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Multibody Dynamics Versus Fluid
Dynamics: Two Perspectives on
the Dynamics of Granular Flows
Considering that granular material is second only to water in how often it is handled in
practical applications, characterizing its dynamics represents a ubiquitous problem.
However, studying the motion of granular material poses stiff computational challenges.
The underlying question in this contribution is whether a continuum representation of the
granular material, established in the framework of the smoothed particle hydrodynamics
(SPH) method, can provide a good proxy for the fully resolved granular dynamics solu-
tion. To this end, two approaches described herein were implemented to run on graphics
processing unit (GPU) cards to solve the three-dimensional (3D) dynamics of the granu-
lar material via two solution methods: a discrete one, and a continuum one. The study
concentrates on the case when the granular material is packed but shows fluid-like
behavior under large strains. On the one hand, we solve the Newton–Euler equations of
motion to fully resolve the motion of the granular system. On the other hand, we solve the
Navier–Stokes equations to describe the evolution of the granular material when treated
as a homogenized continuum. To demonstrate the similarities and differences between
the multibody and fluid dynamics, we consider three representative problems: (i) a com-
pressibility test (highlighting a static case); (ii) the classical dam break problem (high-
lighting high transients); and (iii) the dam break simulation with an obstacle
(highlighting impact). These experiments provide insights into conditions under which
one can expect similar macroscale behavior from multibody and fluid dynamics systems
governed by manifestly different equations of motion and solved by vastly different
numerical solution methods. The models and simulation platform used are publicly avail-
able and part of an open source code called Chrono. Timing results are reported to
gauge the efficiency gains associated with treating the granular material as a continuum.
[DOI: 10.1115/1.4047237]

1 Introduction

From an application standpoint, the class of rigid multibody
dynamics problems of interest in this work pertains granular
flows. These macroscopic flows are shaped/dictated by micro-
scopic friction and contact interactions. However, fully resolved
simulations of granular material dynamics that trace microscopic
interactions are computationally expensive. In fact, in many appli-
cations the number of elements considered is not dictated by the
physics of the actual problem, but rather by constraints on the
duration of the simulation. To the best of our knowledge, the larg-
est fully resolved granular dynamics simulation of practical rele-
vance reported in the literature contained 2.4� 109 elements.
Among other hardware platforms, it was run on 16,384 central
processing units (CPUs) (131,072 cores) of Japan’s K-
supercomputer [1–3], the 2012 fastest supercomputer in the world
and, at the time of the experiment, the 18th in the ranking of the
world’s supercomputers [4]. To put the “2.4� 109 elements” num-
ber in perspective, in one cubic meter of sand, depending on the
type of sand, there are one to two billion discrete elements. Practi-
cal examples of applications in which granular dynamics comes
into play include mobility on deformable terrains, landslides, ava-
lanches, food processing, farming, etc. It becomes apparent that
the scale of many of these applications calls for systems which
have in excess of two billion elements. Given today’s state of the
art, fully resolved solutions to these problems are likely infeasible.
This observation provides the backdrop for this contribution,
which seeks to gauge the extent to which the fully resolved repre-
sentation of the granular material can be replaced with a

continuum one that leverages the so-called smoothed particle
hydrodynamics (SPH) method [5,6].

The premise of this work is that if only the macroscale charac-
teristics of the system are of interest, in large-scale granular flow
problems, a continuum approximation is likely to be more expedi-
tious than the discrete methodology while providing adequate
accuracy. To make this point, the contribution discusses and com-
pares two solutions to the granular dynamics problem—a fully
resolved one, drawing on classical discrete element method
(DEM) [7] and anchored in the Newton–Euler equations of
motions; and a continuum one, that draws on fluid dynamics and
the incompressible Navier–Stokes equations.

Granular material may behave like solids (a sand pile), liquids
(pouring from a silo), or even gases (separation and collision of
grains). In this study, the interest is in the first two scenarios. One
factor that makes the dynamics of the granular material complex
is the strain-rate dependency of the shear stress, a trait also
encountered in fluid dynamics. However, unlike in fluids, in gran-
ular dynamics there exists a threshold value (yield criterion) under
which the grains do not move relative to each other but rather
their emergent collective behavior becomes solid-like—elastic
and/or plastic. This characteristic, combined with the fluid-like
feature of the media, might suggest for granular material a visco-
plastic constitutive law, similar to the one used in non-Newtonian
fluids [8]. However, the behavior of granular material is richer
than what a viscoplastic model would capture [9]. Among various
models and theories developed previously, the lðIÞ-rheology [10]
for granular material homogenization is one of the more success-
ful frameworks matching observations from a variety of experi-
mental and numerical results. More recent approaches rely on
hybrid solutions, wherein a representative volume element is
treated in a fully resolved fashion, with the information harvested
at the microscale subsequently embedded into a continuum repre-
sentation of the overall flow [11–14].
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The flow of granular materials is governed by the
Newton–Euler equations of motion, whereas the Navier–Stokes
equations capture the momentum balance in fluids. Pressure and
viscous forces arise in fluids from the normal and shear stresses,
respectively, but these quantities are not tied together for Newto-
nian fluids. In granular media, frictional forces depend on the nor-
mal forces through Coulomb’s friction model; stated differently,
shear stresses correlate with normal stresses. Informed by this
observation, a constitutive law for granular media is proposed in
Ref. [10] using the incompressible fluid model with a suitably
chosen effective viscosity. This effective viscosity factors in the
value of the friction coefficient and it is also tied to the pressure,
the latter being a proxy for normal stress in granular materials.
Hence, this rheology relates the shear stress to the normal stress,
which is indeed the expected behavior in granular media. More
recent efforts focused on overcoming shortcomings of the local
constitutive model were outlined in Ref. [10] by incorporating
nonlocal effects for nonuniform slow flows [9,15].

This paper is concerned with the case in which the friction forces
in a granular medium and the viscous stresses in a fluid medium
are insignificant compared to the normal forces in the granular
medium and pressure in the fluid medium, respectively. The high-
lights of the contribution are as follows: (i) it includes three studies
that demonstrate that a fully three-dimensional (3D) continuum
implementation using SPH can serve as a good proxy for granular
dynamics; in this context, it also compares run times that confirm
that starting with relatively small discrete problems the continuum
implementation discussed is more attractive than a fully resolved
one; and (ii) the results presented are obtained with an
open-source, publicly available tool called Chrono [16,17] that has
support for both representations—discrete or continuum. The con-
tribution is organized as follows. In Sec. 2, we describe the equa-
tions governing the physics of the fluid and solid phases, along
with the numerical techniques employed to approximate their solu-
tion (motion). Specifically, in Secs. 2.1 and 2.1.1 we, respectively,
describe the Navier–Stokes equations and the SPH method as the
space-discretization technique for the numerical solution. The
DEM in the context of the Newton–Euler equations is described in
Sec. 2.2.1. In Sec. 3, we present the numerical results of the experi-
ments performed using the multibody and the fluid dynamics solv-
ers. A discussion of the similarities and differences noted in the
dynamics of the two media is presented in Sec. 4. Concluding
remarks and future directions of research are provided in Sec. 5.

2 Governing Equations and Numerical Methods

2.1 Continuum Model. The Lagrangian forms of the mass
conservation and Cauchy momentum balance for a continuum
assume the expression [18]

Dq
Dt

� qr � u ¼ 0 (1)

D quð Þ
Dt

�r � r� f b ¼ 0 (2)

where u is the velocity, q is the density, and f b represents the dis-
tributed body force. Conventionally, r is decomposed into a volu-
metric (hydrostatic) part and a deviatoric part, r ¼ rdev þ rvol,
where with p � �ðr11 þ r22 þ r33Þ=3 denoting the mechanical
pressure we have rvol � p I3�3. This allows for an equivalent
reformulation of the momentum balance

D quð Þ
Dt

þrp�r•rdev � f b ¼ 0 (3)

For Newtonian fluids, the deviatoric part of the stress tensor is
related to the shear rate, through rdev ¼ 2lE, where l is a constant
representing the dynamic viscosity of the fluid and the strain-rate
tensor E is obtained from the velocity gradient tensor as

E ¼ 1

2
ruþruTð Þ (4)

Given that r � u ¼ 0 for incompressible flows, Eq. (3) is simpli-
fied under incompressible flow and a Newtonian fluid model to

D quð Þ
Dt

þrp� lr2u� f b ¼ 0

The adimensionalized equations may be written as [19]

du

dt
¼ �Eu

rp

q
þ 1

Re
r2uþ 1

Fr2
fb (5)

where the Euler number, Eu ¼ ðp0=q0u20Þ, is the ratio of the pres-
sure to inertia forces (or static pressure to dynamic pressure). The
Reynolds number, Re ¼ ðqu0L0=lÞ, may be seen as the ratio of
inertia to viscous forces. Finally, the Froude number,
Fr ¼ ðU0=

ffiffiffiffiffiffiffiffiffi
g0L0

p
Þ, may be regarded as the ratio of inertia to body

forces. For inviscid fluids, l¼ 0, and the ð1=ReÞr2u term drops
out of the equations, in which case the momentum balance is the
interplay of inertia, pressure, and gravity/body force. In other
words, the equations come down to the conservative Euler equa-
tions, for which the relative significance of different terms is char-
acterized by the magnitude of the Fr and Eu numbers.

While the viscosity in Newtonian fluids is constant, in non-
Newtonian fluid models it depends on several parameters, e.g.,
yield stress, shear-rate, etc. In this context, several models have
been proposed to capture shear thinning, shear-thickening, and
yield stress. The one employed in this work is the
Herschel–Bulkley model. Defining the shear stress and shear
strain-rate from their underlying tensors according to,
respectively,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rdevij : rdevij

q
_c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eij : Eij

p
the Herschel–Bulkley model describes the stress–strain-rate rela-
tion via

s ¼ s0 þ k _cn (6)

where k> 0 is a consistency index, and n is the flow index. The
Herschel–Bulkley model captures various fluid behaviors using a
combination of n and k, as illustrated in Fig. 1. This includes shear
thickening (dilatant), shear thinning (pseudo-plastic), and Bing-
ham plastic models. Subsequently, an apparent (effective) space-
dependent viscosity satisfying s ¼ leff _c and Eq. (6) may be
defined as [21]

leff ¼ s0=_c þ k _cn�1 (7)

Finally, the deviatoric stress in the momentum balance is written
as rdev ¼ 2leffE, where E is defined in Eq. (4). This definition of
rdev keeps with the one for Newtonian fluids with the caveat that
one has to replace the constant l with a state dependent leff.

Fig. 1 Stress–strain-rate relationship for different flow index
and consistency parameters in Herschel–Bulkley model [20]
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Given the incompressible flow assumption, the r � rdev term in
Eq. (3) is written as

r�rdev ¼r�ðleffðruþruTÞÞ
¼leffr�ðruÞþrleff �ruþleffrðr�uÞþrleff �ruT

¼leffr2uþrleff � ðruþruTÞ (8)

The final form of the momentum balance for non-Newtonian flu-
ids in a Lagrangian framework is [22]

D quð Þ
Dt

þrp� lr2u�rleff � ruþruTð Þ � f b ¼ 0 (9)

As the intent is to establish a fluid model that represents a proxy
for granular dynamics, since the latter is dominated at the micro-
scale by Coulomb friction that ties the normal and tangential loads
via Ft � lgFN , it is helpful to tie the non-Newtonian’s model
yield stress (see Eq. (6)) to pressure via s0 ¼ lgp, where lg is the
local friction coefficient in granular material [10]. Here, the sub-
script g is used to distinguish the friction coefficient in granular
medium, lg, from the fluid viscosity l. Accordingly, the effective
granular viscosity in Eq. (7) for k¼ 0 may be written as

leff ¼
lgp

_c
(10)

A robust and accurate numerical implementation of the yield
stress in the Navier–Stokes equations is still a matter of research
[20]. The difficulty lies in modeling the discontinuity arising from
the yield stress, as the material should only flow if the shear stress
exceeds the yield stress s0 (see Fig. 1). In other words

yielded region : s > s0

unyielded region : s < s0

(
(11)

This discontinuity cannot be strictly enforced for truly unyielded
regions in a continuum if one chooses to use a non-Newtonian
approach since this approach does not have an elastic component
that keeps the material together prior to yielding. An alternative is
to solve the time-evolution of the stress tensor side-by-side with
the Navier–Stokes and continuity equations, using a rate of shear
stress defined as [23,24]

drab

dt
¼ 2G Eab � 1

3
dabEcc

� �
� racxcb þ xacrcb

where G is the shear modulus, and x is the rotation tensor

x ¼ 1

2
ru�ruTð Þ

The approach involves the scaling of the stress tensor back to the
yield surface once the stress grows beyond the yield criteria. The
results for this approach will be reported elsewhere. Herein, the
focus will be on gauging how well the continuum representation
can serve as a proxy for the dynamics of the granular material in
frictionless regime (lg ¼ 0).

2.1.1 Spatial Discretization of the Continuum. For the contin-
uum representation, the SPH method is employed for the spatial
discretization of Eqs. (1) and (2). The SPH approximation for a
scalar field assumes the form [25]

f rið Þ � hf ii ¼
X
j2S ið Þ

mj

qj
f rjð ÞWij

where hf ii indicates the SPH approximation of f at the location of
SPH marker i; SðiÞ represents the collection of SPH markers

found in the support domain associated with marker i; qj is the
density qðrjÞ at location rj of marker j; mj ¼ qjVj and Vj ¼
ð
P

k2SðjÞ WjkÞ�1
are the mass and volume associated with marker

j, respectively; and Wij � Wðri � rj; hÞ, with W a suitable chosen
kernel function. The cubic spline kernel for 3D problems adopted
herein is expressed as

W q; hð Þ ¼ 5

14ph3
�

2� qð Þ3 � 4 1� qð Þ3; 0 � q < 1

2� qð Þ3; 1 � q < 2

0; q � 2

8>><
>>: (12)

where q � jrijj=h. The radius of the support domain, jh, is propor-
tional to the characteristic length h through the parameter j, the
latter commonly set to 2 for the cubic spline kernel as shown in
Fig. 2.

The standard SPH approximation of the gradient and Laplacian
of the function f assumes the following form [25]

rf rið Þ ¼ hrf ii ¼
X
j2S ið Þ

VjriWij fj � fið Þ

r2f rið Þ ¼ hr2f ii ¼ 2
X
j2S ið Þ

Vj eij � riWijð Þ
fi � fj
jrijj

where eij � rij=jrijj. The expression for the gradient of the kernel
function described in Eq. (12) is

riWij ¼
rij

jrijj
@W

@q

@q

@jrijj

����
i;j

¼ �15rij

14ph5q
�

2� qð Þ2 � 4 1� qð Þ2; 0 � q < 1

2� qð Þ2; 1 � q < 2

0; q � 2

8>><
>>:

(13)

In Eq. (13), ri denotes the differentiation in space with respect to
the coordinates of SPH marker i.

2.1.2 Time Integration. We apply an implicit SPH (ISPH)
method which uses the Helmholtz–Hodge decomposition and
Chorin’s projection method [26] to integrate the continuity and
the Navier–Stokes equation as

prediction

u	 � unð Þ
Dt

¼ �

2
r2u	 þ r2unð Þ þ fb x 2 X

u	 ¼ 0 x 2 @X

8><
>: (14)

Fig. 2 Two-dimensional illustration of the kernel W. The radius
of the support domain is defined as a multiple, j, of the kernel’s
characteristic length, h.
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correction

unþ1 � u	ð Þ
Dt

¼ � 1

q
rpnþ1 x 2 X

r:unþ1 ¼ 0

8><
>: (15)

Equation (14) is the predictor step and it can be used to find the
intermediate velocity u	. Taking divergence of Eq. (15), the Pois-
son equation for pressure is obtained as

r � unþ1 �r � u	
Dt

¼ � 1

q
r2pnþ1 (16)

Note that from the mass conservation (Eq. (1)) and the incompres-
sible flow assumption (ðdq=dtÞ ¼ 0), one can write r � unþ1 ¼ 0
and simplify Eq. (16) to

1

q
r2pnþ1 ¼ r � u	

Dt
rpnþ1 � nj@X ¼ 0

8<
: (17)

Next, using the semidiscrete continuity equation

q	 � qn

Dt
¼ �qnr � u	 (18)

one may write Eq. (17) as

1

q
r2pnþ1 ¼ � 1

qn
q	 � qn

Dt2

rpnþ1 � nj@X ¼ 0

8><
>: (19)

which takes into consideration the density variation as a source
term in the Poisson equation. Finally, once the pressure distribu-
tion is computed, Eq. (15) may be used to find unþ1 as follows:

unþ1 ¼ �Dt
1

q
rpnþ1 þ u	 (20)

As far as the time-step Dt is concerned, its size is constrained
on numerical stability grounds by the following condition [27]

Dt � min 0:25
h

kjvjmax

; 0:125
h2

�
; 0:25

ffiffiffiffiffiffiffi
h

jfbj

s8<
:

9=
; (21)

Above, the first term corresponds to the Courant–Friedrichs–Lewy
(CFL) condition. The second restriction in Eq. (21) appears due to
the explicit treatment of the viscous term and restricts the time-
step by a factor that is inversely proportional to the viscosity—the
higher the viscosity, the lower the time-step. More importantly,
the second restriction is also proportional to h2, which signifi-
cantly and adversely impacts the time-step when a finer SPH
marker distribution is employed. The last restriction is due to the
explicit treatment of the external (body) forces.

There are two important observations pertaining to the ISPH
method implemented: (a) the Crank–Nicolson discretization of the
viscous term in Eq. (14) leads to a nondiagonal coefficient matrix
Eq. (14) in its discrete form. Had one chosen to treat the viscous
term in Eq. (14) explicitly, that is �r2un instead of
�
2
ðr2u	 þ r2unÞ, the coefficient matrix of the linear system in

Eq. (14) would have become a diagonal matrix, 1
Dt I. Yet this

choice that makes the linear solve trivial, would constrain the
time-step Dt owing to the explicit treatment of the viscous term,
which imposes the time-step restriction Dt < 0:125 h2

� , see
Eq. (21); and, (b) a modification that proved particularly useful at
small Dt pertains a scaling of the pressure by a factor Dt2 in the
Poisson equation, and by 1=Dt2 in the correction step Eq. (15). In
other words, we compute pDt2 when solving the Poisson equation

and subsequently scale the pressure in the correction step Eq. (15)
by a factor of 1=Dt2.

Finally, the pressure and viscous forces acting on a boundary
marker a, which are required for fluid-structure coupling, can be
obtained from the momentum balance equations via

Fa ¼ ma
dua
dt

¼ ma �r2unþ1
a � 1

q
rpnþ1

a

� �
(22)

2.1.3 Boundary Conditions. In imposing boundary conditions
(BCs), we make use of so-called boundary conditions enforcing
(BCE) markers. These are fictitious markers, rigidly attached to
the boundary in a buffer zone that runs several layers deep as
shown in Fig. 3. These markers are used to enforce the no-slip and
the no-penetration conditions on the boundary.

In one widely used approach [28], the expected kinematic
attributes of the markers, calculated from the motion of the solid
phase at the location occupied by the markers, are different from
their assigned values. The latter are calculated such that the no-
slip and no-penetration boundary conditions are implicitly
enforced at the fluid–solid interface. The no-slip condition states
that the velocity of the BCE markers should oppose the velocity
of the fluid markers such that the average relative fluid–solid
velocity at the interface is zero. In other words, the average veloc-
ity at the interface is the expected interface velocity. Herein, the
induced velocity ~ua at the position of marker a is computed from
the velocity of the fluid markers as

~ua ¼

X
b2F

ubWabX
b2F

Wab

(23)

where F denotes a set of fluid markers that are within the compact
support of the BCE marker a. The no-slip condition holds if
ð~ua þ uaÞ=2 ¼ upa; in other words, the assigned velocity of marker
a is [28]

ua ¼ 2upa � ~ua (24)

where upa is the expected wall velocity at the position of the
marker a, and ~ua is an extrapolation of the smoothed velocity field
of the fluid phase to the BCE markers.

The pressure of a BCE marker may be calculated via a force
balance condition at the wall interface, which leads to [28]

Fig. 3 The BCE markers, which are placed both on the solid’s
surface and in a thin buffer region inside it, are used toward two
ends: transfer surface forces from the fluid subsystem to the
solid subsystem and enforce no-slip boundary conditions
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pa ¼

X
b2F

pbWab þ g� apa
� �

�
X
b2F

qbrabWabX
b2F

Wab

(25)

where g is the gravitational acceleration and apa is the acceleration
of the boundary/solid at the location of BCE marker a.

2.2 Discrete Model

2.2.1 Rigid Multibody Dynamics With Friction and Contact.
The equations of motion for the discrete problem are formulated
in the context of the classical discrete element methodology [7].
For element i, let Cði; tÞ be the collection of bodies that i is in
mutual contact with at time t. The time evolution of sphere i is
governed by the momentum balance laws

mi
dvi
dt

¼ migþ
X

j2C i;tð Þ
Fij
n þ F

ij
t

� 	
(26a)

Ii
dxi

dt
¼

X
j2C i;tð Þ

Mij ¼
X

j2C i;tð Þ
Drij � F

ij
t þMij

rr (26b)

where for element i, mi is its mass; Ii is its mass moment of inertia;
the velocity vi ¼ _ri is the time derivative of the position; Drij is
the vector from the center of mass to the point where the friction
force F

ij
t is applied; and Mij

rr is the rolling resistance moment.
Given that all elements are spheres, there is no need to store their
orientation and the angular velocity xi will provide the informa-
tion needed to track the friction history at the point of contact.
The normal and tangential forces are determined using the Hertz-
ian and Mindlin contact formulations, respectively,

Fij
n ¼

ffiffiffiffiffiffiffiffi
dij

2R
ij

s
knd

ijnij � cnm
ijvijn

� �
þ Fc (26c)

F
ij
t ¼

ffiffiffiffiffiffiffiffi
dij

2R
ij

s
�ktu

ij
t � ctm

ijv
ij
t

� 	
(26d)

Above, Fc is a cohesion force, mij and R
ij
represent the effective

mass and effective radius for the contact, and vn and vt are the
normal and tangential velocities

mij ¼ mimj

mi þ mj
(26e)

R
ij ¼ RiRj

Ri þ Rj
(26f )

vij ¼ vj þ xj � rj � vi � xi � ri (26g)

vijn ¼ ðvij � nijÞnij (26h)

v
ij
t ¼ vij � vijn (26i)

The friction force is capped relative to the normal contact force
via the Coulomb condition jFij

t j � l jFij
n j.

In order to compute the forces in Eqs. (26c) and (26d), one
must evaluate the contact normal nij, normal penetration dij, tan-
gential displacement at the contact point u

ij
t , and normal and tan-

gential components of the relative velocity vijn and v
ij
t ,

respectively. Except for u
ij
t these quantities can be readily com-

puted from the sphere positions, linear velocities, and angular
velocities.

The computation of u
ij
t is slightly more involved. Dropping the

ij superscripts for notational brevity, ut is updated in a multistep

fashion, from integration step to integration step, tracking its his-
tory between steps. At time-step k, ut;k stores the tangential dis-
placement history. This quantity is always enforced to be
perpendicular to the current contact normal and thus lie in the con-
tact plane

u	t;k ¼ ut;k�1 þ vt;kDt

ut;k ¼ u	t;k � ðnk � u	t;kÞnk
(27)

The Coulomb capping of the friction force is then enforced via

ut ¼ min ut;k;ut;k
lskndn
ktjut;kj

� �
(28)

where ls is taken to be the same between static and dynamic

motions. Note that since the
ffiffiffiffiffiffi
dij

2R
ij

q
term appears in both Ft and Fn,

it cancels out of the Coulomb criterion and does not affect clamp-
ing. Only the frictional force computed in Eq. (26d) is clamped—
the rolling resistance torque described below is not affected by the
Coulomb criterion.

The quantity vt is interpreted as the relative velocity at the con-
tact point including both sliding and rolling contributions. This
enforces a situation of “rolling without slipping,” where only the
relative displacement of the contact point is relevant and not the
means of locomotion. An additional rolling resistance torque Mij

rr
of Eq. (26b) is introduced based on ideas outlined in Refs.
[29–32] to bring in an interelement rolling resistance meant to
emulate effects induced by roughness and interlocking. Two roll-
ing resistance models are implemented based on work reported in
Ref. [31]. The simpler scales a constant torque by the magnitude
of the normal component of the contact force

jMij
rrj ¼

xij

jxijjlrRjF
ij
n j (29)

where xij ¼ xi � xj. The second model applies a resistive
moment based on the relative slip at the contact point due to rela-
tive roll

jMij
rrj ¼ �lrRjFij

n jðxiri � xjrjÞ (30)

In both cases, the torque is applied at the contact point in the plane
perpendicular to xij. Table 1 summarizes the parameters associ-
ated with the DEM model adopted herein.

Once all contact forces and resultant accelerations are com-
puted for time-step k, the latter are numerically integrated to yield
the new velocity and position at time-step kþ 1. Different choices
of time-integration methods [33] such as Explicit Euler, Extended
Taylor, and a second-order integrator proposed by Chung and Lee
[34] are possible. The latter integrator assumes the form

Table 1 Model and simulation parameters

Parameter Value

Nb Element count
m Element mass
g Gravitational acceleration
R Element radius
q Element density
kn DEM normal elastic coefficient
cn DEM normal damping coefficient
kt DEM tangential elastic coefficient
ct DEM tangential damping coefficient
ls Coefficient of static friction
lr Coefficient of rolling friction
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vkþ1 ¼ vk þ Dt
3

2
ak �

1

2
ak�1

� �

xkþ1 ¼ xk þ vkDtþ Dtð Þ2 bak þ
1

2
� b

� �
ak�1

� � (31)

It draws on a multistep approach, providing second-order integra-
tion for both position and velocity and strong numerical damping.
On the down side, the Chung approach requires the caching of
previous accelerations ak�1, increasing the memory overhead. It
also provides b as a tunable parameter for the integrator’s numeri-
cal damping, with the stability requirement that 1 � b � 28

27
.

2.3 Software Implementation. The fluid and multibody
dynamics solutions discussed in Secs. 2.1, 2.1.1, and 2.2.1 have
been implemented in an open-source multiphysics simulation plat-
form called Chrono [16] that is freely available online [17,35].
The discrete solver and its implementation are discussed at length
in Ref. [36]. Therein, the DEM solver, called Chrono::Granular,
was capable of handling problems with more than one billion
degrees-of-freedom. A detailed description of the SPH-based fluid
dynamics solver in Chrono as well as validation and verification
of the solver is provided in Refs. [37] and [38]. Both the fluid and
multibody dynamics solvers are parallelized to run on NVIDIA
GPUs (Santa Clara, CA), which expose an architecture and pro-
gramming model suitable for fine-grained parallelism of the sin-
gle-instruction-multiple-data type encountered in SPH and DEM.

3 Numerical Experiments

3.1 Incompressibility Test. In this benchmark test, we con-
sider a static regime: a bucket filled up with granular material in
one case, and with fluid at rest in the second case. The cross sec-
tion of the bucket is a square of side L. We compare the magni-
tude of the average force on the side walls of the container for
both media. This averaged force changes vertically. For the con-
tinuum, there exists an analytical solution that comes from basic
fluid hydrostatics. Indeed, the pressure distribution is linear across
the depth of the bucket—the larger the depth, the higher the force
impressed on the wall. Consequently, it is easy to show that the
averaged pressure (normal) force on each side of the container is

qgh2L=2, where h is the depth of the fluid in the square bucket.
Furthermore, the ratio of this force to the weight of the material in
the bucket for a L� L� h fluid domain is rf ¼ h=2L. DEM simu-
lations were performed to evaluate this ratio for granular media.

We calculate this ratio in granular material according to rg ¼ jFnj
Mg ,

where jFnj is the averaged normal forces across the side walls of
the container, M is the total mass of the system, and g is the grav-
ity. Densities for both the continuum and granular material are

q ¼ 1000 kg=m3. Finally, we calculate the relative error according
to e ¼ ðrf � rg=rf Þ � 100. As shown in Fig. 4, the relative error
for L ¼ 1m is small and decreasing with the value of h. This is
not unexpected, given that at large element counts, the granular
material is better approximated by a continuum.

We hypothesize that there should be very good agreement
between the two media for this test and attribute the relative error
seen in Fig. 4 to mainly two factors: (i) when h is small, the
“homogenization” assumption is not holding well for shallow
bulk material made up of elements with relatively large radii; and
(ii) numerical errors associated with approximating the height of
the granular material bucket from the elements’ information. It is
important to note that the DEM simulations were performed with
frictionless monodisperse spherical elements. We emphasize that
rg is different in the presence of friction. A detailed discussion on
the interplay between friction forces and side walls, as well as on
the sensitivity of the results with respect to the elements’ shape
goes beyond the scope of this contribution and is the subject of
ongoing work.

3.2 Dam Break. The “dam break” is a classical fluid mechan-
ics experiment aimed at validating the accuracy and stability

Fig. 4 The relative error of dimensionless normal force experi-
enced by the side walls of a bucket of material for different
height (h) of material. The relative error is calculated according
to e5 (rf2rg /rf )3100, where rf is the nondimensional averaged
fluid normal force and rg is the nondimensional averaged gran-
ular normal force on the side walls. The rg is calculated from the
DEM simulation while rf is computed from hydrostatic fluids. A
particle radius of 1 cm was used for discrete simulations. Tim-
ing results for the discrete element simulation provided in
Table 2.

Fig. 5 Comparison of the front position in the dam break simu-
lated with DEM and CFD. DEM experiments simulated 148,438
and 18,939,589 particles for the particle radii 2.5 cm and 0.5 cm,
respectively.

Table 2 Bucket simulation: number of discrete elements used
for each depth of the granular material

h-value (m) 1.950 1.460 0.979 0.491

Ne (10 mm) 131,218 97,748 64,284 30,761
Ttot (10 mm) 71 64 48 30

Ne (5 mm) 1,038,586 767,530 502,461 237,514
Ttot (5 mm) 510 390 258 133

Simulation run times for two different particle radii (5mm and 10mm) for
one second of simulation. Note: Ttot—run times (s); Ne—number of ele-
ments in the simulation. Relative errors between the continuum and dis-
crete scenarios reported in Fig. 4.
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characteristics of multiphase solvers. Succinctly, material is stored
in a box that is instantaneously removed to allow the flow of the
material (fluid or granular) inside. The box containing the material
is 2m� 4 m� 2 m; the dimensions of the container in which the
material flows are 6m� 4 m� 4 m. The reference density is
q ¼ 1000 kg=m3, and the gravity of g ¼ �9:8m=s2 is applied in
the y direction.

We study the propagating wave front both in granular material
flow and the fluid flow. We highlight the similarities in terms of
front speed as shown in Fig. 5, and the differences in terms of two
characteristics of the dam break simulation: the roll up and the
second splash [38], see Fig. 6. On the computational fluid dynam-
ics (CFD) side, a more ample discussion of this test may be found
in Refs. [28] and [38].

Considering that the CFD and DEM solvers drew on different
governing equations, the similarity seen in terms of front propaga-
tion position is remarkable. However, as shown in Fig. 5, the front
predicted by the DEM simulation moves slightly slower than the
one predicted by the CFD solver. We attribute this discrepancy to
the bulk density of the material; applying q ¼ 1000 kg=m3 to indi-
vidual grains results in smaller overall density in granular mate-
rial. This is true because of the nature of the packing in granular
material, which allows for empty spaces between the grains. This
feature, for example, guarantees that a bucket of sand is lighter
that a bucket of fluid, assuming that the density of grains is equal
to density of the fluid and the buckets have similar dimensions.
Hence, we hypothesize that the slower front speed is due to the
presence of the voids/empty pockets in the granular material.

3.3 Dam Break With an Obstacle. The setup for this experi-
ment is identical to the one in Sec. 3.2. However, we place a rigid
cylindrical obstacle in front of the dam and monitor the overall
force experienced by the cylinder over time after the dam breaks.
The dam is placed in the leftmost corner of the domain and a 4 m

tall cylinder with the radius of 0.3m is placed at x¼ 5 m from the
leftmost side of the container. Figure 7 demonstrates the force
experienced by the cylinder for both the granular and fluid materi-
als for different fluid’s viscosities, and different grain diameters.
As shown in Fig. 7, within the simulated range, the viscous forces
in the fluid simulation do not play a major role in the overall force
on the cylinder. For granular flow, the force exerted on the cylin-
der is virtually insensitive to the elements’ diameter. The DEM
simulation used spheres of radii 2.5 cm and 0.5 cm for a total of
148,438 and 18,939,589 elements, respectively.

Assuming insignificant viscous contribution due to the larger
Reynolds number observed in this problem, the fluid flow repre-
sents a momentum balance between the inertia, gravity, and pres-
sure forces (see Eq. (5)). As highlighted in Fig. 7, we can consider
two different stages in the simulation. Region 1: in this stage,

Fig. 6 Comparison of the roll up (left) and the second splash (right) instances of the dam break simulation
between granular (bottom) and fluid (top) mediums

Fig. 7 Comparison of the normalized horizontal force experi-
enced by the cylinder in the dam break simulation for different
viscosities of the fluid and for different marker diameters of the
granular media
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good agreement is observed between the two media. We hypothe-
size that this is true because of the dominant effects of inertia
forces over pressure forces. Due to larger values of the velocity,
the Euler number (Eu ¼ ðp0=q0u20Þ) is relatively small, diminish-
ing the contribution of the normal stress (pressure). Region 2: the
agreement between the two media is gradually diminishing owing
to the different nature of normal forces in granular media com-
pared to pressure gradient forces in fluid flow. This is due to the
reduction of the inertia forces and the consequent augmentation of
the pressure forces, as can be understood from the Eu number. In
Fig. 8, snapshots of the fluid and granular flow simulations are
shown for a qualitative comparison of the time evolution of the
two media.

4 Discussion

The three experiments considered in this study suggest that in
certain regimes, the discrete and continuum models show similar
macroscale response. We hypothesize that Eu ¼ ðp0=q0u20Þ is the

important characteristic number when identifying the regimes in
which the granular flow may behave similar to the fluid flow.

According to Eq. (5), as Eu ! 1, the momentum balance
becomes an interplay between the pressure and body forces in flu-
ids. Similarly, the sum of normal contact forces balances the body
force in granular media (see Eq. (26a)). Hence, it is reasonable to
assume that in this regime the pressure plays a role similar to the
normal force acting on an element in the granular system. Conse-
quently, in this regime, a continuum model of granular material
should be able to predict a potential field whose gradient corre-
sponds to the sum of normal forces. The experiment in which we
considered a static bucket of material is an example of flow in this
regime where due to u0 ! 0, one has that Eu ! 1 and Fr ! 0.

At the other end of the spectrum, as Eu ! 0, the contribution
of the pressure forces decreases in fluids and the momentum bal-
ance is dominated by inertia forces and gravity/body force effects.
Similarly, looser packings reduce the contribution of the normal
forces in granular material, making the momentum balance an
interplay between the inertia and body forces. Hence, we

Fig. 8 Snapshots of the fluid (top) and the granular material (bottom) simulation of the dam break with a cylindrical obstacle
at t5 1 s (left), t5 2 s (middle), t52.75 s (right)

Fig. 9 Comparison of the simulation time—continuum versus discrete, for the resolutions discussed in Table 3: (a) low reso-
lution and (b) high resolution
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hypothesize that the granular material behaves like a fluid in this
regime as well.

In terms of computational costs, the SPH fluid solver inherently
involves more expensive computations per degree-of-freedom.
This is primarily due to the fact that each fluid’s marker, through
the SPH interpolation scheme, interacts with considerably more
markers than the granular material element does through mutual
contact with other elements. Specifically, one SPH marker might
interact with 100 other markers, while an element in the granular
material interacts on average with four or five other elements. Fur-
thermore, the fluid solver uses a semi-implicit integration method
whereas the granular material solver uses a fully explicit method.
Subsequently, (i) higher step sizes are achieved via the fluid
solver, yet (ii) each integration step of the fluid solver is more
expensive as it requires the solution of a linear system. Figure 9
illustrates the computational time of the continuum and discrete
model for the experiment discussed before. The details about the
resolution of the solvers for the experiment discussed previously
are presented in Table 3.

The results in Fig. 9 confirm that the computational cost of the
continuum solver is higher than or comparable with that of the
discrete solver for similar degree-of-freedom counts (see
Fig. 9(a)). However, the continuum approximation allows for the
handling of discrete systems with large number of bodies using
substantially fewer degrees-of-freedom, see the two “–HR” col-
umns in Table 3. Thus, if one is interested, for instance, in sub-
millimeter granular materials or clays, a fully resolved discrete
representation is infeasible and the continuum approach becomes
the only viable alternative.

5 Conclusion

This contribution focused on a quantitative comparison
between the dynamics of granular material, when approached as a
multibody dynamics problem, and the flow of fluids. We com-
pared the motion of a fluid with the flow of granular media made
up of monodisperse spherical frictionless elements. To that end,
two numerical solutions were implemented—the first drawing on
the Newton–Euler equations of multibody dynamics, the second
on the Navier–Stokes equations for incompressible fluids. We dis-
cussed two flow regimes, corresponding to Eu ! 0 and Eu ! 1,
in which similarities are observed in the response of the two
media. The Eu ! 1 case is associated with a scenario in which
the sum of normal forces on grains is a conservative force field
that mirrors a similar potential field, that is, the fluid pressure.

Two topics stand to be investigated in the future. First, it
remains to assess to what extent viscosity can be a proxy for the
friction force in granular material. Such an investigation would
benefit from the fact that the solver used here supports friction in
the DEM and viscosity in the SPH solutions. Second, we plan to
further investigate and draw a parallel between the fluid’s pressure
gradient forces on the one hand and the granular contact normal
forces on the other hand. The ultimate goal is that of replacing the
time-consuming solution of the fully resolved, multibody dynam-
ics problem, with the solution of a continuum problem that works
with an appropriately defined viscosity model. An additional hur-
dle will be posed by scenarios in which the granular material is
not made of identical elements. In this context, there are two

relevant and difficult questions that require further investigation:
what happens if the spherical granular material is polydisperse?
and, can flows of granular material of nontrivial shapes (ellip-
soids, for instance) be modeled using the continuum approaches
discussed here? We anticipate that the answers to these questions
will be consequential in any large body-count problems when the
particle size is very small and contact stiffness is large. Under
these conditions, the computational burden for fully resolved sys-
tem is prohibitive and the feasible solutions to the granular
dynamics problem will be anchored by continuous formulations.
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