


scientifically relevant image observations, given a predefined

model, and schedule more detailed observations with other

sensors. However, these algorithms required domain-specific

feature engineering and lacked spatial observation models, so

the adaptive path planning was limited to moving the robot

closer to a target that had already been detected. At the other

extreme, “curious” robots use a generic unsupervised vision

model and autonomously move towards anything in their

environment that is surprising or novel to the model [14];

the lack of operator input makes it impossible to directly

specify particular scientific objectives using this approach.

Our work is closely related to the work of Arora et al. [15],

which modeled operator’s domain knowledge with a pre-

defined Bayesian Network (BN) that was used by the robot

to estimate the reward for a trajectory. They introduced a

spatial observation model in the system, enabling informative

path planning using Monte-Carlo Tree Search (MCTS) to

explore an action tree composed of movement and sensing

actions [15]. Their approach requires the operator to specify

the domain-specific BN a priori, and has limited utility as

a general purpose exploration tool that can be deployed in

unknown environments. In contrast, our solution learns the

reward model online, and hence allows the robot to deal with

unexpected observations efficiently during exploration.

Active learning algorithms interactively query an oracle

to produce samples in the training set, such that the model

can be trained with far fewer labeled examples than would

normally be required [16]. Active reward learning algorithms

have efficiently learned reward models representing human

ratings or preferences for robot behaviours by making on

the order of 10-100 reward queries [17], [18]. Doshi-Velez

et al. [19] considered a query to be an action that could be

taken if it helped the robot to gain additional reward. This

is online active learning and our approach is most related to

theirs with the main difference that we use reward queries to

learn a mapping from observations to reward, whereas [19]

used policy queries to learn optimal actions directly.

Due to the high-dimensionality of natural images, even

with active learning, it can take hundreds of queries to learn

a reward model [20]. In bandwidth limited environments

such as the deep sea, sending that many images for labelling

during the span of a mission is not feasible. Deep features are

relatively low-dimensional representations of images which

are very helpful for learning new classification tasks with

few examples [21], [22]. Topic models, especially when

combined with deep features, can be used to provide a low-

dimensional semantic representation of the visual environ-

ment [23]. Our proposed POMDP approach leverages both

active learning and low-dimensional image representations

to enable interactive visual exploration over low bandwidth.

III. THE CO-ROBOTIC VISUAL EXPLORATION POMDP

We present the co-robotic visual exploration problem as

a POMDP. We model the state of the robot at time t as

St = (Xt, Yt, Lt). Xt = {(xi, Ii)}
t

i=1 is the sequence of

locations the robot has visited, with corresponding image

observations, where the current location is xt ∈ R
3 and the

latest observation is the image It ∈ O. Lt is the set of indices

of images sent to and labeled by the operator. Yt contains the

reward labels for all images, including those that have not

been sent; most of these are unknown, making the robot’s

state partially observable.

The partial observability comes from the robot’s limited

ability to query the operator during a mission; in bandwidth

constrained environments the robot sends images at a much

slower rate than it collects them, so it must decide which

labels to observe. We assume that only the operator can

evaluate the unknown, but deterministic, binary “interest”

function I (I) such that (Yt)i = I (Ii). Further, it is as-

sumed that the operator cannot express their interest function

analytically (otherwise it would be computed onboard the

robot), and would instead train an approximate model based

on their labels for various example images. However, since

exploration typically occurs in remote and unstudied envi-

ronments, the operator does not have a fully representative

dataset of what the robot will observe and is unable to

provide the robot with a complete model of I (·) a priori.

The entire POMDP is characterized by the tuple

(S,A,O, T, O,R, γ, b0):

Component Definition Our Assumptions

S State space of the robot S = (X,Y, L)

A Discrete set of robot ac-
tions

Motion primitives2

O Observation space Natural images
and binary labels

T Transition function S ×A 7→ S

O Observation model S ×A 7→ O

R Reward model S ×A× O 7→ R

γ Discount factor γ ∈ [0, 1]
b0 Initial belief state Initial location x0

Given these specifications, it is typical for the robot to

use an online POMDP planner to approximate an optimal

policy π⋆ : S 7→ A in real-time. Algorithm 1 presents our

approach to co-robotic exploration based on the assumptions

listed above.

There are three key decisions to fully specify the co-

robotic visual exploration POMDP that we will consider.

The first is defining an observation model over the space

of natural images. The second is defining a reward model,

and the third is choosing an effective active learning strategy.

A. Spatial Observation Model for Images

A spatial observation model is required for adaptive path

planning because the robot’s reward is determined by what it

observes, so to evaluate a candidate trajectory the robot must

predict what it will observe along that trajectory. This should

be possible because the semantic contents of natural images,

such as terrain types and species present, often have strong

spatial correlation [23], [24]. However, these correlations are

hard to model in the pixel space, where even nearly identical

images can be made distant by effects like sensor noise

2Querying the operator is often modelled (e.g., in [19]) as another action
in A with some cost of communication, such as energy usage, included in
the reward model. For simplicity, we assume this cost is negligible and that
the robot performs queries concurrently with other actions.
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Algorithm 1: Co-Robotic Exploration

1 Given: (S,A,O, T,O, R, γ,x0), tmax

2 X0 ← ∅ // Stores the path and observations

3 τ ← {x0} // The current trajectory plan

4 q ← null // Index of next observation to label

5 t← 1 // The current timestep

6 while t < tmax:

7 xt ← NEXT STEP(τ )
8 It ← OBSERVE(xt)

9 Xt ← Xt−1 ∪ {xt, It}
10 O ← UPDATE OBSERVATION MODEL(O, Xt)

11 if LABEL READY(Iq)

12 yq ← QUERY RESULT(Iq)

13 Yt ← Yt−1 ∪ {Iq, yq}
14 R← UPDATE REWARD MODEL(R, Yt)

15 q ← null

16 endif

17 τ ← PLAN TRAJECTORY(Xt,S,A, T,O, R, γ)

18 if q = null

19 q ← QUERY SELECTOR(Xt,O, R)

20 REQUEST LABEL(Iq)

21 endif

22 t← t+ 1

Algorithm 2: PLAN TRAJECTORY

1 Input: Xt,S,A, T,O, R, γ

2 Given: n // Number of trajectories to test

3 T ← GENERATE TRAJECTORIES(Xt,S,A, T, n)

4 for i = 1, . . . , n:

5 si ← SCORE TRAJECTORY(T (i), O,R, γ)

6 τ ← T (argmaxi si)
7 return τ

and slight changes in illumination [25]. Further, due to the

high dimensionality of the image space, there are no spatial

models with which it is computationally tractable to predict

the image that would be observed in an unvisited location.

To overcome these challenges, the robot computes seman-

tic representations of images in the space Z , which is low-

dimensional compared to the space of natural images O.

The robot builds a spatial observation model over semantic

representations, denoted as Zt (x) : R
3 7→ Z , trained using

the observations Xt = {(xi, Ii)}
t
i=1 and the semantic feature

extractor z (I) : O 7→ Z . This approach requires that

the semantic representations of two images z (I1) , z (I2)
are similar (typically measured by Euclidean distance) if

and only if the human-perceived similarity of I1 and I2 is

high. Semantic representations derived from computer vision

models developed for unsupervised natural image clustering,

such as deep feature extractors [22], [25] and spatial topic

models (STMs) [26], [27] have this property.

STMs such as BNP-ROST [28], [29] are a strong class

of candidates for the spatial observation model because

the priors they use to represent the spatial distributions

of topics are smooth (spatially correlated) and the topic

distributions they use to represent images have low dimen-

sionality. The low-dimensionality of these representations is

a critical requirement for learning the reward function from

few examples; this is much more challenging with higher

dimensional representations such as deep features [25].

B. Learning a Reward Model Online over Low Bandwidth

We define the robot’s reward to be the total number of

unique and interesting observations it has collected

R (Xt) =

t
∑

i=1

I (Ii) =

t
∑

i=1

(Yt)i . (1)

This can only be computed after the operator sees all images

(i.e., after the mission). Since the robot models observations

in the semantic space Z , trajectory planning requires it

to estimate the reward as a function of the semantic field

Zt (x). For this, the robot learns a model gθ : Z 7→ [0, 1]

R (x) ≈ g (Zt (x) ; θ) , (2)

where θ is a set of parameters for the model family. Recall

that Lt is the set of labeled image indices at time t, and

let Dt = {(Ii, (Yt)i)}i∈Lt
be the corresponding training set.

We choose θ to minimize the cross-entropy loss L on Dt,

resulting in the final reward model

R (x;Dt) ≈ g
(

Z (x) ; θ⋆Dt

)

(3)

θ⋆Dt
= argmin

θ

∑

(I,y)∈Dt

L (y, g (z (I) ; θ)) . (4)

The number of labeled examples that a model must be

trained on in order to generalize well is proportional to the

sample complexity of the model family [30], and for simple

models (e.g., logistic regression) the sample complexity is

typically linear in the number of input dimensions [31]. Thus,

it is desirable to jointly pick a semantic representation and

a model gθ such that the total number of examples required

to train gθ is less than the number of examples that can be

labelled during the mission. This further motivates the use of

BNP-ROST [29] as the semantic feature extractor, since the

dimensionality of its semantic representation grows as log t,
logarithmic in the number of images t, while the number

of labelled images grows linearly at t
n

, where n ≥ 1 is

set by the bandwidth constraint. Thus, when using BNP-

ROST in combination with a simple reward model, then the

training process for gθ is expected to quickly converge to

good parameters θ, even with few training examples.

C. Query Selection for Low Bandwidth Reward Learning

When the robot observes novel phenomena, it needs to

query the operator’s interest in collecting more observations

of the phenomena. The only type of query the robot can

perform in an unknown environment is sending an image

to the operator and receiving an interest label in return; the

operator cannot determine their interest in an image from the

image’s semantic representation, and does not have access to

enough information to advise the robot on the optimal policy.

This is a unique challenge for active learning.
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IV. ONLINE ACTIVE REWARD LEARNING FOR POMDPS

Here we will consider active learning strategies to learn

the parameters of a POMDP reward model online. We denote

the set of unlabelled image indices at time t as Ut, and the

active learning metric as h (z), such that the next image to

request a label for is chosen as

i⋆ = argmax
i∈Ut

h (z (Ii)) . (5)

A. Non-Adaptive Query Selection

The simplest approaches to selecting images to be labelled

do not depend on z, and thus are good baselines to consider.

Random selection chooses unlabelled observations uniformly

at random. Uniform selection instead chooses every nth

image, where n is determined by the bandwidth constraint.

B. Informative Query Selection

Informative query selection involves defining some un-

certainty metric on the model, and choosing to label the

observation which results in the greatest reduction of un-

certainty. There are many query selection strategies that fall

into this category and are effective at learning a function

in few examples [32]. A common uncertainty metric for

classification problems is entropy, where the highest entropy

values occur when an observation is on a decision boundary.

A widely-used approach to informative query selection is

“uncertainty sampling”, which typically means picking the

observation with the maximum entropy [32]

hEntropy

(

z; θ⋆Dt

)

= H
[

g
(

z; θ⋆Dt

)]

. (6)

An issue with uncertainty sampling is that labeling the most

uncertain observation might not have much effect on the

model parameters θ – if the model parameters do not change,

then the model performance does not increase. This suggests

maximizing “error reduction” [32] instead

hInfo (z) = hEntropy

(

z; θ⋆Dt

)

− ED′

t
|Dt

[

hEntropy

(

z; θ⋆D′

t

)]

(7)

D′
t = Dt ∪ (z, y)

p(D′
t | Dt) ≈ g(z; θ⋆Dt

).

This Information Gain query selection method prioritizes

labeling an observation by how much a new label y is

expected to reduce the entropy of similar future observations.

This should maximize the rate at which entropy is reduced

and thus the rate at which the reward function is learned.

C. Regret Minimizing Query Selection

Here we introduce a novel Regret minimizing query se-

lector that focuses on identifying labels that maximize the

expected reward collected during the mission, rather than

information gained about the reward function. Regret is

typically defined for POMDPs as the difference in utility

between the chosen action and the true optimal action

based on complete information. To our knowledge, this is

the first work that compares a regret-based heuristic with

information-theoretic heuristics in online active learning.

Suppose that the robot is considering a finite set of

trajectories T = {τi}
Nτ

i=1: it uses the observation model to

predict what it will observe along each trajectory τ , predicts

each trajectory’s reward, and finally chooses the one with the

highest reward (see Algorithm 2). However, given limited

training data, the robot has significant uncertainty in the

predicted rewards and thus is unlikely to have chosen the

true optimal trajectory. This motivates a question for each

unlabeled image: if this image were labeled, would the robot

have chosen a different trajectory? If the answer is yes, then

it must mean that, given this additional label, a different

trajectory would be predicted to have greater reward and

thus the robot would “regret” not knowing the label. If it is

no, then the robot would have no immediate regret for not

knowing it. We formalize this in the following objective:

hRegret (z) = ED′

t
|Dt

[

R(τ⋆D′

t

;D′
t)−R(τ⋆Dt

;D′
t)
]

(8)

R(τ ;Dt) =
∑

x∈τ

g(Z(x); θ⋆Dt
) (9)

τ⋆D = argmax
τ∈T

R(τ ;D) (10)

Equation 8 may be interpreted as the expected reward in-

crease (regret decrease) given a label for z. An approach to

computing hRegret is presented in Algorithms 3 and 4.

Algorithm 3: Regret-Based Query Selection

1 Given: Xt,S,A, T,O, R, γ

2 Input: Ut // Set of unlabeled image indices

3 τ0 ← PLAN TRAJECTORY(Xt,S,A, T,O, R, γ)

4 foreach i ∈ Ut:
5 z ← SEMANTIC REPRESENTATION(Ii)

6 ypred ← PREDICT REWARD(z)

7 r0 ← COMPUTE REGRET(τ0, z, 0)

8 r1 ← COMPUTE REGRET(τ0, z, 1)

9 regreti ← ypredr1 + (1− ypred) r0
10 return argmaxi∈Ut

regreti

Algorithm 4: COMPUTE REGRET

1 Given: Xt,S,A, T,O, R, γ

2 Input: τ0, z, y // Reference trajectory,

observation to label, and temporary label

3 ADD TEMPORARY LABEL(O, z, y)

4 τ⋆ ← PLAN TRAJECTORY(Xt,S,A, T,O, R, γ)

5 s⋆ ← SCORE TRAJECTORY(τ⋆,O, R, γ)

6 s0 ← SCORE TRAJECTORY(τ0,O, R, γ)

7 REMOVE TEMPORARY LABEL(O, z)

8 return (s⋆ − s0) // Regret given the temp label

V. EXPERIMENTS

We evaluate the proposed query selection techniques

through two experiments, each simulating the co-robotic

exploration task with various bandwidth constraints. The first
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