

1
ω + iδ − ω1

$
+ α2

'
1

ω + iδ + ω2
+

1
ω + iδ − ω2

$
, (13)

where δ is an artificial broadening. Once self-consistency is reached and the fit parameters are obtained, we
use the Dyson equation [equation (6)] to compute the self-energy and, subsequently, the spectral function
A(ω) = − 1

π Im[Gimp(ω + iδ)].

4. Results

4.1. Ground state preparation
The main obstacle for performing fermionic calculations on a quantum computer lies in preparing the
necessary eigenstates. The quantum phase estimation algorithm [38] will not work for the hardware we
have used due to the inability to feed forward the state acquired via phase estimation to the time dynamics
part of the algorithm. Instead, we use a variational approach that is well-suited to the limited connectivity
of IBM’s quantum chips. Our variational state ansatz can be prepared by a shallow circuit with three
CNOTs and eight single-qubit rotations (see figure 2 for details). The single-qubit rotation parameters are
chosen to minimize the expectation value of the Hamiltonian HAIM for given values of V, U, ϵi,µ. We find
that this ansatz can reproduce the exact ground state (to the precision of the minimization). More
specifically, our variational state has a fidelity with the exact ground state of 1 with an error on the order of
10−14. When V becomes smaller than 10−2, we neglect the V term and can prepare the ground state exactly.

4.2. Impurity Green’s function
As stated previously, the impurity Green’s function is the central quantity of interest in the DMFT routine.
In figure 3, we show the impurity Green’s function in the time domain for two different sets of parameters,
namely V = t∗ (top) and V = 0 (bottom) with U = 8t∗ for both cases. The data in figure 3 are
superimposed with the fits to the data [equation (12)] and the exact solution for those parameters. In the
top panel of figure 3 we also plot the impurity Green’s function calculated with only the error introduced by
the Suzuki–Trotter approximation to the Green’s function. We found that for short times, the error was
mainly due to the error induced by the Trotter–Suzuki expansion. For longer times, the error due to the
rising number of CNOT gates becomes the more relevant source of error. This curve is absent in the bottom
plot since the Trotter error is zero for V = 0 and so those data points would lie directly on top of the exact
curve. In both cases, there are only seven data points for Gimp(t) because the Trotter step is so expensive in
terms of CNOT gates that the noise generated for more time steps and a nonzero V would overwhelm the
simulation. In figure 4, we show the impurity Green’s function in the frequency domain extracted from the
fit parameters [equation (13)], along with the exact solution, both obtained after self-consistency is
achieved (V = 0). In figure 5, we display the self-energy of the system at self-consistency, calculated using
equation (6) with the Gimp(ω) shown in figure 4. As expected for two-site DMFT at half-filling with
U > Uc = 6t∗ , at self-consistency one term in equation (12) dominates with a frequency at U

2 . Due to noise,
however, our self-consistent solution does not converge to exactly the right frequency (it is shifted by
approximately 0.02/t∗ ). Nevertheless, we still obtain good agreement with the exact solution.

4.3. Quasiparticle weight calculations
Because of the semicircular form for the density of states of the Bethe lattice in the limit of infinite
coordination, the hopping parameter V in the case of a single bath level is given simply by the square root
of the quasiparticle weight V =

√
Z [18]. The latter can be calculated from the self-energy using the

relation

Z−1 = 1−dRe[Σ(ω)]
dω

((((
ω=0

. (14)

In practice, however, we found that the Trotter error and noise inherent to the quantum simulation result in
slight shifts in the fit frequencies ω1 and ω2 [see equation (12)]. These errors produce extraneous peaks
around ω = 0 in the self-energy computed using the Dyson equation, which gives small nonzero
quasiparticle weights, regardless of the other parameters. We observed that even small errors in the
frequencies due to Trotterization causes unreliable derivatives and thus unreliable quasiparticle weights.
This issue can be mitigated by taking more Trotter steps, but with the noise restrictions of the available
quantum computers, we are restricted to approximately six Trotter steps.

To circumvent this issue, we instead integrate the quasiparticle peaks, i.e. the two peaks closest to ω = 0,
in the spectral function to obtain the quasiparticle weight. For example, in the top panel in figure 6, the two
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Figure 3. Top: data and fit for the impurity Green’s function at the first step in the self-consistency loop with U = 8t∗ andV = t∗

compared against the exact result and the result with Trotter error only. The parameters for the fit shown are ω1 = 4.033,
ω2 = 5.197, α1 = 0.242, and α2 = 0.207. Bottom: data and fit for impurity Green’s function at self-consistency V = 0 with
U = 8t∗ plotted along with the exact result. The parameters for the fit shown are ω1 = 3.980, ω2 = 2.116, α1 = 0.461, and
α2 = 0.003. Note that in the bottom plot, the calculation with Trotter error only is absent since there is no error from
Trotterization when V = 0.

Figure 4. Impurity Green’s function in the frequency domain for U = 8t∗ , here calculated via equation (13) after the DMFT
algorithm has converged to self-consistency. The data are compared to the exact result, and both curves assume a broadening of
δ = 0.1.

innermost peaks of the spectral function are visible for finite V, but for our Mott insulating case at self
consistency they become very small. This method still produces inaccurate quasiparticle weights, but they
are less sensitive to the shifts in frequency due to Trotter error, and accurate enough to allow us to obtain
some meaningful results.

For finite values of V, the fitting procedure gives incorrect parameters when the data for iGimp(t) is fit to
equation (12) due to the limited number of Trotter steps that we can implement, and the noise inherent to
current quantum hardware. These erroneous fit parameters make the updates for the self-consistency
parameters inaccurate. Because of this, we have found it difficult to converge to self-consistency when
U < Uc and a metallic solution (V ̸= 0) is expected. In figure 7, we show the values of the quasiparticle
weight at self-consistency for different values of U. We see that with Trotter error, the values of the
quasiparticle weight calculated via equation (14) are completely unreliable. Figure 7 also shows that we do
not recover the exact quasiparticle weight at self-consistency for all values of U, but obtain fairly good
results that are more resilient to Trotter error in comparison to any other method we attempted (see
appendix A), and that for our trial case of the strongly Mott insulating regime, we can recover the exact
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Figure 5. The real part of the self-energy calculated from figure 4 via equation (6). Data are shown for the fit parameters and the
exact result, both with a broadening of δ = 0.1.

Figure 6. Top: the calculated spectral function after the first step of the self-consistency loop with U = 8t∗ , V = 1t∗ , and a
broadening of δ = 0.1, compared with the exact result. Bottom: the same spectral function after the DMFT loop has converged
to V = 0.

quasiparticle weight at self-consistency. It should be noted that all of the data in figure 7 was calculated on a
classical computer. We are, however, able to obtain a converged solution on quantum hardware for U > Uc,
where a Mott insulating gap forms and at self-consistency V = 0, as discussed in the next section. Other
methods that we attempted to employ to calculate the quasiparticle weight more reliably are given in
appendix A.

4.4. Mott insulating phase
For an on-site impurity Coulomb repulsion above a critical value of Uc = 6t∗ at half-filling (ϵ0 − µ = U

2
and ϵ1 − µ = 0), the self-consistent value of V is zero. This solution corresponds to the well known Mott
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Figure 7. Quasiparticle weight at self-consistency as a function of U using equation (14) with fit parameters from both the
Trotterized unitary (diamonds), the exact unitary fit parameters (triangles), and from integrating the low-energy peaks of the
spectral function (circles) with fit parameters from the Trotterized unitary, along with the analytical result of reference [18] (solid
line).

insulating phase [18]. In our particular case, we set U = 8t∗ and took an initial guess for the hybridization
parameter of V = 1t∗ , see the top figure in figure 3 for the initial run. We then iterated our approach to the
self-consistent V = 0 solution, with the condition that once V is sufficiently small (V ! 10−2), we neglected
the V term and solve what is essentially the single site problem. The bottom panel in figures 3, 4 and 5, and
the bottom panel in figure 6 show the resulting impurity Green’s functions, self-energy, and spectral
functions, respectively, obtained once the DMFT loop has converged. This regime gives poles for the
impurity Green’s function at ±U

2 . Although there is no Trotter error at self-consistency for this case, noise
from the quantum computer gives a small but finite value for the amplitude α2 of the second cosine in
equation (12), even though the exact solution has α2 = 0. This error is the origin of the small peaks located
near ω/t∗ ≈ ±2 in the bottom panel of figure 6. Nevertheless, our results demonstrate that the DMFT loop
for the two-site problem can be iterated to convergence for parameters in the Mott insulating regime.

4.5. Trotter error analysis
As mentioned previously, we found that the Trotter error accumulated after several Trotter steps
implemented on a quantum computer results in shifted frequencies obtained from the fit. This error causes
a mismatch between the poles in G(0)

imp(ω) and Gimp, leading to unphysical poles in the self-energy. The noise
introduced by the quantum computer will exacerbate this issue. This result agrees with the findings of
reference [20]. One can define a Trotter error for a Trotterized unitary operator such that

||U − UT|| ! δT, (15)

where U is the full unitary, UT is the Trotterized unitary, and δT is the Trotter error. For our case, we find
that the Trotter error incurred in both G>imp and G<imp is less than or equal to 2δT. For our first order Trotter
expansion, and our relatively large time step (∆t = 0.5) required to satisfy the Nyquist criteria with a
reasonable number of Trotter steps, this Trotter error is significant.

5. Conclusions

We have implemented an algorithm to conduct the two-site dynamical mean-field theory calculations on a
quantum computer, employing multiple error mitigation strategies. Due to limited connectivity of the IBM
superconducting qubit quantum computers, we use a variational ansatz to prepare the ground state of the
system, greatly reducing the cost in terms of CNOT gates. We found that Trotter error and noise lead to
frequencies shifted from their true values, which in turn lead to an unphysical pole in the self-energy. These
aspects lead to unreliable calculations for the quasiparticle weight, and the update of the impurity-bath
hybridization parameter V. These limitations prevented the DMFT algorithm from reaching
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self-consistency. To overcome this problem, we integrated the quasiparticle peaks in the spectral function to
obtain updates to the hybridization parameter. Using this alternative method, we were able to iterate the
DMFT loop to self-consistency for a strong-coupling Mott insulating phase. We were, however, unable to
obtain self-consistency in the metallic phase.

Our work highlights several of the challenges in implementing quantum many body algorithms on
NISQ devices. For example, to go beyond two-site DMFT with currently available quantum computing
hardware, other methods will need to be employed for calculating the Green’s functions, such as those
proposed in [39, 40], or a more complex version of the regularization proposed in
reference [20].
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Appendix A. Different methods of calculating quasiparticle weight

A possible alternative to the proposed methods for calculating the quasiparticle weight is to use the
Kramers–Kronig relations between the real and imaginary parts of the self-energy to relate dRe[Σ(ω)]

dω

((
ω=0

to
an integral over the imaginary part of the self-energy. This method may be preferable since in many cases
the ‘quasiparticle peaks’ in the spectral function may not be as pronounced and/or well separated from the
rest of the spectrum as here. The integration over the entire spectral range should make this method less
sensitive to the unphysical near zero frequency structure in the self-energy, but it is not expected to be
entirely immune to this problem. For our case, we found this Kramers–Kronig based method for
calculating the derivative of dRe[Σ(ω)]

dω

((
ω=0

to be more accurate than directly taking the derivative on the real
axis, but less accurate than integrating the quasiparticle peak of the spectral function for the number of
Trotter steps implementable on available quantum computers.

In another attempt to mitigate the errors in calculating the quasiparticle weight, we introduced a small
fictitious temperature and transformed all of our quantities to the Matsubara frequency domain.
Specifically, we performed the Hilbert transform of equation (13) to obtain the Green function in terms of
Matsubara frequency. From this, we obtained the self-energy at the first Matsubara frequency as a function
of (ficticious) temperature from the Dyson equation. From these quantities, we obtained the imaginary
frequency quasiparticle weight as a function of temperature

Z(T) =
1

1− Im[Σ(πT)]
πT

,

which becomes identical to the real frequency quasiparticle weight in the zero temperature limit. We
calculated Z(T) for many small fictitious temperatures and extrapolated to zero temperature.

We again found that the Trotter error caused this method to give completely unreliable results for a
Trotter step size of more than a few thousandths, making this method completely impractical for near-term
applications. Figure A1(a) shows the Matsubara Green function at the first Matsubara frequency vs
temperature for different size Trotter steps. Figure A1(b) shows the difference between the Matsubara
self-energy with no Trotter error and the Matsubara self-energy with different Trotter step sizes vs
temperature, with both self-energies being evaluated at the first Matsubara frequency.

While the Green’s function appears to converge rapidly with decreasing Trotter step size, the non-linear
relation between the self-energy and the Green’s function leads to a large error in the self-energy even for
Trotter step sizes where the Green’s function is very close to the exact result.
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Figure A1. (a) Matsubara Green function at the first Matsubara frequency vs temperature for different Trotter step sizes at
U = 8t∗ and V = t∗ . (b) Difference between the self-energy computed with Trotter fit parameters and the exact self-energy at the
first Matsubara frequency vs temperature for different Trotter step sizes at U = 8t∗ and V = t∗ .
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