


observations. But these models do not provide smoothly

varying probability distribution estimates at arbitrary loca-

tions in space and time, which are needed for BO based

IPP. Thus, there is a need for a spatio-temporal model of the

distribution of high-dimensional categorical data compatible

with IPP.

In this paper, we introduce the Gaussian-Dirichlet Random

Field (GDRF), a hierarchical generative topic model for the

spatial distribution of categorical observations. As shown

in fig. 1, GDRFs factor the probability distribution over

observation categories w into conditional distributions for

w given a latent topic z, and conditional distributions of the

latent topics given the observation’s location x:

P (w|x) =
∑

z

P (w|z)P (z|x) (1)

Since w and z are both categorical random variables, (1) re-

mains unusable for IPP. Therefore, we further factor P (z|x)
by introducing a latent Gaussian random field µi for each

topic, normalized to a distribution via a link function fi:

P (zi|x) = fi(µ1(x), . . . , µK(x)) (2)

To learn the word-topic model and the latent µi, we combine

Gibbs sampling with variational inference. An immediate

consequence of our choice of factorization is that the topics

in a GDRF model are scientifically meaningful in that they

capture the latent spatiotemporal structures relating different

observation categories.

II. RELATED WORK

Latent Dirichlet Allocation (LDA), introduced in [24] is

a topic model [25] originally designed for text documents.

LDA models the relationships between words and documents

using a set of latent topics that are linked to both the words

and documents via Dirichlet distributions. Formally, given a

corpus of M documents {d1, . . . , dM}, each with Ni words

out of a vocabulary of size W , we can generate a topic model

for K topics as follows:

Θdi
∼ Dirichlet(α)

Φzk ∼ Dirichlet(β)

zj,di
∼ Cat(Θdi

)

wj,di
∼ Cat(Φzj,di

) (3)

Θ z w

α Φβ

M
Ni

K

Fig. 2: The graphical model for LDA

The graphical model for LDA is shown in Fig. 2. To perform

inference, we can do Gibbs sampling for the topic zi assigned

to a particular word wi in document di [26]:

P (zi = j|z−i,w) ∝
nwi

−i,j + β

n·
−i,j +Wβ

ndi

−i,j + α

ndi

−i,· +Kα
(4)

where nwi

−i,j + 1 is the number of words with label wi

assigned to topic j, n·
−i,j + 1 is the total number of words

assigned to topic j, ndi

−i,j + 1 is the number of words in

documents di assigned topic j, and ndi

−i,· + 1 is the number

of words in document di. LDA has been applied to model

natural scenes [27] and human actions [28], in addition to

text corpora such as electronic health records [29], Twitter

posts [30], and historical documents [31]. Spatial LDA [32]

(SLDA) extends the LDA model to account for spatial

structures in image data by adding priors over the location

of a spatial word.

The Real-time Online Spatiotemporal Topic model

(ROST), introduced in [23], models spatiotemporally dis-

tributed categorical data by discretizing an N-dimensional

world and treating cells in that world as documents. Letting

G(di) be the spatiotemporal neighborhood of cell di, a

hypothetical generative model for ROST simply replaces the

distribution of topics for a document with the distribution of

topics in the neighborhoodof a cell:

ΘG(di) ∼ Dirichlet(α) (5)

The Gibbs sampling step for inference similarly replaces the

count of topics in a document ndi

−i,j with the count of topics

in the neighborhood of a n
G(di)
−i,j .

ROST has been used for robots displaying unsupervised

curious behavior [33], [23], multi-robot topic modeling [34]

and phytoplankton ecological modeling [35].

Formally, a Gaussian process [15] is a set of random

variables {Z(xi)} defined on some possibly infinite indexing

set X = {xi} such that for any finite subset Y ⊆ {Z(xi)},

Y ∼ N (µ,Σ). The function Σ : X × X → R≥0 is

called the kernel or covariance function of the GP, and

specifies the structure of relationships between different

points. Many common kernel functions on R
D are stationary

(Σ = Σ(x− x′)) and isotropic (Σ = Σ(|x− x′|), including

the Matérn kernel function with ν = 3/2:

k3/2(r) = σ

(

1 +

√
3r

ℓ

)

exp

{

−
√
3r

l

}

(6)

In (6), ℓ represents the length scale of the Gaussian process,

and σ represents a scale parameter for the kernel.

The geostatistics literature has used Kriging and similar

spatial optimal linear predictation tools since the 1950s [36],

[37]. In Kriging, the value of a scalar field is modeled as

a random field Z(x). The value of Z(x0), an unobserved

location, is estimated from a weighted sum of n sampled

locations:

Ẑ(x0) =

n
∑

i=1

λiZ(xi) (7)
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The weights that provide the minimum variance unbiased

estimator Ẑ(x0) can be calculated given only the sampled

values and the covariance function for the random field. Stan-

dard Kriging is a form of Gaussian Process regression [14].

For categorical random fields, geostatisticians use variations

on indicator Kriging [38], [39]. Methods from the Kriging

family have been used for adaptive sampling [40] and marine

visual data analysis [41].
There are many examples in the literature of IPP algo-

rithms which utilize GPs as a model for observed scalar

fields in marine environments. Binney, Krause, and Sukhatme

[42] demonstrate a graph-based submodular optimization IPP

algorithm with an objective function that can handle temporal

nonstationarity and along-path sample collection (as opposed

to sample collection at waypoints). Das et al. [43] use GPs to

model both spatial scalar fields and the relationship between

the scalar field’s variables and organism abundance. They

tested their model with two adaptive sampling strategies.

Suryan and Tokekar [44] develop a fast GP regression in-

formative path planning algorithm over spatial fields. Berget

et al. [45], Fossum and Eidvsik et al. [46], and Fossum and

Fragoso et al. [10] implement GP regression on AUVs and

demonstrate the viability of simple IPP algorithms in real-

world scenarios. Flaspohler et al. [47] introduce a plume-

finding algorithm, which locates maxima of phenomena

modeled by GPs. In all of these works, GPs model scalar

fields.

III. GAUSSIAN-DIRICHLET RANDOM FIELDS

We begin with several preliminary definitions. A GDRF is

defined on an indexing set X = {x1, x2, . . . }, representing

points in the world on which the model is defined. For

example, a GDRF on a two-dimensional A × B grid has

as its indexing set X = {1, 2, . . . , A} × {1, 2, . . . , B}. We

will generally refer to the indexing set itself as the world,

and call members of the world locations.
Words wi and topics zi are W - and K-categorical

variables, respectively. The mean latent log probabilities

(MLLPs) µj are Gaussian random fields defined on the world

X . MLLPs are transformed to a probability distribution via a

link function fj : R
K → [0, 1], where

∑

j fj(µ1, . . . , µK) =
1 . For this paper, we exclusively use the softmax link

function fj(µ1, . . . , µK) = exp(µj)/
∑

k exp(µk). Finally,

the generative model contains several hyperparameters: β is

the Dirichlet parameter controlling the word distribution for

each topic, and Mi and Σi are respectively the mean and

covariance function of the Gaussian process from which µi

are drawn.
Given a set of N (not necessarily unique) members of

the indexing set, {x1, x2, . . . , xN}, latent probabilities for

K topics, as well as topics and words, are given by:

µj ∼ N (Mi,Σi) , j ∈ [1..K]

Φz ∼ Dirichlet (β) , z ∈ {z1, . . . , zK}
zi ∼ f(µ1(xi), . . . , µK(xi)), i ∈ [1..N ]

wi ∼ Φzi , i ∈ [1..N ] (8)

The graphical model for GDRFs is given in Fig. 3.

IV. APPROXIMATE INFERENCE OF GAUSSIAN-DIRICHLET

RANDOM FIELDS

Assume we have collected a set of N categorical ob-

servations {wi} associated with N locations in the world

{xi}. We can decompose the learning of a GDRF into two

steps: learning the word-topic model, and learning the latent

log topic probabilities. We learn the word-topic model via

Gibbs sampling. This model is similar to ROST in many

ways, which is itself a spatiotemporal version of LDA. In

ROST, the spatio-temporal world is discretized into cells,

and the prior distribution of topics in a cell is defined by

the distribution of topics in the Von Neumann neighborhood

of the cell. Every word in a cell has the same prior topic

distribution, independent of its exact location within the cell.

For GDRFs, the Gaussian Processes underlying the model

allow us to consider topic densities, as opposed to counts, in

P (z|x). Normalizing n
G(di)
−i,j , the number of times topic j is

observed in the neighborhood of cell di, by the hypervolume

V (G(di) of cell di, we get an approximation for the mean

topic density in the neighborhood of di:

P (zi = j|x) =
n
G(di)

−i,j

V (G(di)
+ α

V (G(di)

n
G(di)

−i,·

V (G(di)
+ Kα

V (G(di)

(9)

Finally, since the Dirichlet concentration parameter α can

also be viewed as a smoothing “pseudocount”, we can factor

it into a scale times the hypervolume of the neighborhood,

α → αV (G(di)). Then, in the limit as V (G(di)) approaches

zero, we get our Gibbs sampling distribution for GDRFs:

P (zi = j|z−i,w, xi) ∝
nwi

−i,j + β

n·
−i,j +Wβ

ρj(xi) + α

ρ(xi) +Kα
. (10)

Here ρj(x) represent the density of topic j at location x,

while ρ(x) represents the observation density at location x.

In GDRF, α is a pseudo-density, with the same smoothing

properties as the LDA and ROST models.

After sampling a topic for each observation, we have col-

lected a set of N categorical topics {zi}, associated with N
locations in the world {xi}. We can use these to do approxi-

mate variational inference on the Gaussian processes. In our

generative model, we let P (zi|x) = exp(µi)/
∑

j exp(µj).
P (zi|x) represents the topic probability at location x. We can

use the new topics from the Gibbs sampling {zi} to calculate

µ z w

M Σ

Φβ

K N

K

Fig. 3: The graphical model for GDRFs
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