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Abstract

The nonlinear stability and local existence of compressible vortex sheets for the two-dimensional isen-
tropic elastic fluid are established in the usual Sobolev spaces. The problem has a characteristic free 
boundary, and the Kreiss–Lopatinskiı̆ condition is satisfied only in a weak form. This paper completes 
the previous works [6,7] of the first three authors where the weakly linear stability of the rectilinear vortex 
sheets is proved by means of an upper triangularization technique. Our proof is based on certain higher-order 
energy estimates and an appropriate modification of the Nash–Moser iteration. In particular, the estimate 
for the normal derivatives of the characteristic variables can be recovered from that for the linearized diver-
gences and vorticities.
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1. Introduction

This paper continues and completes the previous works [6,7] of the first three authors on 
the study of stability for vortex sheets in the two-dimensional compressible elastodynamics. In 
particular, we prove the nonlinear stability, and hence the local existence for the configuration of 
vortex sheets.

The physical relevance of the model, and the motivation to include elasticity and to study their 
stabilizing property can be found in [6,7] and the references therein. In this introduction we will 
recall the problem of compressible vortex sheets for elastodynamics, state the main result after 
transforming the free boundary problem into a fixed domain, and briefly discuss our approach.

1.1. Formation of compressible vortex sheets

The two-dimensional isentropic motion of elastodynamics can be described by the following 
equations (see Dafermos [14, Chapter 2]):

∂tρ + ∂�(ρv�) = 0, (1.1a)

∂t (ρvi) + ∂�(ρv�vi) = ∂�Ti�, (1.1b)

(∂t + v�∂�)Fij = ∂�viF�j , (1.1c)

for i, j = 1, 2, where ∂t := ∂
∂t

and ∂� := ∂
∂x�

, for � = 1, 2, denote the partial differentials, ρ is the 

density, v = (v1, v2)
� ∈ R2 is the velocity, F = (Fij ) ∈ M2×2 is the deformation gradient, and 

T = (Tij ) ∈ M2×2 is the Cauchy stress tensor. We note that the Einstein summation convention 
is used in (1.1) and will also be adopted in the rest of this paper, and we denote by Mm×n the 
vector space of real m × n matrices.

We consider the compressible neo-Hookean materials (see Ciarlet [9, p. 189]), for which the 
Cauchy stress tensor T reads

T = λρFF� − p(ρ)I2, (1.2)

where λ > 0 is the Hookean constant and Im denotes the identity matrix of order m. Pressure 
p(ρ) is a C∞ and strictly increasing function on (0, +∞) so that the sound speed c = c(ρ)

satisfies

c(ρ) := √
p′(ρ) > 0 for ρ > 0. (1.3)

When λ = 0, the material becomes a thermoelastic fluid (see [14, p. 39]) and equations 
(1.1a)–(1.1b) are reduced to the compressible isentropic Euler equations in gas dynamics. Since 
we are concerned with the effect of elasticity to the evolution of materials, we set without loss of 
generality that λ = 1.

System (1.1) is supplemented by divergence constraints

div(ρFj ) := ∂�(ρF�j ) = 0 for j = 1,2, (1.4)

where Fj stands for the j -th column of F . With (1.4), equations (1.1c) can be reformulated in 
the following divergence form:



R.M. Chen et al. / J. Differential Equations 269 (2020) 6899–6940 6901
∂t (ρFij ) + ∂�(ρFij v� − viρF�j ) = 0 for i, j = 1,2,

which is convenient when calculating the jump conditions for weak solutions (as in [6,7]). It is 
worth pointing out that constraints (1.4) are involutions to system (1.1), meaning that if con-
straints (1.4) hold initially, then they are preserved by the evolution; see Dafermos [13] and
Hu–Wang [17]. By using (1.3)–(1.4), in smooth regions, system (1.1) can be rewritten equiva-
lently as

∂tU + A1(U)∂1U + A2(U)∂2U = 0, (1.5)

where U := (ρ, v1, v2, F11, F21, F12, F22)
� ∈ R7 is the unknown vector, and

Ai(U) :=

⎛⎜⎜⎜⎜⎝
vi ρe�

i 0 0
c(ρ)2

ρ
ei viI2 −Fi1I2 −Fi2I2

0 −Fi1I2 viI2 0

0 −Fi2I2 0 viI2

⎞⎟⎟⎟⎟⎠ for i = 1,2, (1.6)

with e1 := (1, 0)� and e2 := (0, 1)�. System (1.5) is symmetrizable hyperbolic for ρ > 0 due to 
(1.3).

Let U be smooth on each side of a smooth hypersurface Γ (t) := {x ∈R2 : x2 = ϕ(t, x1)}, that 
is,

U(t, x) =
{

U+(t, x), in �+(t) := {x ∈ R2 : x2 > ϕ(t, x1)},
U−(t, x), in �−(t) := {x ∈ R2 : x2 < ϕ(t, x1)},

where U+(t, x) and U−(t, x) are smooth functions in �+(t) and �−(t), respectively. We are 
interested in vortex sheets for which the tangential velocity suffers a jump across Γ (t). As in the 
previous paper [6], the Rankine–Hugoniot conditions of the vortex sheet solutions are reduced to

[vν] = 0, ∂tϕ = v+
ν , [ρ] = 0 on Γ (t), (1.7)

together with

F±
1ν = F±

2ν = 0 on Γ (t), (1.8)

where [f ] denotes the jump of quantity f across Γ (t), and

ν = (−∂1ϕ,1)�, v±
ν = v± · ν, F±

jν = F±
j · ν.

See Truesdell–Toupin [34, Section 185] for a thorough discussion. From (1.7) and (1.8), the 
boundary matrix on Γ (t), namely

Abdy := diag
(
∂tϕI7 − ν�A�(U

+),−∂tϕI7 + ν�A�(U
−)

)∣∣
Γ (t)

,

is singular, which means that the free boundary Γ (t) is characteristic. In this sense, a vortex sheet 
solution is a characteristic discontinuity. Moreover, the boundary matrix Abdy has 2 negative, 2
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positive, and 10 zero eigenvalues. We need one boundary condition for determining the unknown 
front, so the correct number of boundary conditions is three, according to the well-posedness the-
ory for hyperbolic boundary value problems. As a matter of fact, identities (1.8) are involutions 
inherited from the initial data (cf. Proposition 1.1), so they are regarded as constraints on the 
initial data rather than boundary conditions for the vortex sheet problem.

As discussed in [6], there exist trivial vortex sheet solutions

U(t, x1, x2) =
{

(ρ̄, v̄,0, F+
11, 0, F+

12, 0)�, x2 > 0,

(ρ̄, −v̄,0, F−
11, 0, F−

12, 0)�, x2 < 0,
(1.9)

where ρ̄ > 0, v̄ > 0, F±
11, and F±

12 are constants. Every rectilinear elastic vortex sheet (namely 
piecewise-constant vortex sheet) is of this form through the Galilean transformation. For sim-
plicity we assume that F+

11 = −F−
11 = F11 and F+

12 = −F−
12 = F12.

A standard first step in treating a free boundary problem is to convert the problem in a fixed 
domain. For this purpose, we introduce

U±

 (t, x) := U(t, x1,Φ

±(t, x)), (1.10)

where the lifting functions Φ± are taken as in Francheteau–Métivier [15] to satisfy

∂tΦ
± + v±

1 ∂1Φ
± − v±

2 = 0, ±∂2Φ
± ≥ κ > 0, (1.11)

when x2 ≥ 0, and

Φ+ = Φ− = ϕ, when x2 = 0, (1.12)

for some constant κ > 0. Then we need to solve the following initial-boundary value problem for 
U±


 in a fixed domain:

L(U±,Φ±) := L(U±,Φ±)U± = 0, x2 > 0, (1.13a)

B(U+,U−, ϕ)|x2=0 = 0, (1.13b)

(U+,U−, ϕ)|t=0 = (U+
0 ,U−

0 , ϕ0), (1.13c)

where we have dropped the index “
” for convenience, L(U, Φ) and B are given by

L(U,Φ) := I7∂t + A1(U)∂1 + Ã2(U,Φ)∂2, (1.14)

B(U+,U−, ϕ) :=
⎛⎝ [v1]∂1ϕ − [v2]

∂tϕ + v+
1 |x2=0∂1ϕ − v+

2 |x2=0

[ρ]

⎞⎠ , (1.15)

with

Ã2(U,Φ) := 1

∂2Φ
(A2(U) − ∂tΦI7 − ∂1ΦA1(U)) .
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By (1.8) and (1.11), we obtain that the boundary matrix of problem (1.13), i.e.,

diag
(− Ã2(U

+,Φ+), −Ã2(U
−,Φ−)

)
,

has constant rank on {x2 ≥ 0} if and only if

F±
2j = F±

1j ∂1Φ
± for j = 1,2, if x2 ≥ 0. (1.16)

In the new variables, equations (1.4) become

∂Φ±
� (ρ±F±

�j ) = 0 for j = 1,2, if x2 > 0, (1.17)

where we denote the partial differentials with respect to the lifting function Φ by

∂Φ
t := ∂t − ∂tΦ

∂2Φ
∂2, ∂Φ

1 := ∂1 − ∂1Φ

∂2Φ
∂2, ∂Φ

2 := 1

∂2Φ
∂2. (1.18)

The following proposition indicates that identities (1.16)–(1.17) are involutions for vortex sheet 
problem (1.11)–(1.13). The proof follows from a straightforward computation and hence is omit-
ted.

Proposition 1.1. For every sufficiently smooth solution of problem (1.11)–(1.13) on time interval 
[0, T ], constraints (1.16)–(1.17) hold for all t ∈ [0, T ] provided that they are satisfied initially.

1.2. Main result and discussion

In the straightened variables, the piecewise constant vortex sheet (1.9) corresponds to

U± := (
ρ̄, ±v̄, 0, ±F11, 0, ±F12, 0

)�
, ϕ := 0, Φ± := ±x2. (1.19)

For proving the nonlinear stability of elastic vortex sheets, we only need to show the existence 
of solutions to problem (1.11)–(1.13) on account of transform (1.10). The main result of this 
paper is stated as follows.

Theorem 1.1. Let T > 0 and s0 ≥ 14 be an integer. Suppose that the background state (1.19)
satisfies one of the following stability conditions:

v̄2 > 2c(ρ̄)2 + F 2
11 + F 2

22, (1.20)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < v̄2 < F 2
11 + F 2

22,

v̄2 �= F 2
11 + F 2

22

4
, v̄2 �=

(
(F 2

11 + F 2
22 + c(ρ̄)2)1/2 − (F 2

11 + F 2
22)

1/2
)2

4
,

v̄2 �= F 2
11 + F 2

22 + c(ρ̄)2

4
, v̄2 �= (F 2

11 + F 2
22)(F

2
11 + F 2

22 + 2c(ρ̄)2)

4(F 2
11 + F 2

22 + c(ρ̄)2)
.

(1.21)
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Suppose further that the initial data U±
0 and ϕ0 satisfy constraints (1.16)–(1.17) and the compat-

ibility conditions up to order s0 (cf. Definition 4.1), and that (U±
0 − U±, ϕ0) ∈ Hs0+1/2(R2+) ×

Hs0+1(R) has a compact support. Then there exists a positive constant ε such that, if

‖U±
0 − U±‖Hs0+1/2(R2+) + ‖ϕ0‖Hs0+1(R) ≤ ε,

then problem (1.11)–(1.13) admits a solution (U±, Φ±, ϕ) on the time interval [0, T ] satisfying

(U± − U±,Φ± − Φ±) ∈ Hs0−8((0, T ) ×R2+), ϕ ∈ Hs0−7((0, T ) ×R).

The theorem above asserts that, unlike the two-dimensional compressible Euler flow for which 
the vortex sheets are stable only for large Mach numbers, the appearance of elasticity stabilizes 
the system even in the subsonic zone, confirming the expectation from the linear analysis [6,7]. 
In particular, when linearizing at the rectilinear vortex sheet, a stabilizing subsonic zone larger 
than the one given by (1.21) was discovered in [6] by a delicate spectral analysis of the Lopatin-
skiı̆ determinant for the corresponding constant coefficient problem combined with an upper 
triangulation scheme for the energy estimates. Further perturbing away from the constant states 
leads to a linear problem with variable coefficients which admits a richer spectral structure. Para-
differential calculus thus becomes an effective way in place of the Fourier analysis. However, 
understanding the spectrum of the para-linearized system is much more challenging due to the 
degeneracy of the Kreiss–Lopatinskiı̆ condition and the characteristic boundary. The upper tri-
angularization method turns out to be particularly useful for treating the additional degenerate 
boundary points (referred to as poles) as well as gaining improved regularity of the outgoing 
modes; see the discussion in [7]. On the other hand, it is the complicated interaction between 
the poles and the other degenerate points (namely the roots) that imposes extra constraints in the 
subsonic region for stability.

Proceeding from linear to nonlinear stability and thus local existence can usually be achieved 
by an iterative argument. Our proof shall follow the general procedure (and thus format of pre-
sentation) in the spirit of Coulombel–Secchi [12]. A common feature shared by various types of 
compressible vortex sheets is that the free boundary is characteristic and the Kreiss–Lopatinskiı̆ 
condition holds only in a weak sense; see, e.g., [4–7,11,27]. Therefore the standard fixed-point 
argument cannot be applied since there is a loss of regularity from the source terms to the solution 
in the estimates for the linearized equations. Instead, we will appeal to the Nash–Moser iteration 
framework and construct solutions to the nonlinear problem (1.11)–(1.13) via the convergence 
of the scheme. Such type of approach has been successfully applied to other related problems 
[1,4,5,12,15,18,22,24,26,30–33,35]. Also refer to Alinhac–Gérard [2, Chapter III.C] and Secchi
[29] for a general description.

For showing the convergence of the Nash–Moser iteration scheme, we need to establish the 
well-posedness of the variable coefficient linearized problem with suitable tame estimate. In 
[6,7], the basic a priori energy estimate has been derived in the weighted Sobolev space L2

γ with 
one loss of derivative from the source terms. Using this estimate and the Moser-type calculus 
inequalities, we can control the tangential derivatives by the source terms, the coefficients, and the 
L∞ norm of solutions (instead of the W 1,∞ norm in Coulombel–Secchi [12, (37)], cf. (3.28)). In 
general one has to study characteristic hyperbolic problems in the anisotropic Sobolev spaces due 
to the degeneracy in the normal direction (see Secchi [28] and the references therein). Utilizing 
such function spaces, the iteration was carefully carried out to pass from linear to quasilinear 
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problems in [16], resulting in the well-posedness of the full problem. However, in the present 
paper, instead of making use of the anisotropy in different derivatives, we will follow an idea 
of Trakhinin [32] and compensate the loss of normal derivatives through the estimates of the 
linearized divergences and vorticities (see (3.44) and (3.52)–(3.53) for the definitions). This will 
in turn allow us to build the well-posedness in the usual Sobolev spaces.

We remark that the recent paper [8] confirms that the elasticity can stabilize the fluids in three 
dimensions. Indeed, it is showed that the linear stability in three-dimensional compressible elastic 
fluids is more challenging and the spectrum analysis is different from the two-dimensional case 
due to more complicated structures of the system. We also refer the reader to the recent work 
[23] for the stabilization effect of elasticity in the study of the structural stability of shock waves 
in 2D compressible elastodynamics.

The rest of this paper is organized as follows. Section 2 is devoted to collecting several prelim-
inaries including the notation, weighted Sobolev spaces and norms, and the Moser-type calculus 
inequalities in weighted spaces for later use. In Section 3, we show the well-posedness of solu-
tions to the variable coefficient linearized problem in usual Sobolev spaces, that is, Theorem 3.1. 
For this purpose, we first prove the well-posedness of the linearized problem in L2 by applying 
the duality argument of [10,12]. Then we show the estimate of the tangential derivatives, normal 
derivatives of the noncharacteristic variables, linearized divergences, and linearized vorticities in 
Subsections 3.3–3.6. The proof of Theorem 3.1 is given in Subsection 3.7 by finite induction. 
Section 4 is devoted to introducing the compatibility conditions and approximate solutions. In 
Section 5, we first present the Nash–Moser iteration scheme for our nonlinear problem by fol-
lowing [4,12]. Particularly, in Subsection 5.3, we construct and estimate a suitable modified state 
for deriving the convergence of the scheme.

2. Preliminaries

In this section, we shall provide the definitions of weighted Sobolev spaces and norms, and 
then introduce the Moser-type calculus inequalities in terms of weighted norms for later use.

First we give the following notation. Letter γ always denotes a parameter with γ ≥ 1. We 
denote by C any universal positive constant, by C(·) any generic positive constant depending 
only on its listed arguments, and they may change from line to line. The notation A � B (B � A) 
is used if A ≤ CB is true for some constant C > 0 independent of γ . Symbol A ∼ B stands 
for A � B and B � A. Set � = {(t, x1, x2) ∈ R3 : x2 > 0}, and its boundary ∂� is identified to 
R2. For T ∈ R, write ωT := (−∞, T ) ×R and �T := ωT ×R+. We denote ∇ := (∂t , ∂1) when 
applying it to functions of (t, x1) and ∇ := (∂t , ∂1, ∂2) when applying it to functions of (t, x1, x2). 
For multi-index α = (α0, α1, α2) ∈ N3, we define ∂α := ∂

α0
t ∂

α1
1 ∂

α2
2 and |α| := α0 +α1 +α2. 

For m ∈ N , we denote ∇m := {∂α : |α| = m}. We remark that, besides the notation above, we 
also adopt the same conventional notation in many places of this paper as those in [4,7,12,16].

We now give the definitions of weighted Sobolev spaces and norms. Let s ∈ R, m ∈ N , and 
γ ≥ 1. The weighted Sobolev space

Hs
γ (R2) :=

{
u ∈D′(R2) : e−γ tu(t, x1) ∈ Hs(R2)

}
is defined with norm ‖u‖Hs (R2) := ‖e−γ tu‖s,γ , where
γ
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‖v‖s,γ := 1

2π

⎛⎜⎝ ∫
R2

λ2s,γ (ξ)|̂v(ξ)|2 dξ

⎞⎟⎠
1/2

,

with v̂ being the Fourier transform of v and λ2s,γ (ξ) := (γ 2 + |ξ |2)s . We denote L2
γ (R2) :=

H 0
γ (R2) for short and obtain from the Plancherel theorem that ‖u‖L2

γ (R2) = ‖e−γ tu‖L2(R2).

We abbreviate L2(R+; Hs
γ (R2)) to L2(Hs

γ ), which is equipped with the norm

‖u‖L2(Hs
γ ) :=

⎛⎜⎝ ∫
R+

‖u(·, x2)‖2
Hs

γ (R2)
dx2

⎞⎟⎠
1/2

,

and L2
γ (�) := L2(H 0

γ ), ‖u‖L2
γ (�) = ‖e−γ tu‖L2(�). Moreover,

Hm
γ (�T ) := {

u ∈ D′(�T ) : e−γ tu ∈ Hm(�T )
}

is introduced with the norm

‖u‖Hm
γ (�T ) :=

∑
|α|≤m

γ m−|α|‖e−γ t ∂αu‖L2(�T ).

Similarly, the space Hm
γ (ωT ) and its norm are defined. Furthermore, we abbreviate L2(R+;

Hm
γ (ωT )) to L2(Hm

γ (ωT )), which is equipped with the norm

‖u‖L2(Hm
γ (ωT )) :=

∑
α0+α1≤m

γ m−α0−α1‖e−γ t ∂
α0
t ∂

α1
1 u‖L2(�T ),

and L2
γ (�T ) := L2(H 0

γ (ωT )), ‖u‖L2
γ (�T ) = ‖e−γ tu‖L2(�T ).

In the following lemma, we present the Moser-type calculus inequalities in weighted Sobolev 
spaces that will be frequently adopted in proving the higher-order tame estimates and conver-
gence of the Nash–Moser iterative scheme.

Lemma 2.1. Let m ∈ N , γ ≥ 1, T ∈ R, and u, w ∈ Hm
γ (�T ) ∩ L∞(�T ). Let b denote a 

C∞–function defined in a neighborhood of the origin.
(a) If |β1 + β2| ≤ m and b(0) = 0, then∥∥∂β1u∂β2w

∥∥
L2

γ (�T )
+ ∥∥uw

∥∥
Hm

γ (�T )
� ‖u‖L∞(�T )‖w‖Hm

γ (�T ) + ‖u‖Hm
γ (�T )‖w‖L∞(�T ),

(2.1)

‖b(u)‖Hm
γ (�T ) ≤ C

(‖u‖L∞(�T )

)‖u‖Hm
γ (�T ). (2.2)

(b) If |β1 + β2 + β3| ≤ m, then∥∥∂β1 [∂β2 , b(u)]∂β3w
∥∥

L2
γ (�T )

≤ C
(‖u‖L∞(�T )

)(‖w‖Hm
γ (�T ) + ‖u‖Hm

γ (�T )‖w‖L∞(�T )

)
.

(2.3)



R.M. Chen et al. / J. Differential Equations 269 (2020) 6899–6940 6907
Furthermore, if u ∈ W 1,∞(�T ), then

∥∥∂β1 [∂β2 , b(u)]∂β3w
∥∥

L2
γ (�T )

≤ C
(‖u‖W 1,∞(�T )

)(‖w‖
Hm−1

γ (�T )
+ ‖u‖Hm

γ (�T )‖w‖L∞(�T )

)
.

(2.4)

Here βi , for i = 1, 2, 3, are multi-indices, [a, b]c := a(bc) −b(ac) denotes the usual commutator, 
and the increasing function C is independent of u, w, γ , and T . The same results hold with �T

replaced by ωT .

We remark that the proof of the inequalities (2.1) and (2.2) can be found in [20, Section 
4.5] and [12, Appendix C]. The inequalities (2.3) and (2.4) follow (2.1) and (2.2) through a 
straightforward calculation. We omit the proof.

3. Well-posedness of the linearized problem

In this section we shall consider the linearized problem for (1.13) and prove the well-
posedness of solutions in the usual Sobolev spaces Hm for all integers m stated in Theorem 3.1
as in [12].

3.1. Variable coefficient linearized problem

Let us first perform the linearization for problem (1.13) around a basic state (Ǔ±, Φ̌±). We 
suppose that

supp (V̌ ±, Ψ̌ ±) ⊂ {−T ≤ t ≤ 2T , x2 ≥ 0, |x| ≤ 2}, (3.1)∥∥V̌ ±∥∥
W 2,∞(�)

+ ∥∥Ψ̌ ±∥∥
W 3,∞(�)

≤ K, (3.2)

for V̌ ± := Ǔ±−U± and Ψ̌ ± := Φ̌±−Φ±, where T and K are positive constants, and (U±, Φ±)

is the background state defined by (1.19). Moreover, the basic state (Ǔ±, Φ̌±) is supposed to 
satisfy (1.11), (1.13b), and (1.16), i.e.,

± ∂2Φ̌
± ≥ κ0 > 0, x2 ≥ 0, (3.3a)

∂t Φ̌
± + v̌±

1 ∂1Φ̌
± − v̌±

2 = 0, x2 ≥ 0, (3.3b)

F̌±
2j = F̌±

1j ∂1Φ̌
± for j = 1,2, x2 ≥ 0, (3.3c)

Φ̌+ = Φ̌− = ϕ̌, x2 = 0, (3.3d)

B
(
Ǔ+, Ǔ−, ϕ̌

) = 0, x2 = 0, (3.3e)

for some positive constant κ0. Constraints (3.3b) and (3.3c) keep the rank of the boundary matrix 
for the linearized problem being constant on �. Denote Ǔ := (Ǔ+, Ǔ−)�, V̌ := (V̌ +, V̌ −)�, 
Φ̌ := (Φ̌+, Φ̌−)�, and Ψ̌ := (Ψ̌ +, Ψ̌ −)� for convenience.
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The linearized operators read

L′(U,Φ)(V,Ψ ) := (L(U,Φ) + C(U,Φ))V − 1

∂2Φ
(L(U,Φ)Ψ )∂2U, (3.4)

B′(Ǔ, ϕ̌
)
(V ,ψ) := b̌∇ψ + B̌V |x2=0, (3.5)

where V := (V +, V −)�, and C(U, Φ), b̌, and B̌ are respectively defined by

C(U,Φ)V := (
∂Ui

A1(U)∂1U + ∂Ui
Ã2(U,Φ)∂2U

)
Vi, (3.6)

b̌(t, x1) :=
⎛⎝0 (v̌+

1 − v̌−
1 )|x2=0

1 v̌+
1 |x2=0

0 0

⎞⎠ , (3.7)

and

B̌(t, x1) :=
⎛⎝0 ∂1ϕ̌ −1 0 0 0 0 0 −∂1ϕ̌ 1 0 0 0 0

0 ∂1ϕ̌ −1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 0 0 0 0 0 0

⎞⎠ . (3.8)

As in Alinhac [1], we obtain

L′(Ǔ±, Φ̌±)(V ±,Ψ ±) = L(Ǔ±, Φ̌±)V̇ ± + C(Ǔ±, Φ̌±)V̇ ± + Ψ ±

∂2Φ̌± ∂2L(Ǔ±, Φ̌±), (3.9)

where V̇ ± are the “good unknowns”

V̇ ± := V ± − ∂2Ǔ
±

∂2Φ̌± Ψ ±. (3.10)

We now consider effective linear system:

L′
e

(
Ǔ±, Φ̌±)

V̇ ± := L
(
Ǔ±, Φ̌±)

V̇ ± + C(Ǔ±, Φ̌±)V̇ ± = f ±, x2 > 0, (3.11a)

B′
e

(
Ǔ, Φ̌

)
(V̇ ,ψ) := b̌∇ψ + b̌�ψ + B̌V̇ |x2=0 = g, x2 = 0, (3.11b)

Ψ + = Ψ − = ψ, x2 = 0, (3.11c)

where L(Ǔ±, Φ̌±), C(Ǔ±, Φ̌±), b̌, and B̌ are given in (1.14), (3.6), (3.7), and (3.8), separately, 
V̇ := (V̇ +, V̇ −)�, and

b̌�(t, x1) := B̌(t, x1)

(
∂2Ǔ

+/∂2Φ̌
+

∂2Ǔ
−/∂2Φ̌

−

)∣∣∣∣∣
x2=0

. (3.12)

Here, C(Ǔ±, Φ̌±) are two smooth functions of (V̌ ±, ∇V̌ ±, ∇Ψ̌ ±) vanishing at the origin, b̌
is a smooth function of trace V̌ |x =0, b̌� is a smooth vector-function of (∇V̌ |x =0, ∇Ψ̌ |x =0)
2 2 2
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vanishing at the origin, and matrix B̌ is a smooth matrix-function of ∇ϕ̌. Notice that the boundary 
condition (3.11b) depends on the traces of V̇ solely through P (ϕ̌)V̇ ±|x2=0, where

P (ϕ̌)V ± := (
V ±

1 , V ±
3 − ∂1ϕ̌V ±

2

)�
. (3.13)

Let us convert linearized problem (3.11) into a problem with a constant diagonal boundary 
matrix. To this end, we define matrices

R(U,Φ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 〈∂1Φ〉 〈∂1Φ〉 0 0 0 0

1 − c(ρ)
ρ

∂1Φ
c(ρ)
ρ

∂1Φ 0 0 0 0

∂1Φ
c(ρ)
ρ

− c(ρ)
ρ

0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.14)

and

Ã0(U,Φ) :=diag

(
1,

∂2Φ

c(ρ)〈∂1Φ〉 , − ∂2Φ

c(ρ)〈∂1Φ〉 , 1, 1, 1, 1

)
, (3.15)

where 〈∂1Φ〉 := (1 + (∂1Φ)2)1/2 and c(ρ) is the sound speed given in (1.3). Then it follows from 
constraints (3.3b) and (3.3c) that

Ã0R
−1Ã2R

(
Ǔ±, Φ̌±) = I2 := diag

(
0, 1, 1, 0, 0, 0, 0

)
.

In terms of new unknowns

W± := R−1(Ǔ±, Φ̌±)
V̇ ±, (3.16)

the problem (3.11) can be rewritten equivalently as

A±
0 ∂tW

± +A±
1 ∂1W

± + I2∂2W
± +A±

3 W± = F±, x2 > 0, (3.17a)

b̌∇ψ + b̌�ψ + BW nc = g, x2 = 0, (3.17b)

Ψ + = Ψ − = ψ, x2 = 0, (3.17c)

where

A±
0 := Ã0

(
Ǔ±, Φ̌±)

, A±
1 := Ã0R

−1A1R
(
Ǔ±, Φ̌±)

, F± := Ã0R
−1(Ǔ±, Φ̌±)

f ±,

A±
3 := Ã0

(
R−1∂tR + R−1A1∂1R + R−1Ã2∂2R + R−1CR

)(
Ǔ±, Φ̌±)

.

In (3.17b), coefficients b̌ and b̌� are defined by (3.7) and (3.12), respectively,
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B(t, x1) :=

⎛⎜⎜⎜⎜⎜⎝
−c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 − c(ρ̌)

ρ̌
〈∂1ϕ̌〉2

−c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 c(ρ̌)

ρ̌
〈∂1ϕ̌〉2 0 0

〈∂1ϕ̌〉 〈∂1ϕ̌〉 −〈∂1ϕ̌〉 −〈∂1ϕ̌〉

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
x2=0

, (3.18)

and W nc := (W nc+ , W nc− )� denotes the noncharacteristic part of W := (W+, W−)� with 
W nc± := (W±

2 , W±
3 )�. Obviously, A±

0 and A±
1 are smooth functions of (V̌ ±, ∇Ψ̌ ±), A±

3 are 
smooth matrix-functions of (V̌ ±, ∇V̌ ±, ∇Ψ̌ ±, ∇2Ψ̌ ±), and B is a smooth matrix-function of 
(V̌ |x2=0, ∇ϕ̌).

We are ready to show the following theorem in the rest of this section.

Theorem 3.1. Let T > 0 and m ∈ N with m ≥ 2 being fixed. Suppose that background state 
(1.19) satisfies (1.20) or (1.21), and that (V̌ ±, Ψ̌ ±) belong to Hm+3

γ (�T ) for all γ ≥ 1, and 
satisfy (3.1)–(3.3) and

‖(V̌ ±, Ψ̌ ±)‖H 6
γ (�T ) + ‖(V̌ ±, Ψ̌ ±)‖H 5

γ (ωT ) ≤ K. (3.19)

Suppose further that source terms (f, g) ∈ Hm+1(�T ) × Hm+1(ωT ) vanish in the past. Then 
there exist constants K0 > 0 and γ0 ≥ 1 such that, if K ≤ K0 and γ ≥ γ0, then problem (3.11)
has a unique solution (V̇ ±, ψ) ∈ Hm(�T ) × Hm+1(ωT ) vanishing in the past and satisfying 
tame estimate

‖V̇ ‖Hm
γ (�T ) + ‖P (ϕ̌)V̇ ±‖Hm

γ (ωT ) + ‖ψ‖
Hm+1

γ (ωT )

� ‖f ‖
Hm+1

γ (�T )
+ ‖g‖

Hm+1
γ (ωT )

+ (‖f ‖H 3
γ (�T ) + ‖g‖H 3

γ (ωT )

)‖(V̌ ±, Ψ̌ ±)‖
Hm+3

γ (�T )
.

(3.20)

When f and g vanish in the past (it is equivalent to zero initial data), Theorem 3.1 holds. The 
case of general initial data will be considered in Section 4 by constructing approximate solutions 
before the procedure of Nash–Moser scheme.

3.2. Well-posedness in L2

Let us recall the following L2 a priori energy estimate derived by [7] for the linearized prob-
lem (3.11).

Theorem 3.2 ([7, Theorem 2.1]). Suppose that background state (U±, Φ±) defined by (1.19) sat-
isfies (1.20) or (1.21), and basic state 

(
Ǔ±, Φ̌±)

satisfies (3.1)–(3.3). Then there exist constants 
K0 > 0 and γ0 ≥ 1 such that, if K ≤ K0 and γ ≥ γ0, then

γ ‖V̇ ‖2
L2

γ (�)
+ ‖P (ϕ̌)V̇ ‖2

L2
γ (∂�)

+ ‖ψ‖2
H 1

γ (R2)

� γ −3
∥∥L′

e

(
Ǔ±, Φ̌±)

V̇ ±∥∥2
L2(H 1

γ )
+ γ −2

∥∥B′
e

(
Ǔ, Φ̌

)
(V̇ ,ψ)

∥∥2
H 1

γ (R2)
(3.21)
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for all (V̇ , ψ) ∈ H 2
γ (�) × H 2

γ (R2), where operators P (ϕ̌), L′
e , and B′

e are defined by (3.13), 
(3.11a), and (3.11b), respectively.

System (3.11a) is symmetrizable hyperbolic, whose coefficients satisfy the regularity assump-
tions of Coulombel [10]. It implies that we need to construct a dual problem that satisfies an 
appropriate energy estimate. Thus, we define

B̌1 :=
⎛⎝ 0 0 0 0 0 0 0 −ς̌−

1 0 0 0 0 0 0
ς̌+

1 0 0 0 0 0 0 ς̌−
1 0 0 0 0 0 0

0 ς̌+
2 ς̌+

3 0 0 0 0 0 −ς̌−
2 −ς̌−

3 0 0 0 0

⎞⎠∣∣∣∣∣∣
x2=0

,

(3.22)

Ď1 :=
⎛⎝0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ς̌+

2 ς̌+
3 0 0 0 0 0 ς̌−

2 ς̌−
3 0 0 0 0

⎞⎠∣∣∣∣∣∣
x2=0

, (3.23)

Ď :=
⎛⎝0 ∂1ϕ̌ −1 0 0 0 0 0 ∂1ϕ̌ −1 0 0 0 0

0 ∂1ϕ̌ −1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0

⎞⎠ ,

where

ς̌±
1 := − ρ̌±

∂2Φ̌± , ς̌±
2 := −c(ρ̌±)2∂1ϕ̌

2ρ̌±∂2Φ̌± , ς̌±
3 := c(ρ̌±)2

2ρ̌±∂2Φ̌± .

Use (3.3b) and (3.3c) to calculate

B̌�
1 B̌ + Ď�

1 Ď = diag
(
Ã2(Ǔ

+, Φ̌+), Ã2(Ǔ
−, Φ̌−)

)∣∣
x2=0,

where B̌ is given in (3.8). Following [20, Section 3.2], we define the dual problem for (3.11) as{
L′

e

(
Ǔ±, Φ̌±)∗

U± = f ∗±, x2 > 0,

Ď1U = 0, div(b̌�B̌1U) − b̌�
� B̌1U = 0, x2 = 0,

(3.24)

where b̌, b̌�, B̌1, and Ď1 are given in (3.7), (3.12), (3.22), and (3.23), respectively, and symbol div
denotes the divergence operator in R2. L′

e

(
Ǔ±, Φ̌±)∗ are the adjoint operators of L′

e

(
Ǔ±, Φ̌±)

. 
Following the same analysis as in [12, Section 3.4], we can obtain the well-posedness result in 
L2 for the linearized problem (3.11).

Theorem 3.3. Let T > 0 be fixed. Suppose that f ∈ L2(R+; H 1(ωT )) and g ∈ H 1(ωT ) vanish 
in the past and all the hypotheses in Theorem 3.2 are satisfied. Then constants K0 > 0 and 
γ0 ≥ 1 exist such that, if K ≤ K0 and γ ≥ γ0, then there exists a unique solution (V̇ +, V̇ −, ψ) ∈
L2(�T ) ×L2(�T ) ×H 1(ωT ) for problem (3.11a)–(3.11b) that vanishes in the past and satisfies

γ 1/2‖V̇ ‖L2
γ (�t )

+ ‖P (ϕ̌)V̇ ‖L2
γ (ωt )

+ ‖ψ‖H 1
γ (ωt )

� γ −3/2‖f ‖L2(H 1
γ (ωt ))

+ γ −1‖g‖H 1
γ (ωt )

(3.25)

for all γ ≥ γ0 and t ∈ [0, T ].
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For the reformulated problem (3.17), Theorem 3.3 implies estimate

γ 1/2‖W‖L2
γ (�T ) + ‖W nc‖L2

γ (ωT ) + ‖ψ‖H 1
γ (ωT ) � γ −3/2‖F±‖L2(H 1

γ (ωT )) + γ −1‖g‖H 1
γ (ωT ).

(3.26)

For any nonnegative integer m, a generic and smooth matrix-valued function of {(∂αV̌ , ∂αΨ̌ ) :
|α| ≤ m} is denoted by čm, and by čm if it vanishes at the origin. For instance, the equations for 
ρ̇± in (3.11a) can be rewritten as

(∂Φ̌±
t + v̌±

� ∂Φ̌±
� )ρ̇± + ρ̌±∂Φ̌±

� v̇±
� = č0f + č1V̇ . (3.27)

The exact forms of čm and čm may vary from line to line.

3.3. Tangential derivatives

The following lemma provides the estimate of the tangential derivatives.

Lemma 3.1. If the hypotheses of Theorem 3.1 hold, then there exists a constant γm ≥ 1, indepen-
dent of T , such that

γ 1/2‖W‖L2(Hm
γ (ωT )) + ‖W nc‖Hm

γ (ωT ) + ‖ψ‖
Hm+1

γ (ωT )

� γ −3/2
∥∥F±∥∥

L2(Hm+1
γ (ωT ))

+ γ −3/2‖W‖L∞(�T )‖(V̌ , Ψ̌ )‖
Hm+3

γ (�T )

+ γ −1‖g‖
Hm+1

γ (ωT )
+ γ −1‖(W nc,ψ)‖L∞(ωT )‖(V̌ , Ψ̌ )‖

Hm+2
γ (ωT )

, (3.28)

for all γ ≥ γm and solutions (W, ψ) ∈ Hm+2
γ (�T ) × Hm+2

γ (ωT ) of problem (3.17).

Proof. We will follow [12, Proposition 1] to consider the enlarged system, but for the esti-
mate of the source terms we use the Moser-type calculus inequalities (2.1)–(2.4) instead of the 
Gagliardo–Nirenberg’s and Hölder’s inequalities in [12, Proposition 1].

Let � ∈ N with 1 ≤ � ≤ m. Let α = (α0, α1, 0) ∈ N3 with |α| = � so that ∂α = ∂
α0
t ∂

α1
1 is a 

tangential derivative satisfying α0 + α1 = �. Then we apply operator ∂α to (3.17a) and get

A±
0 ∂t ∂

αW± +A±
1 ∂1∂

αW± + I2∂2∂
αW± +A±

3 ∂αW±

+
∑

|β|=1, β≤α

Cα,β

(
∂βA±

0 ∂t ∂
α−βW± + ∂βA±

1 ∂1∂
α−βW±) = F α±, (3.29)

where

F α± := ∂αF± +
∑

0<β≤α

Cα,β∂βA±
3 ∂α−βW±

+
∑

|β|≥2, β≤α

Cα,β

(
∂βA±

0 ∂t ∂
α−βW± + ∂βA±

1 ∂1∂
α−βW±)

.

Similarly, from (3.17b), we have
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b̌∇∂αψ + b̌�∂
αψ + B∂αW nc = G α on ωT , (3.30)

where

G α := ∂αg − [∂α, b̌]∇ψ − [∂α, b̌�]ψ − [∂α,B]W nc.

Since the terms involving tangential derivatives of order � in (3.29) do not only contain ∂αW±, 
as in [12, Proposition 1], we write an enlarged system for all the tangential derivatives of order �, 
in order to apply the L2 a priori estimate in Theorem 3.2. Note that the last term on the left-hand 
side of (3.29) cannot be regarded simply as source terms due to the loss of derivatives in (3.21). 
Defining

W
(�)
± := {

∂
α0
t ∂

α1
1 W± : α0 + α1 = �

}
, ψ(�) := {

∂
α0
t ∂

α1
1 ψ : α0 + α1 = �

}
,

we obtain from (3.29)–(3.30) that

A ±
0 ∂tW

(�)
± + A ±

1 ∂1W
(�)
± + I ∂2W

(�)
± + C ±W

(�)
± = F (�)

± , (3.31a)

B∇ψ(�) + B�ψ
(�) + MW(�)

nc = G (�), (3.31b)

where A ±
0 , A ±

1 , and I are block diagonal with blocks A±
0 , A±

1 , and I2, respectively. Matrices 

C ± belong to W 1,∞(�). The source terms F (�)
± and G (�) consist of F α± and G α for all α =

(α0, α1, 0) with |α| = �, respectively. The enlarged problem (3.31) satisfies an energy estimate 
similar to (3.26), i.e.,

γ 1/2‖W(�)‖L2
γ (�T ) + ‖W(�)

nc ‖L2
γ (ωT ) + ‖ψ(�)‖H 1

γ (ωT )

� γ −3/2‖F (�)‖L2(H 1
γ (ωT )) + γ −1‖G (�)‖H 1

γ (ωT ). (3.32)

Let us now estimate the source terms F (�)
± and G (�) by Moser-type calculus inequalities 

(2.1)–(2.4). First, by definition, we have

‖∂αF‖L2(H 1
γ (ωT )) � ‖(γ ∂αF, ∂t ∂

αF, ∂1∂
αF )‖L2

γ (�T ) � ‖F‖
L2(H�+1

γ (ωT ))
, (3.33)

‖∂αg‖H 1
γ (ωT ) � ‖g‖

H�+1
γ (ωT )

. (3.34)

For 0 < β ≤ α, we infer

‖∂βA3∂
α−βW‖H 1

γ (ωT ) � ‖(γ ∂βA3∂
α−βW,∇t,x1(∂

βA3∂
α−βW))‖L2

γ (ωT ). (3.35)

Apply Moser-type calculus inequality (2.1) to deduce that

‖∂βA3∂
α−βW‖L2

γ (ωT ) = ‖∂β−β ′
(∂β ′A3)∂

α−βW‖L2
γ (ωT )

� ‖∂β ′A3‖L∞(ωT )‖W‖
H�−1

γ (ωT )
+ ‖∂β ′A3‖H�−1

γ (ωT )
‖W‖L∞(ωT )

� ‖W‖
H�−1

γ (ωT )
+ ‖(V̌ , Ψ̌ )‖

H�+2
γ (ωT )

‖W‖L∞(ωT ), (3.36)
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where β ′ ≤ β with |β ′| = 1. Similarly, we have

‖∇t,x1(∂
βA3∂

α−βW)‖L2
γ (ωT ) � ‖W‖H�

γ (ωT ) + ‖(V̌ , Ψ̌ )‖
H�+3

γ (ωT )
‖W‖L∞(ωT ),

which combined with (3.35) and (3.36) implies

‖∂βA3∂
α−βW‖L2(H 1

γ (ωT )) � ‖W‖L2(H�
γ (ωT )) + ‖(V̌ , Ψ̌ )‖

H�+3
γ (�T )

‖W‖L∞(�T ). (3.37)

For β ≤ α with |β| ≥ 2, similar to (3.37), we use (2.1) to derive

‖∂βA0∂t ∂
α−βW‖L2(H 1

γ (ωT )) + ‖∂βA1∂1∂
α−βW‖L2(H 1

γ (ωT ))

� ‖W‖L2(H�
γ (ωT )) + ‖(V̌ , Ψ̌ )‖

H�+3
γ (�T )

‖W‖L∞(�T ). (3.38)

Combining (3.33), (3.37), and (3.38) leads to

‖F (�)‖L2(H 1
γ (ωT )) � ‖F‖

L2(H�+1
γ (ωT ))

+ ‖W‖L2(H�
γ (ωT )) + ‖(V̌ , Ψ̌ )‖

H�+3
γ (�T )

‖W‖L∞(�T ).

(3.39)

Using (2.3)–(2.4), we obtain

‖[∂α, b̌]∇ψ‖H 1
γ (ωT ) � γ ‖[∂α, b̌]∇ψ‖L2

γ (ωT ) +
∑
|β|=1

‖∂β [∂α, b̌]∇ψ‖L2
γ (ωT )

� ‖ψ‖
H�+1

γ (ωT )
+ ‖č0‖H�+2

γ (ωT )
‖ψ‖L∞(ωT )

� ‖ψ‖
H�+1

γ (ωT )
+ ‖(V̌ , Ψ̌ )‖

H�+2
γ (ωT )

‖ψ‖L∞(ωT ).

Applying Moser-type calculus inequalities (2.3)–(2.4) to the other terms in G α , we get

‖G (�)‖H 1
γ (ωT ) � ‖g‖

H�+1
γ (ωT )

+ ‖W nc‖H�
γ (ωT ) + ‖ψ‖

H�+1
γ (ωT )

+ ‖(V̌ , Ψ̌ )‖
H�+2

γ (ωT )
‖(W nc,ψ)‖L∞(ωT ). (3.40)

Substitute (3.39) and (3.40) into (3.32), multiply the resulting estimate by γ m−�, sum over �
from 0 to m, and take γ large enough to conclude the desired tame estimate (3.28). The proof of 
this lemma is complete. �
3.4. Normal derivatives of the noncharacteristic variables

Following [32], we compensate the loss of normal derivatives through the estimates of the 
linearized divergences and vorticities. According to (3.17a), we have⎛⎝ 0

∂2W
nc±

0

⎞⎠ = F± −A±
0 ∂tW

± −A±
1 ∂1W

± −A±
3 W±, (3.41)
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which leads to

‖∂2W
nc‖

L2(Hm−1
γ (ωT ))

� ‖(F, č1∂tW, č1∂1W, č2W)‖
L2(Hm−1

γ (ωT ))
.

It follows from (2.1)–(2.2) that

‖č2W‖
Hm−1

γ (ωT )
� ‖č2‖L∞(ωT )‖W‖

Hm−1
γ (ωT )

+ ‖č2‖Hm−1
γ (ωT )

‖W‖L∞(ωT )

� ‖W‖
Hm−1

γ (ωT )
+ ‖(V̌ , Ψ̌ )‖

Hm+1
γ (ωT )

‖W‖L∞(ωT ),

and

‖č1W‖Hm
γ (ωT ) � ‖W‖Hm

γ (ωT ) + ‖(V̌ , Ψ̌ )‖
Hm+1

γ (ωT )
‖W‖L∞(ωT ).

Since

‖č1∇t,x1W‖
Hm−1

γ (ωT )
� ‖č1W‖Hm

γ (ωT ) + ‖∇t,x1 č1W‖
Hm−1

γ (ωT )

� ‖W‖Hm
γ (ωT ) + ‖č1W‖Hm

γ (ωT ) + ‖č2W‖
Hm−1

γ (ωT )
,

we combine the estimates above to get

‖∂2W
nc‖

L2(Hm−1
γ (ωT ))

� ‖F‖
Hm−1

γ (�T )
+ ‖W‖L2(Hm

γ (ωT ))

+ ‖(V̌ , Ψ̌ )‖
L2(Hm+1

γ (ωT ))
‖W‖L∞(�T ). (3.42)

Next, we introduce the linearized divergences and vorticities whose estimates enable us to 
recover the normal derivatives of the characteristic variables

(W±
1 , W±

4 , W±
5 , W±

6 , W±
7 ) =

(
v̇±

1 + ∂1Φ̌
±v̇±

2

〈∂1Φ̌±〉2
, Ḟ±

11, Ḟ±
21, Ḟ±

12, Ḟ±
22

)
, (3.43)

according to transformation (3.16).

3.5. Divergences

Inspired by involutions (1.17), we introduce linearized divergences ζ±
1 and ζ±

2 by

ζ±
j := ∂Φ̌±

i

(
ρ̌±Ḟ±

ij + F̌±
ij ρ̇±)

, j = 1,2, (3.44)

where partial differentials ∂Φ̌±
i , i = 1, 2, are defined by (1.18). We have the following estimate 

for ζ± and ζ±.
1 2
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Lemma 3.2 (Estimate of divergences). If the hypotheses of Theorem 3.1 hold, then there exists a 
constant γm ≥ 1, independent of T , such that

γ ‖(ζ±
1 , ζ±

2 )‖
Hm−1

γ (�T )
� ‖(W,f )‖Hm

γ (�T ) + ‖(V̌ , Ψ̌ )‖
Hm+2

γ (�T )
‖(W,f )‖L∞(�T ), (3.45)

for all γ ≥ γm and solutions (W, ψ) ∈ Hm+2
γ (�T ) × Hm+2

γ (ωT ) of problem (3.17).

Proof. The equations for Ḟij in (3.11a) read

(∂Φ̌
t + v̌�∂

Φ̌
� )Ḟij − F̌�j ∂

Φ̌
� v̇i = č0f + č1V̇ . (3.46)

By using equations (3.27) and (3.46), we apply operator ∂Φ̌
i and use

ρ̌F̌�1∂
Φ̌
i ∂Φ̌

� v̇i − ρ̌F̌i1∂
Φ̌
i ∂Φ̌

� v̇� = ρ̌F̌i1
[
∂Φ̌
� , ∂Φ̌

i

]
v̇� = č2∇V̇

to discover

(∂Φ̌
t + v̌�∂

Φ̌
� )ζj = č1∇f + č1f + č2∇W + č2W. (3.47)

Applying operator e−γ t ∂α with |α| ≤ m − 1 to (3.47) yields

(∂Φ̌
t + v̌�∂

Φ̌
� )

(
e−γ t ∂αζj

) + γ e−γ t ∂αζj

= e−γ t ∂α(č1∇f + č1f + č2∇W + č2W) − e−γ t [∂α, ∂Φ̌
t + v̌�∂

Φ̌
� ]ζj .

We multiply the last identity by e−γ t∂αζj and integrate over �T to infer

γ ‖∂αζj‖L2
γ (�T ) � ‖∂α(č1∇f + č1f + č2∇W + č2W)‖L2

γ (�T )

+ ‖[∂α, ∂Φ̌
t + v̌�∂

Φ̌
� ]ζj‖L2

γ (�T ), (3.48)

for γ ≥ 1 sufficiently large, where we have used

∂Φ̌
t + v̌�∂

Φ̌
� = ∂t + v̌1∂1 if x2 ≥ 0, (3.49)

owing to constraints (3.3b).
From Moser-type calculus inequality (2.3), we obtain

‖∂α(č1∇f + č1f )‖L2
γ (�T ) � ‖(č1∂

α∇f, č1∂
αf )‖L2

γ (�T ) + ‖([∂α, č1]∇f, [∂α, č1]f )‖L2
γ (�T )

� ‖f ‖
H

|α|+1
γ (�T )

+ ‖(V̌ , Ψ̌ )‖
H

|α|+2
γ (�T )

‖f ‖L∞(�T ). (3.50)

Since ζj = č1W + č1∇W , we apply Moser-type calculus inequalities (2.3)–(2.4) to deduce 
that
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‖∂α(č2∇W + č2W)‖L2
γ (�T ) + ‖[∂α, ∂Φ̌

t + v̌�∂
Φ̌
� ]ζj‖L2

γ (�T )

� ‖(č2∂
α∇W, č2∂

αW, [∂α, č2]W, [∂α, č2]∇W, [∂α, č1]∇2W)‖L2
γ (�T )

� ‖W‖
H

|α|+1
γ (�T )

+ ‖(V̌ , Ψ̌ )‖
H

|α|+3
γ (�T )

‖W‖L∞(�T ). (3.51)

Substituting (3.50) and (3.51) into (3.48) implies

γ m−|α|‖∂αζj‖L2
γ (�T ) � ‖(W,f )‖Hm

γ (�T ) + ‖(V̌ , Ψ̌ )‖
Hm+2

γ (�T )
‖(W,f )‖L∞(�T ),

from which we conclude estimate (3.45) and finish the proof of this lemma. �
3.6. Vorticities

The linearized vorticities ξ± for velocities v̇± and the linearized vorticities η±
j for columns 

Ḟ±
j of the deformation gradient are defined as

ξ± := ∂Φ̌±
1 v̇±

2 − ∂Φ̌±
2 v̇±

1 , (3.52)

η±
j := ∂Φ̌±

1 Ḟ±
2j − ∂Φ̌±

2 Ḟ±
1j , (3.53)

for j = 1, 2. The following lemma gives the estimate of ξ±, η±
1 , and η±

2 .

Lemma 3.3 (Estimate of vorticities). If the hypotheses of Theorem 3.1 hold, then there exists a 
constant γm ≥ 1, independent of T , such that

γ ‖(ξ±, η±
1 , η±

2 )‖
Hm−1

γ (�T )
� ‖(W,f )‖Hm

γ (�T ) + ‖(V̌ , Ψ̌ )‖
Hm+2

γ (�T )
‖(W,f )‖L∞(�T ),

(3.54)

for all γ ≥ γm and solutions (W, ψ) ∈ Hm+2
γ (�T ) × Hm+2

γ (ωT ) of problem (3.17).

Proof. The equations for v̇1 and v̇2 in (3.11a) read

(∂Φ̌
t + v̌�∂

Φ̌
� )v̇i − F̌�j ∂

Φ̌
� Ḟij + c(ρ̌)2

ρ̌
∂Φ̌
i ρ̇ = č0f + č1V̇ , (3.55)

which implies the transport equation

(∂Φ̌
t + v̌�∂

Φ̌
� )ξ − F̌�j ∂

Φ̌
� ηj = č1∇f + č1f + č2∇W + č2W. (3.56)

Moreover, it follows from (3.46) that

(∂Φ̌
t + v̌�∂

Φ̌
� )ηj − F̌�j ∂

Φ̌
� ξ = č1∇f + č1f + č2∇W + č2W. (3.57)

Apply operator e−γ t ∂α with |α| ≤ m − 1 to (3.56) (resp. (3.57)) and multiply the resulting iden-
tity by e−γ t ∂αξ (resp. e−γ t ∂αηj ) to obtain
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1

2
(∂Φ̌

t + v̌�∂
Φ̌
� )

{
|e−γ t ∂αξ |2 + |e−γ t ∂αη1|2 + |e−γ t ∂αη2|2

}
− F̌�j ∂

Φ̌
�

(
e−2γ t ∂αξ∂αηj

)
+ γ

{
|e−γ t ∂αξ |2 + |e−γ t ∂αη1|2 + |e−γ t ∂αη2|2

}
= e−2γ t ∂αξ

{
∂α

(
č1∇f + č1f + č2∇W + č2W

) − [∂α, ∂Φ̌
t + v̌�∂

Φ̌
� ]ξ

}
+ e−2γ t ∂αηj

{
∂α

(
č1∇f + č1f + č2∇W + č2W

) − [∂α, ∂Φ̌
t + v̌�∂

Φ̌
� ]ηj

}
+ e−2γ t

{
∂αξ [∂α, F̌�j ∂

Φ̌
� ]ηj + ∂αηj [∂α, F̌�j ∂

Φ̌
� ]ξ

}
. (3.58)

It follows from constraints (3.3c) that

F̌�j ∂
Φ̌
� = F̌1j ∂1, x2 ≥ 0.

Then we integrate identity (3.58) over �T and perform the similar analysis as ζj in Lemma 3.2
to obtain the desired estimate (3.54). The proof of the lemma is complete. �
3.7. Proof of Theorem 3.1

Thanks to Lemmas 3.2 and 3.3, we can derive the estimate for the normal derivative of char-
acteristic variables defined by (3.43). More precisely, in view of (3.43), (3.52), and (1.18), we 
obtain

ξ± = − 1

∂2Φ̌± ∂2

(
〈∂1Φ̌

±〉2W±
1

)
+ č1∂1W + č2W,

which implies

∂2W
±
1 = č1ξ

± + č1∂1W + č2W. (3.59)

Similarly, it follows from (3.44) and (3.53) that

∂2Ḟ
±
ij = č1ζ

±
j + č1η

±
j + č1∂1W + č2W, (3.60)

for i, j = 1, 2. Thanks to identities (3.59)–(3.60), we apply Moser-type calculus inequalities 
(2.1)–(2.4) and use (3.42), (3.45), and (3.54) to infer that

‖∂k
2 W‖

L2(Hm−k
γ (ωT ))

� ‖W‖L2(Hm
γ (ωT )) + γ −1‖(W,f )‖Hm

γ (�T )

+ γ −1‖(V̌ , Ψ̌ )‖
Hm+2

γ (�T )
‖(W,f )‖L∞(�T ) (3.61)

holds for k = 1.
Taking advantage of identities (3.41), (3.59), and (3.60), we can combine estimates (3.45) and 

(3.54) to prove (3.61) by finite induction in k = 1, . . . , m. Since

‖W‖Hm
γ (�T ) ∼

m∑
k=0

‖∂k
2 W‖

L2(Hm−k
γ (ωT ))

,
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we combine (3.28) and (3.61) to get for γ sufficiently large,

γ 1/2‖W‖Hm
γ (�T ) + ‖W nc|x2=0‖Hm

γ (ωT ) + ‖ψ‖
Hm+1

γ (ωT )

� γ −1/2
∥∥f

∥∥
Hm

γ (�T )
+ γ −3/2

∥∥f
∥∥

L2(Hm+1
γ (ωT ))

+ γ −1‖g‖
Hm+1

γ (ωT )

+ γ −1‖(W,f )‖L∞(�T )

∥∥(V̌ , Ψ̌
)∥∥

Hm+3
γ (�T )

+ γ −1‖(W nc,ψ)‖L∞(ωT )

∥∥(V̌ , Ψ̌
)∥∥

Hm+2
γ (ωT )

.

(3.62)

Theorem 3.3 gives the well-posedness of the effective linear problem (3.11) for source terms 
(f ±, g) ∈ L2(H 1(ωT )) × H 1(ωT ) vanishing in the past. Following [3,25], we can use tame 
estimate (3.62) to transform Theorem 3.3 into a well-posedness formulation of (3.11) in Hm. To 
be more precise, following Theorem 3.1, there exists a unique solution (V̇ ±, ψ) ∈ Hm(�T ) ×
Hm+1(ωT ) that vanishes in the past and satisfies (3.62) for all γ ≥ γm.

Finally, the tame estimate (3.20) can be derived as follows. By the Sobolev embedding in-
equalities ‖W‖L∞(�T ) � ‖W‖H 2

γ (�T ) and ‖ψ‖W 1,∞(ωT ) � ‖ψ‖H 3
γ (ωT ), as well as (3.62) with 

m = 2, one has,

‖W‖L∞(�T ) + ‖ψ‖W 1,∞(ωT ) ≤ CT,γ

(∥∥f
∥∥

H 3
γ (�T )

+ ‖g‖H 3
γ (ωT )

)
. (3.63)

Substituting (3.63) into (3.62) yields the tame estimate (3.20). The proof of Theorem 3.1 is 
completed. �
4. Compatibility conditions and approximate solutions

To apply Theorem 3.1 in the general setting, as in [12] we need to transform the original 
nonlinear problem (1.11)–(1.13) into the case with zero initial data. To this end, in this section 
the approximate solutions are introduced to incorporate the initial data into the interior equations. 
The necessary compatibility conditions are imposed on the initial data for the construction of 
smooth approximate solutions.

4.1. Compatibility conditions

Let m ∈ N with m ≥ 3. Assume that the initial data (U±
0 , ϕ0) satisfy Ũ±

0 := U±
0 − U± ∈

Hm+1/2(R2+) and ϕ0 ∈ Hm+1(R), and (Ũ±
0 , ϕ0) has the following compact support,

supp Ũ±
0 ⊂ {x2 ≥ 0, x2

1 + x2
2 ≤ 1}, suppϕ0 ⊂ [−1,1]. (4.1)

Taking advantage of the trace theorem, we can construct Φ̃+
0 = Φ̃−

0 ∈ Hm+3/2(R2+) satisfying

Φ̃±
0 |x2=0 = ϕ0, supp Φ̃±

0 ⊂
{
x2 ≥ 0, x2

1 + x2
2 ≤ 2

}
, (4.2)∥∥Φ̃±

0

∥∥
Hm+3/2(R2+)

≤ C‖ϕ0‖Hm+1(R). (4.3)

Define Φ± := Φ̃± + Φ±, which is the initial data for the problem (1.11),
0 0 0
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Φ±|t=0 = Φ±
0 . (4.4)

By (4.3) and the Sobolev embedding theorem, we have

±∂2Φ
±
0 ≥ 7/8 for all x ∈ R2+, (4.5)

for sufficiently small ϕ0 in Hm+1(R).
Denote the perturbation by (Ũ±, Φ̃±) := (U± − U±, Φ± − Φ±), and the traces of the k-th 

order time derivatives on {t = 0} by

Ũ±
(k) := ∂k

t Ũ±
∣∣∣
t=0

, Φ̃±
(k) := ∂k

t Φ̃±
∣∣∣
t=0

for k ∈ N. (4.6)

Note Ũ±
(0) = Ũ±

0 and Φ̃±
(0) = Φ̃±

0 .

If we denote W± := (Ũ±, ∇xŨ
±, ∇xΦ̃

±)� ∈ R23, then the first equation of (1.11) and the 
equation (1.13a) can be written as

∂t Φ̃
± = G1(W±), ∂t Ũ

± = G2(W±), (4.7)

where G1 and G2 are C∞–functions vanishing at the origin. We apply ∂k
t to (4.7), take the traces 

initially, and adopt the generalized Faà di Bruno’s formula (see [21, Theorem 2.1]) to derive

Φ̃±
(k+1) =

∑
αi∈N23,|α1|+···+k|αk |=k

Dα1+···+αk G1(W±
(0))

k∏
i=1

k!
αi !

(
W±

(i)

i!

)αi

, (4.8)

Ũ±
(k+1) =

∑
αi∈N23,|α1|+···+k|αk |=k

Dα1+···+αk G2(W±
(0))

k∏
i=1

k!
αi !

(
W±

(i)

i!

)αi

, (4.9)

where W±
(i) represent the traces (Ũ±

(i), ∇xŨ
±
(i), ∇xΦ̃

±
(i)). Hence, the following lemma is obtained 

(see [20, Lemma 4.2.1] for the details).

Lemma 4.1. If (4.1)–(4.5) hold, then relations (4.8) and (4.9) determine Ũ±
(k) ∈ Hm+1/2−k(R2+)

for k = 1, . . . , m, and Φ̃±
(k) ∈ Hm+3/2−k(R2+) for k = 1, . . . , m + 1, which satisfy

supp Ũ±
(k)

⊂ {x2 ≥ 0, x2
1 + x2

2 ≤ 1}, supp Φ̃±
(k)

⊂ {x2 ≥ 0, x2
1 + x2

2 ≤ 2},
m∑

k=0

∥∥Ũ±
(k)

∥∥
Hm+1/2−k(R2+)

+
m+1∑
k=0

∥∥Φ̃±
(k)

∥∥
Hm+3/2−k(R2+)

≤ C
(∥∥Ũ±

0

∥∥
Hm+1/2(R2+)

+ ‖ϕ0‖Hm+1(R)

)
, (4.10)

for some constant C > 0 depending solely upon ‖(Ũ±
0 , Φ̃±

0 )‖W 1,∞(R2+) and m.

To ensure the smoothness of approximate solution, we need the following compatibility con-
ditions for the initial data.
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Definition 4.1. Let m ∈N with m ≥ 3. Let Ũ±
0 := U±

0 −U±
0 ∈ Hm+1/2(R2+) and ϕ0 ∈ Hm+1(R)

satisfy (4.1). The initial data U±
0 and ϕ0 are said to be compatible up to order m if there exist 

functions Φ̃±
0 ∈ Hm+3/2(R2+) satisfying (4.2)–(4.5) and

F±
2j,0 = F±

1j,0∂1Φ
±
0 for j = 1,2, (4.11)

such that functions Ũ±
(0), . . . , ̃U

±
(m), Φ̃

±
(0), . . . , Φ̃

±
(m+1) determined by (4.6) and (4.8)–(4.9) satisfy(

Φ̃+
(k) − Φ̃−

(k)

)∣∣
x2=0 = 0 for k = 0, . . . ,m, (4.12a)(

ρ̃+
(k) − ρ̃−

(k)

)∣∣
x2=0 = 0 for k = 0, . . . ,m − 1, (4.12b)

and ∫
R2+

∣∣Φ̃+
(m+1) − Φ̃−

(m+1)

∣∣2 dx1
dx2

x2
< ∞, (4.13a)

∫
R2+

∣∣ρ̃+
(m) − ρ̃−

(m)

∣∣2 dx1
dx2

x2
< ∞. (4.13b)

4.2. Approximate solutions

We now start to introduce as in [12] the approximate solutions that are solutions of problem 
(1.11)–(1.13) in the sense of Taylor’s expansions at t = 0.

Lemma 4.2. Let m ∈ N with m ≥ 3. Assume that Ũ±
0 := U±

0 − U±
0 ∈ Hm+1/2(R2+) and ϕ0 ∈

Hm+1(R) satisfy (4.1), and that initial data U±
0 and ϕ0 are compatible up to order m. If Ũ±

0
and ϕ0 are sufficiently small, then there exist functions Ua±, Φa±, and ϕa such that Ũ a± :=
Ua± − U± ∈ Hm(�), Φ̃a± := Φa± − Φ± ∈ Hm+2(�), ϕa ∈ Hm+3/2(∂�), and

∂
j
t L(Ua±,Φa±)|t=0 = 0, for j = 0, . . . ,m − 2, (4.14a)

∂tΦ
a± + va±

1 ∂1Φ
a± − va±

2 = 0, in �, (4.14b)

± ∂2Φ
a± ≥ 3/4, in �, (4.14c)

Φa+ = Φa− = ϕa, on ∂�, (4.14d)

B(Ua+,Ua−, ϕa) = 0, on ∂�, (4.14e)

Fa±
2j = Fa±

1j ∂1Φ
a±, on �, for j = 1,2. (4.14f)

Furthermore, we have

supp
(
Ũ a±, Φ̃a±) ⊂

{
t ∈ [−T ,T ], x2 ≥ 0, x2

1 + x2
2 ≤ 3

}
, (4.15)∥∥Ũa±∥∥

Hm(�)
+ ∥∥Φ̃a±∥∥

Hm+2(�)
+ ‖ϕa‖Hm+3/2(∂�)

≤ ε0

(∥∥Ũ±
0

∥∥
Hm+1/2(R2+)

+ ‖ϕ0‖Hm+1(R)

)
, (4.16)
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where ε0(·) denotes a generic function that tends to zero as its argument tends to zero.

Proof. The proof is divided into four steps.

Step 1. First we take ρ̃a−, ṽa±
1 ∈ Hm+1(�) and Φ̃a− ∈ Hm+2(�) to satisfy(

∂k
t ρ̃a−, ∂k

t ṽa±
1

)∣∣
t=0 = (

ρ̃−
(k), ṽ

±
1(k)

)
, for k = 0, . . . ,m,

∂k
t Φ̃a−∣∣

t=0 = Φ̃−
(k), for k = 0, . . . ,m + 1,

where ρ̃−
(k), ṽ

±
1(k), and Φ̃−

(k) are constructed in Lemma 4.1. Thanks to compatibility conditions 
(4.12)–(4.13), we can apply the lifting result in [19, Theorem 2.3] to choose ρ̃a+ ∈ Hm+1(�)

and Φ̃a+ ∈ Hm+2(�) such that

∂k
t ρ̃a+∣∣

t=0 = ρ̃+
(k)

, for k = 0, . . . ,m,

∂k
t Φ̃a+∣∣

t=0 = Φ̃+
(k), for k = 0, . . . ,m + 1,

and

[ρ̃a] = 0, [Φ̃a] = 0 on ∂�.

Moreover, ρ̃a±, ṽa±
1 , and Φ̃a± can be taken to satisfy (4.15), because (Ũ±

(k), Φ̃
±
(k)) have a compact 

support.

Step 2. Let us define

ϕa = Φ̃a+∣∣
x2=0 = Φ̃a−∣∣

x2=0 ∈ Hm+3/2(∂�),

ṽa±
2 = ∂t Φ̃

a± + (ṽa±
1 ± v̄)∂1Φ̃

a± ∈ Hm+1(�).

Hence, we deduce that functions ṽa±
2 satisfy (4.15), and (4.14b), (4.14d), and (4.14e) hold.

Step 3. Note that ṽa± ∈ Hm+1(�) and Φ̃a± ∈ Hm+2(�) have been already specified. Then we 
take F̃ a±

ij ∈ Hm(�), for i, j = 1, 2, as the unique solution of transport equation

(
∂Φa±
t + va±

� ∂Φa±
�

)
F̃ a±

ij − Fa±
�j ∂Φa±

� va±
i = 0 on �, (4.17)

supplemented with the initial data

F̃ a±
ij

∣∣
t=0 = F̃±

ij (0) ∈ Hm+1/2(R2+). (4.18)

It follows from (4.11) and (4.18) that constraints (4.14f) are satisfied at the initial time. Conse-
quently, similar to the proof of Proposition 1.1, we can deduce (4.14f) for all t ∈R.

Step 4. Equations (4.8)–(4.9) imply (4.14a). Estimate (4.16) follows from (4.10) and the con-
tinuity of the lifting operator. From (4.16) and the Sobolev embedding theorem, we can obtain 
(4.14c) provided the initial perturbations are small enough. This finishes the proof. �
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We write Ua := (Ua+, Ua−)� and Φa := (Φa+, Φa−)� for short, and the vector (Ua, Φa)

constructed in Lemma 4.2 is the approximate solution to (1.11)–(1.13). From (4.14d) and (4.15), 
ϕa is supported within {−T ≤ t ≤ T , x2

1 ≤ 3}. By (4.16) and the Sobolev embedding theorem, 
we have

∥∥Ũ a±∥∥
W 2,∞(�)

+ ∥∥Φ̃a±∥∥
W 3,∞(�)

≤ ε0

(∥∥Ũ±
0

∥∥
Hm+1/2(R2+)

+ ‖ϕ0‖Hm+1(R)

)
for any integer m ≥ 4. We can now transfer (1.11)–(1.13) into a problem with zero initial data 
as follows. Define the function f a as: f a = −L(Ua, Φa) for t > 0, and f a = 0 for t < 0. Then 
f a ∈ Hm−1(�) and suppf a ⊂ {

0 ≤ t ≤ T , x2 ≥ 0, x2
1 + x2

2 ≤ 3
}

from (4.14a) and (4.15) as well 
as (Ũa±, ∇Φ̃a±) ∈ Hm(�). Moreover, the Moser-type calculus inequalities and (4.16) imply

‖f a‖Hm−1(�) ≤ ε0

(∥∥Ũ±
0

∥∥
Hm+1/2(R2+)

+ ‖ϕ0‖Hm+1(R)

)
. (4.19)

Finally, by (4.14), (U, Φ) = (Ua, Φa) +(V , Ψ ) is a solution to the original problem (1.11)–(1.13)
on [0, T ] ×R2+, if V = (V +, V −)� and Ψ = (Ψ +, Ψ −)� solve the problem as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(V ,Ψ ) := L(Ua + V,Φa + Ψ ) −L(Ua,Φa) = f a, in �T ,

E(V ,Ψ ) := ∂tΨ + (va
1 + v1)∂1Ψ + v1∂1Φ

a − v2 = 0, in �T ,

B(V ,ψ) := B(Ua + V,ϕa + ψ) = 0, Ψ + = Ψ − = ψ, on ωT ,

(V,Ψ ) = 0, t < 0.

(4.20)

Therefore, we only need to solve the above problem (4.20) on [0, T ] ×R2+.

5. Nash–Moser iteration

In this section we solve the problem (4.20) by an appropriate modification of the Nash–Moser 
iteration scheme. We first describe the iterative scheme for problem (4.20) and present the in-
ductive hypothesis. Then we conclude the proof of Theorem 1.1 by showing that the inductive 
hypothesis holds for all integers. We remark that this section follows closely the standard proce-
dure in [12] (also see [4]).

5.1. Iterative scheme

We first recall the following result from [12, Proposition 4].

Proposition 5.1. Let T > 0, γ ≥ 1, and m ∈N with m ≥ 4. Then there exists a family {Sθ }θ≥1 of 
smoothing operators

Sθ : F3
γ (�T ) ×F3

γ (�T ) −→
⋂
s≥3

F s
γ (�T ) ×F s

γ (�T ),

where F s (�T ) := {
u ∈ Hs(�T ) : u = 0 if t < 0

}
for s ≥ 0, such that
γ γ
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‖Sθu‖Hk
γ (�T ) � θ(k−�)+‖u‖H�

γ (�T ) for �, k = 1, . . . ,m, (5.1a)

‖Sθu − u‖Hk
γ (�T ) � θk−�‖u‖H�

γ (�T ) for 1 ≤ k ≤ � ≤ m, (5.1b)∥∥∥∥ d

dθ
Sθu

∥∥∥∥
Hk

γ (�T )

� θk−�−1‖u‖H�
γ (�T ) for �, k = 1, . . . ,m, (5.1c)

and

‖Sθu − Sθw‖Hk
γ (ωT ) � θ(k+1−�)+‖u − w‖H�

γ (ωT ) for �, k = 1, . . . ,m, (5.2)

where � and k are integers, and (k − �)+ := max{0, k − �}. In particular, if u = w on ωT , then 
Sθu = Sθw on ωT . Moreover, the smoothing operators acting on the functions defined on ωT can 
be constructed analogously (still denoted by Sθ for notational simplicity), which also satisfies the 
inequalities (5.1) with norms ‖ · ‖H�

γ (ωT ).

The next lemma provides us a lifting operator that will be used for constructing the iterative 
scheme and the modified state (see [15, Chapter 5] and [12] for the proof).

Lemma 5.2. Let T > 0, γ ≥ 1, and m ∈N+. Then there exists an operator RT that is continuous 
from F s

γ (ωT ) to F s+1/2
γ (�T ) and satisfies (RT u)|x2=0 = u when u ∈F s

γ (ωT ) for all s ∈ [1, m].

Now we follow [4,12] to describe the iteration scheme for problem (4.20). Let N ≥ 1 be any 
given integer. First we set (V0, Ψ0, ψ0) = 0 and let (Vn, Ψn, ψn) be given and satisfy

(Vn,Ψn,ψn)
∣∣
t<0 = 0, Ψ +

n

∣∣
x2=0 = Ψ −

n

∣∣
x2=0 = ψn for n = 0, . . . ,N. (5.3)

We consider

VN+1 = VN + δVN, ΨN+1 = ΨN + δΨN, ψN+1 = ψN + δψN, (5.4)

where differences δVN , δΨN , and δψN will be constructed via the problem⎧⎪⎪⎨⎪⎪⎩
L′

e(U
a + VN+1/2,Φ

a + ΨN+1/2)δV̇N = fN in �T ,

B′
e(U

a + VN+1/2,Φ
a + ΨN+1/2)(δV̇N , δψN) = gN on ωT ,

(δV̇N , δψN) = 0 for t < 0.

(5.5)

Here operators L′
e and B′

e are given in (3.11a) and (3.11b), respectively, (VN+1/2, ΨN+1/2) is 
a modified state such that (Ua + VN+1/2, Φa + ΨN+1/2) satisfies constraints (3.2)–(3.3), and 
source term (fN, gN) will be determined later on. See Section 5.3 for the detailed construction 
of the modified state. As in (3.10), we write

δV̇N := δVN − ∂2(U
a + VN+1/2)

∂2(Φa + ΨN+1/2)
δΨN . (5.6)
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Then, we set f0 := Sθ0f
a and (e0, ẽ0, g0) := 0 for θ0 ≥ 1 sufficiently large, and let 

(fn, gn, en, ẽn) be given and vanish in the past for n = 0, . . . , N − 1. We determine fN and 
gN by

N∑
n=0

fn + SθN
EN = SθN

f a,

N∑
n=0

gn + SθN
ẼN = 0, (5.7)

where

EN :=
N−1∑
n=0

en ∈ R14, ẼN :=
N−1∑
n=0

ẽn ∈R3, (5.8)

and SθN
are the smoothing operators given in Proposition 5.1 with {θN } defined by

θ0 ≥ 1, θN =
√

θ2
0 + N. (5.9)

As a consequence, we can use Theorem 3.1 to solve (δV̇N , δψN) for problem (5.5).
According to (5.6), we need to construct functions δΨ +

N and δΨ −
N such that δΨ ±

N

∣∣
x2=0 = δψN . 

From the boundary conditions in (5.5) (cf. (3.7), (3.8), and (3.12)), we obtain that δψN satisfies

∂t (δψN) + U+
N+1/2,2∂1(δψN) +

(
∂1Φ

+
N+1/2

∂2U
+
N+1/2,2

∂2Φ
+
N+1/2

− ∂2U
+
N+1/2,3

∂2Φ
+
N+1/2

)
δψN

+ ∂1Φ
+
N+1/2δV̇

+
N,2 − δV̇ +

N,3 = gN,2 on ωT ,

∂t (δψN) + U−
N+1/2,2∂1(δψN) +

(
∂1Φ

−
N+1/2

∂2U
−
N+1/2,2

∂2Φ
−
N+1/2

− ∂2U
−
N+1/2,3

∂2Φ
−
N+1/2

)
δψN

+ ∂1Φ
−
N+1/2δV̇

−
N,2 − δV̇ −

N,3 = gN,2 − gN,1 on ωT ,

where we define U±
N+1/2 := Ua± + V ±

N+1/2 and Φ±
N+1/2 := Φa± + Ψ ±

N+1/2 for simplifying the 

presentation. In accordance with the identities above, we take δΨ+
N and δΨ −

N as the solutions to 
transport equations

∂t (δΨ
+
N ) + U+

N+1/2,2∂1(δΨ
+
N ) +

(
∂1Φ

+
N+1/2

∂2U
+
N+1/2,2

∂2Φ
+
N+1/2

− ∂2U
+
N+1/2,3

∂2Φ
+
N+1/2

)
δΨ +

N

+ ∂1Φ
+
N+1/2δV̇

+
N,2 − δV̇ +

N,3 = RT gN,2 + h+
N, (5.10)

∂t (δΨ
−
N ) + U−

N+1/2,2∂1(δΨ
−
N ) +

(
∂1Φ

−
N+1/2

∂2U
−
N+1/2,2

∂2Φ
−
N+1/2

− ∂2U
−
N+1/2,3

∂2Φ
−
N+1/2

)
δΨ −

N

+ ∂1Φ
−
N+1/2δV̇

−
N,2 − δV̇ −

N,3 = RT (gN,2 − gN,1) + h−
N, (5.11)
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where RT is the lifting operator given in Lemma 5.2 and we will choose source terms h±
N through 

a decomposition for operator E defined by (4.20).
Finally, we set (h+

0 , h−
0 , ê0) = 0, and let (h+

n , h−
n , ên) be given and vanish in the past for 

n = 0, . . . , N − 1. Under the above settings, we compute h+
N and h−

N from

SθN

(
Ê+

N −RT ẼN,2
) +

N∑
n=0

h+
n = 0, (5.12a)

SθN

(
Ê−

N −RT ẼN,2 +RT ẼN,1
) +

N∑
n=0

h−
n = 0, (5.12b)

where

ÊN = (Ê+
N, Ê−

N)� =
N−1∑
n=0

ên ∈R2, (5.13)

and h±
N = 0 for t < 0. As in [15], we can show that the traces of h±

N on ωT vanish. Consequently, 
we can deduce that δΨ ±

N = 0, for t < 0 and δΨ ±
N |x2=0 = δψN . They are the unique smooth 

solutions satisfying transport equations (5.10)–(5.11). Hence, δVN can be obtained from (5.6)
and (VN+1, ΨN+1, ψN+1) can be derived from (5.4).

From (5.8)–(5.7) and (5.12)–(5.13), it suffices to define the error terms eN , ẽN , and êN . To 
this end, by an analogous argument in [4,12], we decompose

L(VN+1,ΨN+1) −L(VN,ΨN)

= L′
e(U

a + VN+1/2,Φ
a + ΨN+1/2)δV̇N + e′

N + e′′
N + e′′′

N + DN+1/2δΨN (5.14)

and

B(VN+1,ψN+1) −B(VN,ψN)

= B′
e(U

a + VN+1/2,Φ
a + ΨN+1/2)(δV̇N , δψN) + ẽ′

N + ẽ′′
N + ẽ′′′

N, (5.15)

where

e′
N := L(VN+1,ΨN+1) −L(VN,ΨN) −L′(Ua + VN,Φa + ΨN)(δVN, δΨN),

e′′
N := L′(Ua + VN,Φa + ΨN)(δVN, δΨN) −L′(Ua + SθN

VN,Φa + SθN
ΨN)(δVN, δΨN),

e′′′
N := L′(Ua + SθN

VN,Φa + SθN
ΨN)(δVN, δΨN)

−L′(Ua + VN+1/2,Φ
a + ΨN+1/2)(δVN, δΨN),

DN+1/2 := (
∂2(Φ

a + ΨN+1/2)
)−1

∂2L(Ua + VN+1/2,Φ
a + ΨN+1/2), (5.16)

and
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ẽ′
N := B(VN+1,ψN+1) −B(VN,ψN) −B′(Ua + VN,ϕa + ψN)(δVN, δψN),

ẽ′′
N := B′(Ua + VN,ϕa + ψN)(δVN, δψN)

−B′(Ua + SθN
VN,ϕa + (SθN

ΨN)|x2=0)(δVN, δψN),

ẽ′′′
N := B′(Ua + SθN

VN,ϕa + (SθN
ΨN)|x2=0)(δVN, δψN)

−B′
e(U

a + VN+1/2,Φ
a + ΨN+1/2)(δV̇N , δψN).

Take

eN := e′
N + e′′

N + e′′′
N + DN+1/2δΨN, ẽN := ẽ′

N + ẽ′′
N + ẽ′′′

N. (5.17)

As for error term êN , we decompose

E(VN+1,ΨN+1) − E(VN,ΨN) = E ′(VN+1/2,ΨN+1/2)(δVN, δΨN) + ê′
N + ê′′

N + ê′′′
N, (5.18)

and set

êN := ê′
N + ê′′

N + ê′′′
N, (5.19)

where

ê′
N := E(VN+1,ΨN+1) − E(VN,ΨN) − E ′(VN,ΨN)(δVN, δΨN),

ê′′
N := E ′(VN,ΨN)(δVN, δΨN) − E ′(SθN

VN,SθN
ΨN)(δVN, δΨN),

ê′′′
N := E ′(SθN

VN,SθN
ΨN)(δVN, δΨN) − E ′(VN+1/2,ΨN+1/2)(δVN, δΨN).

It follows from (4.14b) that

E(V ,Ψ ) = ∂t (Φ
a + Ψ ) + (va

1 + v1)∂1(Φ
a + Ψ ) − (va

2 + v2).

Then we derive from (5.10)–(5.11) and (5.18) that(
E(V +

N+1,Ψ
+
N+1) − E(V +

N ,Ψ +
N )

E(V −
N+1,Ψ

−
N+1) − E(V −

N ,Ψ −
N )

)
=

(
RT gN,2 + h+

N + ê+
N

RT (gN,2 − gN,1) + h−
N + ê−

N

)
.

Thus, by E(V0, Ψ0) = 0, one has

E(V −
N+1,Ψ

−
N+1) = RT

(
N∑

n=0

(gn,2 − gn,1)

)
+

N∑
n=0

h−
n + Ê−

N+1. (5.20)

Furthermore, we obtain from (5.5) and (5.15) that

gN = B(VN+1,ψN+1) −B(VN,ψN) − ẽN . (5.21)
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Denote by B(VN+1, ψN+1)j the j th component of the vector B(VN+1, ψN+1) for j = 1, 2. From 
(4.20) and (1.15),

B(VN+1,ψN+1)2 = E(V +
N+1,Ψ

+
N+1)|x2=0 = E(V −

N+1,Ψ
−
N+1)|x2=0 +B(VN+1,ψN+1)1.

(5.22)

Using (5.21), we have

gN,2 − gN,1 = E(V −
N+1,Ψ

−
N+1)|x2=0 − E(V −

N ,Ψ −
N )|x2=0 − ẽN,2 + ẽN,1. (5.23)

Then, (5.23) and (5.20) yield

E(V −
N+1,Ψ

−
N+1) = RT

(
E
(
V −

N+1,Ψ
−
N+1

) |x2=0 − ẼN+1,2 + ẼN+1,1
) +

N∑
n=0

h−
n + Ê−

N+1,

(5.24)

and similarly,

E(V +
N+1,Ψ

+
N+1) = RT

(
E
(
V +

N+1,Ψ
+
N+1

) |x2=0 − ẼN+1,2
) +

N∑
n=0

h+
n + Ê+

N+1. (5.25)

From (5.14) and (5.21), together with (5.5) and (5.7), one has

L(VN+1,ΨN+1) =
N∑

N=0

fN + EN+1 = SθN
f a + (I − SθN

)EN + eN , (5.26)

B(VN+1,ψN+1) =
N∑

N=0

gN + ẼN+1 = (I − SθN
)ẼN + ẽN . (5.27)

Substituting (5.12) into (5.24)–(5.25) and using (5.22), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(V −
N+1,Ψ

−
N+1) = RT

(
B(VN+1,ψN+1)2 −B(VN+1,ψN+1)1

)
+ (I − SθN

)
(
Ê−

N −RT

(
ẼN,2 − ẼN,1

))
+ ê−

N −RT

(
ẽN,2 − ẽN,1

)
,

E(V +
N+1,Ψ

+
N+1) = RT

(
B(VN+1,ψN+1)2

)
+ (I − SθN

)
(
Ê+

N −RT ẼN,2
) + ê+

N −RT ẽN,2.

(5.28)

From SθN
→ Id as N → ∞, we conclude that if the error terms (eN, ẽN , êN ) tend to zero, then

(L(VN+1,ΨN+1),B(VN+1,ψN+1),E(VN+1,ΨN+1)) → (f a,0,0),

thus, the solution to (4.20) can be obtained formally.
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In order to estimate the error terms, we need to introduce the inductive hypothesis as follows. 
Let us take an integer μ ≥ 4, a small number ε > 0, and another integer μ̃ > μ, which will be 
determined later. Suppose that we have the estimate

‖Ũa‖
H

μ̃+4
γ (�T )

+ ‖Φ̃a‖
H

μ̃+5
γ (�T )

+ ‖ϕa‖
H

μ̃+9/2
γ (ωT )

+ ‖f a‖
H

μ̃+3
γ (�T )

≤ ε, (5.29)

then our inductive hypothesis HN−1 consists of the following four parts:

(1) ‖(δVn, δΨn)‖Hm
γ (�T ) + ‖δψn‖Hm+1

γ (ωT )
≤ εθm−μ−1

n �n, n = 0, . . . ,N − 1, m = 2, . . . , μ̃,

(2)‖L(Vn,Ψn) − f a‖Hm
γ (�T ) ≤ 2εθm−μ−1

n , n = 0, . . . ,N − 1, m = 2, . . . , μ̃ − 1,

(3)‖B(Vn,ψn)‖Hm
γ (ωT ) ≤ εθm−μ−1

n , n = 0, . . . ,N − 1, m = 3, . . . ,μ,

(4)‖E(Vn,Ψn)‖H 3
γ (�T ) ≤ εθ2−μ

n , n = 0, . . . ,N − 1,

where θn is given in (5.9) and �n := θn+1 − θn decreases to zero with

1

3θn

≤ �n := θn+1 − θn =
√

θ2
n + 1 − θn ≤ 1

2θn

, n ∈N. (5.30)

We shall show that for sufficiently small ε and f a , and for sufficiently large θ0 ≥ 1, H0 is true 
and HN−1 implies HN , thus HN is true for all n ∈N , which will allow us to prove Theorem 1.1
completely.

Now we assume that HN−1 holds, hence have the following estimates as in [12, Lemmas 6–7].

Lemma 5.3. If θ0 is sufficiently large, then

‖(Vn,Ψn)‖Hm
γ (�T ) + ‖ψn‖Hm+1

γ (ωT )
≤

{
εθ

(m−μ)+
n , if m �= μ,

ε log θn, if m = μ,
(5.31)

‖((I − Sθn)Vn, (I − Sθn)Ψn)‖Hm
γ (�T ) ≤ Cεθm−μ

n , (5.32)

for n = 0, . . . , N , and m = 2, . . . , μ̃. Furthermore,

‖(SθnVn,SθnΨn)‖Hm
γ (�T ) ≤

{
Cεθ

(m−μ)+
n , if m �= μ,

Cε log θn, if m = μ,
(5.33)

for n = 0, . . . , N , and m = 2, . . . , μ̃ + 5.

5.2. Estimate of the quadratic and first substitution error terms

First we rewrite quadratic error terms e′
n, ẽ′

n, and ê′
n, in (5.14), (5.15), and (5.18) respectively, 

as
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e′
n =

1∫
0

L′′(Ua + Vn + τδVn,Φ
a + Ψn + τδΨn

)(
(δVn, δΨn), (δVn, δΨn)

)
(1 − τ)dτ,

ẽ′
n =

1∫
0

B′′(Ua + Vn + τδVn,ϕ
a + ψn + τδψn

)(
(δVn, δψn), (δVn, δψn)

)
(1 − τ)dτ,

ê′
n =

1∫
0

E ′′(Vn + τδVn,Ψn + τδΨn

)(
(δVn, δΨn), (δVn, δΨn)

)
(1 − τ)dτ,

where L′′, B′′, and E ′′ are the second derivatives of operators L, B, and E respectively. More 
precisely, we define

L′′(Ǔ, Φ̌
)(

(V ,Ψ ), (Ṽ , Ψ̃ )
) := d

dθ
L′(Ǔ + θṼ , Φ̌ + θΨ̃

)(
V,Ψ

)∣∣∣∣
θ=0

,

B′′(Ǔ, ϕ̌)
(
(V ,ψ), (Ṽ , ψ̃)

) := d

dθ
B′(Ǔ + θṼ , ϕ̌ + θψ̃)(V ,ψ)

∣∣∣∣
θ=0

,

E ′′(V̌ , Ψ̌
)(

(V ,Ψ ), (Ṽ , Ψ̃ )
) := d

dθ
E ′(V̌ + θṼ , Ψ̌ + θΨ̃

)(
V,Ψ

)∣∣∣∣
θ=0

,

where operators L′ and B′ are given in (3.4)–(3.5), and E ′ is defined by

E ′(V̌ , Ψ̌
)
(V ,Ψ ) := d

dθ
E
(
V̌ + θV, Ψ̌ + θΨ

)∣∣∣∣
θ=0

.

In fact, in our case, we have the following:

B′′(Ǔ, ϕ̌)
(
(V ,ψ), (Ṽ , ψ̃)

) =
⎛⎜⎝ [ṽ1]∂1ψ + ∂1ψ̃[v1]

ṽ+
1 |x2=0∂1ψ + ∂1ψ̃v+

1 |x2=0

0

⎞⎟⎠ , (5.34)

E ′′(V̌ , Ψ̌
)(

(V ,Ψ ), (Ṽ , Ψ̃ )
) = ṽ+

1 ∂1Ψ + ∂1Ψ̃ v+
1 . (5.35)

A straightforward computation with an application of the Moser-type calculus inequality (2.1)
yields the next proposition (see [12, Proposition 5]).

Proposition 5.4. Let T > 0 and m ∈ N with m ≥ 2. If (Ṽ , ̃Ψ ) belongs to Hm+1
γ (�T ) for all 

γ ≥ 1 and satisfies ‖(Ṽ , ̃Ψ )‖W 1,∞(�T ) ≤ K̃ for some positive constant K̃ , then there exist two 
constants K̃0 > 0 and C > 0, independent of T and γ , such that, if K̃ ≤ K̃0 and γ ≥ 1, then∥∥L′′(U + Ṽ ,Φ + Ψ̃

)(
(V1,Ψ1), (V2,Ψ2)

)∥∥
Hm

γ (�T )

≤ C‖(V1,Ψ1)‖W 1,∞(� )‖(V2,Ψ2)‖W 1,∞(� )

∥∥(Ṽ , Ψ̃
)∥∥

m+1

T T Hγ (�T )
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+ C
∑
i �=j

‖(Vi,Ψi)‖Hm+1
γ (�T )

‖(Vj ,Ψj )‖W 1,∞(�T ),

∥∥E ′′(Ṽ , Ψ̃
)(

(V1,Ψ1), (V2,Ψ2)
)∥∥

Hm
γ (�T )

≤ C
∑
i �=j

{
‖Vi‖Hm

γ (�T )‖Ψj‖W 1,∞(�T ) + ‖Vi‖L∞(�T )‖Ψj‖Hm+1
γ (�T )

}
,

and ∥∥B′′(U + Ṽ , ψ̃
)(

(W1,ψ1), (W2,ψ2)
)∥∥

Hm
γ (ωT )

≤ C
∑
i �=j

{
‖Wi‖Hm

γ (ωT )‖ψj‖W 1,∞(ωT ) + ‖Wi‖L∞(ωT )‖ψj‖Hm+1
γ (ωT )

}
,

where (Vi, Ψi) ∈ Hm+1
γ (�T ) and (Wi, ψi) ∈ Hm

γ (ωT ) × Hm+1
γ (ωT ) for i = 1, 2, symbol ψ̃ rep-

resents the trace of Ψ̃ on ωT , and (U, Φ) is the background state defined by (1.19).

In view of (5.29)–(5.31) and the hypothesis HN−1, as in [12, Lemma 8] or [4, Lemma 8.3], 
we can apply Proposition 5.4, the Sobolev embedding theorem, and the trace estimate to get the 
following estimate.

Lemma 5.5. If μ ≥ 4, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

‖(e′
n, ê

′
n)‖Hm

γ (�T ) + ‖ẽ′
n‖Hm

γ (ωT ) ≤ Cε2θ�1(m)−1
n �n,

for m = 2, . . . , μ̃ − 1, and n = 0, . . . , N − 1, where �1(m) := max{(m + 1 − μ)+ + 4 − 2μ, m +
2 − 2μ}.

For the first substitution error terms e′′
n, ẽ′′

n , and ê′′
n defined in (5.14), (5.15), and (5.18), as in 

[12, Lemma 9] or [4, Lemma 8.4], we can apply Proposition 5.4 and use (5.29), (5.32)–(5.33), 
hypothesis (Hn−1), and the trace theorem to derive the next lemma.

Lemma 5.6. If μ ≥ 4, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

‖(e′′
n, ê′′

n)‖Hm
γ (�T ) ≤ Cε2θ�2(m)−1

n �n if m = 2, . . . , μ̃ − 1,

‖ẽ′′
n‖Hm

γ (ωT ) ≤ Cε2θ�2(m)−1
n �n if m = 2, . . . , μ̃ − 2,

for n = 0, . . . , N − 1, where

�2(m) := max{(m + 1 − μ)+ + 6 − 2μ,m + 5 − 2μ}.

We emphasize that Proposition 5.4 reduces the estimate for ‖ẽ′′
n‖Hm

γ (ωT ) to that for the terms 
involving ‖(I −Sθn)Ψn‖Hm+2

γ (�T )
, which requires condition m ≤ μ̃ −2 in order to apply inequal-

ity (5.32).
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5.3. Construction and estimate of the modified state

To control the remaining error terms, we construct and estimate the modified state (VN+1/2,

ΨN+1/2, ψN+1/2) in the following lemma.

Lemma 5.7. If μ ≥ 5, then there exist functions VN+1/2, ΦN+1/2, and ψN+1/2, which vanish in 
the past, such that (Ua + VN+1/2, Φa + ΨN+1/2, ϕa + ψN+1/2) satisfies (3.3b)–(3.3c), where 
(Ua, Φa) is the approximate solution given in Lemma 4.2. Furthermore,

Ψ ±
N+1/2 = SθnΨ

±
N , ψN+1/2 = (SθnΨ

±
N )|x2=0, (5.36)

v±
N+1/2,1 = Sθnv

±
N,1, (5.37)

‖SθnVN − VN+1/2‖Hm
γ (�T ) ≤ Cεθm+2−μ

n for m = 2, . . . , μ̃ + 3. (5.38)

Proof. We divide the proof into four steps.

Step 1. It follows from (5.2)–(5.3) that (SθnΨ
+
N )|x2=0 = (SθnΨ

−
N )|x2=0, and hence we can define 

Ψ ±
N+1/2, ψN+1/2, and v±

N+1/2,1 by (5.36)–(5.37). Thanks to (4.14d), constraint (3.3d) holds for 
(Φa + ΨN+1/2, ϕa + ψN+1/2). As in [12, Proposition 7], we define

ρ±
N+1/2 := SθN

ρ±
N ∓ 1

2
RT

(
(SθN

ρ+
N)|x2=0 − (SθN

ρ−
N)|x2=0

)
,

v±
N+1/2,2 := ∂tΨ

±
N+1/2 +

(
va±

1 + v±
N+1/2,1

)
∂1Ψ

±
N+1/2 + v±

N+1/2,1∂1Φ
a±,

so that [ρa + ρN+1/2] = 0 on ∂�, and constraints (3.3b), (3.3e) hold for (va + vN+1/2, Φa +
ΨN+1/2, ϕa + ψN+1/2), due to (4.14e), Lemma 5.2, and (4.14b).

Step 2. From (5.4), the trace theorem, and the hypothesis HN−1, we have

‖ρ+
N − ρ−

N‖Hm
γ (ωT ) ≤ ‖ρ+

N−1 − ρ−
N−1‖Hm

γ (ωT ) + ‖δρ+
N−1 − δρ−

N−1‖Hm
γ (ωT )

≤ ‖B(VN−1,ψN−1)‖Hm
γ (ωT ) + C‖δρN−1‖Hm+1

γ (�T )

≤ Cεθ
m−μ−1
N for m ∈ [3,μ]. (5.39)

Then we use Lemma 5.2, (5.2), and (5.39) to obtain

‖ρN+1/2 − SθN
ρN‖Hm

γ (�T ) ≤ C‖SθN
ρ+

N − SθN
ρ−

N‖Hm
γ (ωT )

≤
⎧⎨⎩C‖ρ+

N − ρ−
N‖

Hm+1
γ (ωT )

≤ Cεθ
m−μ
N , if 2 ≤ m ≤ μ − 1,

Cθ
m+1−μ
N ‖ρ+

N − ρ−
N‖H

μ
γ (ωT ) ≤ Cεθ

m−μ
N , if m ≥ μ.

(5.40)

Step 3. Using (5.36), we compute

vN+1/2,2 − SθN
vN,2 = SθN

E(VN,ΨN) + [∂t + va
1∂1,SθN

]ΨN + [∂1Φ
a,SθN

]vN,1

+ SθN
vN,1∂1SθN

ΨN − SθN
(vN,1∂1ΨN). (5.41)
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Using the decomposition

E(VN,ΨN) = E(VN−1,ΨN−1) + ∂t (δΨN−1) + (va
1 + vN−1,1)∂1(δΨN−1)

+ δvN−1,1∂1(Φ
a + ΨN) − δvN−1,2,

the Moser-type calculus inequality (2.1), hypothesis (HN−1), and (5.31) leads to

‖E(VN,ΨN)‖H 3
γ (�T ) ≤ Cεθ

2−μ
N ,

which together with (5.1a) implies

‖SθN
E(VN,ΨN)‖Hm

γ (�T ) ≤ Cεθ
m−μ
N , for m ≥ 2. (5.42)

The remaining terms on the right-hand side of (5.41) are all commutators. Let us detail the 
estimate of [va

1∂1, SθN
]ΨN . We utilize (2.1), the Sobolev embedding theorem, (5.1a), (5.29), and 

(5.33) to get

‖[va
1∂1,SθN

]ΨN‖Hm
γ (�T ) ≤ ‖va

1∂1(SθN
ΨN)‖Hm

γ (�T ) + ‖SθN
(va

1∂1ΨN)‖Hm
γ (�T )

≤ C‖SθN
ΨN‖

Hm+1
γ (�T )

+ C‖ṽa
1‖Hm

γ (�T )‖SθN
ΨN‖H 3

γ (�T )

+ Cθ
m−μ
N ‖va

1∂1ΨN‖H
μ
γ (�T )

≤ Cεθ
m−μ+1
N for μ + 1 ≤ m ≤ μ̃ + 4.

If 2 ≤ m ≤ μ, then it follows from (5.1b) and (5.31)–(5.32) that

‖[va
1∂1,SθN

]ΨN‖Hm
γ (�T ) ≤ ‖va

1∂1((SθN
− I )ΨN)‖Hm

γ (�T ) + ‖(I − SθN
)(va

1∂1ΨN)‖Hm
γ (�T )

≤ C‖(SθN
− I )ΨN‖

Hm+1
γ (�T )

+ Cθ
m−μ
N ‖va

1∂1ΨN‖H
μ
γ (�T ) ≤ Cεθ

m−μ+1
N .

Performing the same analysis to the other commutators in (5.41) and using (5.42), we obtain

‖vN+1/2,2 − SθN
vN,2‖Hm

γ (�T ) ≤ Cεθ
m−μ+1
N for m = 2, . . . , μ̃ + 4. (5.43)

Step 4. Let us now construct and estimate of FN+1/2 by following the idea of Secchi–Trakhinin
[30, Proposition 28]. According to Step 1, we have already specified functions vN+1/2 and 
ΨN+1/2. Then we can take FN+1/2 as the unique solution vanishing in the past of linear equations

LFij
(va + vN+1/2,F

a + FN+1/2,Φ
a + ΨN+1/2) = 0 for i, j = 1,2, (5.44)

where LFij
denotes the component of operator L corresponding to Fij , i.e.,

LFij
(v,F ,Φ) := (

∂Φ
t + v�∂

Φ
�

)
Fij − F�j ∂

Φ
� vi . (5.45)
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Since (va + vN+1/2, Φa + ΨN+1/2) satisfies (3.3b), equations (5.44) do not need to be supple-
mented with any boundary condition.

When estimating FN+1/2 −SθN
FN , we apply standard energy method. To this end, we obtain 

from (5.44) that

LFij
(va + vN+1/2,FN+1/2 − SθN

FN,Φa + ΨN+1/2) = H1 +H2 +H3, (5.46)

where

H1 := −LFij
(va + vN+1/2,F

a + SθN
FN,Φa + ΨN+1/2)

+LFij
(va + SθN

vN,F a + SθN
FN,Φa + SθN

ΨN),

H2 := −LFij
(va + SθN

vN,F a + SθN
FN,Φa + SθN

ΨN)

+ SθN
LFij

(va + vN,F a + FN,Φa + ΨN),

and H3 := −SθN
LFij

(va + vN, F a + FN, Φa + ΨN). From (5.36), we compute

H1 = (SθN
vN,� − vN+1/2,�)∂

Φa+ΨN+1/2
� (F a

ij + SθN
FN,ij )

− (F a
�j + SθN

FN,�j )∂
Φa+ΨN+1/2
� (SθN

vN,i − vN+1/2,i ).

Apply Moser-type calculus inequality (2.1) to the last identity and use the Sobolev embedding, 
(5.36)–(5.37), (5.43), (5.29), and (5.33) to obtain

‖H1‖Hm
γ (�T ) ≤ C‖SθN

vN − vN+1/2‖H 3
γ (�T )‖(F̃ a

,SθN
FN, Φ̃a,SθN

ΨN)‖
Hm+1

γ (�T )

+ C‖SθN
vN − vN+1/2‖Hm+1

γ (�T )

≤ Cεθ
m−μ+2
N for m = 2, . . . , μ̃ + 3. (5.47)

Regarding term H2, we apply the same strategy as for [va
1∂1, SθN

]ΨN in Step 3 to derive

‖H2‖Hm
γ (�T ) ≤ Cεθ

m−μ+2
N for m = 2, . . . , μ̃ + 3. (5.48)

For term H3, we obtain from (5.1a), (4.17), and hypothesis HN−1 that

‖SθN
LFij

(va + vN−1,F
a + FN−1,Φ

a + ΨN−1)‖Hm
γ (�T )

≤ Cθm−2
N ‖LFij

(va + vN−1,F
a + FN−1,Φ

a + ΨN−1)‖H 2
γ (�T ) ≤ Cεθ

m−μ−1
N

for m ≥ 2. Using (5.1a), (2.1), hypothesis HN−1, and (5.31) yields

‖SθN

(
LFij

(va + vN,F a + FN,Φa + ΨN)

−LFij
(va + vN−1,F

a + FN−1,Φ
a + ΨN−1)

)‖Hm
γ (�T ) ≤ Cεθ

m−μ+2
N

for m ≥ 2. We combine these two estimates with (5.47)–(5.48) to get
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3∑
�=1

‖H�‖Hm
γ (�T ) ≤ Cεθ

m−μ+2
N , for m = 2, . . . , μ̃ + 3. (5.49)

Applying a standard energy argument to equations (5.46) and utilizing estimate (5.49), we infer

‖FN+1/2 − SθN
FN‖Hm

γ (�T ) ≤ Cεθ
m−μ+2
N for m = 2, . . . , μ̃ + 3. (5.50)

Estimate (5.38) follows from (5.37), (5.40), (5.43), and (5.50). The proof is complete. �
Remark 5.1. We can get constraint (3.2) from (5.29), (5.33), and (5.38) by using the Sobolev 
embedding theorem. Constraint (3.3a) will be obtained by taking ε small enough, while con-
straint (3.1) will follow through truncating (VN+1/2, ΨN+1/2, ψN+1/2) by an appropriate cut-off 
function.

5.4. Estimate of the second substitution and last error terms

The next lemma gives the estimate of the second substitution error terms e′′′
n , ẽ′′′

n , and ê′′′
n

defined in (5.14), (5.15), and (5.18).

Lemma 5.8. If μ ≥ 5, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough such that

(ẽ′′′
n , ê′′′

n ) = 0, ‖e′′′
n ‖Hm

γ (�T ) ≤ Cε2θ�3(m)−1
n �n if m = 2, . . . , μ̃ − 1,

for n = 0, . . . , N − 1, where �3(m) := max{(m + 1 − μ)+ + 9 − 2μ, m + 6 − 2μ}.

Proof. From (5.34) and (5.36)–(5.37), we have

ẽ′′′
n = B′(Ua + SθnVn,ϕ

a + (SθnΨn)|x2=0)(δVn, δψn)

−B′(Ua + Vn+1/2, ϕ
a + (SθnΨn)|x2=0)(δVn, δψn) = 0.

Using (5.35)–(5.37) yields ê′′′
n = 0. Thanks to (5.36), the error term e′′′

n can be rewritten as

e′′′
n =

1∫
0

L′′(Ua + Vn+1/2 + τ(SθnVn − Vn+1/2), Φa + SθnΨn

)
× (

(δVn, δΨn), (SθnVn − Vn+1/2,0)
)

dτ.

Apply the Sobolev embedding theorem, (5.29), (5.33), and (5.38) to infer

‖(Ũa, Vn+1/2, SθnVn − Vn+1/2, Φ̃a, SθnΨn)‖W 1,∞(�T ) ≤ Cε,

so that we can use Proposition 5.4 for ε suitably small. Note that from (5.29)–(5.31) and (5.38)

‖(Ũa, Vn+1/2, SθnVn, Φ̃a, SθnΨn)‖Hm+1
γ (�T )

≤ Cε
(
θ

(m+1−μ)++1
n + θm+3−μ

n

)
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for 2 ≤ m ≤ μ̃ − 1. We use Proposition 5.4, hypothesis Hn−1, and (5.38) to get the estimate for 
term e′′′

n and this finishes the proof of the lemma. �
For the last error term (5.16),

Dn+1/2δΨn = δΨn

∂2(Φa + Ψn+1/2)
Rn, with Rn := ∂2L(Ua + Vn+1/2,Φ

a + Ψn+1/2),

we first notice that

|∂2(Φ
a± + Ψ ±

n+1/2)| ≥
1

2
,

from (4.14c), (5.36), and (5.33) if ε is small enough. Therefore, we arrive at the following lemma 
analogous to [12, Lemma 8.6] or [4, Lemma 12] and the proof is omitted.

Lemma 5.9. If μ ≥ 5 and μ̃ > μ, then there exist ε > 0 suitably small and θ0 ≥ 1 large enough 
such that

‖Dn+1/2δΨn‖Hm
γ (�T ) ≤ Cε2θ�4(m)−1

n �n if m = 2, . . . , μ̃ − 1, (5.51)

for n = 0, . . . , N − 1, where

�4(m) := max{(m + 2 − μ)+ + 8 − 2μ, (m + 1 − μ)+ + 9 − 2μ,m + 6 − 2μ}.

Lemmas 5.5–5.9 lead to the following estimates for en, ẽn, and ên defined in (5.17) and (5.19).

Corollary 5.10. If μ ≥ 5 and μ̃ > μ, then there exist ε > 0 suitably small and θ0 ≥ 1 large 
enough such that

‖en‖Hm
γ (�T ) ≤ Cε2θ�4(m)−1

n �n if m = 2, . . . , μ̃ − 1, (5.52)

‖ên‖Hm
γ (�T ) ≤ Cε2θ�2(m)−1

n �n if m = 2, . . . , μ̃ − 1, (5.53)

‖ẽn‖Hm
γ (ωT ) ≤ Cε2θ�2(m)−1

n �n if m = 2, . . . , μ̃ − 2, (5.54)

for n = 0, . . . , N − 1, where �2(m) and �4(m) are defined in Lemma 5.6 and Lemma 5.9, respec-
tively.

5.5. Proof of Theorem 1.1

We first show the following lemma for accumulated error terms En, Ẽn, and Ên that are given 
in (5.8) and (5.13).

Lemma 5.11. If μ ≥ 7 and μ̃ = μ + 3, then there exist ε > 0 suitably small and θ0 ≥ 1 large 
enough such that
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‖EN‖
H

μ+2
γ (�T )

≤ Cε2θN, (5.55)

‖ẼN‖
H

μ+1
γ (ωT )

+ ‖ÊN‖
H

μ+1
γ (�T )

≤ Cε2. (5.56)

Proof. The proof follows closely [4,12]. First we note that �4(μ + 2) ≤ 1 when μ ≥ 7. From 
(5.52), one has

‖EN‖
H

μ+2
γ (�T )

≤
N−1∑
n=0

‖en‖H
μ+2
γ (�T )

≤
N−1∑
n=0

Cε2�n ≤ Cε2θN,

for μ ≥ 7 and μ + 2 ≤ μ̃ − 1. Since �2(μ + 1) = 6 −μ ≤ −1 for μ ≥ 7 and μ + 1 ≤ μ̃ − 2, from 
(5.53)–(5.54), we have

‖ẼN‖
H

μ+1
γ (ωT )

+ ‖ÊN‖
H

μ+1
γ (�T )

≤
N−1∑
n=0

{
‖ẽn‖H

μ+1
γ (ωT )

+ ‖ên‖H
μ+1
γ (�T )

}

≤
N−1∑
n=0

Cε2θ−2
n �n ≤ Cε2,

where we have used (5.9) and (5.30) to derive the last inequality. The minimal possible μ̃ is 
μ + 3. This completes the proof of the lemma. �

Based on the lemma above, we have the estimates for fN , gN , and h±
N .

Lemma 5.12. If μ ≥ 7 and μ̃ = μ + 3, then there exist ε > 0 suitably small and θ0 ≥ 1 large 
enough such that

‖fN‖Hm
γ (�T ) ≤ C�N

{
θ

m−μ−2
N

(
‖f a‖

H
μ+1
γ (�T )

+ ε2
)

+ ε2θ
�4(m)−1
N

}
, (5.57)

‖gN‖Hm
γ (ωT ) ≤ Cε2�N

(
θ

m−μ−2
N + θ

�2(m)−1
N

)
, (5.58)

for m = 2, . . . , μ̃ + 1, and

‖h±
N‖Hm

γ (�T ) ≤ Cε2�N

(
θ

m−μ−2
N + θ

�2(m)−1
N

)
for m = 2, . . . , μ̃. (5.59)

Proof. Since θN−1 ≤ θN ≤ √
2θN−1 and �N−1 ≤ 3�N , from (5.1a), (5.1c), (5.52), and (5.55), 

we obtain

‖fN‖Hm
γ (�T ) ≤ ‖(SθN

− SθN−1)f
a − (SθN

− SθN−1)EN−1 − SθN
eN−1‖Hm

γ (�T )

≤ C�Nθ
m−μ−2
N

(‖f a‖
H

μ+1
γ (�T )

+ θ−1
N ‖EN−1‖H

μ+2
γ (�T )

) + ‖SθN
eN−1‖Hm

γ (�T )

≤ C�N

{
θ

m−μ−2
N (‖f a‖

H
μ+1
γ (�T )

+ ε2) + ε2θ
�4(m)−1
N

}
.

By using (5.54) and (5.56), we get
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‖gN‖Hm
γ (ωT ) ≤ ‖(SθN

− SθN−1)ẼN−1 − SθN
ẽN−1‖Hm

γ (�T )

≤ C�Nθ
m−μ−2
N ‖ẼN−1‖H

μ+1
γ (�T )

+ ‖SθN
ẽN−1‖Hm

γ (�T )

≤ Cε2�N

(
θ

m−μ−2
N + θ

�2(m)−1
N

)
.

Similarly we can deduce (5.59) for h±
N from (5.53) and (5.56). The proof is complete. �

In the next lemma, we obtain the estimate of differences δVN , δΨN , and δψN with the aid of 
tame estimate (3.20). See [12, Lemma 16] or [4, Lemma 8.10] for the proof.

Lemma 5.13. Let μ ≥ 7 and μ̃ = μ + 3. If ε > 0 and ‖f a‖
H

μ+1
γ (�T )

/ε are suitably small and 

θ0 ≥ 1 is large enough, then

‖(δVN, δΨN)‖Hm
γ (�T ) + ‖δψN‖

Hm+1
γ (ωT )

≤ εθ
m−μ−1
N �N for m = 2, . . . , μ̃. (5.60)

Lemma 5.13 implies the first part of the hypothesis HN . The following lemma provides us the 
other parts of HN .

Lemma 5.14. Let μ ≥ 7 and μ̃ = μ + 3. If ε > 0 and ‖f a‖
H

μ+1
γ (�T )

/ε are suitably small and 

θ0 ≥ 1 is large enough, then

‖L(VN,ΨN) − f a‖Hm
γ (�T ) ≤ 2εθ

m−μ−1
N for m = 2, . . . , μ̃ − 1, (5.61)

‖B(VN,ψN)‖Hm
γ (ωT ) ≤ εθ

m−μ−1
N for m = 3, . . . ,μ, (5.62)

‖E(VN,ΨN)‖H 3
γ (�T ) ≤ εθ

2−μ
N . (5.63)

We refer to [12, Lemmas 17–18] or [4, Lemma 8.11] for the proof of Lemma 5.14. Let us take 
μ ≥ 7, μ̃ = μ +3, ε > 0 and ‖f a‖

H
μ+1
γ (�T )

/ε suitably small, and θ0 ≥ 1 large enough, so that the 

assumptions of Lemmas 5.13–5.14 are satisfied, from which we obtain the inductive hypothesis 
HN . Then, as in [12, Lemma 19] or [4, Lemma 8.12], we can prove that the hypothesis H0 is 
true.

Lemma 5.15. If ‖f a‖
H

μ+1
γ (�T )

/ε is small enough, then the hypothesis H0 holds.

We are now ready to complete the proof of Theorem 1.1. Our proof follows closely [4,12] and 
is still presented here for the sake of completeness.

Proof of Theorem 1.1. For μ̃ := s0 −4 ≥ 10 and μ := μ̃ −3 ≥ 7, the initial data (U±
0 , ϕ0) under 

the assumptions of Theorem 1.1 are compatible up to order s0 = μ̃ +4. If (Ũ±
0 , ϕ0) is sufficiently 

small in Hs0+1/2(R2+) × Hs0+1(R) with Ũ±
0 := U±

0 − U±, then the assumption (5.29) and all 
the requirements of Lemmas 5.13–5.15 are satisfied owing to (4.16) and (4.19), and hence HN

holds for all N ∈N . Thus, from
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∞∑
n=0

(
‖(δVn, δΨn)‖Hm

γ (�T ) + ‖δψn‖Hm+1
γ (ωT )

)
≤ C

∞∑
n=0

θm−μ−2
n < ∞, 3 ≤ m ≤ μ − 1,

we conclude that (Vn, Ψn) converges to some (V , Ψ ) in Hμ−1
γ (�T ), and ψn converges to some 

ψ in Hμ
γ (�T ). Then we take the limit in (5.61)–(5.62) for m = μ −1 = s0 −8, and in (5.63), and 

obtain that (V , Ψ ) solves (4.20). As a consequence, (U, Φ) = (Ua +V, Φa +Ψ ) is a solution to 
(1.11)–(1.13) in �+

T . The proof of Theorem 1.1 is complete. �
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