arXiv:1702.04467v1 [cs.DC] 15 Feb 2017

Adding Concurrency to Smart Contracts

Thomas Dickerson Paul Gazzillo
Brown University Yale University
thomas_dickerson@brown.edu paul.gazzillo@yale.edu
Maurice Herlihy Eric Koskinen
Brown University Yale University
maurice_herlihy@brown.edu eric.koskinen@yale.edu
Abstract

Modern cryptocurrency systems, such as Ethereum, permit complex financial transactions
through scripts called smart contracts. These smart contracts are executed many, many times,
always without real concurrency. First, all smart contracts are serially executed by miners
before appending them to the blockchain. Later, those contracts are serially re-executed by
validators to verify that the smart contracts were executed correctly by miners.

Serial execution limits system throughput and fails to exploit today’s concurrent multicore
and cluster architectures. Nevertheless, serial execution appears to be required: contracts share
state, and contract programming languages have a serial semantics.

This paper presents a novel way to permit miners and validators to execute smart contracts in
parallel, based on techniques adapted from software transactional memory. Miners execute smart
contracts speculatively in parallel, allowing non-conflicting contracts to proceed concurrently,
and “discovering” a serializable concurrent schedule for a block’s transactions, This schedule is
captured and encoded as a deterministic fork-join program used by validators to re-execute the
miner’s parallel schedule deterministically but concurrently.

Smart contract benchmarks run on a JVM with ScalaSTM show that a speedup of 1.33x can
be obtained for miners and 1.69x for validators with just three concurrent threads.

1 Introduction

Cryptocurrencies such as Bitcoin [17] or Ethereum [6] are very much in the news. Each is an
instance of a distributed ledger: a publicly-readable tamper-proof record of a sequence of events.
Simplifying somewhat, early distributed ledgers, such as Bitcoin’s, work like this: clients send
transactions' to miners, who package the transactions into blocks. Miners repeatedly propose new
blocks to be applied to the ledger, and follow a global consensus protocol to agree on which blocks
are chosen. Each block contains a cryptographic hash of the previous block, making it difficult to
tamper with the ledger. The resulting distributed data structure, called a blockchain, defines the
sequence of transactions that constitutes the distributed ledger?

Modern blockchain systems often interpose an additional software layer between clients and the
blockchain. Client requests are directed to scripts, called smart contracts, that perform the logic
needed to provide a complex service, such as managing state, enforcing governance, or checking
credentials. Smart contracts can take many forms, but here we will use (a simplified form of) the
Ethereum model [6].

!Following blockchain terminology, a transaction is a payment or set of payments, not an atomic unit of synchro-
nization as in databases or transactional memory.
2This description omits many important issues, such as incentives, forking, and fork resolution.

A smart contract resembles an object in a programming language. It manages long-lived state,
which is encoded in the blockchain. The state is manipulated by a set of functions, analogous to
methods in many programming languages. Functions can be called either directly by clients or
indirectly by other smart contracts. Smart contract languages are typically Turing-complete. To
ensure that function calls terminate, the client is charged for each computational step in a function
call. If the charge exceeds what the client is willing to pay, the computation is terminated and
rolled back.

When and where is smart contract code executed? There are two distinct circumstances. Each
smart contract is first executed by one or more miners, nodes that repeatedly propose new blocks
to append to the blockchain. When a miner creates a block, it selects a sequence of user requests
and executes the associated smart contract code for each Ethereum transaction in sequence, trans-
forming the old contract state into a new state. It then records both the sequence of transactions
and the new state in the block, and proposes it for inclusion in the blockchain.

Later, when the block has been appended to the blockchain, each smart contract is repeatedly
re-executed by wvalidators: nodes that reconstruct (and check) the current blockchain state. As
a validator acquires each successive block, it replays each of the transactions’ contract codes to
check that the block’s initial and final states match. Each miner validates blocks proposed by other
miners, and older block are validated by newly-joined miners, or by clients querying the contract
state. Code executions for validation vastly exceed code executions for mining.

Existing smart contract designs limit throughput because they admit no concurrency. When
a miner creates a block, it assembles a sequence of transactions, and computes a tentative new
state by executing those transactions’ smart contracts serially, in the order they occur in the block.
A miner cannot simply execute these contracts in parallel, because they may perform conflicting
accesses to shared data, and an arbitrary interleaving could produce an inconsistent final state.
For Bitcoin transactions, it is easy to tell in advance when two transaction conflict, because input
and output data are statically declared. For smart contracts, by contrast, it is impossible to tell in
advance whether two contract codes conflict, because the contract language is Turing-complete.

Miners are rewarded for each block they successfully append to the blockchain, so they have a
strong incentive to increase throughput by parallelizing smart contract executions. We propose to
allow miners to execute contract codes in parallel by adapting techniques from Software Transac-
tional Memory (STM) [10]: treating each invocation as a speculative atomic action. Data conflicts,
detected at run-time, are resolved by delaying or rolling back some conflicting invocations. Treating
smart contract invocations as speculative atomic actions dynamically “discovers a serializable con-
current schedule, producing the same final state as a serial schedule where the contract functions
were executed in some one-at-a-time order.

But what about later validators? Existing STM systems are non-deterministic: if a later
validator simply mimics the miner by re-running the same mix of speculative transactions, it may
produce a different serialization order and a different final state, causing validation to fail incorrectly.
Treating contract invocations as speculative transactions improves miners’ throughput, but fails to
support deterministic re-execution as required by validators.

Notice, however, that the miner has already “discovered” a serializable concurrent schedule for
those transactions. We propose a novel scheme where the miner records that successful schedule,
along with the final state, allowing later validators to replay that same schedule in a concurrent but
deterministic way. Deterministic replay avoids many of the the miner’s original synchronization
costs, such as conflict detection and roll-back. Over time, parallel validation would be a significant
benefit because validators perform the vast majority of contract executions. Naturally, the validator
must be able to check that the proposed schedule really is serializable.

This paper makes the following contributions.

e A way for miners to speculatively execute smart contracts in parallel. We adapt techniques
from transactional boosting [9] to permit non-conflicting smart contracts to execute concur-
rently.

e A way for miners to capture the resulting parallel execution in the form of a fork-join [1]
schedule to be executed by validators, deterministically, verifiably, and in parallel.

e A prototype implementation, built on the Java virtual machine and ScalaSTM [18]. An
evaluation using smart contract examples drawn from the Solidity documentation yields an
overall speedup of 1.33x for miners, and 1.69x for validators with three concurrent threads of
execution.

2 Blockchains and Smart Contracts

In Bitcoin and similar systems, trans-
actions typically have a simple struc-
ture, distributing the balances from a
set of input accounts to a set of newly- 1 contract Ballot {

Listing 1: Part of the Ballot contract.

created output accounts. In Blockchains 2 mapping(address => Voter) public voters;
such as Ethereum, however, each block § // more state definitions

also includes an explicit state captur- 4 function vote(uint proposal) {

ing the cumulative effect of transac- & Voter sender = voters[msg.sender];

tions in prior blocks. Transactions 6 if (sender.voted)

are expressed as executable code, of- 7 throw;

ten called smart contracts, that modifies & sender.voted = true;

that state. Ethereum blocks thus con- 9 sender.vote = proposal;

tain both transactions’ smart contracts 10 proposals[proposal].voteCount += sender.weight;
and the final state produced by execut- 11 }

ing those contacts. 12 // more operation definitions

The contracts themselves are stored 13 }
in the blockchain as byte-code instruc-
tions for the Ethereum virtual machine
(EVM). Several higher-level languages exist for writing smart contracts. Here, we describe smart
contracts as expressed in the Solidity language [19].

Listing 1 is part of the source code for an example smart contract that implements a ballot
box [20]. The owner initializes the contract with a list of proposals and gives the right to vote to
a set of Ethereum addresses. Voters cast their votes for a particular proposal, which they may do
only once. Alternatively, voters may delegate their vote. The contract keyword declares the smart
contract (Line 1).

The contract’s persistent state is recorded in state variables. For Ballot, the persistent state
includes fields of scalar type such as the owner (omitted for lack of space). State variables such
as voters (declared on Line 2) can also use the built-in Solidity type mapping which, in this case,
associates each voter’s address with a Voter data structure (declaration omitted for brevity). The
keys in this mapping are of built-in type address, which uniquely identifies Ethereum accounts
(clients or other contracts). These state variables are the persistent state of the contract.

Line 4 declares contract function, vote, to cast a vote for the given proposal. Within a function
there are transient memory and stack areas such as sender. The function vote first recovers the
Voter data from the contract’s state by indexing into the voters mapping using the sender’s address
msg.sender. The msg variable is a global variable containing data about the contract’s current
invocation. Next, the sender.vote flag is checked to prevent multiple votes. Note that sequential

execution is critical: if this code were naively run in parallel, it would be vulnerable to a race
condition permitting double voting. Ethereum contract functions can be aborted at any time via
throw, as seen here when a voter is detected attempting to vote twice. The throw statement causes
the contract’s transient state and tentative storage changes to be discarded. Finally, this Ballot
contract also provides functions to register voters, delegate one’s vote, and compute the winning
proposal. The complete Ballot example is shown in Appendix A.

Execution Model: Miners and Validators. When a miner prepares a block for inclusion in
the blockchain, it starts with the ledger state as of the chain’s most recent block. The miner selects
a sequence of new transactions, records them in the new block, and executes those their contracts,
one at a time, to compute the new block’s state. The miner then participates in a consensus
protocol to decide whether this new block will be appended to the blockchain.

To ensure that each transaction terminates in a reasonable number of steps, each call to contract
bytecode comes with an explicit limit on the number of virtual machine steps that a call can take.
(In Ethereum, these steps are measured in gas and clients pay a fee to the miner that successfully
appends that transaction’s block to the blockchain.)

After a block has been successfully appended to the blockchain, that block’s transactions are
sequentially re-executed by every mode in the network to check that the block’s state transition
was computed honestly and correctly. (Smart contract transactions are deterministic, so each re-
execution yields the same results as the original.) These validator nodes do not receive fees for
re-execution.

To summarize, a transaction is executed in two contexts: once by miners before attempting to
append a block to the blockchain, and many times afterward by validators checking that each block
in the blockchain is honest. In both contexts, each block’s transactions are executed sequentially
in block-order.

3 Speculative Smart Contracts

This section discusses how miners can execute contract codes concurrently. Concurrency for val-
idators is addressed in the next section.

Smart contract semantics is sequential: each miner has a single thread of control that executes
one EVM instruction at a time. The miner executes each of the block’s contracts in sequence. One
contract can call another contract’s functions, causing control to pass from the first contract code
to the second, and back again. (Indeed, misuse of this control structure has been the source of
well-known security breaches [4].) Clearly, even sequential smart contracts must be written with
care, and introducing explicit concurrency to contract programming languages would only make
the situation worse. We conclude that concurrent smart contract executions must be serializable,
indistinguishable, except for execution time, from a sequential execution.

There are several obstacles to running contracts in parallel. First, smart contract codes read
and modify shared storage, so it is essential to ensure that concurrent contract code executions do
not result in inconsistent storage states. Second, smart contract languages are Turing-complete,
and therefore it is impossible to determine statically whether contracts have a data conflict.

We propose that miners execute contract codes as speculative actions. A miner schedules mul-
tiple concurrent contracts to run in parallel. Contracts’ data structures are instrumented to detect
synchronization conflicts at run-time, in much the same way as mechanisms like transactional
boosting [9]. If one speculative contract execution conflicts with another, the conflict is resolved
either by delaying one contract until another completes, or by rolling back and restarting some of
the contracts. When a speculative action completes successfully, it is said to commit, and otherwise
it aborts.

Storage Operations. We assume that, as in Solidity, state variables are restricted to predefined
types such as scalars, structures, enumerations, arrays, and mappings. A storage operation is a
primitive operation on a state variable. For example, binding a key to a value in a mapping, or
reading from an variable or an array are storage operations. Two storage operations commute
if executing them in either order yields the same result values and the same storage state. For
example, in the address-to-Voter Ballot mapping in Listing 1, binding Alice’s address to a vote of 42
commutes with binding Bob’s address to a vote of 17, but does not commute when deleting Alice’s
vote. An inverse for a storage operation is another operation that undoes its effects. For example,
the inverse of assigning to a variable is restoring its prior value, and the inverse of adding a new
key-value pair to a mapping is to remove that binding, and so on. We assume the run-time system
provides all storage operations with inverses.

The virtual machine is in charge of managing concurrency for state variables such as mappings
and arrays. Speculation is controlled by two run-time mechanisms, invisible to the programmer,
and managed by the virtual machine: abstract locks, and inverse logs.

Each storage operation has an associated abstract lock. The rule for assigning abstract locks
to operations is simple: if two storage operations map to distinct abstract locks, then they must
commute. Before a thread can execute a storage operation, it must acquire the associated abstract
lock. The thread is delayed while that lock is held by another thread®. Once the lock is acquired,
the thread records an inverse operation in a log, and proceeds with the operation.

If the action commits, its abstract locks are released and its log is discarded. If the action aborts,
the inverse log is replayed, most recent operation first, to undo the effects of that speculative action.
When the replay is complete, the action’s abstract locks are released.

The advantage of combining abstract locks with inverse logs is that the virtual machine can
support very fine-grained concurrency. A more traditional implementation of speculative actions
might associate locks with memory regions such as cache lines or pages, and keep track of old and
versions of those regions for recovery. Such a coarse-grained approach could lead to many false
conflicts, where operations that commute in a semantic sense are treated as conflicting because
they access overlapping memory regions. In the next section, we will see how to use abstract locks
to speed up verifiers.

When one smart contract calls another, the run-time system creates a nested speculative action,
which can commit or abort independently of its parent. A nested speculative action inherits the
abstract locks held by its parent, and it creates its own inverse log. If the nested action commits,
any abstract locks it acquired are passed to its parent, and its inverse log is appended to its parent’s
log. If the nested action aborts, its inverse log is replayed to undo its effects, and any abstract locks
it acquired are released. Aborting a child action does not abort the parent, but a child action’s
effects become permanent only when the parent commits. The abstract locking mechanism also
detects and resolves deadlocks, which are expected to be rare.

The scheme described here is eager, acquiring locks, applying operations, and recording inverses.
An alternative lazy implementation could buffer changes to a contract’s storage, applying them only
on commit.

A miner’s incentive to perform speculative concurrent execution is the possibility of increased
throughput, and hence a competitive advantage against other miners. Of course, the miner under-
takes a risk that synchronization conflicts among contracts will cause some contracts to be rolled
back and re-executed, possibly delaying block construction, and forcing the miner to re-execute
code not compensated by client fees. Nevertheless, the experimental results reported below suggest

3For ease of exposition, abstract locks are mutually exclusive, although it is not hard to accommodate shared and
exclusive modes.

that even a small degree of concurrent speculative execution pays off, even in the face of moderate
data conflicts.

4 Concurrent Validation

The speculative techniques proposed above for miners are no help for validators. Here is the
problem: miners use speculation to discover a concurrent schedule for a block’s transactions, a
schedule equivalent to some sequential schedule, except faster. That schedule is constructed non-
deterministically, depending on the order in which threads acquired abstract locks. To check that
the block’s miner was honest, validators need to reconstruct the same (or an equivalent) schedule
chosen by the miner.

Validators need a way to deterministically reproduce the miner’s concurrent schedule. To this
end, we extend abstract locks to track dependencies, that is, who passed which abstract locks to
whom. Each speculative lock includes a use counter that keeps track of the number of times it has
been released by a committing action during the construction of the current block. When a miner
starts a block, it sets these counters to zero.

When a speculative action commits, it increments the counters for each of the locks it holds,
and then it registers a lock profile with the VM recording the abstract locks and their counter
values.

When all the actions have committed, it is possible to reconstruct their common schedule by
comparing their lock profiles. For example, consider three committed speculative actions, A, B,
and C. If A and B have no abstract locks in common, they can run concurrently. If an abstract
lock has counter value 1 in A’s profile and 2 in C’s profile, then C' must be scheduled after A.

Algorithm 1 MINEINPARALLEL(T') - Mine in parallel
Input: A set of contract transactions T'
Output: A serial order S of transactions and a happens-before graph H of the locking schedule
1: function MINEINPARALLEL(B)
2: Initialize log L for recording locking operations
3: Execute all transactions ¢ € T' in parallel, recording locking activity in L
4: Generate happens-before graph H from L
5. Create the serial ordering S via a topological sort of H
6
7

: return (S, H)
end function

A miner includes these profiles in the blockchain along with usual information. From this profile
information, validators can construct a fork-join program that deterministically reproduces the
miner’s original, speculative schedule. Algorithm 1 provides a high-level sketch of the operation of
the miner. By logging the locking schedule during parallel execution, the miner generates a happens-
before graph of transactions according to the order in which they acquire locks and commit. A
valid serial history is produced from a topological sort of this graph. Algorithm 2 constructs the
validator by scanning through the list of actions as they appear in the serial history. A fork-join
task is created for each action and stored for lookup by its identifier. Each task will first lookup and
join any tasks that must precede it according to the locking schedule before executing the action
itself.

The resulting fork-join program is not speculative, nor does it require inter-thread synchro-
nization other than forks and joins. The validator is not required to match the miner’s level of
parallelism: using a work-stealing scheduler [1], the validator can exploit whatever degree of paral-

Algorithm 2 CONSTRUCTVALIDATOR(S, H) - Construct a parallel validator

Input: The serial ordering S and happens-before graph H from the miner

Output: A set of fork-join tasks ensuring parallel execution according to the happens-before graph
1: function CONSTRUCTVALIDATOR(DB)

2: Initialize a mapping F' from each transaction ¢ to its fork-join task f
3: Create the happens-after graph H' by reversing the edges of H
4. for eachte S do
5: B « all transactions u € H' that happen immediately before ¢, i.e., its outedges
6: Create a fork-join task f for t that first joins with all tasks in B, i.e.,
f < for (bin B) { F.get(b).join() } execute(t)
T: Save the new fork-join task in F', i.e., F.put(, f)

8: return the value set of F', the fork-join tasks
9: end function

lelism it has available. The validator does not need abstract locks, dynamic conflict detection, or
the ability to roll back speculative actions, because the fork-join structure ensures that conflicting
actions never execute concurrently.

To check that the miner’s proposed schedule is correct, the validator’s virtual machine records
a trace of the abstract locks each thread would have acquired, had it been executing speculatively.
This trace is thread-local, requiring no expensive inter-thread synchronization. At the end of the
execution, the validator’s VM compares the traces it generated with the lock profiles provided by
the miner. If they differ, the block is rejected.

What is a miner’s incentive to be honest about its fork-join schedule? A miner who publishes an
incorrect schedule will be detected and its block rejected, but a miner may be tempted to publish
a correct sequential schedule equivalent to, but slower than its actual parallel schedule, with the
goal of slowing down verification by competing miners. Perhaps the simplest way to provide an
incentive is to reward miners more for publishing highly parallel schedules (for example, as measured
by critical path length). This reward could be part of a static “coinbase” transaction that creates
currency, or client fees could be discounted for less parallel schedules. Because fork-join schedules
are published in the blockchain, their degree of parallelism is easily evaluated. Naturally, such
rewards must be calibrated to produce desired effects, a subject beyond the scope of this paper.

5 Correctness

Concurrent calls to smart contract functions might leave persistent storage in an inconsistent state
not possible after a serial execution. Instead, we must show that every concurrent execution
permitted by our proposal is equivalent to some sequential execution. Because miners are free to
choose the order in which contracts appear in a block, any sequential execution will do.

Our argument builds on the prior proofs that transactional boosting is serializable [14, 13, 9].
A given execution of a contract’s function involves a sequence of operations on storage objects.
(The Ethereum gas restriction ensures this sequence is finite.) Recall that if two storage operations
map to distinct abstract locks, then they commute. If another thread executes another sequence
of operations, then if there are two operations that do not commute, then both threads will try to
acquire the same lock, and one will be delayed until the other completes. (Deadlocks are detected
and resolved by aborting one execution.) As proved elsewhere [14, 13, 9], the result is a serializable

execution?.

We cannot guarantee that the schedule published by the miner is the same one that it executed,
but we can guarantee the two are equivalent to a common sequential history. Validators replay the
concurrent schedule published by the miner, and will detect if the schedule produces a final state
different from the one recorded in the block, or if the schedule has a data race (an unsynchronized
concurrent access).

6 Implementation

Because the EVM is not multithreaded, our prototype uses the Java Virtual Machine (JVM). Spec-
ulative actions are executed by the Scala Software Transactional Memory Library (ScalaSTM [18]).

Examples of smart contracts were translated from Solidity into Scala, then modified to use
the concurrency libraries. Each function from the Solidity contract is turned into a speculative
transaction by wrapping its contents with a ScalaSTM atomic section. Solidity mapping objects are
implemented as boosted hashtables, where key values are used to index abstract locks. Additionally,
solidity struct types were translated into immutable case classes. Methods take a msg field to
emulate Solidity contracts’ global state, which includes details of the transaction, addresses of
participants, and so on. Scalar fields are implemented as a single a boosted mapping.

The Solidity throw operation, which explicitly rolls back a contract execution, is emulated by
throwing a Java runtime exception caught by the miner.

In our prototype, abstract locks are implemented via interfaces exported by ScalaSTM, relying
on ScalaSTM’s native deadlock detection and resolution mechanisms.

6.1 Miners and Validators

Miners manage concurrency using Java’s ExecutorService. This class provides a pool of threads and
runs a collection of callable objects in parallel. A block of transactions in Ethereum is implemented
as a set of callable objects passed to the thread pool. To generate locking profiles from the parallel
execution, we instrument smart contracts to log when atomic sections start and end, as well as calls
to boosted operations. From the log, we can encode the locking schedule as a happens-before graph
for the validator. The validator transforms this happens-before graph into a fork-join program.
Fach transaction from the block is a fork-join task that first joins with all tasks according to its
in-edges on the happens-before graph.

7 Experimental Evaluation

Our goal is to improve throughput for miners and validators by allowing unrelated contracts to
execute in parallel. To evaluate this approach, we created a series of benchmarks for sample
contracts that vary the number of transactions and their degree of conflict. These benchmarks are
conservative, operating on only one or a few contracts at a time and permitting higher degrees of
data conflict than one would expect in practice.

Our experiments are designed to answer two questions. (1) For a given amount of data con-
flict, how does speedup change over increasing transactions? We expect to see more speedup as
the number of transactions increases, limited by the number of cores available on the underlying
hardware. (2) How does the speedup change as data conflict increases? For low data conflict, we
expect our parallel miner to perform better than serial. But as data conflict increases, we expect
a drop-off in speedup, limited by core availability.

4 Because speculative executions take place entirely within a virtual machine, opacity [8] is not an issue.

7.1 Benchmarks

There are four benchmarks, one for each of the example contracts we implemented, Ballot, Sim-
pleAuction, and EtherDoc, as well as the Mixed benchmark containing transactions from all. For
each benchmark, our implementation is evaluated on blocks containing between 10 and 400 trans-
actions with 15% data conflict, as well as blocks containing 200 transactions with data conflict
percentages ranging from 0% to 100% data conflict. The data conflict percentage is defined to be
the percentage of transactions that contend with at least one other transaction for shared data. As
we will see, the impact of data conflict on speedup depends on the contract implementation.

These benchmarks are conservative. For all benchmarks besides Mixed, the entire block op-
erates on the same contract, calling only one or two methods. In reality, mined blocks contained
transactions on unrelated contracts and accounts. While the theoretical maximum number of trans-
actions per block is currently around 200°, we test a wide range from 10 to 400. The maximum
increases and decreases over time, as determined by miner preference [7]. In practice, the number
of transactions can be far fewer per block, e.g., when there are costly transactions. For testing
speedup over number of transactions, we fix the data conflict rate at 15%, though we expect that
blocks in practice rarely have very much internal data conflict. While we did not measure data
conflict in the existing blockchain, our approach implemented in EVM could be used to collect such
data on an existing blockchain. For testing speedup as data conflict increases, we fix the number
of transactions per block to 200, the current theoretical maximum.

Ballot. This contract is an example voting application from the Solidity documentation [20] and
is described in Section 2. For all benchmarks, the contract is put into an initial state where voters
are already registered. All block transactions for this benchmark are requests to vote on the same
proposal. To add data conflict, some voters attempt to double-vote, creating two transactions that
contend for the same voter data. 100% data conflict occurs when all voters attempt to vote twice.

SimpleAuction. This contract, also from the Solidity documentation [20] implements an auction.
There is a single owner who initiates the auction, while any participant can place bids with the
bid () method. A mapping tracks how much money needs to be returned to which bidder once the
auction is over. Bidders can then withdraw() their money. For the benchmarks, the contract state
is initialized by several bidders entering a bid. The block consists of transactions that withdraw
these bids. Data Conflict is added by including new bidders who call bidPlusOne () to read and
increase the highest bid. The rate of data Conflict depends on how many bidders are bidding
at the same time, thus accessing the same highest bidder. 100% data conflict happens when all
transactions are bidsPlusOne () bids.

EtherDoc. EtherDocS is a “Proof of Existence” decentralized application (DAPP) that tracks
per-document metadata including hashcode owner. It permits new document creation, metadata
retrieval, and ownership transfer. For the benchmarks, the contract is initialized with a number of
documents and owners. Transactions consist of owners checking the existence of the document by
hashcode. Data Conflict is added by including transactions that transfer ownership to the contract
creator. As with SimpleAuction, all contending transactions touch the same shared data, so we
expect a faster drop-off in speedup with increased data conflict than Ballot. 100% data conflict
happens when all transactions are transfers.

Mixed. This benchmark combines transactions on the above smart contracts in equal proportions,

5 A transaction costs 21,000 gas plus the gas for the computation [22]. The gas limit the block 3,110,235 (latest as
of writing) was 4,005,875, a maximum close to 200.
Shttps://github.com/maran/notareth

https://github.com/maran/notareth

SimpleAuction Ballot EtherDoc Mixed
Conflict | BlockSize | Conflict | BlockSize | Conflict | BlockSize | Conflict | BlockSize
Miner 1.23x 1.58x 1.57x 1.35x 0.78x 1.09x 1.57x 1.45x
Validator 1.35x 1.60x 1.73x 1.58x 2.04x 1.75x 1.86x 1.64x

Table 1: The average speedups for each benchmark.

and data conflict is added the same way in equal proportions from their corresponding benchmarks.

7.2 Results

We ran our experiments on a 4-core 3.07GHz Intel Xeon W3550 with 12 GB of memory running
Ubuntu 16. All of our experiments run on the Java Virtual Machine (JVM) with JIT compilation
disabled. Parallel mining and validation are run with a fixed pool of three threads, leaving one core
available for garbage collection and other system processes/threads.

For each benchmark, blocks were generated for each combination of the number of transactions
and data conflict percentage. Each block is run on the parallel miner, the validator, and a serial
miner that runs the block without parallelization. The serial results serve as the baseline for
computing speedup. The running time is collected five times and the mean and standard deviation
are measured. All runs are given three warm-up runs per collection.

Figure 1 shows the speedup of the parallel miner and validator relative to the serial miner for all.
(The running times with mean and standard deviation can be found in Appendix B.) The left chart
plots the speedup over the number of transactions in the block at a fixed data conflict percentage
of 15%. The speedup for all benchmarks follows roughly the same pattern. For low numbers of
transactions, there is no speedup and even some slowdown. This is likely due to data conflict as
well as the overhead of multithreading. For over around 50 transactions, there is a speedup that
increases to about 2x, in line with expectations from a thread pool of size three. EtherDoc is an
exception, seeing less than 1.5x speedup. The validator generally has a higher speedup than the
parallel miner. This is because the parallel miner has done the hard work of finding data conflict
and produced a locking schedule for the validator to follow.

The right-hand chart of Figure 1 plots the speedup as the data conflict percentage increases for
fixed blocks of 200 transactions. As data conflict increases, the miner’s speedup reduces from 2x
to close to serial as many transactions touch shared data. The validator also starts at around 2x
with no data conflict, but goes down to about 1.5x, again benefiting from the work of the parallel
miner.

Ballot’s parallel mining hovers around 1.5x speedup, suffering little from the extra data conflict.
Data Conflict in SimpleAuction and EtherDoc, however, has an expectedly higher impact, because
each contending transaction touches the same data. The Mixed benchmark provides a more realistic
view of a block by combining transactions from unrelated contracts. Even though EtherDoc reduces
parallelism under high data conflict, when mixed with other transactions, the parallel miner can
still gain a substantial speedup.

The average of speedups of all benchmarks is 1.33x for the parallel miner and 1.69x for the
validator. Table 1 shows the average speedups for each benchmark.

7.3 Discussion

These results show that speculative concurrent execution speeds up mining when threads are oc-
cupied and the data conflict rate is not too high. Data conflicts among transactions in the same

10

Ballot Speedups

25 Miner O 25
IS Validator A
3 2 H 2
%]
g 15 -4 15
Q
3 1 1
(7]
[
i |
@05 - -1 05
0 1 1 1 1 1 1 1 0
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)
SimpleAuction Speedups
25 Miner O 125
S Validator A
5]
%]
9]
>
O
Q
=}
e
Q
[
Q
%)
0 1 1 1 1 1 1 1 0
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)
EtherDoc Speedups
25 Miner O x2-5
g Validator A
5 2 2
%]
g 15 15
Q
3 1 1
(7]
[
Q.
@05 - -1 05
0 | | | | | | | 0
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)
Mixed Speedups
25 Miner O 125
B Validator A,
& b
g 15 15
Q
3 1 1
(7]
[
Q.
05 0.5
0 | | | | | | | 0
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)
Figure 1:

Speedup Over Serial Speedup Over Serial Speedup Over Serial

Speedup Over Serial

0.5 - -
0 I I I I
0 0.2 0.4 0.6 0.8 1
Conflict Percentage (200 Transactions)
SimpleAuction Speedups
2.5[— Miner O 7]
Validator A
2 _
15 -
! \@xi
0.5 -
0 I I I I
0 0.2 0.4 0.6 0.8 1
Conflict Percentage (200 Transactions)
EtherDoc Speedups
2.5[— Miner O
Validator A
2 _
15 -
1
0.5 - -
0 I I I I
0 0.2 0.4 0.6 0.8 1
Conflict Percentage (200 Transactions)
Mixed Speedups
25 Miner O 7]
Validator A
24 n
15
1
0.5 -
0 I I I I
0 0.2 0.4 0.6 0.8 1

Ballot Speedups

Miner O 7]
Validator A

W

Conflict Percentage (200 Transactions)

25

-1 25

25

The speedup of the miner and validator versus serial mining for each benchmark. The

left chart is the speed up as block size increases, while the right is the speed up as data conflict

increases.

11

block is likely to be infrequent over the long term. (Miners could also choose transactions so as
to reduce the likelihood of conflict, say by including only those contracts that operate on disjoint
data sets.) Due to limited hardware, our experiments used only three concurrent threads, but even
this modest level of concurrency showed a benefit. Concurrent hardware has proved effective for
speeding up solutions to proof-of-work puzzles, and now similar investments could speed up smart
contract execution and validation.

8 Related Work

The notion of smart contracts can be traced back to an article by Nick Szabo in 1997 [21]. Bit-
coin [17] includes a scripting language whose expressive power was limited to protect against non-
terminating scripts. Ethereum [6] is perhaps the most widely used smart contract platform, em-
ploying a combination of a Turing-complete virtual machine protected from non-termination by
charging clients for contract running times. Solidity [19] is the most popular programming lan-
guage for programming the Ethereum virtual machine.

Luu et al. [15] identify a number of security vulnerabilities and pitfalls in the Ethereum smart
contract model. Luu et al. [16] also identify perverse incentives that cause rational miners sometimes
to accept unvalidated blocks. Delmolino et al. [5] document common programming errors observed
in smart contracts. The Hawk [12] smart contract system is designed to protect the privacy of
participants.

As noted, many of the speculative mechanisms introduced here were adapted from transactional
boosting [9], a technique for transforming thread-safe linearizable objects into highly-concurrent
transactional objects. Boosting was originally developed to enhance the concurrency provided by
software transactional memory systems [10] by exploiting type-specific information. Other tech-
niques that exploit type-specific properties to enhance concurrency in STMs include transactional
predication [3] and software transactional objects [11].

There are other techniques for deterministically reproducing a prior concurrent execution. See
Bocchino et al. [2] for a survey.

9 Conclusion

We have shown that one can exploit multi-core architectures to increase smart contract processing
throughput for both miners and validators. First, miners execute a block’s contracts speculatively
and in parallel, resulting in lower latency whenever the block’s contracts lack data conflicts. Miners
are incentivized to include in each block an encoding of the serializable parallel schedule that pro-
duced that block. Validators convert that schedule into a deterministic, parallel fork-join program
that allows them to validate the block in parallel. Even with only three threads, a prototype im-
plementation yields overall speedups of 1.33x for miners and 1.69x for validators on representative
smart contracts.

Future work could include adding support for multithreading to the Ethereum virtual machine,
in much the same way as today’s Java virtual machines. Our proposal for miners only is compatible
with current smart contract systems such as Ethereum, but our overall proposal is not, because it
requires including scheduling metadata in blocks, and incentivizing miners to publish their parallel
schedules. It may well be compatible with a future “soft fork” (backward compatible change), a
subject for future research.

12

References

[1]

[11]

[12]

[13]

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system. In Proceedings of the Fifth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP ’95, pages 207216,
New York, NY, USA, 1995. ACM.

R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must be
deterministic by default. In Proceedings of the First USENIX Conference on Hot Topics in
Parallelism, HotPar’09, pages 44, Berkeley, CA, USA, 2009. USENIX Association.

N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional predication: High-
performance concurrent sets and maps for stm. In Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, pages 6-15, New
York, NY, USA, 2010. ACM.

DAO. Thedao smart contract. Retrieved 8 February 2017.

K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. Step by Step Towards Creating a
Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab, pages 79-94. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

Ethereum. https://github.com/ethereum/.

Ethereum design Rationale. http://github.com/ethereum/wiki/wiki/Design-Rationale#
gas—and-fees.

R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and practice of parallel programming
(PPoPP’08), pages 175-184, New York, NY, USA, 2008. ACM.

M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-concurrent
transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’08, pages 207-216, New York, NY, USA, 2008.
ACM.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory
for dynamic-sized data structures. In Proceedings of the twenty-second annual symposium on
Principles of distributed computing, PODC ’03, pages 92-101, New York, NY, USA, 2003.
ACM.

N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler, B. Liskov, and L. Shrira. Type-aware
transactions for faster concurrent code. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys '16, pages 31:1-31:16, New York, NY, USA, 2016. ACM.

A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In IEEE Symposium on Security and
Privacy, 2015.

E. Koskinen and M. J. Parkinson. The push/pull model of transactions. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’15), Portland, OR, USA. ACM, 2015.

13

https://github.com/ethereum/
http://github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees
http://github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

E. Koskinen, M. J. Parkinson, and M. Herlihy. Coarse-grained transactions. In Proceedings
of the 87th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’10), pages 19-30. ACM, 2010.

L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 254-269, 2016.

L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. Demystifying incentives in the consensus
computer. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 15, pages 706-719, New York, NY, USA, 2015. ACM.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.

Scala STM Expert Group. Scalastm. web. Retrieved from http://nbronson.github.com/
scala-stm/, 20 November 2011.

Solidity documentation. http://solidity.readthedocs.io/en/latest/index.html.

Solidity documentation: Solidity by example. http://solidity.readthedocs.io/en/
develop/solidity-by-example.html.

N. Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9),
1997.

G. Wood. Ethereum: A secure decentralised generalised transaction ledger.

14

http://nbronson.github.com/scala-stm/
http://nbronson.github.com/scala-stm/
http://solidity.readthedocs.io/en/latest/index.html
http://solidity.readthedocs.io/en/develop/solidity-by-example.html
http://solidity.readthedocs.io/en/develop/solidity-by-example.html

A Example Contract: Ballot

1 pragma solidity "0.4.0;
2 /// @title Voting with delegation.
3 contract Ballot {

+~

© 0 R[S O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
48
44
45

// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
struct Voter {
uint weight; // weight is accumulated by delegation
bool voted; // if true, that person already voted
address delegate; // person delegated to
uint vote; // index of the voted proposal
}
// This is a type for a single proposal.
struct Proposal
{
bytes32 name; // short name (up to 32 bytes)
uint voteCount; // number of accumulated votes
}
address public chairperson;
// This declares a state variable that
// stores a Voter struct for each possible address.
mapping(address => Voter) public voters;
// A dynamically—sized array of Proposal structs.
Proposal[] public proposals;
/// Create a new ballot to choose one of proposalNames.
function Ballot(bytes32[] proposalNames) {
chairperson = msg.sender;
voters[chairperson].weight = 1;
// For each of the provided proposal names,
// create a new proposal object and add it
// to the end of the array.
for (uint i = 0; i < proposalNames.length; i++) {
// Proposal(...) creates a temporary
// Proposal object and proposals.push(...)
// appends it to the end of proposals.
proposals.push(Proposal({
name: proposalNames]i],
voteCount: 0

H);
}
¥
// Give voter the right to vote on this ballot.
// May only be called by chairperson.
function giveRightToVote(address voter) {

if (msg.sender != chairperson || voters|voter].voted) {
// throw terminates and reverts all changes to

15

47
48
49
50
51
52
58
54
55
56
57
58
59
60
61
62
68
64
65
66
67
68
69
70
71
72
78
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
98

94

// the state and to Ether balances. It is often
// a good idea to use this if functions are

// called incorrectly. But watch out, this

// will also consume all provided gas.

throw;

}

voters|voter].weight = 1;
}
/// Delegate your vote to the voter to.
function delegate(address to) {
// assigns reference
Voter sender = voters[msg.sender];
if (sender.voted)
throw;
// Forward the delegation as long as
// to also delegated.
// In general, such loops are very dangerous,
// because if they run too long, they might
// need more gas than is available in a block.
// In this case, the delegation will not be executed,
// but in other situations, such loops might
// cause a contract to get "stuck” completely.
while (
voters[to].delegate != address(0) &&
voters[to].delegate |= msg.sender

)

to = voters|[to].delegate;
}

// We found a loop in the delegation, not allowed.
if (to == msg.sender) {

throw;
¥

// Since sender is a reference, this
// modifies voters[msg.sender].voted
sender.voted = true;
sender.delegate = to;
Voter delegate = voters[to];
if (delegate.voted) {
// If the delegate already voted,
// directly add to the number of votes

proposals[delegate.vote].voteCount += sender.weight;

} else {
// If the delegate did not vote yet,
// add to her weight.
delegate.weight += sender.weight;

}
}
/// Give your vote (including votes delegated to you)

16

95
96
97
98
99

100

101

102

108

104

105

106

107

108

109

110

111

112

113

114

115

116

118
119
120
121
122
123
124
125
126
127
128 }

/// to proposal proposals[proposal].name.
function vote(uint proposal) {
Voter sender = voters[msg.sender];
if (sender.voted)
throw;
sender.voted = true;
sender.vote = proposal;
// If proposal is out of the range of the array,
// this will throw automatically and revert all
// changes.
proposals[proposal].voteCount += sender.weight;
}
/// @dev Computes the winning proposal taking all
/// previous votes into account.
function winningProposal() constant
returns (uint winningProposal)
{

uint winningVoteCount = 0;
for (uint p = 0; p < proposals.length; p++) {
if (proposals[p].voteCount > winningVoteCount) {
winningVoteCount = proposals[p].voteCount;
winningProposal = p;

}
1
// Calls winningProposal() function to get the index
// of the winner contained in the proposals array and then
// returns the name of the winner
function winnerName() constant

returns (bytes32 winnerName)

{

}

winnerName = proposals[winningProposal()].name;

17

Average Time (ms) Average Time (ms) Average Time (ms)

Average Time (ms)

Mean and Standard Deviation of Benchmark Running Times

Ballot
100 Serial = 100
Miner 66—
80 - Validator —=2— - 80
F 60
40
20
0
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)
SimpleAuction
100 Serial - 100
Miner —6—

80 - validator —2— - 80
60 - - 60
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)

EtherDoc
100 Serial - 100

Miner —6—

80 - Validator —2— - 80
60 - - 60
0 50 100 150 200 250 300 350 400
Number of Transactions (15% Conflict)

Mixed
100 Serial - 100

Miner —6—
80 - Validator —=2— - 80
60 - - 60
& 40
20
0

0 50 100 150 200 250 300 350 400

Number of Transactions (15% Conflict)

18

Average Time (ms) Average Time (ms) Average Time (ms)

Average Time (ms)

Ballot

100 Serial
Miner —6—

80 [validator —&—

60

40 F -1 40
ZM
20 P 20

0 1 1 1 1 0
0 0.2 0.4 0.6 0.8 1
Conflict Percentage (200 Transactions)

SimpleAuction
100 Serial - 100

Miner —6—
80 [validator —=&— - 80

0 I I I I 0
0 0.2 0.4 0.6 0.8 1
Conflict Percentage (200 Transactions)

EtherDoc
100 Serial - 100

Miner —6—
80 [validator —=&— - 80
60 - - 60

0 0.2 0.4 0.6 0.8

Conflict Percentage (200 Transactions)

Mixed
100 Serial - 100
Miner —6—
80 [Validator —=2— - 80
60 -1 60
40 -1 40
20 = 20
0 I I I I 0
0 0.2 0.4 0.6 0.8 1

Conflict Percentage (200 Transactions)

	1 Introduction
	2 Blockchains and Smart Contracts
	3 Speculative Smart Contracts
	4 Concurrent Validation
	5 Correctness
	6 Implementation
	6.1 Miners and Validators

	7 Experimental Evaluation
	7.1 Benchmarks
	7.2 Results
	7.3 Discussion

	8 Related Work
	9 Conclusion
	A Example Contract: Ballot
	B Mean and Standard Deviation of Benchmark Running Times

