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Abstract. Integrated models combine multiple data types within a unified analysis to esti-
mate species abundance and covariate effects. By sharing biological parameters, integrated
models improve the accuracy and precision of estimates compared to separate analyses of indi-
vidual data sets. We developed an integrated point process model to combine presence-only
and distance sampling data for estimation of spatially explicit abundance patterns. Simulations
across a range of parameter values demonstrate that our model can recover estimates of bio-
logical covariates, but parameter accuracy and precision varied with the quantity of each data
type. We applied our model to a case study of black-backed jackals in the Masai Mara
National Reserve, Kenya, to examine effects of spatially varying covariates on jackal abun-
dance patterns. The model revealed that jackals were positively affected by anthropogenic dis-
turbance on the landscape, with highest abundance estimated along the Reserve border near
human activity. We found minimal effects of landscape cover, lion density, and distance to
water source, suggesting that human use of the Reserve may be the biggest driver of jackal
abundance patterns. Our integrated model expands the scope of ecological inference by taking
advantage of widely available presence-only data, while simultaneously leveraging richer, but
typically limited, distance sampling data.

Key words: black-backed jackal; data integration; distance sampling; integrated modeling; integrated
distribution model; integrated species distribution model; presence-only model.

INTRODUCTION

Using multiple data sources can improve biological
inferences and predictions on the abundance and
dynamics of wildlife populations. Yet, inconsistencies in
study designs, spatiotemporal extents, and/or observa-
tion processes of independent data sources can lead to
challenges in analyses that make use of multiple data
types. Integrated modeling (i.e., data integration) is a
powerful framework that uses a wide variety of methods
and data types to estimate species parameters describing
demography and/or abundance within a unified analysis
(Maunder and Punt 2013, Zipkin and Saunders 2018,
Miller et al. 2019, Isaac et al. 2020). The general princi-
ple behind integrated modeling involves construction of
a joint likelihood linking individual data sets through a

common biological process such that one or more
parameters are informed by multiple data sources
(Fletcher et al. 2016). Recent developments in data inte-
gration take advantage of point process models to com-
bine disparate data to estimate population density across
space (Dorazio 2014, Fithian et al. 2015, Fletcher et al.
2016, Koshkina et al. 2017).
Spatial point process models analyze the density (i.e.,

intensity) of data points (Warton and Shepard 2010).
These models have a long history in ecology, primarily
being used to estimate population abundance relative to
the effects of environmental covariates (Cressie 1993,
Warton and Shepherd 2010). Many spatial point process
models utilize unstructured presence-only data, a com-
monly collected data type in population studies (Phillips
et al. 2009). Presence-only data are characterized by
opportunistic or incidental sighting of individuals from
a target population, typically recorded without a formal
study design. While such information can be valuable,
particularly for rare or elusive species, presence-only
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data are generally of lower quality than data collected
from structured sampling efforts because they contain
sampling biases and lack direct information on absences
(Phillips et al. 2009, Fithian et al. 2015). As such, appli-
cations of point process models using presence-only data
can, at best, only generate estimates of relative (rather
than absolute) abundance as they do not account for
observation errors (i.e., nondetections are not recorded;
Fithian et al. 2015). Newer modeling techniques using
thinned point processes have focused on accounting for
systematic sampling biases in presence-only data and on
combining presence-only data with structured sampling
data (e.g., detection–nondetection data, count data)
thereby improving inferences that could be obtained
from either data type alone (Dorazio 2014, Fithian et al.
2015, Fletcher et al. 2016, Koshkina et al. 2017).
We developed an integrated framework for combining

presence-only and distance sampling data to estimate
spatially explicit abundance patterns. We included effects
of environmental covariates on the biological process as
well as covariates that may differentially affect the obser-
vational processes generating the two data types. Unlike
previous implementations of integrated point process
models, we developed our model by discretizing space,
which allowed us to readily implement our approach
within a Bayesian framework. We validated our model
across a wide range of realistic parameter values and
quantities of data with a simulation study. We then
demonstrated the utility of our approach with a case
study of black-backed jackals (Canis mesomelas) in the
Masai Mara National Reserve, Kenya. Certain regions
of the Reserve experience minimal management enforce-
ment and are thus strongly affected by anthropogenic
disturbances, which may be benefitting jackals (Farr
et al. 2019). By combining available distance sampling
data with opportunistic presence-only data, we estimated
abundance of black-backed jackals in the Reserve to
evaluate spatially varying effects of disturbance using
relevant covariates.

MODEL DESCRIPTION

Biological process

We modeled abundance of a target species using a spa-
tial point process (Dorazio 2014, Renner et al. 2015) by
assuming that abundance in region A, denoted NA, is
the realization of a Poisson process: NA ∼Poisson μAð Þ.
The parameter μA is the mean expected abundance
across region A, defined as: μA ¼ R

A
λ sð Þds in which λ sð Þ is

the expected count at a specific location, s, within A. We
discretized space within region A using pixels 1,2, . . .,G
(Baddeley et al. 2010). Discretizing space can be compu-
tationally costly but may be more tractable for modeling
abundance because (1) observation processes are realized
in discrete space and time and (2) environmental covari-
ates are typically measured in discrete space and time.

Total abundance in each pixel, Ng (in which g∈A),
is also a Poisson random variable, which can be
denoted Ng ∼Poisson λg

� �
where λg is the expected

abundance of individuals in pixel g. Thus, expected
population abundance in region A, μA, is approxi-
mated as ∑G

g¼1λg. Spatial variation in expected abun-
dance is driven by covariates that change across pixels,
allowing us to model the effects of a heterogeneous
landscape or habitat. Pixel resolution should be
defined to appropriately capture spatial variation in
abundance and covariates specific to the system of
interest (Baddeley et al. 2010). We modeled covariate
effects on λg using a log-link function with a linear
predictor describing the effects of each variable,
log λg

� �¼ log λ0ð Þþβ �wg. The parameter λ0 is the inter-
cept, which can be interpreted as the baseline intensity
of region A, and β is the vector of effect parameters
for each corresponding covariate wg at pixel g. Varia-
tion in environmental covariates, wg, results in an
inhomogeneous Poisson point process as expected
abundance of the target species, λg, varies across the
region (Koshkina et al. 2017).

Observation processes

Opportunistic sampling: presence-only data.—By defini-
tion, opportunistic sampling lacks a structured design
and such data are generated when information is col-
lected haphazardly. In the case of population studies,
opportunistic sampling is generally in the form of “pres-
ence-only” data on either occurrence (i.e., the species is
present) or abundance (i.e., the number of individuals of
the species that are observed) of the target population in
specific locations. With presence-only data, no informa-
tion on non-occurrences (i.e., zero counts) or locations
sampled are recorded. Presence-only data are common
in museum and herbarium collections, public science
programs, and auxiliary data collection (Phillips et al.
2009, Fithian et al. 2015). Additionally, biases in oppor-
tunistic sampling data can result from uneven sampling
intensity across a study area. For example, many public
science programs typically collect data near roads or
urban areas and information on sampling intensity is
not always recorded.
To link presence-only count data (i.e., instances when

≥1 individuals observed within a pixel are recorded) to
true abundance, we corrected for observation errors
(e.g., sampling bias, imperfect detection) using a spa-
tially explicit Poisson thinning process (Dorazio 2014).
We assumed that the presence-only count data cover a
subset of area, B, of the region of interest, A (BA).
Counts recorded at a pixel, yg, are the realization of a

binomial process where yg ∼ binomial Ng,pg
� �

, in which

Ng is the true latent abundance in pixel g, with expected
abundance, λg (as defined in the biological process
model), and pg is a value between 0 and 1 that describes
the observation error. Observation error is the
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combination of imperfect detection and variable sam-
pling intensity. Thus, we assumed the number of
observed individuals at a pixel is less than or equal to
the number of individuals occurring within a pixel. This
binomial-Poisson mixture model reduces to a thinned

point process model: yg ∼Poisson λg �pg
� �

(Appendix

S1). Spatial variation in observation error can be mod-
eled using a logit-link function with a linear predictor,
logit(pg) = logit(p0) + α � zg, where p0 is the intercept
parameter, and α is the vector of effect parameters of
each of the corresponding covariates, zg, that vary by
pixel g to represent both imperfect detection and vari-
able sampling intensity.

Distance sampling.—Distance sampling is a technique
used to estimate species abundance and/or density by
recording counts of individuals along transects and
using their distance from the transect line to estimate a
detection function (Buckland et al. 1993). In distance
sampling, detection is assumed to be perfect on the tran-
sect line and then decay as a function of increasing dis-
tance from the line. Calculating the detection probability
allows for estimation of the number of individuals that
were not observed, and hence true latent abundance of a
species. Covariates can be included to account for varia-
tions in abundance and/or the detection process across
sampled locations.
For distance sampling data, we again corrected for

imperfect detection by using a spatially explicit Poisson
thinning process (Appendix S1). The number of individ-
uals observed, xg, in each pixel g is the realization of a
binomial process, xg ∼ binomial Ng,πg

� �
where πg is the

average detection probability in g (ranging between 0
and 1). This binomial-Poisson mixture model also
reduces to a thinned point process model where
xg ∼Poisson λg �πg

� �
. We calculated the average detec-

tion probability of each pixel, πg, using the distance from
the pixel midpoint to the transect line and the half-nor-
mal distribution πg ¼ exp �d2

g=2σ2g
� �

,where dg is the dis-
tance between the midpoint of pixel g and the transect
line and σg is the scale parameter of the half-normal
distribution for the pixel. Covariates that influence
detection across pixels can be used to model σg with a
log-link function. We assumed that distance sampling
spans an area, C, within our region of interest that is less
than or equal to the size of region A (CA).

Integrated model

To form the integrated model, we assumed indepen-
dence between presence-only and distance sampling data.
Although the two data types describe the same popula-
tion, we found that an assumption of independence
among data sets minimized computational challenges and
did not affect model inferences (Appendix S1). We linked
the two observation processes by assuming a joint, under-
lying biological process for the latent abundance model

describing the expected number of individuals at each
pixel g, log(λg) = log(λ0) + β � wg. We obtained the joint
likelihood of the integrated model for the two observation
processes, LIM(p0, α, σg, λ0, β|zg, yg, dg, xg, wg), as the pro-
duct of the separate likelihoods for presence-only data,
LPO(p0, α, λ0, β|zg, yg, wg), and distance sampling data,
LDS(σg, λ0, β|dg, xg, wg). The parameters λ0 and β
describe the shared biological process, characterizing
true latent abundance across the study area, which
occurs independently of how data are collected.
Data from opportunistic and distance sampling col-

lection processes may or may not come from the same
area (B¼C or B≠C) within region A. Ideally, at least a
subset of region A will be sampled by both approaches
(B∩C) although this is theoretically not required. Addi-
tionally, the different data types may be collected at dif-
ferent scales leading to a spatiotemporal mismatch
between data sets. To integrate data collected at different
scales, a single spatiotemporal resolution must be
achieved by rescaling the data through change-of-sup-
port procedures (Pacifici et al. 2019). Ideally, the biologi-
cal process should be described at the smaller
spatiotemporal resolution of the two data sets to allow
for better numerical approximation of the point process
(Baddeley et al. 2010). The data set with the larger reso-
lution is then matched to the scale of the biological pro-

cess through summation, vb ∼Poisson ∑ bj j
g¼1λg

� �
, where

vb is the observation at pixel b of the larger resolution
data and bj j is the number of smaller resolution pixels g
within b (g∈ bj j).
Model parameters can be estimated in either a fre-

quentist or Bayesian framework using the joint likeli-
hood. The discretization of space in our model
facilitates the use of standard Bayesian software for
parameter estimation (e.g., JAGS; Plummer 2003). Pre-
vious thinned spatial point process models using contin-
uous space have relied on frequentist frameworks for
analysis (Dorazio 2014, Fithian et al. 2015).

SIMULATION STUDY

We conducted a simulation study to evaluate the accu-
racy and precision of our integrated model (Data S1).
We verified our model’s ability to estimate abundance by
examining its capacity to recover an intercept parameter,
λ0, and a single effect parameter, β1 of a covariate wg.
Model performance was evaluated across a range of
environmental conditions (i.e., λ0, β1) and observation
error (i.e., p0, α1, zg, σ) by drawing each parameter and
covariate from a distribution of realistic values (Appen-
dix S2). We varied the amount of distance sampling data
by changing the subset of area C (i.e., area covered by
distance sampling transects) as percentage of region A
(i.e., 0%, 5%, 10%, 15%, and 20%) while assuming either
high or low quantities of presence-only data, which we
simulated by altering the intensity of opportunistic sam-
pling (p0, wg; Appendix S2).
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Our simulated data sets followed the assumptions laid
out in the descriptions of the biological and observation
processes (Fig. 1A, B). For a single simulation, we first
drew the environmental parameter values to create true
latent abundance values in region A. We then analyzed
data sets generated using all combinations of data quan-
tities (e.g., high and low presence-only with 0%, 5%,
10%, 15%, and 20% distance sampling). We ran 1,000
simulations for each of the 10 scenarios (10,000 total
simulations) and estimated model parameters using a
Bayesian framework within program JAGS (version
4.2.0; Plummer 2003) with the jagsUI wrapper (version
1.4.2; Kellner 2016) and program R (version 3.4.1; R
Core Team 2017). We used Gelman-Rubin diagnostics
to check for convergence. For each parameter, we saved
true values along with the mean value from the esti-
mated posterior distribution of each fitted model. We
examined the bias in parameter estimates by calculating
the estimated value minus the true value, such that posi-
tive values indicate overestimation and negative values
indicate underestimation.
Our simulation results demonstrate that the quantity

of each data type determines the accuracy and precision
of λ0 and β1, and hence estimates of abundance
(Fig. 1C–F). Absolute abundance cannot be estimated
with presence-only data alone (i.e., 0% distance sampling
coverage), as the intercept parameter (λ0) is unidentifi-
able (Fig. 1C, D; Dorazio 2014, Koshkina et al. 2017).
However, both the accuracy and precision of the esti-
mated intercept improve significantly as the amount of
integrated distance sampling data is increased. Although
presence-only data can accurately estimate the effect of a
covariate (β1) on latent abundance (Fig. 1E, F), preci-
sion improves with increasing amounts of distance sam-
pling data, especially when there is only a limited
amount of presence-only data (Fig. 1F).
Although estimates of detection probability within the

distance sampling component of the model can be accu-
rately recovered, interpretation of the observation error
for presence-only data (pg and parameters therein) is not
recommended because imperfect detection and sampling
bias cannot be parsed apart (Appendix S1). As such, the
estimates of p0 and α1 are not meaningful (Appendix S2)
and become less reliable within an integrated framework
as λg becomes identifiable because yg ∼Poisson λg �pg

� �

(Dorazio 2014). Thus, we caution readers against inter-
pretation of specific parameters within the linear predic-
tor of pg.

APPLICATION

The objective of our case study is to identify and eval-
uate environmental factors influencing black-backed
jackal abundance across disturbed and undisturbed
regions of the Masai Mara National Reserve using the
integrated presence-only and distancing sampling model.
The Reserve is a protected area on the southern border
of Kenya and is home to a diverse mammalian

community. Despite its protected status, some species in
the Reserve are declining (Green et al. 2018, Green et al.
2019). Inconsistency in enforcement of management reg-
ulations (i.e., active vs. passive enforcement) across the
Reserve results in spatial variation in human distur-
bance. Consequently, some wildlife species may be
declining, while others, such as the black-backed jackal,
seem to be thriving despite, or perhaps because of,
changes to the landscape (Green et al. 2018, Farr et al.
2019).
To assess wildlife populations in the Reserve, distance

sampling was conducted at monthly intervals between
July 2012 and March 2014, during which 145 jackal
sightings were recorded. Distance sampling transects
were designed to accommodate driving restrictions and
did not adhere to the assumption of nonrandom sam-
pling, which can affect abundance estimates (Buckland
et al. 1993); however, previous work using these data did
not find biases caused by the design of the transects (see
Farr et al. 2019 and Appendix S3 for data collection
methods). A previous community distance sampling
model revealed higher jackal density in the disturbed
eastern region than in the relatively undisturbed western
region, but limited data prevented precise estimation of
other covariates (Farr et al. 2019). During the same time
period, opportunistic sampling of jackals occurred daily
by researchers who were primarily observing spotted
hyena (Crocuta crocuta) behaviors. There were 2,669
jackal sightings recorded during opportunistic sampling,
which is over 18 times the number of observations with
distance sampling.
We adapted the basic structure of our integrated

model to address a change-of-support problem between
the temporal and spatial scales of our two data types
(Fig. 2A, Appendix S3). To match the temporal scales
between the observation processes described by the two
data sources (monthly distance sampling vs. daily pres-
ence-only), we summarized presence-only data at
monthly intervals. To avoid double counting individuals
across and within pixels during a month, we used a spa-
tial resolution of 1 km2 for the presence-only data and
the maximum group size (i.e., total number of individual
jackals seen together) across observations within each
pixel, which resulted in a total of 1655 recorded sight-
ings. Distance sampling protocols prevented double
counting of individuals across and within pixels; thus,
we used a spatial resolution of 2,500 m2 (50 × 50 m),
which allowed us to capture observational and biological
variation within transects (Fig. 2A). Given that jackals
live in pairs (Moehlman 1979), we assumed abundance
could be described using a Poisson distribution. Species
with larger social groupings may require a different dis-
tribution or a group size submodel. We modeled the bio-
logical process as log(λg) = log(λ0) + β � wg at the smaller
spatial resolution (2,500 m2). When changing spatial
support to 1 km2 to match the scale of the presence-only
data, we summed the Poisson random variables to scale
up the intensity function by a factor of 400 (2,500 m2 ∙
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400 = 1 km2), yb ∼Poisson ∑400
g¼1λg

� �
∙pb

� �
, where b is a

1-km2 pixel that contains 400 g pixels at 2,500 m2. We
also assumed that temporary emigration out of the study
area was random and would thus have negligible effects
on parameter estimation (Chandler et al. 2011).
We defined the study area as the combined extent

of our two data sources (Appendix S3) and included
in our model several environmental variables that
might influence jackal abundance: disturbance regime

coded as a binary indicator of whether a pixel was in
the western (i.e., undisturbed) or the eastern (i.e., dis-
turbed) region of the Reserve, distance to border as a
proxy for the intensity of human disturbance, distance
to a permanent water source, a vegetation index (i.e.,
normalized difference vegetation index [NDVI]), and
an index of African lion (Panthera leo) density (the
apex predator responsible for intraguild predation and
competition, using kernel density estimate of lion
sightings within each month), which were generally

FIG. 1. (A, B) Visualization of the region of interest for a single simulation of high (left column; A) and low (right column; B)
presence-only data shown with 20% distance sampling coverage. The gray background shows the spatial variation of a standardized
environmental covariate that drives abundance. Blue and red dots represent presence-only and distance sampling data, respectively,
and red lines show distance sampling transects. (C–F) Simulation results showing bias (estimated minus true value) for the intercept
(C, D) and covariate effect (E, F) parameters for high (C, E) and low (D, F) presence-only data across a range (0–20%) of distance
sampling coverage (0% coverage is presence-only data alone). The solid black lines at zero indicate no bias, where negative and posi-
tive values indicate under- and overestimations, respectively. Center lines of boxes show the median value of 1,000 simulations.
Boxes contain the interquartile range. Vertical lines indicate values within �1.5 times the interquartile range.

Xxxxx 2020 INTEGRATED SPATIAL POINT PROCESS MODEL Article e03204; page 5
S
ta

tistica
lR

ep
ort



lower in the disturbed region (Green et al. 2018, Farr
et al. 2019). We also included an interaction effect
between disturbance regime and distance to border, as
we hypothesized that jackals within the disturbed
region may be benefiting from being close to human
activity. We included a random effect of pixel to
account for variation among monthly replicates. To

model the spatial heterogeneity in bias for opportunis-
tic sampling, we added a spatially explicit and time-
varying index of sampling intensity, as calculated by
the sampling locations of hyena observations
(n = 16,267) during the study period. We allowed the
scale parameter for distance sampling to vary between
disturbance regimes, as differences in grass height

FIG. 2. (A) Visualization of the spatial change-of-support problem. Distance sampling occurs at a 2,500-m2 resolution, while
presence-only data are aggregated at a 1-km2 resolution. (B) Spatially explicit abundance estimates (jackal density, no./km2) of
black-backed jackals in the Masai Mara National Reserve. Study area outlined with a thin dashed line. The undisturbed and dis-
turbed regions are west and east of the Mara River (blue line), respectively. (C) Estimated covariate effects (log-scale) on black-
backed jackal abundance. Small horizontal bars indicate posterior means; 50% and 95% credible intervals are displayed with thick
and thin vertical bars, respectively. NDVI is the normalized difference vegetation index. (D) The relationship between jackal density
and distance to border by management regime: eastern disturbed (solid line) vs. western undisturbed (dashed line) region. The
shaded regions show 95% credible intervals.
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(from differences in grazing intensity) may influence
detection probability.
Using our integrated model (Data S2), we discovered

that black-backed jackals have highest densities in the
disturbed region closest to the border where human
activity is greatest (Fig. 2B). The mean effect of manage-
ment regime on jackal distribution was significantly pos-
itive (1.75; 95% CI = 1.17, 2.46; covariates are reported
on the log scale; Fig. 2C), consistent with results using
only distance sampling data demonstrating that jackal
abundance is higher in the disturbed than undisturbed
region (Farr et al. 2019). The mean effect of distance to
border was positive (0.84; 95% CI = 0.50, 1.19; Fig. 2
C), but the interaction between distance to border and
management regime was negative (−1.29; 95% CI =
−1.71, −0.83; Fig. 2C). Thus, abundance of jackals
within the disturbed region was highest along the border
of the Reserve near the urban center of Talek Town, but
within the undisturbed region, jackal abundance was
lower near the border than in interior areas (Fig. 2D).
Though the effects of NDVI (−0.09; 95% CI = −0.15,
−0.02), distance to water source (0.26; 95% CI = 0.01,
0.51), and lion density (−0.04; 95% CI = −0.12, 0.02) on
black-backed jackal abundance were precisely estimated,
the magnitudes of these effects were close to zero (Fig. 2
C). Black-backed jackals may not be responding as
strongly to bottom-up processes or variation in lion den-
sity as they do to human activity; however, lack of
response to our index of lion density may indicate that
jackal avoidance of lions occurs at smaller spatial and
shorter temporal scales than those applied here.
Sparse data from distance sampling alone led to

imprecise estimates of spatially explicit covariate effects.
However, by integrating presence-only data into our
analysis, we were able to demonstrate that jackals are
likely benefiting from human disturbance and that their
abundance patterns are influenced by a variety of land-
scape factors, including an interesting interaction with
distance to the Reserve border.

DISCUSSION

Using an integrated modeling framework, we com-
bined presence-only and distance sampling data for the
first time to accurately and precisely estimate species
abundance and the effects of ecological covariates across
space. Integrated point process models are useful in
describing spatially varying population abundance and
can be linked hierarchically to multiple data types such
as presence-only, detection–nondetection, count (Miller
et al. 2019, Isaac et al. 2020), and now distance sampling
data. Our simulation study demonstrates how parameter
estimates can be improved when supplementing pres-
ence-only data with distance sampling data. Regardless
of whether low or high amounts of presence-only data
were used, the addition of distance sampling data with
fairly minimal coverage (10–15%) led to parameter iden-
tifiability of the intercept, λ0, and hence the ability to

estimate abundance (Fig. 1). In our case study, we aug-
mented distance sampling data with opportunistic pres-
ence-only data leading to precise estimation of jackal
abundance, including the effects of covariates, which was
not possible using distance sampling data alone. The fea-
sibility of our integrated framework depends on the
availability of both data types and the ecology of the tar-
get species. Unlike data collected via structured sam-
pling, presence-only data are not typically collected with
the target species in mind as they are usually recorded as
“incidental sightings.” As we demonstrated in our case
study, decisions on how to summarize and structure
presence-only data (e.g., defining the spatiotemporal res-
olution) should be made in consideration of the ecologi-
cal context of the study system. In some situations, a
species’ life history may be incompatible with the analy-
sis and integration of presence-only data, such as in
highly mobile species (i.e., violation of geographic clo-
sure) or species with high demographic turnover (i.e.,
violation of demographic closure).
Data integration is an increasingly popular analytical

technique, but many challenges remain for widespread
implementation (Fletcher et al. 2016, Isaac et al. 2020).
Our simulation study revealed that parameters were iden-
tifiable in our integrated framework. However, parame-
ter identifiability should be considered relative to the
quantity and quality of available data, especially in cases
where collinearity occurs between covariates on the
observation and biological processes (Dorazio 2014).
Our model estimated variable accuracy and precision of
parameters across simulation scenarios with different
amounts of data (Fig. 1C–F). Unstructured data, such
as presence-only, is frequently collected opportunistically
and researchers may have little control over their avail-
able quantity. However, a priori assessments, through
power analyses or other simulation approaches, can help
determine the optimal amount of required structured
data to achieve specific estimation objectives and thereby
optimize survey planning to reduce redundancies (Zipkin
et al. 2021). Integrated point process models, such as the
one we presented in this paper, make multiple assump-
tions about each data type (e.g., independence of data
sources and individual points [Appendix S1]). Our simu-
lation study followed the assumptions of our modeling
structure. Researchers should carefully examine whether
their systems meet these assumptions and conduct simu-
lations to evaluate potential biases in cases when assump-
tions cannot be met completely (Renner et al. 2015).
The variability and complexity of biological systems,

along with individual nuances of data collection, make it
difficult to develop a universal integrated model, but
general frameworks and guidelines for data integration
can help ecologists tweak or customize models for their
intended purposes (Saunders et al. 2019). Identifying the
common currency (i.e., occurrence, abundance, point
process) across data types and the parameters of inter-
ests will help narrow the choice of possible integration
methods. We used a thinned spatial point process to link
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different data types by describing abundance as a collec-
tion of individuals or points across space while account-
ing for differential observation processes between data
sources. Point process models are a major advancement
in the development of integrated modeling frameworks
because they provide a straightforward statistical
approach to unify data and an easy biological interpreta-
tion (Miller et al. 2019, Isaac et al. 2020). Such models
can provide ecologists with valuable tools to tackle mul-
tidimensional problems with an array of data sources,
now including distance sampling.
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