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Active Reward Learning for Co-Robotic Vision Based Exploration in
Bandwidth Limited Environments
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Abstract— We present a novel POMDP problem formulation
for a robot that must autonomously decide where to go to
collect new and scientifically relevant images given a limited
ability to communicate with its human operator. From this
formulation we derive constraints and design principles for the
observation model, reward model, and communication strategy
of such a robot, exploring techniques to deal with the very high-
dimensional observation space and scarcity of relevant training
data. We introduce a novel active reward learning strategy
based on making queries to help the robot minimize path
“regret” online, and evaluate it for suitability in autonomous
visual exploration through simulations. We demonstrate that, in
some bandwidth-limited environments, this novel regret-based
criterion enables the robotic explorer to collect up to 17 % more
reward per mission than the next-best criterion.

I. INTRODUCTION

Images of exotic biological and geological phenomena
from remote and dangerous locations have tremendous sci-
entific value but are extraordinarily challenging and costly
to collect. Robots have been at the forefront of collecting
visual scientific observations in such environments, which
include Mars [1], deep space [2], the Earth’s oceans [3]-[5],
and under Arctic ice sheets [6]. Communication bandwidth
constraints are perhaps the biggest bottleneck to exploration
in these remote environments [7], [8]. As such, common
current approaches to autonomous exploration are to either
deploy the vehicles on a predefined path or to deploy them
with adaptive path plans based on tracking low-dimensional
observations from some other sensor. This paper proposes a
novel approach to vision-guided exploration using a human-
robot team that is effective even in the presence of strong
bandwidth constraints such as those imposed by acoustic
underwater communications [7].

Most recent progress towards increasing the science return
of autonomous exploration missions has been made through
enabling “opportunistic science”! as well as addressing chal-
lenges in navigation, task planning and scheduling autonomy
[9]-[11]. The progress in adaptive sampling and exploration
algorithms for robots has primarily focused on observing
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Fig. 1: Proposed approach to co-robotic exploration that
models the interest of the operator over a low bandwidth
communication channel and uses the learned reward model
to plan the most rewarding (in terms of interest) robot paths.
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spatially-varying scalar quantities, such as temperature [12],
[13]. To reach a future of efficient robotic explorers in remote
environments, robots will need to autonomously: recognize
visual phenomena that might be scientifically interesting,
transmit images of them to scientists for clarification as
needed, model where more of them might be found, and
plan a trajectory accordingly (Figure 1).

The primary contributions of this work are a partially
observable Markov decision process (POMDP) formulation
for vision-based scientific exploration and a solution that is
generalizable to many environments. Note that we explicitly
constrain the focus of this work to dealing with high-
dimensional observation spaces when solving the POMDP.
The proposed exploration approach uses the limited com-
munication bandwidth to query the operator for the value
of representative images and uses the responses to learn
an interest function that informs the robot about the value
of an exploration path. The proposed approach is suitable
for deployment in completely unknown environments, and
it can use (but does not require) prior knowledge about
the environment and the phenomena being observed. Our
final contribution is an analysis and comparison of active
learning decision criteria that a robot could use for deciding
which observations to send to the operator. That analysis
is supported by simulations of a scientific exploration task
using both real and artificial data.

II. RELATED WORK

This work contributes to the field of autonomous science;
previous works in this area include AEGIS [1] and OASIS
[11], which enabled robots to opportunistically recognize
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scientifically relevant image observations, given a predefined
model, and schedule more detailed observations with other
sensors. However, these algorithms required domain-specific
feature engineering and lacked spatial observation models, so
the adaptive path planning was limited to moving the robot
closer to a target that had already been detected. At the other
extreme, “curious” robots use a generic unsupervised vision
model and autonomously move towards anything in their
environment that is surprising or novel to the model [14];
the lack of operator input makes it impossible to directly
specify particular scientific objectives using this approach.

Our work is closely related to the work of Arora et al. [15],
which modeled operator’s domain knowledge with a pre-
defined Bayesian Network (BN) that was used by the robot
to estimate the reward for a trajectory. They introduced a
spatial observation model in the system, enabling informative
path planning using Monte-Carlo Tree Search (MCTS) to
explore an action tree composed of movement and sensing
actions [15]. Their approach requires the operator to specify
the domain-specific BN a priori, and has limited utility as
a general purpose exploration tool that can be deployed in
unknown environments. In contrast, our solution learns the
reward model online, and hence allows the robot to deal with
unexpected observations efficiently during exploration.

Active learning algorithms interactively query an oracle
to produce samples in the training set, such that the model
can be trained with far fewer labeled examples than would
normally be required [16]. Active reward learning algorithms
have efficiently learned reward models representing human
ratings or preferences for robot behaviours by making on
the order of 10-100 reward queries [17], [18]. Doshi-Velez
et al. [19] considered a query to be an action that could be
taken if it helped the robot to gain additional reward. This
is online active learning and our approach is most related to
theirs with the main difference that we use reward queries to
learn a mapping from observations to reward, whereas [19]
used policy queries to learn optimal actions directly.

Due to the high-dimensionality of natural images, even
with active learning, it can take hundreds of queries to learn
a reward model [20]. In bandwidth limited environments
such as the deep sea, sending that many images for labelling
during the span of a mission is not feasible. Deep features are
relatively low-dimensional representations of images which
are very helpful for learning new classification tasks with
few examples [21], [22]. Topic models, especially when
combined with deep features, can be used to provide a low-
dimensional semantic representation of the visual environ-
ment [23]. Our proposed POMDP approach leverages both
active learning and low-dimensional image representations
to enable interactive visual exploration over low bandwidth.

III. THE Co-ROBOTIC VISUAL EXPLORATION POMDP

We present the co-robotic visual exploration problem as
a POMDP. We model the state of the robot at time ¢ as
Sy = (X4, Yy, Ly). Xp = {(wi,Ii)}Zzl is the sequence of
locations the robot has visited, with corresponding image
observations, where the current location is «; € R3 and the

latest observation is the image I; € Q. L; is the set of indices
of images sent to and labeled by the operator. Y; contains the
reward labels for all images, including those that have not
been sent; most of these are unknown, making the robot’s
state partially observable.

The partial observability comes from the robot’s limited
ability to query the operator during a mission; in bandwidth
constrained environments the robot sends images at a much
slower rate than it collects them, so it must decide which
labels to observe. We assume that only the operator can
evaluate the unknown, but deterministic, binary “interest”
function Z (I) such that (Y;), = Z (;). Further, it is as-
sumed that the operator cannot express their interest function
analytically (otherwise it would be computed onboard the
robot), and would instead train an approximate model based
on their labels for various example images. However, since
exploration typically occurs in remote and unstudied envi-
ronments, the operator does not have a fully representative
dataset of what the robot will observe and is unable to
provide the robot with a complete model of Z (-) a priori.

The entire POMDP is characterized by the tuple
(87 Aa @)a Ta O» Ra s bO):

[ Component | Definition

Our Assumptions |

S State space of the robot S=(X,Y,L)

A Discrete set of robot ac- | Motion primitives”
tions

[@) Observation space Natural images

and binary labels

T Transition function SXxA—S

[@) Observation model SxA—O

R Reward model SXAXxO—R

v Discount factor ~ €1]0,1]

bo

Initial belief state Initial location xg

Given these specifications, it is typical for the robot to
use an online POMDP planner to approximate an optimal
policy 7* : § — A in real-time. Algorithm 1 presents our
approach to co-robotic exploration based on the assumptions
listed above.

There are three key decisions to fully specify the co-
robotic visual exploration POMDP that we will consider.
The first is defining an observation model over the space
of natural images. The second is defining a reward model,
and the third is choosing an effective active learning strategy.

A. Spatial Observation Model for Images

A spatial observation model is required for adaptive path
planning because the robot’s reward is determined by what it
observes, so to evaluate a candidate trajectory the robot must
predict what it will observe along that trajectory. This should
be possible because the semantic contents of natural images,
such as terrain types and species present, often have strong
spatial correlation [23], [24]. However, these correlations are
hard to model in the pixel space, where even nearly identical
images can be made distant by effects like sensor noise

2Querying the operator is often modelled (e.g., in [19]) as another action
in A with some cost of communication, such as energy usage, included in
the reward model. For simplicity, we assume this cost is negligible and that
the robot performs queries concurrently with other actions.
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Algorithm 1: Co-Robotic Exploration

1 Given: (S, A4,0,T,0,R,~,x0), tmax
2 Xg+— O
317+ {xo}
4 ¢+ null // Index of next observation to label
5t 1

6 while ¢ < tax:

7 @ + NEXT_STEP(T)
8 I; < OBSERVE(x;)

9 Xt (—Xt,lu{a:hft}
10 O < UPDATE_OBSERVATION_MODEL(O, X;)
11 if LABEL_READY(/,)

// Stores the path and observations

// The current trajectory plan

// The current timestep

12 Yq < QUERY_RESULT(I,)

13 Y, « Y1 U{l,,yq}

14 R < UPDATE_REWARD_MODEL(R, Y;)
15 q < null

16 endif

17 7 < PLAN_TRAJECTORY(X;,S, A, T,0, R,~)
18 if ¢ = null

19 q <+ QUERY_SELECTOR(X;, O, R)
20 REQUEST_LABEL(])
21 endif

22 t+—t+1

Algorithm 2: PLAN_TRAJECTORY
1 Input: X;, S, A, T,0,R,~

2 Given: n
3 T < GENERATE_TRAJECTORIES(X;,S, A,T,n)
g4 fori=1,...,n:

5 | s < SCORE_-TRAJIECTORY(T (i),0, R,7)

6 T < T(argmax; s;)

7 return T

// Number of trajectories to test

and slight changes in illumination [25]. Further, due to the
high dimensionality of the image space, there are no spatial
models with which it is computationally tractable to predict
the image that would be observed in an unvisited location.

To overcome these challenges, the robot computes seman-
tic representations of images in the space Z, which is low-
dimensional compared to the space of natural images Q.
The robot builds a spatial observation model over semantic
representations, denoted as Z; (x) : R3 +— Z, trained using
the observations X; = {(z;, ;) }!_; and the semantic feature
extractor z (I) : @ — Z. This approach requires that
the semantic representations of two images z(I1),z (I2)
are similar (typically measured by Euclidean distance) if
and only if the human-perceived similarity of I; and I5 is
high. Semantic representations derived from computer vision
models developed for unsupervised natural image clustering,
such as deep feature extractors [22], [25] and spatial topic
models (STMs) [26], [27] have this property.

STMs such as BNP-ROST [28], [29] are a strong class
of candidates for the spatial observation model because
the priors they use to represent the spatial distributions

of topics are smooth (spatially correlated) and the topic
distributions they use to represent images have low dimen-
sionality. The low-dimensionality of these representations is
a critical requirement for learning the reward function from
few examples; this is much more challenging with higher
dimensional representations such as deep features [25].

B. Learning a Reward Model Online over Low Bandwidth

We define the robot’s reward to be the total number of
unique and interesting observations it has collected
t t
R(X) =) T(L)=>Y_ (V). )
i=1 i=1
This can only be computed after the operator sees all images
(i.e., after the mission). Since the robot models observations
in the semantic space Z, trajectory planning requires it
to estimate the reward as a function of the semantic field
Z, (x). For this, the robot learns a model gg : Z — [0, 1]

R(x)~g(Z:(2);0), 2

where 6 is a set of parameters for the model family. Recall
that L; is the set of labeled image indices at time ¢, and
let D; = {(1;, (Y?);) }icr, be the corresponding training set.
We choose 6 to minimize the cross-entropy loss £ on Dy,
resulting in the final reward model

R(x;D;) =~ g (Z (x);0p,) 3)
b =argmin > L(y,g(z(1);0). @)
0 (I,y)eD;

The number of labeled examples that a model must be
trained on in order to generalize well is proportional to the
sample complexity of the model family [30], and for simple
models (e.g., logistic regression) the sample complexity is
typically linear in the number of input dimensions [31]. Thus,
it is desirable to jointly pick a semantic representation and
a model gy such that the total number of examples required
to train gy is less than the number of examples that can be
labelled during the mission. This further motivates the use of
BNP-ROST [29] as the semantic feature extractor, since the
dimensionality of its semantic representation grows as logt,
logarithmic in the number of images ¢, while the number
of labelled images grows linearly at %, where n > 1 is
set by the bandwidth constraint. Thus, when using BNP-
ROST in combination with a simple reward model, then the
training process for gy is expected to quickly converge to
good parameters 6, even with few training examples.

C. Query Selection for Low Bandwidth Reward Learning

When the robot observes novel phenomena, it needs to
query the operator’s interest in collecting more observations
of the phenomena. The only type of query the robot can
perform in an unknown environment is sending an image
to the operator and receiving an interest label in return; the
operator cannot determine their interest in an image from the
image’s semantic representation, and does not have access to
enough information to advise the robot on the optimal policy.
This is a unique challenge for active learning.
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IV. ONLINE ACTIVE REWARD LEARNING FOR POMDPSs

Here we will consider active learning strategies to learn
the parameters of a POMDP reward model online. We denote
the set of unlabelled image indices at time ¢ as U/, and the
active learning metric as h (z), such that the next image to
request a label for is chosen as

i* = argmaxh (z (I;)) . (5)
1€U
A. Non-Adaptive Query Selection

The simplest approaches to selecting images to be labelled
do not depend on z, and thus are good baselines to consider.
Random selection chooses unlabelled observations uniformly
at random. Uniform selection instead chooses every n'f
image, where n is determined by the bandwidth constraint.

B. Informative Query Selection

Informative query selection involves defining some un-
certainty metric on the model, and choosing to label the
observation which results in the greatest reduction of un-
certainty. There are many query selection strategies that fall
into this category and are effective at learning a function
in few examples [32]. A common uncertainty metric for
classification problems is entropy, where the highest entropy
values occur when an observation is on a decision boundary.
A widely-used approach to informative query selection is
“uncertainty sampling”, which typically means picking the
observation with the maximum entropy [32]

henvopy (23 05,) = H [g (2:05,)] - (6)

An issue with uncertainty sampling is that labeling the most
uncertain observation might not have much effect on the
model parameters 6 — if the model parameters do not change,
then the model performance does not increase. This suggests
maximizing “error reduction” [32] instead

hino (2) = henwopy (25 05,) — Epiip, [hEnuopy (Z; 973;)}
@)
Di =D, U (z,y)
p(D; | Dy) =~ g(z;0p,)-

This Information Gain query selection method prioritizes
labeling an observation by how much a new label y is
expected to reduce the entropy of similar future observations.
This should maximize the rate at which entropy is reduced
and thus the rate at which the reward function is learned.

C. Regret Minimizing Query Selection

Here we introduce a novel Regret minimizing query se-
lector that focuses on identifying labels that maximize the
expected reward collected during the mission, rather than
information gained about the reward function. Regret is
typically defined for POMDPs as the difference in utility
between the chosen action and the true optimal action
based on complete information. To our knowledge, this is
the first work that compares a regret-based heuristic with
information-theoretic heuristics in online active learning.

Suppose that the robot is considering a finite set of
trajectories 7 = {7;}27,: it uses the observation model to
predict what it will observe along each trajectory 7, predicts
each trajectory’s reward, and finally chooses the one with the
highest reward (see Algorithm 2). However, given limited
training data, the robot has significant uncertainty in the
predicted rewards and thus is unlikely to have chosen the
true optimal trajectory. This motivates a question for each
unlabeled image: if this image were labeled, would the robot
have chosen a different trajectory? If the answer is yes, then
it must mean that, given this additional label, a different
trajectory would be predicted to have greater reward and
thus the robot would “regret” not knowing the label. If it is
no, then the robot would have no immediate regret for not
knowing it. We formalize this in the following objective:

hRegret (Z) = ED£|D1, [R(TBQDQ) - R(Tl*)t; Dzlt):| (8)

R(r;Dy) =Y 9(Z(x); 60p,) ©)
TeET
75, = argmax R(7; D) (10)
TET

Equation 8 may be interpreted as the expected reward in-
crease (regret decrease) given a label for z. An approach to
computing hregret 1S presented in Algorithms 3 and 4.

Algorithm 3: Regret-Based Query Selection

1 Given: X;, S, A, T,0O,R,~

2 Input: U, // Set of unlabeled image indices
3 79 < PLAN_TRAJECTORY(X;,S, A, T, O, R,~)

4 foreach i € U,:

5 2z < SEMANTIC_REPRESENTATION(/;)

6 Ypred < PREDICT_REWARD(2)

7 ro < COMPUTE_REGRET(7y, 2z, 0)

8 r1 < COMPUTE_REGRET(7y, 2z, 1)

9 regret; < Ypred”1 + (1 — Yprea) 70

10 return argmax;,.;,, regret;

Algorithm 4: COMPUTE_REGRET

1 Given: X, S, A, T,0,R,~

2 Input: 79, 2,y
observation to label, and temporary label

ADD_TEMPORARY _LABEL(O, z, )

7* < PLAN_TRAJECTORY(X,;,S, A, T, O, R,~)

s* < SCORE_TRAJECTORY(7*, O, R, )

so < SCORE_TRAJECTORY(7y, O, R,7)

REMOVE_TEMPORARY_LABEL(O, 2)

return (S* — So) // Regret given the temp label

// Reference trajectory,

e N N e W

V. EXPERIMENTS

We evaluate the proposed query selection techniques
through two experiments, each simulating the co-robotic
exploration task with various bandwidth constraints. The first
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(a) Top: A topic map where each location is described  (b) Best viewed on a screen. Sample trajectories followed by robots starting at
by the semantic representation z(*%) € A8, The color  the center of the map in (a) with different query selectors. Along each trajectory,

of each pixel indicates the largest component of z(#),  red-orange pixels correspond to no reward, and blue pixels to reward. Bright
Bottom: The reward at each location is randomly sam-  orange/blue pixels represent observations for which the query selector requested
pled as R ~ Bernoulli(p” 2(»7)), where p € [0,1]*  the label. The greyscale background intensities represent g(Z(x); 0): reward
represents how “interesting” each component of z is. ~ €stimates of observations at each location, based on all labeled samples. Query
Here, the pink and black topics are most interesting. Selectors: (top row) Random, Uniform; (bottom row) Info Gain, Regret.

Simulation Results
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(c) A comparison of the query selector performance for different bandwidth availability; the x-axis represents labeling period (time between
making a call to REQUEST_LABEL and LABEL_READY returning true in Algorithm 1), which is inversely proportional to bandwidth.
Each datapoint represents the mean of 1080 simulations (36 trials on 30 unique maps) and bars represent the 68% confidence bound of
the mean. Top: The mean amount of reward collected by each robot per unit time (higher is better). Lawnmower is not a query selector,
but rather represents the mean reward collected by 8 preplanned boustrophedonic trajectories [33] that each start at the center of the map
and move towards a corner. Bottom: The mean cross-entropy loss between the ground truth interest maps, as in (a), and the corresponding
robots’ predictions of the reward at each location, as in (b), at the end of each simulation (lower is better).

Fig. 2: Stages of the simulation procedure, and performance comparison of the query selectors on fully simulated data.
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Fig. 3: Left: A crop of the KAH_2016_3 photomosaic im-
age from the 100 Islands Challenge [34], showing a coral
reef near Kaho’olawe. Center: The photomosaic annotations
where each color represents an expert label [34]. Right: One
of 30 unique interest maps generated (cf. Figure 2a).

experiment (see Figure 2) used 30 artificial “topic maps”
(cf. [28]) created by randomly generating Voronoi partitions
of a 100x100 image, assigning each cell a topic label, and
then assigning each pixel’s topic distribution as a distance-
weighted mean over cell labels. This produced continuous
topic maps with topics in varying concentrations, and each
one was associated with a unique interest map (see Figure
2a). In the second experiment, a single topic map was derived
from the expert annotations of an actual coral reef image, and
30 interest maps were generated for it (see Figure 3). The
procedure for both experiments was:

1) Generate a map of topic distributions z(x) € A¢
which represent the observations at each location x;

2) Generate an interest profile p € [0, 1]¢ so that p = p 2
is the probability that the operator is interested in an
observation with feature representation z;

3) Generate a binary “interest map” by sampling R(x) ~
Bernoulli(p(z(x)) at each location x in the topic map;

4) For each bandwidth limitation and each query selection
algorithm: perform 36 rollouts of algorithm 1 for a
simulated robot making reward queries according to
the bandwidth limitation and query selector

Each rollout in step (4) had a duration of 300 timesteps;
robot movement was one pixel per timestep and bandwidth
constraints were simulated by changing the number of
timesteps for a label to be received after being requested.
State transitions and observations were deterministic and
noiseless. The robot started with no training data and used lo-
gistic regression (from [35]) as its reward model. Trajectories
were generated by randomly sampling sequences of 5 motion
primitives.? 50 trajectories were generated at each timestep
and scored using the sum of the predicted rewards along the
trajectory, less the scores of locations already visited. The
highest scoring trajectory was followed.

VI. RESULTS & DISCUSSION

We compared the Random, Uniform, Information Gain,
and Regret query selectors described in Section IV over a
total of 69120 simulations; the mean reward collection rates
and interest map prediction losses for each experiment are

3The primitives were 13 straight lines, each 5 units long and at angles
spaced uniformly between -135° to 135° from the robot’s current direction.

KAH_2016_3 Simulation Results
0.200
0.175

0.150

Reward Collection Rate
o o
S
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é 0.28 Query Selector
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Timesteps Between Queries

Fig. 4: The Regret query selector continues to outperform
the other active learning heuristics when the topic map is
derived from a real image (see Figure 3).

presented in Figures 2c and 4. The Regret query selector
matches, or outperforms, every other selection criterion at
collecting reward, at any bandwidth availability, in these
simulation configurations. The relative gains of non-random
query selection are smaller when the time between queries
is short (high-bandwidth) and thus almost every image is
labeled, or when it is so long (low-bandwidth) that the robot
barely learns anything before the mission ends. The results
also demonstrate the vast improvement of autonomous ex-
ploration over preplanned trajectories: the adaptive planners
collected up to 29.7% more reward at very low bandwidth,
and up to 230% more reward at high bandwidth.

The regret-based method did not learn the reward function
as well as the information gain query selector, based on its
higher map log-loss. This exemplifies the difference in the
design criteria: the information theoretic criterion focuses on
useful labels for learning a function, which is appropriate
for active reward learning offfine, during training. The regret
criterion instead optimizes for the robot’s reward, making
it better suited for online active reward learning, which
describes our usage of queries during a live mission.

VII. CONCLUSIONS AND FUTURE WORK

The Co-Robotic Visual Exploration POMDP provides a
structured approach to managing human-robot collaboration
and high-dimensional observation spaces in autonomous
science. We provide general principles for choosing the
POMDP’s observation model, reward model, and active
learning criterion, and demonstrate that the novel Regret-
based active learning criterion can greatly improve the
amount of reward collected. Some next steps are: exploring
spatial observation models capable of longer-range topic
prediction (e.g. [36]), extending the reward model and ac-
tive learning formulation to non-binary rewards, and using
higher-fidelity simulations and field deployments to better
understand the performance increases that can be achieved
in real-world autonomous exploration.
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