T Available online at www.sciencedirect.com _—
Journal of

skt ScienceDirect Differential
= Equations
ELSEVIER J. Differential Equations 269 (2020) 6899-6940 —_—

www.elsevier.com/locate/jde

Nonlinear stability and existence of compressible vortex
sheets in 2D elastodynamics

Robin Ming Chen **, Jilong Hu*, Dehua Wang *, Tao Wang ",
Difan Yuan ‘

& Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
b School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
¢ Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
d School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics and Complex Systems,
Ministry of Education, Beijing 100875, China

Received 11 January 2020; accepted 7 May 2020
Available online 7 June 2020

Abstract

The nonlinear stability and local existence of compressible vortex sheets for the two-dimensional isen-
tropic elastic fluid are established in the usual Sobolev spaces. The problem has a characteristic free
boundary, and the Kreiss—Lopatinskii condition is satisfied only in a weak form. This paper completes
the previous works [6,7] of the first three authors where the weakly linear stability of the rectilinear vortex
sheets is proved by means of an upper triangularization technique. Our proof is based on certain higher-order
energy estimates and an appropriate modification of the Nash—-Moser iteration. In particular, the estimate
for the normal derivatives of the characteristic variables can be recovered from that for the linearized diver-
gences and vorticities.
© 2020 Elsevier Inc. All rights reserved.

MSC: 35L65; 74J40; 35L67; 35Q74; 74H55

Keywords: Elastodynamics; Compressible vortex sheets; Characteristic free boundary; Nonlinear stability; Nash—-Moser
iteration

* Corresponding author.
E-mail addresses: mingchen @pitt.edu (R.M. Chen), jih62 @pitt.edu (J. Hu), dwang @math.pitt.edu (D. Wang),
tao.wang @whu.edu.cn (T. Wang), yuandf@amss.ac.cn (D. Yuan).

https://doi.org/10.1016/j.jde.2020.05.003
0022-0396/© 2020 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2020.05.003&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2020.05.003
http://www.elsevier.com/locate/jde
mailto:mingchen@pitt.edu
mailto:jih62@pitt.edu
mailto:dwang@math.pitt.edu
mailto:tao.wang@whu.edu.cn
mailto:yuandf@amss.ac.cn
https://doi.org/10.1016/j.jde.2020.05.003

6900 R.M. Chen et al. / J. Differential Equations 269 (2020) 6899-6940

1. Introduction

This paper continues and completes the previous works [6,7] of the first three authors on
the study of stability for vortex sheets in the two-dimensional compressible elastodynamics. In
particular, we prove the nonlinear stability, and hence the local existence for the configuration of
vortex sheets.

The physical relevance of the model, and the motivation to include elasticity and to study their
stabilizing property can be found in [6,7] and the references therein. In this introduction we will
recall the problem of compressible vortex sheets for elastodynamics, state the main result after
transforming the free boundary problem into a fixed domain, and briefly discuss our approach.

1.1. Formation of compressible vortex sheets

The two-dimensional isentropic motion of elastodynamics can be described by the following
equations (see Dafermos [14, Chapter 2]):

dp + 3¢ (pve) =0, (1.1a)
3 (pvi) + de(pvevi) = 3¢ Tie, (L.1b)
(9 + ved¢) Fij = 0¢v; Fyj, (L.1¢)
fori, j =1,2, where 0, := % and 9y := aixw for £ =1, 2, denote the partial differentials, p is the

density, v = (v;, 12) | € R? is the velocity, F = (Fjj) € M?2*2 is the deformation gradient, and
T=(T;) e M?2*2 is the Cauchy stress tensor. We note that the Einstein summation convention
is used in (1.1) and will also be adopted in the rest of this paper, and we denote by M"*" the
vector space of real m X n matrices.

We consider the compressible neo-Hookean materials (see Ciarlet [9, p. 189]), for which the
Cauchy stress tensor T reads

T=»pFF" — p(p)l, (1.2)

where A > 0 is the Hookean constant and 7, denotes the identity matrix of order m. Pressure
p(p) is a C*° and strictly increasing function on (0, +00) so that the sound speed ¢ = c(p)
satisfies

c(p):=+/p'(p)>0 for p > 0. (1.3)

When A = 0, the material becomes a thermoelastic fluid (see [14, p. 39]) and equations
(1.1a)—(1.1b) are reduced to the compressible isentropic Euler equations in gas dynamics. Since
we are concerned with the effect of elasticity to the evolution of materials, we set without loss of
generality that A = 1.

System (1.1) is supplemented by divergence constraints

div(pF;) :=0¢(pF¢j) =0 for j=1,2, (1.4)

where F; stands for the j-th column of F. With (1.4), equations (1.1c) can be reformulated in
the following divergence form:
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0 (pFij) + 0¢(pFijue —vipkj) =0 for i, j=1,2,

which is convenient when calculating the jump conditions for weak solutions (as in [6,7]). It is
worth pointing out that constraints (1.4) are involutions to system (1.1), meaning that if con-
straints (1.4) hold initially, then they are preserved by the evolution; see Dafermos [13] and
Hu-Wang [17]. By using (1.3)—(1.4), in smooth regions, system (1.1) can be rewritten equiva-
lently as

U+ A1 (U)o U + Ax (U)o U =0, (L.5)

where U := (p, vy, v2, F11, F21, F12, Fzz)—r € R’ is the unknown vector, and

v; ,oe;r 0 0
c?, , _ _F
AUy = | o G Ul il il fori=1,2, (1.6)
0 —Fi 1 vilr 0
0 —Fiplh 0 vilp

with e; :=(1,0)T and ep := (0, 1) ". System (1.5) is symmetrizable hyperbolic for p > 0 due to

(1.3).
Let U be smooth on each side of a smooth hypersurface I'(¢) := {x € R2:xp = o(t, x1)}, that
is,

Uy = | UT@Din @70 = {x eR2:x0 > ot x)),
v, in Q7 (1) :={x e R?:x < p(t, x1)},

where U™ (¢, x) and U~ (¢, x) are smooth functions in Q7 (z) and Q7 (¢), respectively. We are
interested in vortex sheets for which the tangential velocity suffers a jump across I'(¢). As in the
previous paper [6], the Rankine—Hugoniot conditions of the vortex sheet solutions are reduced to

[w]=0, de=v, [pl=0 on I'(), (1.7)
together with
FE=F:=0 on I'(t), (1.8)
where [ f] denotes the jump of quantity f across I"(¢), and

v=(=d1p, DT, vE=0vF.y, Ffi =Fji .

See Truesdell-Toupin [34, Section 185] for a thorough discussion. From (1.7) and (1.8), the
boundary matrix on I”(¢), namely

Apay 1= diag(r¢ 17 — veAcU™), =3l +veAc(UD))| 1)

is singular, which means that the free boundary I"(¢) is characteristic. In this sense, a vortex sheet
solution is a characteristic discontinuity. Moreover, the boundary matrix Apgy has 2 negative, 2
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positive, and 10 zero eigenvalues. We need one boundary condition for determining the unknown
front, so the correct number of boundary conditions is three, according to the well-posedness the-
ory for hyperbolic boundary value problems. As a matter of fact, identities (1.8) are involutions
inherited from the initial data (cf. Proposition 1.1), so they are regarded as constraints on the
initial data rather than boundary conditions for the vortex sheet problem.

As discussed in [6], there exist trivial vortex sheet solutions

(. 0,0, F1,0, F5, 00T, x>0,
U, x1,x) = e (1.9)
(157 _61 O) Fﬁv 07 FIE’ O)T’ x2 < O!

where p > 0, v > 0, F ﬁ, and F 1i2 are constants. Every rectilinear elastic vortex sheet (namely
piecewise-constant vortex sheet) is of this form through the Galilean transformation. For sim-

plicity we assume that Fﬁ = —Fl_l = F}; and 171; = _Fl_z = Fis.
A standard first step in treating a free boundary problem is to convert the problem in a fixed
domain. For this purpose, we introduce

Ut x):=U(t, x1, (1, x)), (1.10)
where the lifting functions @* are taken as in Francheteau-Métivier [15] to satisfy
3 @E + oo 0T —vf =0, 0T >k >0, (1.11)
when x, > 0, and
Pt =@~ =¢, whenx, =0, (1.12)

for some constant ¥ > 0. Then we need to solve the following initial-boundary value problem for
Uf in a fixed domain:

LU*, 0% :=LWUT, o5 UT =0, x>0, (1.13a)
BWU*, U™, ¢)lx,=0=0, (1.13b)
U U™, @)i=0= U, Uy . 90), (1.13¢)

where we have dropped the index “f” for convenience, L(U, @) and B are given by

L(U, @) := I;8; + A1(U)d) + A2 (U, D), (1.14)
[vi]019 — [v2]
BT, U™, ¢):=| 3¢+ v} [5,=001¢ — V3 |x,=0 |, (1.15)
[o]

with

~ 1
AU, @) := "o (A2(U) =0 @17 — 01 P A (U)).
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By (1.8) and (1.11), we obtain that the boundary matrix of problem (1.13), i.e.,
diag (— Ay(UY, @), —Ay (U™, ®7)),
has constant rank on {x, > 0} if and only if

Fj=F;00% for j=1,2, if x>0 (1.16)

In the new variables, equations (1.4) become
o0f" (pEFH =0 for j=1.2, if x>0, (1.17)
where we denote the partial differentials with respect to the lifting function @ by

3P 1
B, A% :=d— 29, o

8(6 81@ R
9, ® 2T %0

=0y —
t Y

02. (1.18)

The following proposition indicates that identities (1.16)—(1.17) are involutions for vortex sheet
problem (1.11)—(1.13). The proof follows from a straightforward computation and hence is omit-
ted.

Proposition 1.1. For every sufficiently smooth solution of problem (1.11)—(1.13) on time interval
[0, T'], constraints (1.16)—(1.17) hold for all t € [0, T] provided that they are satisfied initially.

1.2. Main result and discussion

In the straightened variables, the piecewise constant vortex sheet (1.9) corresponds to

U*:=(p, 0,0, £F11, 0, £F12, 0), §:=0, &% :=+x. (1.19)

For proving the nonlinear stability of elastic vortex sheets, we only need to show the existence
of solutions to problem (1.11)—(1.13) on account of transform (1.10). The main result of this
paper is stated as follows.

Theorem 1.1. Let T > 0 and sy > 14 be an integer. Suppose that the background state (1.19)
satisfies one of the following stability conditions:

0% > 2¢(p)? + F} + F5, (1.20)
or
0<v”< 17121 + 17222,

_ _ _ _ 2
LR, (A Bt - (F + FR)'?)
v —_— ), UV B
4 4
2 2 ~\2 2 2 2 2 =2
i Fi+ B+’ . (Ffy + FR)(Ffy + F5 +2¢(0)%)
4 4(F2 + F3 4 c(p)?)

(1.21)
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Suppose further that the initial data USE and g satisfy constraints (1.16)—(1.17) and the compat-
ibility conditions up to order sq (cf. Definition 4.1), and that (UOi —U*, ) € HSOH/Z(R?F) X
H%FTY(R) has a compact support. Then there exists a positive constant € such that, if

U5 = TF llgsoning2y + 190l ot gy < €
then problem (1.11)—(1.13) admits a solution (UE, o=, @) on the time interval [0, T] satisfying
(U U5, 05— 05 e HO3((0,T) xRY), ¢e HY/((0,T) x R).

The theorem above asserts that, unlike the two-dimensional compressible Euler flow for which
the vortex sheets are stable only for large Mach numbers, the appearance of elasticity stabilizes
the system even in the subsonic zone, confirming the expectation from the linear analysis [6,7].
In particular, when linearizing at the rectilinear vortex sheet, a stabilizing subsonic zone larger
than the one given by (1.21) was discovered in [6] by a delicate spectral analysis of the Lopatin-
skii determinant for the corresponding constant coefficient problem combined with an upper
triangulation scheme for the energy estimates. Further perturbing away from the constant states
leads to a linear problem with variable coefficients which admits a richer spectral structure. Para-
differential calculus thus becomes an effective way in place of the Fourier analysis. However,
understanding the spectrum of the para-linearized system is much more challenging due to the
degeneracy of the Kreiss—Lopatinskii condition and the characteristic boundary. The upper tri-
angularization method turns out to be particularly useful for treating the additional degenerate
boundary points (referred to as poles) as well as gaining improved regularity of the outgoing
modes; see the discussion in [7]. On the other hand, it is the complicated interaction between
the poles and the other degenerate points (namely the roots) that imposes extra constraints in the
subsonic region for stability.

Proceeding from linear to nonlinear stability and thus local existence can usually be achieved
by an iterative argument. Our proof shall follow the general procedure (and thus format of pre-
sentation) in the spirit of Coulombel-Secchi [12]. A common feature shared by various types of
compressible vortex sheets is that the free boundary is characteristic and the Kreiss—Lopatinskii
condition holds only in a weak sense; see, e.g., [4—7,11,27]. Therefore the standard fixed-point
argument cannot be applied since there is a loss of regularity from the source terms to the solution
in the estimates for the linearized equations. Instead, we will appeal to the Nash—-Moser iteration
framework and construct solutions to the nonlinear problem (1.11)—(1.13) via the convergence
of the scheme. Such type of approach has been successfully applied to other related problems
[1,4,5,12,15,18,22,24,26,30-33,35]. Also refer to Alinhac—Gérard [2, Chapter III.C] and Secchi
[29] for a general description.

For showing the convergence of the Nash—-Moser iteration scheme, we need to establish the
well-posedness of the variable coefficient linearized problem with suitable tame estimate. In
[6,7], the basic a priori energy estimate has been derived in the weighted Sobolev space L)Z, with
one loss of derivative from the source terms. Using this estimate and the Moser-type calculus
inequalities, we can control the tangential derivatives by the source terms, the coefficients, and the
L°° norm of solutions (instead of the W !> norm in Coulombel-Secchi [12, (37)], ¢f. (3.28)). In
general one has to study characteristic hyperbolic problems in the anisotropic Sobolev spaces due
to the degeneracy in the normal direction (see Secchi [28] and the references therein). Utilizing
such function spaces, the iteration was carefully carried out to pass from linear to quasilinear
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problems in [16], resulting in the well-posedness of the full problem. However, in the present
paper, instead of making use of the anisotropy in different derivatives, we will follow an idea
of Trakhinin [32] and compensate the loss of normal derivatives through the estimates of the
linearized divergences and vorticities (see (3.44) and (3.52)—(3.53) for the definitions). This will
in turn allow us to build the well-posedness in the usual Sobolev spaces.

‘We remark that the recent paper [8] confirms that the elasticity can stabilize the fluids in three
dimensions. Indeed, it is showed that the linear stability in three-dimensional compressible elastic
fluids is more challenging and the spectrum analysis is different from the two-dimensional case
due to more complicated structures of the system. We also refer the reader to the recent work
[23] for the stabilization effect of elasticity in the study of the structural stability of shock waves
in 2D compressible elastodynamics.

The rest of this paper is organized as follows. Section 2 is devoted to collecting several prelim-
inaries including the notation, weighted Sobolev spaces and norms, and the Moser-type calculus
inequalities in weighted spaces for later use. In Section 3, we show the well-posedness of solu-
tions to the variable coefficient linearized problem in usual Sobolev spaces, that is, Theorem 3.1.
For this purpose, we first prove the well-posedness of the linearized problem in L? by applying
the duality argument of [10,12]. Then we show the estimate of the tangential derivatives, normal
derivatives of the noncharacteristic variables, linearized divergences, and linearized vorticities in
Subsections 3.3-3.6. The proof of Theorem 3.1 is given in Subsection 3.7 by finite induction.
Section 4 is devoted to introducing the compatibility conditions and approximate solutions. In
Section 5, we first present the Nash—-Moser iteration scheme for our nonlinear problem by fol-
lowing [4,12]. Particularly, in Subsection 5.3, we construct and estimate a suitable modified state
for deriving the convergence of the scheme.

2. Preliminaries

In this section, we shall provide the definitions of weighted Sobolev spaces and norms, and
then introduce the Moser-type calculus inequalities in terms of weighted norms for later use.

First we give the following notation. Letter y always denotes a parameter with y > 1. We
denote by C any universal positive constant, by C(-) any generic positive constant depending
only on its listed arguments, and they may change from line to line. The notation A < B (B 2 A)
is used if A < CB is true for some constant C > 0 independent of y. Symbol A ~ B stands
for A< B and B < A. Set Q= {(t,x1,x2) € R?: xo > 0}, and its boundary 92 is identified to
R2. For T € R, write wy := (—00,T) x R and Q7 :=wr x R;. We denote V := (9;, d1) when
applying it to functions of (¢, x1) and V := (9;, 91, d2) when applying it to functions of (z, x1, x2).
For multi-index @ = (a0, a1, @2) € N3, we define 8% := ;091952 and || := g+ 1 + 2.
For m € N, we denote V" := {9” : || = m}. We remark that, besides the notation above, we
also adopt the same conventional notation in many places of this paper as those in [4,7,12,16].

We now give the definitions of weighted Sobolev spaces and norms. Let s € R, m € N, and
y > 1. The weighted Sobolev space

H3(R?) := {u eD'(R?): e u(t, xy) € HS(R2)}

is defined with norm ||u||H,yc(]Rz) = |le"""ully,,, where
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1 _
Iolly = / ABY@PE)PdE |,

R2

with ¥ being the Fourier transform of v and A2 (£) := (y% + |£]?)°. We denote L)%(Rz) =
H)‘,) (R?) for short and obtain from the Plancherel theorem that ||« | L2R2) = le ™ ull 2Rz

We abbreviate L2(R+; H; (R?)) to L2(H;), which is equipped with the norm
1/2

. . 2
”u”LZ(H;) = / ||M( ’x2)||HJA/'(]R2) de 5
R,

and L (Q) := L*(H), el 2 @) = le™""ull 2(q) Moreover,

H'(Qr):={ueD(Qr): e "'ue H"(Qr)}

is introduced with the norm

My @r =D y™ e ™ 0%ull 12(qy)-

loe|<m

Similarly, the space H}’," (wr) and its norm are defined. Furthermore, we abbreviate L?(R_;
H;” (w7)) to L2(H;" (w1)), which is equipped with the norm

. ) — — Yt qQ) O
lull 22t o)) = Z YT e 8,00 ull 12
apto<m

and L,Z,(QT) = LZ(H,(,)(G)T)), lull 2 @) = le™ ull2e0)-
In the following lemma, we present the Moser-type calculus inequalities in weighted Sobolev

spaces that will be frequently adopted in proving the higher-order tame estimates and conver-
gence of the Nash—Moser iterative scheme.

Lemma 2.1.Let me N, y > 1, T e R, and u,w € H;”(QT) N L®(Q7). Let b denote a
C®—function defined in a neighborhood of the origin.
(@) If |1 + B2| <m and b(0) =0, then

[07u0Pw] 15 ) + luwl gy o,y S Nlli=@p Wl ap@p + el ap@p Iwll=@r),
2.1

o) | m @y < C (Il oo @) el mgr)- 22)

() If |B1 + B2 + B3| < m, then

[a#10%. 6@ 3 0, = Clul@n) (0 lp@n) + lullmp@n i@ ).
(2.3)
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Furthermore, if u € WLoo(Qr), then

[07107, 1o w]| 15 g, = CIullwray) (||w||H¢-1(Q,) + ||u||H¢<QT>||w||Loo<QT>) :
(2.4)

Here B;, fori = 1,2, 3, are multi-indices, [a, b]c := a(bc) — b(ac) denotes the usual commutator,
and the increasing function C is independent of u, w, y, and T. The same results hold with Qr
replaced by wr.

We remark that the proof of the inequalities (2.1) and (2.2) can be found in [20, Section
4.5] and [12, Appendix C]. The inequalities (2.3) and (2.4) follow (2.1) and (2.2) through a
straightforward calculation. We omit the proof.

3. Well-posedness of the linearized problem

In this section we shall consider the linearized problem for (1.13) and prove the well-
posedness of solutions in the usual Sobolev spaces H™ for all integers m stated in Theorem 3.1
asin [12].

3.1. Variable coefficient linearized problem

Let us first perform the linearization for problem (1.13) around a basic state (U = qsi). We
suppose that

supp (V*, &%) C {-T <1 <2T, x>0, |x| <2}, 3.1)
Yo Yt
V=l o)+ 1¥7= o) < K- (3.2)
for V¥ :=U*—U* and ¥+ := o+ — ®*, where T and K are positive constants, and (ﬁi, QSi)

is the background state defined by (1.19). Moreover, the basic state (0 * qgi) is supposed to
satisfy (1.11), (1.13b), and (1.16), i.e.,

+ 0,0 > ko >0, x2 >0, (3.3a)
¥ PE +0790F — 05 =0, x>0, (3.3b)
F=F00* for j=1,2, x>0, (3.3¢)
PT=0"=¢, x =0, (3.3d)
B(UT,U,¢)=0, X =0, (3.3¢)

for some positive constant ko. Constraints (3.3b) and (3.3c) keep the rank of the boundary matrix
for the linearized problem being constant on Q. Denote U := (U+,U~)T, V := (V+, v )T,
@ := (@, &), and ¥ := (¥*, ¥ )T for convenience.
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The linearized operators read
L'(U, ®)(V,¥):=(L(U,®)+CU,P)V — @%(L(U’ D))o U, 34
B'(U, ¢)(V, %) :=bV{ + BV |y, (3.5)

where V := (VT, V’)T, and C(U, @), l;, and B are respectively defined by

CU, @)V := (3y, A1(U)D1 U + dy, Ap (U, @)d,U) Vi, (3.6)
. 0 (¥ —])]n=0
bt,x;):=|1 U =0 , (3.7)
0 0
and
3 0 9, p -1 0 0 00O 0 -3¢ 1 0O 0 O O
B, x)):=|0 8¢ -1 0 0 0 0 O 0 00 O0O0O0 (3.8)
1 0o o0 o0O0O0O0O -1 0 O0O0O0O0O0

As in Alinhac [1], we obtain
e e vy . el vy . /&S v
]L/(Ui,qﬁi)(vi,tpi):L(Ui,qﬁi)vi+6(ui,q§i)vi+maZL(Ui,qbi), (3.9)
2

where V¥ are the “good unknowns”

yi.=vi__y* (3.10)

We now consider effective linear system:

L,(U%, ¢*)VE = L(U%, 6F)VE+C(UF, ¢H)VE= %, x>0, (.1l

BL(U, B)(V,¥) :=bVY + by + BV|y,—0 = g, x=0, (3.11b)

Ut=y~ =y, x=0, (3.11¢c)
where If(lvfi., ®*), C(U*, %), b, and B are given in (1.14), (3.6), (3.7), and (3.8), separately,
V:=W*,v)T, and

(3.12)

. . QWU /T
by(t,x1) :=B(t, x1) (

WU~ )0, d~

x2=0

Here, C(U £, @i) are two smooth functions of (\V/i, V\V/i, Vlf/i) vanishing at the origin, b
is a smooth function of trace V|,—o, by is a smooth vector-function of (VV|y,—0, V¥ |x,=0)
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vanishing at the origin, and matrix Bisa smooth matrix-function Of‘ng. Notice that the boundary
condition (3.11b) depends on the traces of V solely through ]P’((,B)VjE |x,=0, where

“ v T
P(p)VE = (Vi ViF —a19Vy") . (3.13)

Let us convert linearized problem (3.11) into a problem with a constant diagonal boundary
matrix. To this end, we define matrices

0 (0, ) 0®) 0 0 0 0
1 —ye Lyo 0 0 0 0
c(p) _c)
9@ : 2000 0
RWU,®):=| 0 0 0 1 0 0 0}, (3.14)
0 0 0 0100
0 0 0 0010
0 0 0 00 0 1
and
~ 9o 9Hd
AU, @) ::diag(l, . T T 1), (3.15)
c(p)(01D) c(p){(01D)

where (01®) := (14 (01 <1§)2)1/2 and c(p) is the sound speed given in (1.3). Then it follows from
constraints (3.3b) and (3.3c¢) that

AoR™T'ALR(U*, %) =T, :=diag(0, 1, 1, 0, 0, 0, 0).
In terms of new unknowns
W= R7I(U*, 6F)VE, (3.16)

the problem (3.11) can be rewritten equivalently as

AZHWE+ ATHWE+DLHWE+ S WE=FE, x>0, (3.17a)
bV + by + BW™ =g, x2 =0, (3.17b)
gt =y~ =y, x =0, (3.17¢)

where

AF = Ao (UF, 8%), AF:=AR'AR(UE, &%), FE:=AR(U% &%) %,
Ay = Ag(RT'% R+ R A9 R+ R A2, R+ R7'CR) (U*, &%).

In (3.17b), coefficients b and 51 are defined by (3.7) and (3.12), respectively,
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e @) 20 )

—(019)?  ——(hg)? < (d19)? —(019)?
P P P 0
B(t,x)) = —C(f))wlé)z C(f))<81¢)2 0 0 , (3.18)
P P
(319) (919) —(019) —(019)

x2=0

and W™ = (WJ°, W) T denotes the noncharacteristic part of W := (W, W™)T with
Wi = (W;E, Wf)T. Obviously, A§ and AT are smooth functions of (VE, V&), .Agt are
smooth matrix-functions of (V*, VVE, v¥® v2¥*) and B is a smooth matrix-function of

(V]x=0, V).
We are ready to show the following theorem in the rest of this section.

Theorem 3.1. Let T > 0 and m € N with m =2 being fixed. Suppose that background state
(1.19) satisfies (1.20) or (1.21), and that (VE, &%) belong to H"*3(Qr) for all y > 1, and
satisfy (3.1)-(3.3) and

IVE 8D kg +IVE I 3 < K- (3.19)

Suppose further that source terms (f, g) € H" 1 (Qr) x H" Y (wr) vanish in the past. Then
there exist constants Ko > 0 and yo > 1 such that, if K < Ko and y > yy, then problem (3.11)
has a unique solution (Vi, ) e H™(Q7) X H" Y (wr) vanishing in the past and satisfying
tame estimate

IVl @ + IP@VE g n + 1l

(or)

Y
5 ”f”H}'/"'H(QT) + ”g”H;"'H(wT) + (”f”H)}(QT) + ”g”HS(wT))”(V s "4 )||H;"+3(QT)~
(3.20)

When f and g vanish in the past (it is equivalent to zero initial data), Theorem 3.1 holds. The

case of general initial data will be considered in Section 4 by constructing approximate solutions
before the procedure of Nash—Moser scheme.

3.2. Well-posedness in L?

Let us recall the following L? a priori energy estimate derived by [7] for the linearized prob-
lem (3.11).

Theorem 3.2 ([7, Theorem 2.1]). Suppose that background state (U*, %) defined by (1.19) sat-

isfies (1.20) or (1.21), and basic state (Ui, qgi) satisfies (3.1)—(3.3). Then there exist constants
Ko > 0and yy > 1 such that, if K < Ko and y > yy, then

VIVIZ: @) + IP@VIT o) + 115 @2,

Sy LU )V ey + v B0 D)V e, B2D)
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for all (V,y) € H)%(Q) X H)%(]Rz), where operators P (¢), L, and B/, are defined by (3.13),
(3.11a), and (3.11b), respectively.

System (3.11a) is symmetrizable hyperbolic, whose coefficients satisfy the regularity assump-
tions of Coulombel [10]. It implies that we need to construct a dual problem that satisfies an
appropriate energy estimate. Thus, we define

) 0 0 0 0000 -5 0 0 0000
Bi:=|&t 0o 0 0000 & 0 0 0000 ,
0§2+V3+00000—§——§;0000x2=0
(3.22)
) 0 0 0 000OODO O O O0O0O0O
D=0 0 0 000O0O0O O O 0O0O0O , (3.23)
og;g;ooooog;g3oooox2:o
) 0 09 =1 0 0 0 0 0 ¢ —1 0 0 0 O
D=|0 8¢ -1 0 0000 0 0 0 0 0 0},
1 0 0 00O0OO0OT1 O O O0OUOO
where
P i t __c(pH)’ag . c(p®)?
b 32@2‘:’ 2 2,5:‘:32@:‘:’ 3 2}5:|:32q3:|:'
Use (3.3b) and (3.3c) to calculate
BB+ D] D =diag (A,(U", &), &0, )|, .

where B is given in (3.8). Following [20, Section 3.2], we define the dual problem for (3.11) as

L (U*, &) Ut = fr, x>0,
{ el ) * (3.24)

DU =0, div(b"BiU)—b]BU=0, x,=0,

where 15, l;u, I§’1, and 131 are given in (3.7), (3.12), (3.22), and (3.23), respectively, and symbol div
denotes the divergence operator in R2. L, (U*, $*)" are the adjoint operators of L., (U, &%).

Following the same analysis as in [12, Section 3.4], we can obtain the well-posedness result in
L? for the linearized problem (3.11).

Theorem 3.3. Let T > 0 be fixed. Suppose that f € LZ(R+; H'(wr)) and g € H' (wr) vanish
in the past and all the hypotheses in Theorem 3.2 are satisfied. Then constants Ko > 0 and
vo > 1 exist such that, if K < Ko and y > y, then there exists a unique solution (V+, V_, ¥) e
L2(QT) X Lz(QT) x H1 (wr) for problem (3.11a)—(3.11b) that vanishes in the past and satisfies

Y2 IViIILz @) + IP@OVILz ) + 1V e S 721 l2ton 77 181 mw) (3:25)

forally > yyandt €[0,T].
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For the reformulated problem (3.17), Theorem 3.3 implies estimate

Y Iz @) + IWSl L2 ) + 1V 3w S 77 IFS 2@y + 7 181 b or)-
(3.26)

For any nonnegative integer m, a generic and smooth matrix-valued function of {(3* V,099)

loe] < m} is denoted by ¢, and by ¢, if it vanishes at the origin. For instance, the equations for
p% in (3.11a) can be rewritten as

OF" +oFa? )t + pToP iE =dof +¢,V. (3.27)
The exact forms of ¢,, and ¢,, may vary from line to line.
3.3. Tangential derivatives
The following lemma provides the estimate of the tangential derivatives.

Lemma 3.1. If the hypotheses of Theorem 3.1 hold, then there exists a constant y,, > 1, indepen-
dent of T, such that

1/2
Y / ” W||L2(H{/"((1)T)) + ” Wnc”H)’/”(wT) + ”w ||H;”+l(wT)

VI gt oy + 7 VAW s @pl (7, D)l o
778l gt gy T ¥ T IOV L@ |V D) iz, (3:28)
forall y > y,, and solutions (W, ) € H}’,"JFZ(QT) X H;”H(a)r) of problem (3.17).

Proof. We will follow [12, Proposition 1] to consider the enlarged system, but for the esti-
mate of the source terms we use the Moser-type calculus inequalities (2.1)—(2.4) instead of the
Gagliardo-Nirenberg’s and Holder’s inequalities in [12, Proposition 1].

Let e N with 1 < £ <m. Let @ = (g, @1, 0) € N3 with || = £ so that 9% = 8,“08?‘ is a
tangential derivative satisfying ag + oy = £. Then we apply operator 9% to (3.17a) and get

AT9,0%WE + AT810°WE + Tr30° W + AT W+

+ Y Cap(0P AT PWE + 0P AT 0" P WE) = FY, (3.29)
IBI=1, e

where

FL=0"FE+ Y CopdP AT PWE

0<B<a

* Z C‘)‘*ﬂ(‘rﬂg“‘%at?’a_ﬂwi + BﬂAliE)la“—ﬂWi)'
|B1=2, B<«a

Similarly, from (3.17b), we have
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bV + 3%y + BO*W™ =94* on wr, (3.30)
where
G = 09% —[8%, bIVy — [98%, byly — [0%, BIW™.

Since the terms involving tangential derivatives of order £ in (3.29) do not only contain 8% W+,
as in [12, Proposition 1], we write an enlarged system for all the tangential derivatives of order ¢,
in order to apply the L? a priori estimate in Theorem 3.2. Note that the last term on the left-hand
side of (3.29) cannot be regarded simply as source terms due to the loss of derivatives in (3.21).
Defining

W = (0200 W rag +ar =2}, ¢ © = {870y g + a1 = £],
we obtain from (3.29)—(3.30) that

AEWE + aFawd + so,wd + eEwd = 70, (3.31a)
%VW(Z)+%UW(Z)+%WTE£)=g(£)v (3.31b)

where %:t, 4271i, and .7 are block diagonal with blocks A(j)E R Ai, and 7, respectively. Matrices

€* belong to W1>(R). The source terms ﬁ(e) and 9O consist of ZF¢ and 9° for all @ =
(g, a1, 0) with || = £, respectively. The enlarged problem (3.31) satisfies an energy estimate
similar to (3.26), i.e.,

Y 2IW N2 0+ IWRE 22 ) + 10 by o)

ST N 2o + v G b p)- (3.32)

Let us now estimate the source terms ﬁf) and ¢4© by Moser-type calculus inequalities
(2.1)—(2.4). First, by definition, we have

18% F Il 213 wpyy S 19 F 9:0° FL310° F)ll 2 00y S IF gttt oy (3:33)
19% 81 1) oy S 18N e+t oy - (3.34)

For 0 < B < «, we infer
18P A8 P Wl g1 4y S (v 0P A58 P W, Vi, 0P A0 P WD) 12 0py. (B35)

Apply Moser-type calculus inequality (2.1) to deduce that

107 430 P Wl 2 0y = 1977 (07 A3)0* P W) 1

(o (o1)

S A3l Ln IW I g1 gy + 187 Asll et I Wl )

SIW g1 gy + 1V D) g2 W 2% (3.36)
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where B’ < 8 with |8’| = 1. Similarly, we have

192060 @ A3 P W) 22 () S IW g oy + 1V g3 o IW L2220
which combined with (3.35) and (3.36) implies

188 A8 P Wl 2013 wryy S NW L2 @ryy + 1V ) gess o IW o). (3.37)

For B < o with |8| > 2, similar to (3.37), we use (2.1) to derive
197 A0d: 0% P W Il 21wy + 185 A1010% P Wl 2411 ()
SIW L2t + 1V D) gt ) IW L 2p)- (3.38)

Combining (3.33), (3.37), and (3.38) leads to

[.F® ||L2(H}(wr)) S ”F”LZ(Hf“(wT)) + ||W||L2(H}‘;7(wr)) + IV, ‘IV/)”H;ZH(QT)”W”LW(QT)-

(3.39)
Using (2.3)—(2.4), we obtain
1%, BIVY 1l 3 opy S VITBY, DIVl 12 0y + D 18P10%. DIV 112 (0
1Bl=1
,S ”w”HfH(wT) + “é()”[-[){Jrz(wT) ||1ﬂ||L°°(wT)
S IVl et oy + 1V O gz 1Y 22 or)-
Applying Moser-type calculus inequalities (2.3)—(2.4) to the other terms in ¢¢, we get
¢
|9 )”Hyl(wr) S 181 7+ oy + W™l 5t () + YN 41 (o
NV 242 [V A 2% - (3.40)

Substitute (3.39) and (3.40) into (3.32), multiply the resulting estimate by y’"‘z , sum over £
from O to m, and take y large enough to conclude the desired tame estimate (3.28). The proof of
this lemma is complete. O

3.4. Normal derivatives of the noncharacteristic variables

Following [32], we compensate the loss of normal derivatives through the estimates of the
linearized divergences and vorticities. According to (3.17a), we have

0
HWE | = FX — ATa,WE — AFo, W — AT W, (3.41)
0
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which leads to

|9, W “LZ(H;"‘] SICF, €10, W, 101 W, & W) ||L2(er/n—1

(1)) ~

(w1))”

It follows from (2.1)—(2.2) that

12 W -1y S T2 2 IW =1y + TRl et o IW 2%
5 ||W||H}',"71(a)7) + ”(V: lI/)”H}'/"Jrl(wT)”W”LOO(wT),
and
16 Wl ory S IW ligpcor + 17, 9 st g IW o)
Since

||51Vz,x1W||H;H S I Wlap @r) + Ve x, €1 W||H;H

(wr) (or1)

(o1)’

SIW i ory + 1E W L or) + IE W e
we combine the estimates above to get
nc
”32W ”LZ(H;"_I(Q)T)) S, ”F”H}'/n_l(QT) + ”WHLQ(H}’,”(LUT))
+ ”(V’ lp)”LZ([.I}'/"‘*'I(wT))||VV||L°°(QT)' (342)

Next, we introduce the linearized divergences and vorticities whose estimates enable us to
recover the normal derivatives of the characteristic variables

0E 4 81 DF0F

W, wE wE wE wh) = -
4 5 6 7 (31(I)i)2

o -
 Fiis By Fi,s F22>, (3.43)
according to transformation (3.16).

3.5. Divergences

Inspired by involutions (1.17), we introduce linearized divergences g“li and g“zi by

St /L - v, .
(=P (piFijF+Fiji.pi>, ji=1,2, (3.44)

where partial differentials a;f*, i =1, 2, are defined by (1.18). We have the following estimate
for g“li and ;;E.
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Lemma 3.2 (Estimate of divergences). If the hypotheses of Theorem 3.1 hold, then there exists a
constant vy, > 1, independent of T, such that

VI 8 o) S TW. Dllg@n + 1V D gz g [V, i@, (345
forall y > y,, and solutions (W, ) € H;”JFZ(QT) X H;,”"’z(a)T) of problem (3.17).

Proof. The equations for F; j in (3.11a) read
OF + 0dP)VFij — Frjdl v =Cof +&,V. (3.46)

By using equations (3.27) and (3.46), we apply operator 81.‘13 and use

pEnOF 0 — pEafaf v, =,51:"i1[3ép, 3P Joe =& VvV

1

to discover
BF +000)c; =&V +E1f +EVW +EW. (3.47)
Applying operator e ¥?9%* with |a| <m — 1 to (3.47) yields
OF +9002) (e710%¢;) + ye V0%,
=e V3 CIVf+Cf+ VW HELW) — e Vo7, 3;5 + ﬁgagi’]{j.
We multiply the last identity by e™7/3%¢; and integrate over Q7 to infer
V1320 SN0 GV +E1f +EIW +EW)12(0)
@ ad | ¥ ad
+ 9%, 9, +0edy 1851l 22 @) (3.48)
for y > 1 sufficiently large, where we have used
0% + 9,08 =9, + 010 if x>0, (3.49)

owing to constraints (3.3b).
From Moser-type calculus inequality (2.3), we obtain

1@V + NNz S 1€V L E10% 2 @ + 1%, IV S, 109 11N 120y
S N e+t @y IV ratz g I L @r)- (3.50)

Since {; =W + ¢ VW, we apply Moser-type calculus inequalities (2.3)—(2.4) to deduce
that
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M X & | v ad

10% @ VW +EW)ll 2 @) + 110 87 + 507 161112 @)

SIEITVW, &0 W, [8%, &IW, (9%, &IVW, [8%, &1V W) 12 gy

SIWI it F NV roiss g IW (@) (3.51)
Substituting (3.50) and (3.51) into (3.48) implies

"N 2 @y S MWL Ollp@r + IV )iz |V, Hllze@r).

from which we conclude estimate (3.45) and finish the proof of this lemma. O
3.6. Vorticities

The linearized vorticities £* for velocities v+ and the linearized vorticities nf for columns

Fji of the deformation gradient are defined as
g5 = 0P 0 — 0P 0, (3.52)
Y4+ . Y4 o
;=0 F55 -0y FY (3.53)
for j = 1,2. The following lemma gives the estimate of £%, n;—L, and nzi.

Lemma 3.3 (Estimate of vorticities). If the hypotheses of Theorem 3.1 hold, then there exists a
constant vy, > 1, independent of T, such that

VIES 07 ) g o) S NV Dl @n + 1V D) ez o) IOV, Pllze@r).

(3.54)
forall y > y,, and solutions (W, ) € H)i”+2(§2T) X H;”Jrz(wT) of problem (3.17).
Proof. The equations for v; and v, in (3.11a) read
@F + 5080 —ﬁejagsﬁiﬁc%)zafpzéof +&,V, (3.55)
which implies the transport equation
OF +500)E — Fydf nj =&V f + &1 f + VW + & W, (3.56)
Moreover, it follows from (3.46) that
OF + 500y ) — Fydf 6 =&V + & f + &YW +EW. (3.57)

Apply operator € 7?9% with |a| <m — 1 to (3.56) (resp. (3.57)) and multiply the resulting iden-
tity by e 7" 9%& (resp. e7'9%n;) to obtain
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207 + P |l e +1e 9w+ e 0ol
— Fya? (e7710%60%n; )+ {le ™ 0% P + o7 0" P + e 0 nal?
— e 2ripug {a“ IV +E1f +EVW +EW) —[0% 02 + 5(325]5}
e gy, {a“ @IV +E1f +EVW +EW) — 09, 9% + waf]n,-}
et {a“g[a“, FojoP1n; + 890, 10°, Fejaf’]g} . (3.58)
It follows from constraints (3.3c) that
Fijd? = F1j01, x> 0.

Then we integrate identity (3.58) over 7 and perform the similar analysis as ¢; in Lemma 3.2
to obtain the desired estimate (3.54). The proof of the lemma is complete. O

3.7. Proof of Theorem 3.1

Thanks to Lemmas 3.2 and 3.3, we can derive the estimate for the normal derivative of char-
acteristic variables defined by (3.43). More precisely, in view of (3.43), (3.52), and (1.18), we
obtain

1 v . «
Er=—— ((&‘Pi)zwli) +E W+ W,
O+
which implies
RWE=CEE W +EW. (3.59)

Similarly, it follows from (3.44) and (3.53) that
32F$=51§ji+517);c+5131W+52W, (3.60)

for i, j = 1,2. Thanks to identities (3.59)—(3.60), we apply Moser-type calculus inequalities
(2.1)—(2.4) and use (3.42), (3.45), and (3.54) to infer that

k —
13 Wl L2 (o S IW 2t @pyy + ¥~ IOV, Pl
+7 NV D gz o |V, Ol (3.61)

holds for k = 1.
Taking advantage of identities (3.41), (3.59), and (3.60), we can combine estimates (3.45) and
(3.54) to prove (3.61) by finite induction in k =1, ..., m. Since

m
k
IWlEz @) ~ Z 1 W L2 b1 oy )y
k=0
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we combine (3.28) and (3.61) to get for y sufficiently large,
v 2IW g @ + IW™ Lo=oll g ) + 1¥ 1 gt oy,

<12 ”fH @ + 732 Hf”Lz(H;”“(wr)) +y7! ||g||H;”+1(wr)

+y IOV Dlize@n [ (Vo 9) sy, + 7~ IOV 0 en [ (V. )

| H P (0r)”

(3.62)

Theorem 3.3 gives the well-posedness of the effective linear problem (3.11) for source terms
(f*,g) € L>(H'(wr)) x H'(wr) vanishing in the past. Following [3,25], we can use tame
estimate (3.62) to transform Theorem 3.3 into a well-posedness formulation of (3.11) in H™. To
be more precise, following Theorem 3.1, there exists a unique solution (VE, ¥) e H™(Qr) X
H™ ! (w7) that vanishes in the past and satisfies (3.62) for all y > y,,.

Finally, the tame estimate (3.20) can be derived as follows. By the Sobolev embedding in-
equalities [|W||Lo@p) S ||W||HV2(QT) and [[Yr [l yy1.00 ) < IIWIIHys(wT), as well as (3.62) with
m = 2, one has,

IWl=@n + 1w < Crr (1 Liap + 1818300 (3.63)

Substituting (3.63) into (3.62) yields the tame estimate (3.20). The proof of Theorem 3.1 is
completed. O

4. Compatibility conditions and approximate solutions

To apply Theorem 3.1 in the general setting, as in [12] we need to transform the original
nonlinear problem (1.11)—(1.13) into the case with zero initial data. To this end, in this section
the approximate solutions are introduced to incorporate the initial data into the interior equations.
The necessary compatibility conditions are imposed on the initial data for the construction of
smooth approximate solutions.

4.1. Compatibility conditions

Let m € N with m > 3. Assume that the initial data (U(;—L, @p) satisfy lNJSE = UgE —-U* e
H™T/2(R%) and g9 € H™ T (R), and (Ugt, ©o) has the following compact support,

suppﬁg—LC{xzzO, x%—f-x%f 1}, suppgo C [—1, 1]. 4.1

Taking advantage of the trace theorem, we can construct 55{ = 4~50_ e H"+3/ Z(Ri) satisfying
BEl—0 =90, suppPE C {x2 >0, 22 +x2 < 2} , 4.2)
|25 | a3 ®2) = Clleoll g r)- (4.3)

Define dboi = 535 + CISi, which is the initial data for the problem (1.11),
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DF =0 = Pj. (4.4)
By (4.3) and the Sobolev embedding theorem, we have
+o, 8 >7/8  forallx e R2, 4.5)

for sufficiently small g in H™ 1 (R).
Denote the perturbation by (U*, %) := (U* — U*, &* — @%), and the traces of the k-th
order time derivatives on {r = 0} by

Uy, =0f0* ” Dy = a’<c1>i for k € N. (4.6)
=

Note U(io) Ui and @Ef)) = cbi
If we denote W= := (UjE Vi UjE cDjE)T R23, then the first equation of (1.11) and the

equation (1.13a) can be written as
FPE=GIWE),  {UT =G (W), 4.7

where G| and G, are C*°—functions vanishing at the origin. We apply B,k to (4.7), take the traces
initially, and adopt the generalized Faa di Bruno’s formula (see [21, Theorem 2.1]) to derive

5(ik+l)= Z Dot +akG1(WO))H ( (U) i (4.8)

o; €N oy |4+ +kog |=k

Q;
o o Q)
Ugp) = > DGy (W, ))]—[ ( ) : 4.9)

a; N2 oy [+ ko |=k

where W(TL represent the traces (l7 ) V.U (f), Vi CD( )) Hence, the following lemma is obtained
(see [20, Lemma 4.2.1] for the details).

Lemma 4.1. If (4.1)—(4.5) hold, then relations (4.8) and (4.9) determine 1755) e H" /27K R?Y)
fork=1,....m, and &, € H"327KR2) fork=1,....m+ 1, which satisfy

suppﬁ(j;) C{x2 >0, x% +x% <1}, suppai) C{x2 >0, x% +x§ <2},

m+1
2 1G] Hr 2k RE) T > 126 H" B2k RY)
— k=0

for some constant C > 0 depending solely upon || (ﬁi, 533) [| Wioo(R2) and m.

To ensure the smoothness of approximate solution, we need the following compatibility con-
ditions for the initial data.
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Definition 4.1. Let m € N with m > 3. Let U := Ui" — Ui" € H"+'/2(R%) and ¢y € H"+!(R)
satisfy (4.1). The initial data U and ¢q are said to be compatlble up to order m if there exist
functions <1§0i € H"3/2 (Ri) satisfying (4.2)-(4.5) and

Fo=F5oh®y  forj=1.2, @.11)

such that functions lNJ(jg), .. U(fn ) cb(jg), ... ~(m +) determined by (4.6) and (4.8)—(4.9) satisfy

o~ B -
(P = Py =0 for k=0,....m, (4.122)
~+ —~— . o
(5o = Pa) |10 =0 for k=0,....,m—1, (4.12b)
and
= de
+
/|q)(m+1) (m+l)| dx;— P <0, (4.13a)
i = i 12 4.13b
By = By |~ dx1 o (4.13b)
R

4.2. Approximate solutions

We now start to introduce as in [12] the approximate solutions that are solutions of problem
(1.11)—(1.13) in the sense of Taylor’s expansions at t = 0.

Lemma 4.2. Let m € N with m > 3. Assume that 63: = U(;_L — [70i € Hm'H/Z(R%_) and ¢y €
H™(R) satisfy (4.1), and that initial data UOi and @o are compatible up to order m. If (70i
and @q are sufficiently small, then there exist functions U**, ®%* and ¢® such that Ut .=
U™ — U* € H"(Q), ¢ := ¢%* — §* € H™2(Q), ¢ € H"T3/2(3Q), and

¥ LU, 7))o =0, for j=0,...,m—2, (4.14a)
¥ PUE + [T P E — 05T =0, in Q, (4.14b)
+ 3, @%F > 3/4, in Q, (4.14c)
Pt =PI =, on 9, (4.14d)
BT, U, ¢") =0, on 9L, (4.14e)
F§F = F{F 0%, on Q, for j=1,2. (4.14)

Furthermore, we have
supp (F1%, %) 1 € [-T.T), x2 2 0, x} + 53 =3}, 4.15)
H Ejai H H™(S) + ” 5ai ” H"+2(Q) + ”(pa ||H’”+3/2(BQ)

= eo([1T5 | mern gz + 90l zmsr @) (4.16)
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where gy(-) denotes a generic function that tends to zero as its argument tends to zero.

Proof. The proof is divided into four steps.

Step 1. First we take p%~, f)‘fi € H"t1(Q) and 9~ € H"2(Q) to satisfy

k~a— ok~at s— ~%
(850%, 97 0] )}t =(p(k),v1(k)), fork=0,...,m
0|,y =P, fork=0,....,m+1,
where ﬁ(;), f)li(k), and 5(7() are constructed in Lemma 4.1. Thanks to compatibility conditions

(4.12)—(4.13), we can apply the lifting result in [19, Theorem 2.3] to choose 54t e H™TL(Q)
and @t € H™+2(Q) such that

8 “+| ,6(4,;), fork=0,...,m

k
8l¢“+}t <D(k), fork=0,....,m+1,

and
[5*] =0, [@*1=0  on 3.

Moreover, ﬁ“i, ﬁfi, and @9 can be taken to satisfy (4.15), because (ﬁ(j,z), 5(ik)) have a compact
support.

Step 2. Let us define

pt =0t =0 | _ eH"0Q),

x=0 " x2=0

~ai _ at¢a:|: + (vai + v)81¢ai = Hm+1(Q)

Hence, we deduce that functions f;gi satisfy (4.15), and (4.14b), (4.14d), and (4.14e) hold.

Step 3. Note that 79% € H"t1(Q) and ®9F € H™2() have been already specified. Then we
take Fi’;.i € H™ (), for i, j = 1,2, as the unique solution of transport equation

(8;1)!1i + vziaépai)ﬁic}i Faif)(pai f'i =0 on Q, (4.17)

supplemented with the initial data

FeE| _F

117222
ij li=0= lj(O)GHm 2(RD). (4.18)

It follows from (4.11) and (4.18) that constraints (4.14f) are satisfied at the initial time. Conse-
quently, similar to the proof of Proposition 1.1, we can deduce (4.14f) for all € R.

Step 4. Equations (4.8)—(4.9) imply (4.14a). Estimate (4.16) follows from (4.10) and the con-
tinuity of the lifting operator. From (4.16) and the Sobolev embedding theorem, we can obtain
(4.14c) provided the initial perturbations are small enough. This finishes the proof. O
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We write U% := (U*t,U%")T and @¢ := (®t, ®*~)T for short, and the vector (U4, d%)
constructed in Lemma 4.2 is the approximate solution to (1.11)—(1.13). From (4.14d) and (4.15),
¢? is supported within {—7 <t <T, x% < 3}. By (4.16) and the Sobolev embedding theorem,
we have

“ ﬁa:l: ” e + Haai || W3.20(Q) <&o <” Uoi || H"'+1/2(Ri) + ||(p0||Hm+l(R))

for any integer m > 4. We can now transfer (1.11)—(1.13) into a problem with zero initial data
as follows. Define the function f¢ as: f¢ = —L(U?, @¢) fort > 0, and f¢ =0 for t < 0. Then
fee H" 1 (Q)andsupp f* C{0<t < T, x>0, x{ +x3 <3} from (4.14a) and (4.15) as well
as (U, V{f“i) € H™(2). Moreover, the Moser-type calculus inequalities and (4.16) imply

£l m-1 (@ < €0 (|| U5 | g1 ey + ||<oo||Hm+1(R)) . (4.19)

Finally, by (4.14), (U, @) = (U4, ®%)+(V, ¥) is a solution to the original problem (1.11)—(1.13)
on[0,T]xR2,if V=(Vt, V)T and ¢ = @+, ¥)T solve the problem as follows:

LV, W) =LU*+V,d4+w¥) LU, &%) = [, in Qr,
E(V, W) :=a,d/+(v1“~|—v1)alw+v181q>“—v2=0, in Qr,

BV, ¥)=BU+V,¢"+¢)=0, ¥"'=¥" =y, onor,
(V,¥)=0, t <O0.

(4.20)

Therefore, we only need to solve the above problem (4.20) on [0, T] x Ri.
5. Nash—-Moser iteration

In this section we solve the problem (4.20) by an appropriate modification of the Nash—-Moser
iteration scheme. We first describe the iterative scheme for problem (4.20) and present the in-
ductive hypothesis. Then we conclude the proof of Theorem 1.1 by showing that the inductive
hypothesis holds for all integers. We remark that this section follows closely the standard proce-
dure in [12] (also see [4]).
5.1. Iterative scheme

We first recall the following result from [12, Proposition 4].

Proposition 5.1. Let T > 0, y > 1, and m € N with m > 4. Then there exists a family {Sp}o>1 of
smoothing operators

Sy Fo(Qr) x F(Qr) — [ Fo(Qr) x Fy(Qr),

§>3

where ]-';(QT) = {u € H;(QT) u=0ift < O}fors >0, such that
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I1Soull 2t 21 ge)("—‘fﬂnuuf,ﬁ(m) fort,k=1,....m, (5.1a)
k—¢
ISou = ullpi ) SO Nullprey,y  forl<k<t<m, (5.1b)
d
H—S@u SO Null ey fortk=1,....m, (5.1¢)
S V) v

and

— k+1=04 1, _
1St = Sowll gt o) S 6 ot = wll g

fortk=1,....m, (5.2)

(o1)

where £ and k are integers, and (k — £)4 := max{0, k — £}. In particular, if u = w on wr, then
Sypu = Spw on wr. Moreover, the smoothing operators acting on the functions defined on wr can
be constructed analogously (still denoted by Sy for notational simplicity), which also satisfies the
inequalities (5.1) with norms || - ”Hf(wr)'

The next lemma provides us a lifting operator that will be used for constructing the iterative
scheme and the modified state (see [15, Chapter 5] and [12] for the proof).

LemmaS5.2. Let T > 0, y > 1, and m € N. Then there exists an operator R that is continuous
from ]7; (w7) to f‘;Jr]/z(SZT) and satisfies (Rru)|x,=0 = u when u € ]-"; (wr) forall s € [1, m].

Now we follow [4,12] to describe the iteration scheme for problem (4.20). Let N > 1 be any
given integer. First we set (Vy, Yo, Y¥o) = 0 and let (V,,, ¥,, V) be given and satisfy

Vs W ¥)|,_g =0, .| ¥, | g=VYn forn=0,...,N. (5.3)

x2=0 =

We consider

V41 =VN+68VN, Unp1=PN+8PN, Ynt1=Yn + YN, 5.4

where differences § Vyy, ¥y, and vy will be constructed via the problem

LL(U + V+1/2, @° + Wn+12)8Vy = fi in Qr,
BL(U + Vg12, 4+ Wn+1/2) VN, 8YN) = g on wr, (5.5)
(8Vy,8¢n) =0 for t <.

Here operators I}, and B, are given in (3.11a) and (3.11b), respectively, (Vy41/2, ¥n+1/2) is
a modified state such that (U 4+ V11,2, @9 + Wy41,2) satisfies constraints (3.2)—(3.3), and
source term ( fy, gn) Will be determined later on. See Section 5.3 for the detailed construction
of the modified state. As in (3.10), we write

U+ VNt1)2)

5VN = 3VN —
0 (P4 + Wnt1)2)

(5.6)
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Then, we set fo := Sg, f¢ and (e, €y, go) := 0 for Gy > 1 sufficiently large, and let

(fns &n»en,en) be given and vanish in the past for n =0,..., N — 1. We determine fy and
gn by
N N
Y It SoyEn=So [ Y gn+SayEn=0. (5.7)
n=0 n=0
where
N-1 N-1
Ey:=)Y e, eR"™  Ey:=) &R’ (5.8)
n=0 n=0

and Sp,, are the smoothing operators given in Proposition 5.1 with {6y} defined by

6o>=1,  Oy=./63+N. (5.9)

As a consequence, we can use Theorem 3.1 to solve (& VN, dvyn) for problem (5.5).
According to (5.6), we need to construct functions 811/]:,r and 0¥, such that (SII/X,—L |x2:0 =5YnN.
From the boundary conditions in (5.5) (c¢f. (3.7), (3.8), and (3.12)), we obtain that 51/ satisfies

+ + 32U1J\7+1/2,2 32U1J\7+1/2,3
3:(5%01\/) + UN+1/2,281(8¢N) + 81¢N+1/2 3 ®+ - P) ¢)+ SWN
2 2

N+1/2 N+1/2

+81@;+1/25V1¢:2—8V&’:3 =gN2 on wr,

a2Uz§+1/2,2 82U1§+1/2,3) 5y
- N

9 (8yn) + U1;+1/2,281 yn) + (81 ¢1;+1/2 e P
N+1/2 N+1/2

+ 81¢1§+1/25V1§,2 —8Vy3=8N2—8gN1  On or,
where we define Ulj\,EJrl/2 =U 4 V1$+1/2 and ¢]:Vt+l/2 =@t 4 lI’K,—Lﬂ/Z for simplifying the

presentation. In accordance with the identities above, we take SII/I'\}' and (SlI/}; as the solutions to
transport equations

»UY RUy
+ + + + N+1/2,2 N+1/2,3 +
B (SU) + Uy 112201 GW;) + (81 i = 5w

+ +
2¢N+1/2 82¢N+1/2

+ 01PNy 0 Vy, — Ve s =Rrgna+hy, (5.10)

v 5 - _ 0Unyipe 82Uyt -
U (B¥y) +Upyi122018%y) + <31¢N+1/2 +1/22 +1/2, sv

82‘15/§+1/2 82q§1§+1/2

+ 31¢1§+1/25V1\7,2 —8Vy3=Rr(gn2—gn.1) +hy. (5.11)
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where Rr is the lifting operator given in Lemma 5.2 and we will choose source terms hﬁ through
a decomposition for operator £ defined by (4.20).
Finally, we set (h(‘; s hy s éo) =0, and let (h',h,é,) be given and vanish in the past for

n’"'n>

n=0,..., N — 1. Under the above settings, we compute h; and /1, from
N
Soy (Ej = RrEN2)+ Y _ht =0, (5.12a)
n=0
N
Soy (Ey —RrEn2+RrEN1)+ ) by =0, (5.12b)
n=0
where
N-1
Ev=(E}Ep' = Zén e R?, (5.13)
n=0

and hﬁ =0fort < 0. Asin [15], we can show that the traces of hﬁ on wr vanish. Consequently,
we can deduce that 311/135 =0, for r <0 and Sllflﬁ x,=0 = 0¥ . They are the unique smooth
solutions satisfying transport equations (5.10)—(5.11). Hence, § Vy can be obtained from (5.6)
and (Vy+1, YN+1, ¥N+1) can be derived from (5.4).

From (5.8)—(5.7) and (5.12)—(5.13), it suffices to define the error terms ey, €y, and éy. To
this end, by an analogous argument in [4,12], we decompose

LVNi1,¥v+1) — L(VN, ¥N)
=L (U + V12, P+ Wn112)8Vy + ey + ey + el + Dyi128%y  (5.14)
and
B(VN41, ¥n+1) — B(VN, ¥N)
=B,(U" + VN2, D“ + Un112)BVN, 8Yn) + & + &) + &Y, (5.15)
where
e;\, =L(VNi1, ¥Nn+1) — L(VN, ¥N) — L'(U* + Vy, ®% + WN) (8 VN, S¥y),
ey :=L'"(U"+ VN, @ + WN)(SVy, 8¥N) — L' (U + Sy VN, @ + Spy UN)(SVN, S¥N),

EX; = L/(Ua +S@N Vy, ®¢ +89N'1/N)(8VN, S¥yN)
—L' (U + Vyy1/2, P4 + ¥ny12) BV, 8WN),

-1
Dyy12:=(2(P" +¥n11/2)) RLWU* + Viiy2, D¢+ ¥ny1)2), (5.16)

and



R.M. Chen et al. / J. Differential Equations 269 (2020) 6899-6940 6927

ey =BVni1, ¥n4+1) — BN, ¥n) =B (U + Vi, ¢ + ¥n) (S VN, 8UN).
ey =B'(U"+ Vy, ¢ +¥n)(VN, 8¥N)

—B'(U* + Spy VN, ¢ + (Soy ¥N) 11,=0) 8V, 8¥N),
ey =B (U" + Spy VN, 0" + (Soy ¥N) |x2=0) (8 VN, 8¥N)

—B,(U" + VNy1/2. D + Un41/2) BV, 8YN).

Take

eN = e;v+ex]+ex[/+DN+]/28wN, eN = av-i—éxf—i-éx,/. (5.17)

As for error term ¢y, we decompose
E(VN4+1, ¥N+1) — EVN,ON) = E' (VN4172: UN+172) VN, 8WN) + &y + &y + €, (5.18)
and set
en:=¢&y+eéy+ey, (5.19)

where

ey =EWVN41, ¥n41) — E(VN, WN) — E'(VN, UN) (B VN, 8¥N),
ey =& (VN, NV, 8¥N) — E'(Soy VN, Soy ¥n) BV, 8¥N),
&N = E'(Soy VN, Soy IN) BV, 89N) — €' (Vivy1 /2. Wn+1/2) BV, 8%).

It follows from (4.14b) that
EWV, W) =0;(Q+ W)+ (v +v1)01 (P +¥) — (V5 + v2).

Then we derive from (5.10)—(5.11) and (5.18) that

(s(ml, W) —EVy, wg&)) B ( Rrenva+hh +éh )

EWVnat Yn) —EWVE. ) | \Rr(gnz2—gn) +hy +éy

Thus, by £(Vp, ¥) = 0, one has

N N
EWVyit ¥y =Rr (Z(gn,z — gn,1)> +) hy + Ey,, (5.20)
n=0 n=0

Furthermore, we obtain from (5.5) and (5.15) that

en =B(Vyi1, ¥ny1) — B(Vn, ¥n) —eén. (5.21)
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Denote by B(Vy41, ¥n+1); the jth component of the vector B(Vy 1, ¥n41) for j =1, 2. From
(4.20) and (1.15),

B(VN41, ¥N+1)2 =EWVR 1 Yn D=0 = EV a1 Uy D=0 + BN 1, vt
(5.22)

Using (5.21), we have

gn2 =8N =EVy 1 Ui ln=0 —EVy , ¥y )ln=0 —en2+en,1. (5.23)

Then, (5.23) and (5.20) yield

N
5(V1\7+1’ Yyi) =Rr (5 (V1;+1’ lI’/ﬁl) lxo=0 — Ent12 + EN+1»1) + Zh; +Eynqrs
n=0

(5.24)
and similarly,
_ N
EVN 1 W) =R (€ (Vi1 Y1) lamo — Envi2) + 3 Wi+ By (5.29)
n=0
From (5.14) and (5.21), together with (5.5) and (5.7), one has
N
LN+, YN+ = ) fv+ Eni1 =Say [+ (I = Sa)En +en, (5.26)
N=0
N ~ ~
B(Vni1.¥n+D)= Y gn+Enp1 = —Sp)Ey +én. (5.27)
N=0

Substituting (5.12) into (5.24)—(5.25) and using (5.22), we get

EVny1s ¥ny) = Rr(BVN+1, ¥v+12 = B(Vy+1, ¥n+)1)
+ 0 =SBy — Ry (Ex2 — Ew))
+éy —Rr(en2—eén.1). (5.28)

EVN 1 YD) =Rr(B(VN41, ¥n+1)2)
+U - SGN)(E;G - RTEN,z) + &35 — Rrén.2.

From Sy, — Id as N — oo, we conclude that if the error terms (ey, €y, €x) tend to zero, then

(LOVN+1, N1 BVN1, Y1), EVnen YneD) = (f9,0,0),

thus, the solution to (4.20) can be obtained formally.
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In order to estimate the error terms, we need to introduce the inductive hypothesis as follows.
Let us take an integer u > 4, a small number € > 0, and another integer & > , which will be
determined later. Suppose that we have the estimate

rsa ~ Fa - a ~ a _
|| U ||H}7+4(QT) + “¢ ||H}I/L+5(QT) + ||()0 ”H#+9/2(a)7‘) + ||f ||H#+3(QT) S €, (5'29)
then our inductive hypothesis Hy_; consists of the following four parts:

(D NGV 8 @) + 18Vl gt ) €6 7 A n=0,.. . N=1m=2..... 4,
O NLVn, Ta) = flmm@p <2660, n=0,.. . N—1,m=2,....,i—1,
BV, Yl mr) < €61, n=0,...,N—=1,m=3,....p,

D IEVn. B30y < €67 n=0.... . N—1,

where 6, is given in (5.9) and A, := 6,41 — 6, decreases to zero with

1 1
— <Ay i=0,1 —0,=,/02+1—-0, < —, e N. 5.30
39’1 = A n+1 n n + n = 29n n ( )

We shall show that for sufficiently small € and f“, and for sufficiently large 6y > 1, Hp is true
and Hy_1 implies Hy, thus Hy is true for all n € N, which will allow us to prove Theorem 1.1
completely.

Now we assume that Hy 1 holds, hence have the following estimates as in [12, Lemmas 6-7].

Lemma 5.3. If 6y is sufficiently large, then

(m—p)+ .
69 ’ l_f m 7é /"L’
Vi, Yl Ez @ry + 1nll g1 ) < ! (5.31)
v elog0,, if m=upu,

(T = Sg,) Vi, I = Sp )W) Hpr ) < Ceo,' 1, (5.32)
forn=0,...,N,and m =2, ..., . Furthermore,

(m—p)+ .
Cef , If m#u,
(S0, Vi So, Tl ey <4 " (5.33)
Celog0,, if m=u,

forn=0,...,N,andm=2,...,i+5.
5.2. Estimate of the quadratic and first substitution error terms

First we rewrite quadratic error terms e, é,,, and €/, in (5.14), (5.15), and (5.18) respectively,
as
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/
en

1
/L”(U“ 4 Vi + T8V, @7 + &, + T8,) ((8Vin, 8%), (8 Vi, %)) (1 — 7) dT,
0
1
é :/B”(U“ 4+ Vi + 18V, 0% + Y + T8Y0) (8 Vi, 8Y1), 8V, 8¥)) (1 — 1) d,
0
1

é; :/E”(Vn + TSVn, lI/n + taq/n)((avny 8‘1/,,), (5Vns Slpn))(l - T) d‘L',
0

where I, B”, and £” are the second derivatives of operators I, B, and £ respectively. More
precisely, we define

L' (0, 8)((V,w), (7. 9) := V(0 +67, 6 +0%)(V, )

60=0

)

v ~ o~ d v ~ ~
B"(U, p)((V, ), (V, ) := @B/(U +0V, ¢+ 0y)(V,¥)
6=0

oy ~ ~ d v ~ v ~
ENV. ) (V) (V,¥)) = @5/(‘/ +0V, & +0¥)(V,¥)|
6=0
where operators IL” and B’ are given in (3.4)—(3.5), and £’ is defined by
ey ¥, d 7 ¥,
EWV )V, W)= —E(V+0V, ¥ +0w)
In fact, in our case, we have the following:
[B11019 + 19 [v1]
B" (W, p)((V,¥), (V. ¥)) = | 5 lx,=001% + 019 v; =0 | » (5.34)
0
NV, ) ((V,w), (V,8)) =] 1% + a1 o). (5.35)

A straightforward computation with an application of the Moser-type calculus inequality (2.1)
yields the next proposition (see [ 12, Proposition 5]).

Proposition 5.4. Let T > 0 and m € N with m > 2. If (V. W) belongs to H!"*'(Qr) for all
y > 1 and satisfies ||(\7, lI~/)||W1<OO(QT) < Efor some positive constant K, then there exist two
constants I?o > 0 and C > 0, independent of T and y, such that, lflz < I?O and y > 1, then

”]L”(ﬁ + ‘7’ D+ LT/)((V], ), (Va, l1/2))||H15”(QT)

< ClVL D i@ [V ) s [ (V. ) [ 1 g
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+C YNV ) et @ 1V ¥ i -
i#]
HS”(V, ‘;)((Vlﬁ ), (Va, ¥2))

” HM ()

<Ccy’ {nw ez @ 19 ooy + 1Vi ||Lm<QT>||wj||H,yn+l(g,)} ,
i#]

and
”B//(l_] + ‘7’ &)((Wl, Y1), (Wa, WZ)) H HJ' (o)

<Cc)’ ||| Will i o) 19 lwo o) + 1 Wi ||Loo<wr>||w,»||H;n+u(wT)} :
i#]

where (V;, ¥;) € H)’/”H(QT) and (Wi, ¥;) € H)' (o) X H;”H(a)r)fori =1,2, symbol V rep-
resents the trace oflT/ on wr, and (U, @) is the background state defined by (1.19).

In view of (5.29)—(5.31) and the hypothesis Hy_1, as in [12, Lemma 8] or [4, Lemma 8.3],
we can apply Proposition 5.4, the Sobolev embedding theorem, and the trace estimate to get the
following estimate.

Lemma 5.5. If i > 4, then there exist € > 0 suitably small and 6y > 1 large enough such that

e 7 2401 (m)—1
”(6;1’ e;)"H}’}l(QT) + ||€’/1||H}i/n(wT) < Ce in(m) An’

form=2,...,a—1,andn=0,...,N —1, where £{(m) :=max{(m+1— )y +4—-2u,m+
2 —2u}.

For the first substitution error terms ), ), and ¢), defined in (5.14), (5.15), and (5.18), as in
[12, Lemma 9] or [4, Lemma 8.4], we can apply Proposition 5.4 and use (5.29), (5.32)—(5.33),
hypothesis (H,—1), and the trace theorem to derive the next lemma.

Lemma 5.6. If i > 4, then there exist € > 0 suitably small and 6y > 1 large enough such that
ey, enllamar) < CE02M T A, if m=2,..., -1,
18 rp py < CE6,2M A, if m=2,... -2,
forn=0,...,N — 1, where
lo(m) :=max{(m+1—w)y +6—-2u,m+5—2u}.

We emphasize that Proposition 5.4 reduces the estimate for ||&] || H (o) to that for the terms
involving [|(1 — Sp,)Wnll ym+2 which requires condition m < i —2 in order to apply inequal-
Y
ity (5.32).

«Qr)y
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5.3. Construction and estimate of the modified state

To control the remaining error terms, we construct and estimate the modified state (Vy1/2,
Wn 1172, ¥N+1/2) in the following lemma.

Lemma 5.7. If u > 5, then there exist functions V1,2, Pn+1/2, and Y1172, which vanish in
the past, such that (U® + V112, @7 + Wni1/2, 9% + Yny1/2) satisfies (3.3b)—(3.3c), where
(U%, @%) is the approximate solution given in Lemma 4.2. Furthermore,

“’1@1/2 =So, ¥y, Yn+1/2=(So,¥y)lx=0, (5.36)
Ulj\tlﬂ/z,l =Sy, v]%,l’ (5.37)
1S6, VN = V12l ey < CeO P21 form =2, ..., ji+3. (5.38)

Proof. We divide the proof into four steps.

Step 1. It follows from (5.2)—(5.3) that (Sg, WIQ,L )xa=0 = (Sp, ¥y )|x,=0, and hence we can define

Wy i1/20 YN+1/2, and vy o 4 by (5.36)=(5.37). Thanks to (4.14d), constraint (3.3d) holds for

(DP9 +W¥n11/2, 9% +V¥n11/2). Asin [12, Proposition 7], we define

1 _
pi-‘rl/Z = SON )O]j\; F ERT ((SGNP;”)CZ:O - (SON )ON)|x2=0) )
+ A wt £, o+ + + +
Unti22 =Wy 0+ (Uff + ”N+1/2,1) NN 12+ VN2 0197,

so that [p? + py1/2] = 0 on 3L, and constraints (3.3b), (3.3e) hold for (v* + vy41/2, ¢ +
Y1172, 9% + V¥n11/2), due to (4.14e), Lemma 5.2, and (4.14b).

Step 2. From (5.4), the trace theorem, and the hypothesis Hy_1, we have
o — oyl @ < 1oy = Py 1l Hp @) + 180Ny =805yl @r)
= IBVN-1, ¥N-Dllp@r) + Clldon—1ll gret (g
<Cebp™ " for me(3,pul. (5.39)
Then we use Lemma 5.2, (5.2), and (5.39) to obtain

lon+1/2 — Soy oIl (Qr) = C|ISey o5 — Soy oyl @r)

Clloy = Pyl g+t o) < Cey " if2<m<p-1,
= +1 (5.40)
m-l-= — m— .
Coy M”P;_PN”H;‘((UT) <Ceby i m> .

Step 3. Using (5.36), we compute

UN+1/2,2 — SoyUN,2 = Sy E(Vy, Wn) + [0 + 101, Soy 1¥N + [0197, Spy Tun 1
+ Soy N, 10189y ¥N — Soy (UN, 101 ¥N). (5.41)
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Using the decomposition

EWVN, WN) =E(VN_1,¥N-1) + 0;(8¥N—-1) + (V] + vN—1,1)01 (6¥N_1)
+8uN—1,101 (@9 + ¥n) — Sun_1.2,
the Moser-type calculus inequality (2.1), hypothesis (Hy_1), and (5.31) leads to
2—p
IE(VN, WN)”HS(QT) <Cely ",

which together with (5.1a) implies

||89N5(VN, WN)”H;H(QT) < Ce@ﬁf“, for m > 2. (5.42)
The remaining terms on the right-hand side of (5.41) are all commutators. Let us detail the

estimate of [v{ 91, Sp, ¥y . We utilize (2.1), the Sobolev embedding theorem, (5.1a), (5.29), and
(5.33) to get

v} 01, Son 1N | Hr 2y < 10501 (Soy O 2r) + 180y VT VN [ (21

< CliSoy N ll g1 () + CIIOT 1@ IS0y PN L 11322
+ CQ;\,;_M ||U1a31 Wy ”H)’/"(QT)
<Cebp ™™ for p+1<m<i+4
If 2 <m < u, then it follows from (5.1b) and (5.31)—(5.32) that
oY 91, Soy 1N L) < 1001 ((Soy — DY iz @) + 11U — Soy) W01 ¥M) | 2r)
< CllSay = D¥W |l gy gy
+ CON T IV N | gty < Cely T
Performing the same analysis to the other commutators in (5.41) and using (5.42), we obtain
w1722 = Soyvn2ll gy < Ceby " for m=2,... i +4. (5.43)
Step 4. Let us now construct and estimate of F 1,2 by following the idea of Secchi—Trakhinin

[30, Proposition 28]. According to Step 1, we have already specified functions vy41,2 and
Wn+1/2- Then we can take F 1,2 as the unique solution vanishing in the past of linear equations

]Lpl.j " + UN+1/25 F* + Fyyi2, Q4+ Uni12) =0 for i, j=1,2, 5.44)
where L f,; denotes the component of operator L corresponding to Fjj, i.e.,

Lr, (v, F, @) := (37 +vd) F;j — Fid] vi. (5.45)
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Since (v* + 4172, P + Wi 1/2) satisfies (3.3b), equations (5.44) do not need to be supple-
mented with any boundary condition.

When estimating F y41/2 — Sgy F v, we apply standard energy method. To this end, we obtain
from (5.44) that

LF; 0" +vnvt1/2, Ent12 = Soy FN, @4+ Ynt12) = Hi + Ho + Ha, (5.46)
where
Hi:= —Lp,; (v +vony172, FO + 8oy Fy, @ + ¥nt1)2)
—}—]Lﬂj(v“+89NvN,F”+SgNFN, ¢a+89NlI/N)9
Hy = —]Lpij(va+89NUN,Fa+89NFN1¢Q+S9NWN)
+Soy L, 0" +on, FO+ Fy, @ +¥y),

and Hj3 := —SgN]LFij(v” + oy, F¢+ F, ®% + Wy). From (5.36), we compute

P4y,
H1 = (Soyvn.e — UN+1/2,0)0, NH/Z(F,-‘} + Soy Fn.ij)

QW12
— (F; + Soy Fn,¢j)0, (SoyUN,i — UN41/2,i)-

Apply Moser-type calculus inequality (2.1) to the last identity and use the Sobolev embedding,
(5.36)—(5.37), (5.43), (5.29), and (5.33) to obtain

IH1ll @) < CllSayvn = vn+172l 30 I (F Soy v, 8%, Soy W)l st
+ CliSoyvn — vv+12ll gt o)
<Cebpi+? for m=2,...,[i+3. (5.47)
Regarding term H», we apply the same strategy as for [v{ 1, Sp, |¥n in Step 3 to derive
IHall pap) < Cetly ™2 for m=2..... 1 +3. (5.48)

For term 3, we obtain from (5.1a), (4.17), and hypothesis Hy_1 that

1Soy L iy (v + vn—1, F* + Fy_1, @ +¥n_Dl z @)
<CONILE, (v +vy—1, F*+ Fy_1, ®° + IN-Dll2er) = Ceoy ™!
for m > 2. Using (5.1a), (2.1), hypothesis Hy_1, and (5.31) yields

ISoy (L7, (v + vy, F@ + Fy, @ 4+ W)

2
—HJFf,»(U”+UN—1,F“+FN—1,CD“+WN—1))||H§1(QT)SCEQX; e

for m > 2. We combine these two estimates with (5.47)—(5.48) to get
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3
Y I Hellup o < Ceby #12 for m=2,... i+3. (5.49)
(=1

Applying a standard energy argument to equations (5.46) and utilizing estimate (5.49), we infer

42 -
||FN+1/2_S(9NFN||H;”(QT) SCG@lr\ln ut for m=2,...,0+3. (5.50)

Estimate (5.38) follows from (5.37), (5.40), (5.43), and (5.50). The proof is complete. O

Remark 5.1. We can get constraint (3.2) from (5.29), (5.33), and (5.38) by using the Sobolev
embedding theorem. Constraint (3.3a) will be obtained by taking € small enough, while con-
straint (3.1) will follow through truncating (Vy41,2, ¥N+1/2, ¥ N+1/2) by an appropriate cut-off
function.

5.4. Estimate of the second substitution and last error terms

" S

The next lemma gives the estimate of the second substitution error terms e, e,’,

defined in (5.14), (5.15), and (5.18).

o
and e,

Lemma 5.8. If u > 5, then there exist € > 0 suitably small and 6y > 1 large enough such that
@& =0, ey lumeoy <CE0F ™A, if m=2,...,3—1,

forn=0,...,N — 1, where £3(m) :=max{(m + 1 —u)+ +9 —2u,m+6 —2u}.

Proof. From (5.34) and (5.36)—(5.37), we have

é;;/ = B/(Ua + 89,, Vna Qoa + (89,, lI/n)|)c2:())((svnv 3%)
=B (U + Var172, 9" + (S5, %) |x,=0) (8 Vi, 8¢1) = 0.

Using (5.35)—(5.37) yields €] = 0. Thanks to (5.36), the error term e, can be rewritten as

1
e;l” = /L//(Ua + Vit12 + 7(Sp, Vi — Vait1/2), ok +Senl11n)
0

X ((3 Vi, 8W), (89,, Vi — Vn+1/2, O)) dr.
Apply the Sobolev embedding theorem, (5.29), (5.33), and (5.38) to infer
1T, Vas1/2, So, Vi = Vag1/2. %, Sg, %) ey < Ce.
so that we can use Proposition 5.4 for € suitably small. Note that from (5.29)—(5.31) and (5.38)

1T, Vis1/2, So, Vi, D, S, Yl g1 ) = Ce (ngmﬁfﬂ)ﬁl +9,'1"+37“>

(27)
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for 2 <m < i — 1. We use Proposition 5.4, hypothesis H,,_1, and (5.38) to get the estimate for
term ¢)," and this finishes the proof of the lemma. O
For the last error term (5.16),

s,

D v, =——— R
T (@ + W1 2)

ns With Ry i= LU + Viy1/2, @4 4+ Wg1/2),
we first notice that

a ¢a:|: lI/i > 1

[02( + n+1/2)| = 57

from (4.14c), (5.36), and (5.33) if € is small enough. Therefore, we arrive at the following lemma
analogous to [12, Lemma 8.6] or [4, Lemma 12] and the proof is omitted.

Lemma 5.9. If u > 5 and [t > , then there exist € > 0 suitably small and 6y > 1 large enough
such that

1Dnr1/28%ll iz (@r) < CEORM TN, if m=2,... i—1, (5.51)
forn=0,...,N — 1, where
Lam) :=max{(m +2 — )+ +8—2u,m+1—w4++9—-2u,m+6—2u}.
Lemmas 5.5-5.9 lead to the following estimates for e, €,, and ¢, defined in (5.17) and (5.19).

Corollary 5.10. If u > 5 and [u > u, then there exist € > 0 suitably small and 6y > 1 large
enough such that

lenll min < Ce20H4M=IA if m=2 ... 1—1, (5.52)
7 (S2r) n

lénll mmin < Ce202M=IA, ifm=2 ... 1—1, (5.53)
J(Qr) n

1enll iy wp) < CE62M T A, if m=2,... i -2, (5.54)

forn=0,..., N — 1, where £,(m) and £4(m) are defined in Lemma 5.6 and Lemma 5.9, respec-
tively.

5.5. Proof of Theorem 1.1

We first show the following lemma for accumulated error terms E,,, En, and En that are given
in (5.8) and (5.13).

Lemma 5.11. If u > 7 and 1 = u + 3, then there exist € > 0 suitably small and 6y > 1 large
enough such that
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IENN 2,y < CE26N, (5.55)

VEN gty + 1Ewl e g < C€. (5.56)

Proof. The proof follows closely [4,12]. First we note that £4(x + 2) < 1 when u > 7. From
(5.52), one has

N-1 N-1
2 2
IEN g2y < D lenll g g,y < D C*An < Ce%6y,
n=0 n=0

foruy>T7andu+2<p—1.Since br(u+1)=6—pu<—1foru>7and u+1 < — 2, from
(5.53)—(5.54), we have

N—
VEN N sty 1B gt Z{nennw el e o}

IA
2:
(N

Ce*0,° A, < Ce?,

Il
=}

n

where we have used (5.9) and (5.30) to derive the last inequality. The minimal possible [ is
i+ 3. This completes the proof of the lemma. O

Based on the lemma above, we have the estimates for fy, gy, and hﬁ

Lemma 5.12. If u > 7 and i = + 3, then there exist € > 0 suitably small and 6y > 1 large
enough such that

1wl @) < CON N2 (11 o1, +€7) + 2057 ) (5.5
lgnllapr) < CEAN (O 72+ 0™, (5.58)

form=2,...,0+1, and
gy @) < CEAN (O *2+02™ ") for m=2.... ji. (5.59)

Proof. Since Oy_1 <6y < \/591\/_1 and Ay_1 <3Ay, from (5.1a), (5.1¢), (5.52), and (5.55),
we obtain

1N g @) < 1Sy — Soy_) [ — (Soy — Soy_ ) En—1 — Soyen—1llap@r)
) _
< CANOY T T N gt gy +O8 ITEN -1 e ) + ISayen—1llmp e
= CAN O UL o, + ) + 208

By using (5.54) and (5.56), we get
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g 1a7 @r) < 1(Say — Soy_ ) En-1 — Soyen—1llap @)
m—pu—2, ~
<CAnOy IEN=1ll 1 g F Soyen—1llmy @r)

<CEAN(ON 4o ™.
Similarly we can deduce (5.59) for hi from (5.53) and (5.56). The proof is complete. O

In the next lemma, we obtain the estimate of differences 6V, 6Wy, and §vn with the aid of
tame estimate (3.20). See [12, Lemma 16] or [4, Lemma 8.10] for the proof.

Lemma 5.13. Let u > 7 and i = + 3. If € > 0 and ”fa”H"“(QT)/E are suitably small and
Y

0o > 1 is large enough, then

-1 -
||(5VN’8WN)”H;’,”(QT)+||5wN”HJr/n+l <eby " Ay form=2,....a. (5.60)

(1) —

Lemma 5.13 implies the first part of the hypothesis Hy . The following lemma provides us the
other parts of Hy .

Lemma 5.14. Let w > 7 and it = u + 3. If € > 0 and ||f”||H,L+1(QT)/6 are suitably small and
Y

0o > 1 is large enough, then

1

1LV, ¥N) = fllan@p <2660y " form=2,..., i1, (5.61)
BN YNl por) < €0y " form=3.... u, (5.62)
IEVN, ¥l 3y < €03 " (5.63)

We refer to [12, Lemmas 17-18] or [4, Lemma 8.11] for the proof of Lemma 5.14. Let us take
uw>7,u=pu+3,¢>0and| f* ||H);/1+1(QT)/E suitably small, and 6y > 1 large enough, so that the
assumptions of Lemmas 5.13-5.14 are satisfied, from which we obtain the inductive hypothesis
Hy. Then, as in [12, Lemma 19] or [4, Lemma 8.12], we can prove that the hypothesis Hy is
true.

Lemma 5.15. If || /¢ Il 1 /€ is small enough, then the hypothesis Hy holds.
Y

(27)

We are now ready to complete the proof of Theorem 1.1. Our proof follows closely [4,12] and
is still presented here for the sake of completeness.

Proof of Theorem 1.1. For i :=so—4 > 10and i := 1 —3 > 7, the initial data (Uoi, ¢o) under
the assumptions of Theorem 1.1 are compatible up to order sg = fi +4. If (Ugt, @o) is sufficiently
small in H0FT/2(R3) x HOTI(R) with ﬁoi := UF — U™, then the assumption (5.29) and all
the requirements of Lemmas 5.13-5.15 are satisfied owing to (4.16) and (4.19), and hence Hy
holds for all N € N. Thus, from
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K

o0
(16Va 59 gy + 18Ul g, ) <C 302 <00, 3=m<p—1,

n=0 n=0

we conclude that (V,, ¥,) converges to some (V,¥) in H)’f _I(QT), and v, converges to some
Y in H,‘,‘(QT). Then we take the limit in (5.61)—(5.62) form = u—1 =s9— 8, and in (5.63), and
obtain that (V, &) solves (4.20). As a consequence, (U, @) = (U% + V, ®% 4+ ¥) is a solution to
(1.11)—(1.13) in Q‘T" The proof of Theorem 1.1 is complete. O
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