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ABSTRACT2

Convolutional neural networks (CNN) have been hugely successful recently with superior3
accuracy and performance in various imaging applications, such as classification, object detection,4
and segmentation. However, a highly accurate CNN model requires millions of parameters to be5
trained and utilized. Even to increase its performance slightly would require significantly more6
parameters due to adding more layers and/or increasing the number of filters per layer. Apparently,7
many of these weight parameters turn out to be redundant and extraneous, so the original, dense8
model can be replaced by its compressed version attained by imposing inter- and intra-group9
sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of10
sparse group lasso that blends nonconvex regularization (e.g., transformed `1, `1 − `2, and `0)11
that induces sparsity onto the individual weights and `2,1 regularization onto the output channels12
of a layer. We apply variable splitting onto the proposed regularization to develop an algorithm13
that consists of two steps per iteration: gradient descent and thresholding. Numerical experiments14
are demonstrated on various CNN architectures showcasing the effectiveness of the nonconvex15
family of sparse group lasso in network sparsification and test accuracy on par with the current16
state of the art.17

Keywords: deep learning, sparsity, nonconvex optimization, sparse group lasso, feature selection18

1 INTRODUCTION
Deep neural networks (DNNs) have proven to be advantageous for numerous modern computer vision19
tasks involving image or video data. In particular, convolutional neural networks (CNNs) yield highly20
accurate models with applications in image classification [39, 77, 28, 95], semantic segmentation [49, 13],21
and object detection [73, 30, 72]. These large models often contain millions of weight parameters that often22
exceed the number of training data. This is a double-edged sword since on one hand, large models allow for23
high accuracy, while on the other, they contain many redundant parameters that lead to overparametrization.24
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Overparametrization is a well-known phenomenon in DNN models [17, 6] that results in overfitting,25
learning useless random patterns in data [96], and having inferior generalization. Additionally, these26
models also possess exorbitant computational and memory demands during both training and inference.27
Consequently, they may not be applicable for devices with low computational power and memory.28

Resolving these problems requires compressing the networks through sparsification and pruning.29
Although removing weights might affect the accuracy and generalization of the models, previous30
works [54, 25, 81, 66] demonstrated that many networks can be substantially pruned with negligible31
effect on accuracy. There are many systematic approaches to achieving sparsity in DNNs, as discussed32
extensively in [14, 15].33

Han et al. [26] proposed to first train a dense network, prune it afterward by setting the weights to zeroes34
if below a fixed threshold, and retrain the network with the remaining weights. Jin et al. [32] extended this35
method by restoring the pruned weights, training the network again, and repeating the process. Rather36
than pruning by thresholding, Aghasi et al. [1, 2] proposed Net-Trim, which prunes an already trained37
network layer by layer using convex optimization in order to ensure that the layer inputs and outputs remain38
consistent with the original network. For CNNs in particular, filter or channel pruning is preferred because39
it significantly reduces the amount of weight parameters required compared to individual weight pruning.40
Li et al. [43] calculated the sums of absolute weights of the filters of each layer and pruned the ones41
with the smallest sums. Hu et al. [29] proposed a metric called average percentage of zeroes for channels42
to measure their redundancies and pruned those with highest values for each layer. Zhuang et al. [105]43
developed discrimination-aware channel pruning that selects channels that contribute to the network’s44
discriminative power.45

An alternative approach to pruning a dense network is learning a compressed structure from scratch. A46
conventional approach is to optimize the loss function equipped with either the `1 or `2 regularization,47
which drives the weights to zeroes or to very small values during training. To learn which groups of weights48
(e.g., neurons, filters, channels) are necessary, group regularization, such as group lasso [93] and sparse49
group lasso [76], are equipped to the loss function. Alvarez and Salzmann [4] and Scardapane et al. [75]50
applied group lasso and sparse group lasso to various architectures and obtained compressed networks51
with comparable or even better accuracy. Instead of sharing features among the weights as suggested by52
group sparsity, exclusive sparsiy [104] promotes competition for features between different weights. This53
method was investigated by Yoon and Hwang [92]. In addition, they combined it with group sparsity and54
demonstrated that this combination resulted in compressed networks with better performance than their55
original counterparts. Non-convex regularization has also been examined. Louizos et al. [54] proposed56
a practical algorithm using probabilistic methods to perform `0 regularization on CNNs. Ma et al. [61]57
proposed integrated transformed `1, a convex combination of transformed `1 and group lasso, and compared58
its performance against the aforementioned group regularization methods.59

In this paper, we propose a family of group regularization methods that balances both group lasso for60
group-wise sparsity and nonconvex regularization for element-wise sparsity. The family extends sparse61
group lasso by replacing the `1 penalty term with a nonconvex penalty term. The nonconvex penalty terms62
considered are `0, `1 − α`2, transformed `1, and SCAD. The proposed family is supposed to yield a more63
accurate and/or more compressed network than sparse group lasso since `1 suffers various weaknesses due64
to being a convex relaxation of `0. We develop an algorithm to optimize loss functions equipped with the65
proposed nonconvex, group regularization terms for DNNs.66
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2 MODEL AND ALGORITHM
2.1 Preliminaries67

Given a training dataset consisting of N input-output pairs {(xi, yi)}Ni=1, the weight parameters of a
DNN are learned by optimizing the following objective function:

min
W

1

N

N∑
i=1

L(h(xi,W ), yi) + λR(W ), (1)

where68

• W is the set of weight parameters of the DNN.69

• h(·, ·) is the output of the DNN used for prediction.70

• L(·, ·) ≥ 0 is the loss function that compares the prediction h(xi,W ) with the ground-truth output yi.71
Examples include cross-entropy loss function for classification and mean-squared error for regression.72

• R(·) is the regularizer on the set of weight parameters W .73

• λ > 0 is a regularization parameter forR(·).74

The most common regularizer used for DNNs is `2 regularization ‖ · ‖22, also known as weight decay. It75
prevents overfitting and improves generalization because it enforces the weights to decrease proportionally76
to their magnitudes [40]. Sparsity can be imposed by pruning weights whose magnitudes are below a77
certain threshold at each iteration during training. However, an alternative regularizer is the `1 norm78
‖ · ‖1, also known as the lasso penalty [78]. The `1 norm is the tightest convex relaxation of the `079
penalty [20, 23, 82] and it yields a sparse solution that is found on the corners of the 1-norm ball [27, 52].80
Theoretical results justify the `1 norm’s ability to reconstruct sparse solution in compressed sensing. When81
a sensing matrix satisfies the restricted isometry property, the `1 norm recovers the sparse solution exactly82
with high probability [11, 23, 82]. On the other hand, the null space property is a necessary and sufficient83
condition for `1 minimization to guarantee exact recovery of sparse solutions [16, 23]. Being able to84
yield sparse solutions, the `1 norm has gained popularity in other types of inverse problems such as85
compressed imaging [33, 57] and image segmentation [35, 34, 42] and in various fields of applications86
such as geoscience [74], medical imaging [33, 57], machine learning [10, 78, 36, 67, 89], and traffic flow87
network [91]. Unfortunately, element-wise sparsity by `1 or `2 regularization in CNNs may not yield88
meaningful speedup as the number of filters and channels required for computation and inference may89
remain the same [86].90

To determine which filters or channels are relevant in each layer, group sparsity using the group lasso
penalty [93] is considered. The group lasso penalty has been utilized in various applications, such as
microarray data analysis [62], machine learning [7, 65], and EEG data [46]. Suppose a DNN has L layers,
so the set of weight parameters W is divided into L sets of weights: W = {Wl}Ll=1. The weight set of each
layer Wl is divided into Nl groups (e.g., channels or filters): Wl = {wl,g}Nlg=1. The group lasso penalty
applied to Wl is formulated as

RGL(Wl) =

Nl∑
g=1

√
#wl,g‖wl,g‖2 =

Nl∑
g=1

√
#wl,g

√√√√#wl,g∑
i=1

w2
l,g,i, (2)
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where wl,g,i corresponds to the weight parameter with index i in group g in layer l and the term #wl,g91
denotes the number of weight parameters in group g in layer l. Because group sizes vary, the constant92 √

#wl,g is multiplied in order to rescale the `2 norm of each group with respect to the group size, ensuring93
that each group is weighed uniformly [93, 76, 65]. The group lasso regularizer imposes the `2 norm on94
each group, forcing weights of the same groups to decrease altogether at every iteration during training. As95
a result, the groups of weights are pruned when their `2 norms are negligible, resulting in a highly compact96
network compared to element-sparse networks.97

As an alternative to group lasso that encourages feature sharing, exclusive sparsity [104] enforces the
model weight parameters to compete for features, making the features discriminative for each class in the
context of classification. The regularization for exclusive sparsity is

1

2

Nl∑
g=1

‖wl,g‖21 =
1

2

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|

2

. (3)

Now, within each group, sparsity is enforced. Because exclusivity cannot guarantee the optimal features
since some features do need to be shared, exclusive sparsity can be combined with group sparsity to form
combined group and exclusive sparsity (CGES) [92]. CGES is formulated as

RCGES =

Nl∑
g=1

(1− µl)
√√√√#wl,g∑

i=1

w2
l,g,i +

µl
2

#wl,g∑
i=1

|wl,g,i|

2
 , (4)

where µl ∈ (0, 1) is a parameter for balancing exclusivity and sharing among features.98

To obtain an even sparser network, element-wise sparsity and group sparsity can be combined and applied
together to the training of DNNs. One regularizer that combines these two types of sparsity is the sparse
group lasso penalty [76], which is formulated as

RSGL1(Wl) = RGL(Wl) + ‖Wl‖1 (5)

where

‖Wl‖1 =
Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|.

Sparse group lasso simultaneously enforces group sparsity by having the regularizer RGL(·) and99
element-wise sparsity by having the `1 norm. This regularizer has been used in machine learning [83],100
bioinformatics [48, 103], and medical imaging [47].101

Figure 1 demonstrates the differences between lasso, group lasso, and sparse group lasso applied to a102
weight matrix connecting a 5-dimensional input layer to a 10-dimensional output layer. In white, the entries103
are zero’ed out; in gray; the entries are not. Unlike lasso, group lasso results in a more structured method104
of pruning since three of the five neurons can be zero’ed out. Combined with `1 regularization on the105
individual weights, sparse group lasso allows for more weights in the remaining two neurons to be pruned.106
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Figure 1. Comparison between lasso, group lasso, and sparse group lasso applied to a weight matrix.
Entries in white are zero’ed out or removed; entries in gray remain.

2.2 Nonconvex Sparse Group Lasso107

We recall that the `1 norm is the tightest convex relaxation of the `0 penalty, given by

‖Wl‖0 =
Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|0 (6)

where

|w|0 =

{
1 if w 6= 0

0 if w = 0
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when applied to the weight set Wl of layer l. The `0 penalty is non-convex and discontinuous. In addition,108
any `0-regularized problem is NP-hard [23]. These properties make developing convergent and tractable109
algorithms for `0-regularized problems difficult, thereby making `1-regularized problems better alternatives110
to solve. However, the `0-regularized problems have been shown to recover better solutions in terms of111
sparsity and/or accuracy than do `1-regularized problems in various applications, such as compressed112
sensing [56], image restoration [8, 12, 19, 102, 55], MRI reconstruction [80], and machine learning [56, 94].113
In particular, `0-regularized inverse problems were demonstrated to be more robust against Poisson noise114
than are `1-regualarized inverse problems [100].115

A continuous alternative to the `0 penalty is the SCAD penalty term [22, 58], given by

λ‖Wl‖SCAD(a) =

Nl∑
g=1

#wl,g∑
i=1

λ|wl,g,i|SCAD(a) (7)

where

λ|w|SCAD(a) :=


λ|w| if |w| < λ
2aλ|w|−w2−λ2

2(a−1) if λ ≤ |w| < aλ

(a+ 1)λ2/2 if |w| ≥ aλ

for λ > 0 and a > 2. This penalty term enjoys three properties – unbiasedness, sparsity, and continuity116
– while the `1 norm, on the other hand, has only sparsity and continuity [22]. In linear and logistic117
regression, SCAD was shown to outperform `1 in variable selection [22]. SCAD has been applied to118
wavelet approximation [5], bioinformatics [9, 84], and compressed sensing [64].119

The transformed `1 penalty term [68] also enjoys the properties of unbiasedness, sparsity, and
continuity [58]. In fact, the regularizer is not just continuous but Lipschitz continuous [98]. The term is
given by

‖Wl‖TL1(a) =

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|TL1(a) (8)

where

|w|TL1(a) =
(a+ 1)|w|
a+ |w|

.

In addition, it interpolates the `0 and `1 penalties through the parameter a [98] because

lim
a→0+

|w|TL1(a) = |w|0 and lim
a→∞

|w|TL1(a) = |w|.

The transformed `1 penalty term was investigated and was shown to outperform `1 in compressed120
sensing [97, 98, 79], deep learning [61, 87, 45], matrix completion [99], and epidemic forecasting [45].121
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Another Lipschitz continous, nonconvex regularizer is the `1 − α`2 penalty given by

‖Wl‖`1−α`2 = ‖Wl‖1 − α‖Wl‖2 =
Nl∑
g=1

#wl,g∑
i=1

|wl,g,i| − α

√√√√√ Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|2, (9)

where α ∈ (0, 1]. In a series of works [52, 90, 50, 51], the penalty term `1 − `2 with α = 1 yields better122
solutions than does `1 in various compressed sensing applications especially when the sensing matrix is123
highly coherent or it violates the restricted isometry property condition. To guarantee exact recovery of124
sparse solution, `1−`2 only requires a relaxed variant of the null space property [79]. Furthermore, `1−α`2125
is more robust against impulsive noise in yielding sparse, accurate solutions for inverse problems than is126
`1 [44]. Besides compressed sensing, it has been utilized in image denoising and deblurring [53], image127
segmentation [71], image inpainting [63], and hyperspectral demixing [21]. In deep learning application,128
the `1 − `2 regularization was used to learn permutation matrices [59] for ShuffleNet [101, 60].129

Due to the advantages and recent successes of the aforementioned nonconvex regularizers, we propose to130
replace the `1 norm in (5) with nonconvex penalty terms. Hence, we propose a family of group regularizers131
called nonconvex sparse group lasso. The family includes the following:132

RSGL0(Wl) = RGL(Wl) + ‖Wl‖0 (10)

RSGSCAD(a)(Wl) = RGL(Wl) + ‖Wl‖SCAD(a) (11)

RSGTL1(a)(Wl) = RGL(Wl) + ‖Wl‖TL1(a) (12)

RSGL1−αL2(Wl) = RGL(Wl) + ‖Wl‖`1−α`2 . (13)

Using these regularizers, we expect to obtain a sparser and/or more accurate network than from using133
the original sparse group lasso. The `1 norm can also be replaced with other nonconvex penalties not134
mentioned in this paper. Refer to [3, 85] to see other nonconvex penalties. However, we focus on the135
aforementioned nonconvex regularizers because they have closed-form proximal operators required by our136
proposed algorithm described in the next section.137

2.3 Notations and Definitions138

Before discussing the algorithm, we summarize notations that we will use to save space. They are the139
following:140

• If V = {Vl}Ll=1 and W = {Wl}Ll=1, then (V,W ) := ({Vl}Ll=1, {Wl}Ll=1) =141
(V1, . . . , VL,W1, . . . ,WL).142

• V + := V k+1.143

• L̃(W ) := 1
N

∑N
i=1 L(h(xi,W ), yi).144

In addition, we define the proximal operator for the regularization function r(·) as follows:

proxλr(y) = argmin
x

λ r(x) +
1

2
‖x− y‖22

for λ > 0.145
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2.4 Numerical Optimization146

We develop a general algorithm framework to solve

min
W
L̃(W ) + λ

L∑
l=1

R(Wl) = L̃(W ) +
L∑
l=1

(λRGL(Wl) + λr(Wl)) (14)

where W = {Wl}Ll=1, R is either RSGL1 or one of the nonconvex regularizers (10)-(13), and r(·) is the147
corresponding sparsity-inducing regularizer. Throughout the paper, our assumption on (14) is the following:148

ASSUMPTION 1. The function L̃ is continuously differentiable with respect to Wl for each l = 1, . . . , L.149

By introducing an auxiliary variable V = {Vl}Ll=1 for (14), we have a constrained optimization problem:150

min
V,W

L̃(W ) +
L∑
l=1

(λRGL(Wl) + λr(Vl))

s.t. Vl = Wl l = 1, . . . , L.

(15)

The constraints can be relaxed by adding the quadratic penalty terms with β > 0 so that we have151

min
V,W

Fβ(V,W ) := L̃(W ) +
L∑
l=1

[
λRGL(Wl) + λr(Vl) +

β

2
‖Vl −Wl‖22

]
. (16)

With β fixed, (16) can be solved by alternating minimization:

W k+1 = argmin
W

Fβ(V
k,W ) (17a)

V k+1 = argmin
V

Fβ(V,W
k+1). (17b)

To solve (17a), we simultaneously update Wl for l = 1, . . . L by gradient descent

W k+1
l = W k

l − γ
(
∇Wl
L̃(W k) + λ∂Wl

RGL(W k
l )− β(V k

l −W k
l )
)

(18)

where γ > 0 is the learning rate and ∂Wl
RGL is the subdifferential ofRGL with respect to Wl. In practice,152

(18) is performed using stochastic gradient descent (or one of its variants) with mini-batches due to the153
large-size computation dealing with the amount of data and weight parameters that a typical DNN has.154

To update V , we see that (17b) can be rewritten as

V k+1 = argmin
V

L∑
l=1

(
λ

β
r(Vl) +

1

2
‖Vl −Wl‖22

)
=
(

proxλ
β r
(W1), . . . , proxλ

β r
(WL)

)
. (19)

The proximal operators for the considered regularizers are thresholding functions as their closed-form155
solutions, and as a result, the V update simplifies to thresholding W . The regularization functions and their156
corresponding proximal operators are summarized in Table 1.157
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Algorithm 1: Algorithm for Nonconvex Sparse Group Lasso Regularization
1 Initialize V 1 and W 1 with random entries; learning rate γ; regularization parameters λ and β; and

multiplier σ > 1.
2 Set j := 1.
3 while stopping criterion for outer loop not satisfied do
4 Set k := 1.
5 Set W j,1 = W j and V j,1 = V j .
6 while stopping criterion for inner loop not satisfied do
7 Update W j,k+1 by Eq. (18).
8 Update V j,k+1 by Eq. (19).
9 k := k + 1

10 end
11 Set W j+1 = W j,k and V j+1 = V j,k.
12 Set β := σβ.
13 Set j := j + 1.
14 end
15 Output: W j and V j .

Incorporating the algorithm that solves the quadratic penalty problem (16), we now develop a general158
algorithm to solve (14). We solve a sequence of quadratic penalty problems (16) with β ∈ {βj}∞j=1 where159

βj ↑ ∞. This will yield a sequence {(V j ,W j)}∞j=1 so that W j ↑ W ∗, a solution to (14). This algorithm is160
based on the quadratic penalty method [69] and the penalty decomposition method [56]. The algorithm is161
summarized in Algorithm 1.162

An alternative algorithm to solve (14) is proximal gradient descent [70]. By this method, the update for
Wl, l = 1, . . . , L, is

W k+1
l = proxγλr

(
W k
l − γ

(
∇Wl
L̃(W k) + λ∂Wl

RGL(W k
l )
))

. (20)

Using this algorithm results in weight parameters with some already zero’ed out.163

However, the advantage of our proposed algorithm lies in (17a), written more specifically as

W k+1
l = argmin

Wl

L̃(W ) +RGL(Wl) +
β

2
‖Vl −Wl‖22 (21)

= argmin
Wl

L̃(W ) +RGL(Wl) +
β

2

#Wl∑
i=1

(vl,i − wl,i)2.

We see that this step performs exact weight decay or `2 regularization on weights wl,i whenever vl,i = 0.164
On the other hand, when vl,i 6= 0, the effect of `2 regularization is mitigated on the corresponding weight165
wl,i based on the absolute difference |vl,i − wl,i|. Using `2 regularization was shown to give superior166
pruning results in terms of accuracy by Han et al. [26]. Our proposed algorithm can be perceived as an167
adaptive `2 regularization method, where (17b) identifies which weights to perform exact `2 regularization168
on and (17a) updates and regularizes the weights accordingly.169

170
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2.5 Convergence Analysis171

To establish convergence for the proposed algorithm, the results below state that the accumulation172
point of the sequence generated by (17a)-(17b) is a block-coordinate minimizer, and an accumulation173
point generated by Algorithm 1 is a sparse feasible solution to (15). Proofs are provided in Section 5.174
Unfortunately, the feasible solution generated may not be a local minimizer of (15) because the loss175
function L(·, ·) is nonconvex. However, it was shown in [18] that a similar algorithm to Algorithm 1, but176
for fixed β in a bounded interval, generates an approximate global solution with high probability for a177
one-layer CNN with ReLu activation function.178

THEOREM 2. Let {(V k,W k)}∞k=1 be a sequence generated by the alternating minimization algorithm
(17a)-(17b), where r(·) is `0, `1, transformed `1, `1− α`2, or SCAD. If (V ∗,W ∗) is an accumulation point
of {(V k,W k)}∞k=1, then (V ∗,W ∗) is a block-coordinate minimizer of (16). that is

V ∗ ∈ argmin
V

Fβ(V,W
∗)

W ∗ ∈ argmin
W

Fβ(V
∗,W ).

THEOREM 3. Let {(V k,W k, βk)}∞k=1 be a sequence generated by Algorithm 1. Suppose that179
{Fβk(V

k,W k)}∞k=1 is uniformly bounded. If (V ∗,W ∗) is an accumulation point of {V k,W k)}∞k=1, then180
(V ∗,W ∗) is a feasible solution to (15), that is V ∗ = W ∗.181

Remark: To safely ensure that {Fβk(V
k,W k)}∞k=1 is uniformly bounded in practice, we can find a

feasible solution (V feas,W feas) to (15) and impose a bound M such that

M ≥ max

{
L̃(W feas) + λ

L∑
l=1

R(W feas
l ),min

W
Fβ0(V

1,W )

}
.

If minW Fβk+1
(V k,W ) > M , then we set V k+1 = W feas. This strategy is based on [56]. However, in our182

numerical experiments, we have not yet encountered Fβk(V
k,W k) to diverge.183

3 NUMERICAL EXPERIMENTS
3.1 Application to Deep Neural Networks184

We compare the proposed nonconvex sparse group lasso against four other methods as baselines: group185
lasso, sparse group lasso (SGL1), CGES proposed in [92], and the group variant of `0 regularization186
(denoted as `0 for simplicity) proposed in [54]. SGL1 is optimized using the same algorithm proposed187
for nonconvex sparse group lasso. For the group terms, the weights are grouped together based on the188
filters or output channels, which we will refer to as neurons. We trained various CNN architectures on189
MNIST [41] and CIFAR 10/100 [38]. The MNIST dataset consists of 60k training images and 10k test190
images. MNIST is trained on two simple CNN architectures: LeNet-5-Caffe [31, 41] and a 4-layer CNN191
with two convolutional layers (32 and 64 channels, respectively) and an intermediate layer of 1000 fully192
connected neurons. CIFAR 10/100 is a dataset that has 10/100 classes split into 50k training images and193
10k test images. It is trained on Resnets [28] and wide Resnets [95]. Throughout all of our experiments, for194
SGSCAD(a), we set a = 3.7 as suggested in [22]; for SGTL1(a), we set a = 1.0 as suggested in [99];195
and for SGL1 − L2, we set α = 1.0 as suggested by the literatures [52, 90, 50, 51]. For CGES, we have196
µl = l/L. Because the optimization algorithms do not drive most, if not all, the weights and neurons to197
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zeroes, we have to set them to zeroes when their values are below a certain threshold. In our experiments,198
if the absolute weights are below 10−5, we set them to zeroes. Then, weight sparsity is defined to be199
the percentage of zero weights with respect to the total number of weights trained in the network. If the200
normalized sum of the absolute values of the weights of the neuron is less than 10−5, then the weights of201
the neuron are set to zeroes. Neuron sparsity is defined to be the percentage of neurons whose weights are202
zeroes with respect to the total number of neurons in the network.203

3.1.1 MNIST Classification204

MNIST is trained on Lenet-5-Caffe, which has four layers with 1,370 total neurons and 431,080 total205
weight parameters. All layers of the network are applied with strictly the same type of regularization. No206
other regularization methods (e.g., dropout and batch normalization) are used. The network is optimized207
using Adam [37] with initial learning rate 0.001. For every 40 epochs, the learning rate decays by208
a factor of 0.1. We set the regularization parameter to the following values: λ = α/60000 for α ∈209
{0.1, 0.2, 0.3, 0.4, 0.5}. For SGL1 and nonconvex sparse group lasso, we set β = 25α/60000, and for210
every 40 epochs, β increases by a factor of σ = 1.25. The network is trained for 200 epochs across 5 runs.211

Table 2 reports the mean results for test error, weight sparsity, and neuron sparsity across five runs212
of Lenet-5-Caffe trained after 200 epochs. We see that although CGES has the lowest test errors at213
α ∈ {0.1, 0.3, 0.4} and the largest weight sparsity for all α ∈ {0.1, 0.2, . . . , 0.5}, nonconvex sparse group214
lasso’s test errors and weight sparsity are comparable. Additionally, nonconvex sparse group lasso’s neuron215
sparsity is nearly two times larger than the neuron sparsity attained by CGES. Across all parameters and216
methods, SGL0 with α = 0.5 attains the best average test error of 0.630 with average weight sparsity 95.7%217
and neuron sparsity 80.7%. Furthermore, its test error is lower than the test errors of other nonconvex218
sparse group lasso regularization methods for all α’s tested. Generally, SGL1 and nonconvex sparse group219
lasso outperform `0 regularization proposed by Louizos et al. [54] and group lasso by average weight and220
neuron sparsity.221

Table 3 reports the mean results for test error, weight sparsity, and neuron sparsity of the Lenet-5-Caffe222
models with the lowest test errors from the five runs. According to the results, the best test errors are223
attained by SGL0 at α = 0.3, 0.5; SGL1 − L2 at α = 0.2; and CGES at α = 0.1, 0.4. For average224
weight sparsity, SGL0 attains the largest weight sparsity at α ∈ {0.2, 0.3, 0.4, 0.5}. For average neuron225
sparsity, the largest values are attained by SGTL1 at α = 0.1, 0.2; by SGL1 at α = 0.3; and by SGL0 at226
α = 0.4, 0.5. Although SGL0 does not outperform all the other methods across the board, its results are227
still comparable to the best results. Overall, we see that nonconvex sparse group lasso outperforms `0 in228
test error, weight sparsity, and neuron sparsity and group lasso in weight and neuron sparsity.229

MNIST is also trained on a 4-layer CNN with two convolutional layers with 32 and 64 channels,230
respectively, and an intermediate layer with 1000 neurons. Each convolutional layer has a 5×5 convolutional231
filters. The 4-layer CNN has 2,120 total neurons and 1,087,010 total weight parameters. All layers of the232
network are applied with strictly the same type of regularization. The network is optimized with the same233
settings as Lenet-5-Caffe. However, the regularization parameter is different: we have λ = α/60000 for234
α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. For SGL1 and nonconvex sparse group lasso, we set β = 5α/60000 and for235
every 40 epochs, β increases by a factor of σ = 1.25. The network is trained for 200 epochs across 5 runs.236

Table 4 reports the mean results for test error, weight sparsity, and neuron sparsity across five runs of237
the 4-layer CNN models trained after 200 epochs. Although CGES consistently has the highest weight238
sparsity, it does not yield the most accurate models until when α ≥ 0.8. Moreover, its neuron sparsity is239
smaller than the neuron sparsity by group lasso, SGL1, and nonconvex group lasso when α ≥ 0.6. `0 has240
the highest neuron sparsity for all α’s given, but its test errors are much greater. When α ≤ 0.6, SGSCAD241
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yields the most accurate models at α = 0.2, 0.6 while SGL1 yields one at α = 0.4. Overall, we see that242
nonconvex group lasso has comparable weight sparsity and neuron sparsity as group lasso and SGL1.243

Table 5 reports the mean results for test error, weight sparsity, and neuron sparsity of the 4-layer CNN244
models with the lowest test errors from the five runs. At α = 0.2, SGL1 and SGSCAD have the lowest245
test errors, but their weight sparsity are exceeded by CGES and their neuron sparsity are exceed by `0. At246
α = 0.4, SGL1 − L2 has the lowest test error, but its weight sparsity and neuron sparsity are exceeded247
by CGES and `0, respectively. At α = 0.6, SGL1 has the lowest test error, but SGSCAD has the largest248
weight sparsity with comparable test error. At α ≥ 0.8, CGES has the lowest test error, but its weight249
sparsity is exceeded by group lasso, SGL1, and the nonconvex group lasso regularizers, which all have250
slightly higher test error. At α = 0.8, the neuron sparsity of CGES is comparable to the neuron sparsity of251
group lasso, SGL1, and the nonconvex group lasso regularizers. At α = 1.0, group lasso has the highest252
neuron sparsity, but nonconvex group lasso has slightly lower neuron sparsity. In general, weight sparsity253
of nonconvex group lasso is comparable to or larger than the weight sparsity of group lasso and SGL1.254

3.1.2 CIFAR Classification255

CIFAR 10/100 is trained on Resnet-40 and wide Resnet with depth 28 and width 10 (WRN-28-10). Resnet-256
40 has approximately 570,000 weight parameters and 1520 neurons while WRN-28-10 has approximately257
36,500,000 weight parameters and 10,736 neurons. The networks are optimized using stochastic gradient258
descent with initial learning rate 0.1. After every 60 epochs, learning rate decays by a factor of 0.2.259
Strictly the same type of regularization is applied to the weights of the hidden layer where dropout is260
utilized in the residual block. We vary the regularization parameter λ = α/50000. For Resnet-40, we have261
α ∈ {1.0, 1.5, 2.0, 2.5, 3.0} for CIFAR 10 and α ∈ {2.0, 2.5, 3.0, 3.5, 4.0} for CIFAR 100. For SGL1 and262
nonconvex sparse group lasso, we set β = 15α/50000 for Resnet-40 and β = 25α/50000 for WRN-28-10.263
For every 20 epochs, β increases by a factor of σ = 1.25. The networks are trained for 200 epochs across 5264
runs. We excluded `0 regularization by Louizos et al. [54] because it was unstable for the provided α’s.265
Furthermore, we only analyze the models with the lowest test errors since the test errors did not stabilize266
by the end of the 200 epochs in our experiments.267

Table 6 reports mean test error, weight sparsity, and neuron sparsity across the Resnet-40 models trained268
on CIFAR 10 with the lowest test errors from the five runs. Group lasso has the lowest test errors for all269
α’s provided while CGES, SGL1, and nonconvex sparse group lasso are higher by at most 1.1%. When270
α ≤ 1.5, CGES has the largest weight sparsity while SGSCAD, SGTL1 SGL1 − SGL2 have larger271
weight sparsity than does group lasso. At α = 2.0, 2.5, SGSCAD has the largest weight sparsity. At272
α = 3.0, SGL1 has the largest weight sparsity with comparable test error as the nonconvex group lasso273
regularizers. For neuron sparsity, SGL1 − L2 has the largest at α = 1.0 while SGSCAD has the largest274
at α = 1.5, 2.0. However, at α = 2.5, 3.0, group lasso has the largest neuron sparsity. For all α’s tested,275
SGSCAD has higher weight sparsity and neuron sparsity than does SGL1 but with comparable test error.276

Table 7 reports mean test error, weight sparsity, and neuron sparsity across the Resnet-40 models trained277
on CIFAR 100 with the lowest test errors from the five runs. Group lasso has the lowest test errors for278
α ≤ 3.5 while CGES has the lowest test error at α = 4.0. However, the weight sparsity and the neuron279
sparsity of group lasso are lower than the sparsity of SGL1 and some of the nonconvex sparse group280
lasso regularizers. CGES has the lowest neuron sparsity across all α’s. Among the nonconvex group lasso281
penalties, SGSCAD has the best test errors, which are lower than the test errors of SGL1 for all α’s282
except 2.5.283

Table 8 reports mean test error, weight sparsity, and neuron sparsity across the WRN-28-10 models284
trained on CIFAR 10 with the lowest test errors from the five runs. The best test errors are attained by285
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SGTL1 at α = 0.05, 0.2, 0.5; by CGES at α = 0.01; and by SGL1 at α = 0.1. Weight sparsity of CGES286
outperforms the other methods only when α = 0.01, 0.05, 0.1, but it underperforms when α ≥ 0.2. Weight287
sparsity levels between group lasso and nonconvex group lasso are comparable across all α. For neuron288
sparsity, SGL1 − L2 attains the largest values at α = 0.02, 0.1, 0.2. Nevertheless, the other nonconvex289
sparse group lasso methods have comparable neuron sparsity. Overall, SGL1, SGL0, SGSCAD, and290
SGTL1 outperform group lasso in test error while having similar or higher weight and neuron sparsity.291

Table 9 reports mean test error, weight sparsity, and neuron sparsity across the WRN-28-10 models292
trained on CIFAR 100 with the lowest test errors from the five runs. According to the results, the best293
test errors are attained by CGES when α = 0.01, 0.05; by SGSCAD when α = 0.1, 0.5; and by SGTL1294
when α = 0.2. Although CGES has the largest weight sparsity for α = 0.01, 0.05, 0.1, 0.2, we see that295
its test error increases as α increases. When α = 0.5, the best weight sparsity is attained by SGSCAD,296
but the other methods have comparable weight sparsity. The best neuron sparsity is attained by CGES at297
α = 0.01, 0.02; by SGL1 − L2 at α = 0.1, 0.2; and by SGSCAD at α = 0.5. The neuron sparsity among298
the nonconvex sparse group lasso methods are comparable. For α ≤ 0.2, we see that SGL1 and nonconvex299
sparse group lasso outperform group lasso in test error across α while having comparable weight and300
neuron sparsity.301

3.2 Algorithm Comparison302

We compare the proposed Algorithm 1 with direct stochastic gradient descent, where the gradient of303
the regularizer is approximated by backpropagation, and proximal gradient descent, discussed in Section304
2.4, by applying them to SGL1 on Lenet-5 trained on MNIST. The parameter setting for this CNN is305
discussed in Section 3.1.1. Table 10 reports the mean results for test error, weight sparsity, and neuron306
sparsity across five models trained after 200 epochs while Figure 2 provides visualizations. Table 11 and307
Figure 3 record mean statistics for models with the lowest test errors from the five runs. According to308
the results, proximal stochastic gradient descent attains the highest level of weight sparsity and neuron309
sparsity for models trained after 200 epochs and models with the lowest test error. However, their test310
errors are the highest amongst the three algorithms. On the other hand, our proposed algorithm attains the311
lowest test errors. For models trained after 200 epochs, the weight sparsity and neuron sparsity attained312
by Algorithm 1 are comparable to the sparsity attained by direct stochastic gradient descent. For models313
with the lowest test errors generated from their respective runs, the weight sparsity and neuron sparsity314
by the proposed algorithm are better than the sparsity by direct stochastic gradient descent. Therefore,315
our proposed algorithm generates the most accurate model with satisfactory sparsity among the three316
algorithms for sparse regularization.317

4 CONCLUSION AND FUTURE WORK
In this work, we propose nonconvex sparse group lasso, a nonconvex extension of sparse group lasso. The318
`1 norm in sparse group lasso on the weight parameters is replaced with a nonconvex regularizer whose319
proximal operator is a thresholding function. Taking advantage of this property, we develop a new algorithm320
to optimize loss functions regularized with nonconvex sparse group lasso for CNNs in order to attain a321
sparse network with competitive accuracy. We compare the proposed family of regularizers with various322
baseline methods on MNIST and CIFAR 10/100 on different CNNs. The experimental results demonstrate323
that in general, nonconvex sparse group lasso generates a more accurate and/or more compressed CNN324
than does group lasso. In addition, we compare our proposed algorithm to direct stochastic gradient descent325
and proximal gradient descent on Lenet-5 trained on MNIST. The results show that the proposed algorithm326
to solve SGL1 yields a satisfactorily sparse network with lower test error than do the other two algorithms.327
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Figure 2. Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST for 200 epochs
across 5 runs when varying the regularization parameter λ = α/60000 when α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
(A) Mean test error. (B) Mean weight sparsity. (C) Mean neuron sparsity.

According to the numerical results, there is no single sparse regularizer that outperforms all other on any328
CNN trained on a given dataset. One regularizer may perform well in one case while it may perform worse329
on a different case. Due to the myriad of sparse regularizers to select from and the various parameters to330
tune, especially for one CNN trained on a given dataset, one direction is to develop an automatic machine331
learning framework that efficiently selects the right regularizer and parameters. In recent works, automatic332
machine learning can be represented as a matrix completion problem [88] and a statistical learning problem333
[24]. These frameworks can be adapted for selecting the best sparse regularizer, thus saving time for users334
who are training sparse CNNs.335

5 PROOFS
We provide proofs for the results discussed in Section 2.5.336

5.1 Proof of Theorem 2337

By (17a)-(17b), for each k ∈ N, we have

Fβ(V
k,W k+1) ≤ Fβ(V

k,W ) (22)

for all W , and

Fβ(V
k+1,W k+1) ≤ Fβ(V,W

k+1) (23)
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Figure 3. Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST with
lowest test errors across 5 runs when varying the regularization parameter λ = α/60000 when α ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. (A) Mean test error. (B) Mean weight sparsity. (C) Mean neuron sparsity.

for all V . By (23), we have

Fβ(V
+,W+) ≤ Fβ(V

k,W+) (24)

for each k ∈ N. Altogether, we have

Fβ(V
+,W+) ≤ Fβ(V

k,W k) (25)

for each k ∈ N, so {Fβ(V k,W k)}∞k=1 is nonincreasing. Since Fβ(V k,W k) ≥ 0 for all k ∈ N, its limit
lim
k→∞

Fβ(V
k,W k) exists. From (22)-(24), we have

Fβ(V
+,W+) ≤ Fβ(V

k,W+) ≤ Fβ(V
k,W k).

Taking the limit gives us

lim
k→∞

Fβ(V
k,W+) = lim

k→∞
Fβ(V

k,W k). (26)

Since (V ∗,W ∗) is an accumulation point of {(V k,W k)}∞k=1, there exists a subsequence K such that

lim
k∈K→∞

(V k,W k) = (V ∗,W ∗). (27)
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Because r(·) is lower semicontinuous and lim
k∈K→∞

V k = V ∗, there exists k′ ∈ K such that k ≥ k′ implies

r(V k
l ) ≥ r(V ∗l ) for each l = 1, . . . , L. Using this result along with (23), we obtain

Fβ(V,W
k) ≥ Fβ(V

k,W k)

= L̃(W k) +
L∑
l=1

[
λ
(
RGL(W k

l ) + r(V k
l )
)
+
β

2
‖V k

l −W k
l ‖22
]

≥ L̃(W k) +
L∑
l=1

[
λ
(
RGL(W k

l ) + r(V ∗l )
)
+
β

2
‖V k

l −W k
l ‖22
]

for k ≥ k′. As k ∈ K →∞, we have

Fβ(V,W
∗) ≥ L̃(W ∗) +

L∑
l=1

[
λ (RGL(W ∗l ) + r(V ∗l )) +

β

2
‖V ∗l −W ∗l ‖22

]
= Fβ(V

∗,W ∗) (28)

by continuity, so it follows that V ∗ ∈ argmin
V

Fβ(V,W
∗).338

For notational convenience, let

R̃λ,β(V,W ) :=
L∑
l=1

[
λRGL(Wl) +

β

2
‖Vl −Wl‖22

]
. (29)

By (22), we have

L̃(W ) + R̃λ,β(V k,W ) = Fβ(V
k,W )− λ

L∑
i=1

r(V k
l )

≥ Fβ(V
k,W+)− λ

L∑
i=1

r(V k
l ) = L̃(W+) + R̃λ,β(V k,W+).

(30)

Because lim
k∈K→∞

V k exists, the sequence {V k}k∈K is bounded. If r(·) is `0, transformed `1, or SCAD, then

{r(V k)}k∈K is bounded. If r(·) is `1, then r(·) is coercive. If r(·) is `1 − α`2, then r(·) is bounded above
by `1. Overall, this follows that {r(V k)}k∈K bounded as well. Hence, there exists a further subsequence
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K ⊂ K such that lim
k∈K→∞

r(V k) exists. So, we obtain

lim
k∈K→∞

L̃(W+) + R̃λ,β(V k,W+) = lim
k∈K→∞

Fβ(V
k,W+)− λ

L∑
i=1

r(V k
l )

= lim
k∈K→∞

Fβ(V
k,W+)− lim

k∈K→∞
λ

L∑
i=1

r(V k
l )

= lim
k∈K→∞

Fβ(V
k,W k)− lim

k∈K→∞
λ

L∑
i=1

r(V k
l )

= lim
k∈K→∞

Fβ(V
k,W k)− λ

L∑
i=1

r(V k
l )

= lim
k∈K→∞

L̃(W k) + R̃λ,β(V k,W k)

= L̃(W ∗) + R̃λ,β(W ∗, V ∗)

(31)

after applying (26) in the third inequality and by continuity in the last equality.339

Taking the limit over the subsequence K in (30) and applying (31), we obtain

L̃(W ) + R̃λ,β(V ∗,W ) ≥ L̃(W ∗) + R̃λ,β(W ∗, V ∗) (32)

by continuity. Adding
∑L

l=1 r(V
∗
l ) on both sides yields

Fβ(V
∗,W ) ≥ Fβ(V

∗,W ∗), (33)

which follows that W ∗ ∈ argminW Fβ(V
∗,W ). This completes the proof.340

5.2 Proof of Theorem 3341

Because (V ∗,W ∗) is an accumulation point, there exists a subsequence K such that lim
k∈K→∞

(V k,W k) =

(V ∗,W ∗). If {Fβk(V
k,W k)}∞k=1 is uniformly bounded, there exists M such that Fβk(V

k,W k) ≤M for
all k ∈ N. Then we have

M ≥ Fβk(V
k,W k) = L̃(W ) +

L∑
l=1

[
λRGL(Wl) + λr(Vl) +

βk
2
‖Vl −Wl‖22

]
≥ βk

2

L∑
l=1

‖Vl −Wl‖22

As a result,

L∑
l=1

‖V k
l −W k

l ‖22 ≤
2

βk
M. (34)

Taking the limit over k ∈ K, we have

L∑
l=1

‖V ∗l −W ∗l ‖22 = 0,
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which follows that V ∗ = W ∗. As a result, (V ∗,W ∗) is a feasible solution to (15).342
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Table 1. Regularization penalties and their corresponding proximal operators with λ > 0.
Regularizer Name Penalty Formulation Proximal Operator

`1
λ‖x‖1 = λ

n∑
i=1

|xi|
proxλ‖·‖1 (x) = (Sλ(x1), . . . ,Sλ(xn)) ,

with

Sλ(t) = sign(t)max{|t| − λ, 0}

`0
λ‖x‖0 = λ

n∑
i=1

|xi|0
proxλ‖·‖0 (x) = (Hλ(x1), . . . ,Hλ(xn)) ,

with

Hλ(t) =
{
0 if |t| ≤

√
2λ

t if |t| >
√
2λ

SCAD(a)
λ‖x‖SCAD(a) =

n∑
i=1

λ|xi|SCAD(a)

with

λ|t|SCAD(a) =


λ|t| if |t| < λ
2aλ|t|−t2−λ2

2(a−1)
if λ ≤ |t| < aλ

(a+ 1)λ2/2 if |t| ≥ aλ

proxλ‖·‖SCAD(a)
(x) =

(
Sa,λ(x1), . . . ,Sa,λ(xn)

)
,

with

Sa,λ(t) =


Sλ(t) if |t| ≤ 2λ
(a−1)t−sign(t)aλ

a−2
if 2λ < |t| ≤ aλ

t if |t| > aλ.

TL1(a)
λ‖x‖TL1(a) = λ

n∑
i=1

(a+ 1)|xi|
a+ |xi| proxλ‖·‖TL1(a)

(x) =
(
Ta,λ(x1), . . . , Ta,λ(xn)

)
,

with

Ta,λ(t) =
{
0 if |t| ≤ τ(a, λ)
ga,λ(t) if |t| > τ(a, λ)

where

ga,λ(t) = sign(t)
(
2

3
(a+ |t|) cos

(
φa,λ(t)

3

)
−

2a

3
+
|t|
3

)
,

φa,λ(t) = arccos

(
1−

27λa(a+ 1)

2(a+ |t|)3

)
,

and

τ(a, λ) =


√

2λ(a+ 1)− a
2

if λ > a2

2(a+1)

λa+1
a

if λ ≤ a2

2(a+1)

`1 − `2
λ‖x‖`1−`2 = λ

 n∑
i=1

|xi| −

√√√√ n∑
i=1

x2i


proxλ‖·‖`1−`2

(x) =

{ ‖z1‖2+λ
‖z1‖2

z1 if ‖x‖∞ > λ

z2 if 0 ≤ ‖x‖∞ ≤ λ

with z1 = Sλ(x) and

(z2)i =

{
0 if i 6= k

sign(xi)‖x‖∞ if i = k,

where k = argmin
1≤k≤n

{|xi| = ‖x‖∞}.
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Table 2. Average test error, weight sparsity, and neuron sparsity of Lenet-5 models trained on MNIST
after 200 epochs across 5 runs. Standard deviations are in parentheses.

Avg.
Test
Error
(%)

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.816
(0.024)

0.644
(0.039)

0.742
(0.030)

0.722
(0.028)

0.682
(0.044)

0.734
(0.039)

0.716
(0.048)

0.688
(0.034)

α = 0.2 0.914
(0.029)

0.718
(0.044)

0.772
(0.031)

0.704
(0.031)

0.712
(0.042)

0.788
(0.045)

0.718
(0.025)

0.746
(0.031)

α = 0.3 1.032
(0.045)

0.678
(0.007)

0.782
(0.035)

0.732
(0.045)

0.686
(0.048)

0.760
(0.037)

0.728
(0.034)

0.712
(0.061)

α = 0.4 1.062
(0.030)

0.662
(0.024)

0.820
(0.054)

0.792
(0.034)

0.704
(0.033)

0.786
(0.045)

0.766
(0.045)

0.756
(0.014)

α = 0.5 1.098
(0.035)

0.696
(0.016)

0.834
(0.033)

0.720
(0.039)

0.630
(0.024)

0.728
(0.044)

0.684
(0.024)

0.750
(0.017)

Avg.
Weight
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 2.12×10−4

(1.54×10−5)
0.940
(1.51×10−3)

0.885
(2.25×10−3)

0.889
(4.30×10−3)

0.894
(3.81×10−3)

0.894
(3.61×10−3)

0.901
(1.57×10−3

0.893
(2.77×10−3)

α = 0.2 2.16×10−4

(3.76×10−6)
0.952
(1.51×10−3)

0.922
(2.07×10−3)

0.926
(1.19×10−3)

0.926
(1.75×10−3)

0.926
(3.31×10−3)

0.930
(2.37×10−3)

0.923
(2.86×10−3)

α = 0.3 2.24×10−4

(5.35×10−6)
0.956
(1.41×10−3)

0.933
(1.03×10−3)

0.945
(1.43×10−3)

0.941
(1.73×10−3)

0.941
(2.52×10−3)

0.941
(1.28×10−3)

0.943
(1.04×10−3)

α = 0.4 2.06×10−4

(6.27×10−6)
0.960
(1.05×10−3)

0.943
1.63×10−3)

0.952
(1.21×10−3)

0.951
(1.82×10−3)

0.950
(1.64×10−3)

0.952
(1.91×10−3)

0.952
(1.14×10−3)

α = 0.5 2.27×10−4

(1.53×10−5)
0.963
(1.85×10−3)

0.946
(1.43×10−3)

0.954
(1.63×10−3)

0.957
(9.21×10−4)

0.956
(1.37×10−3)

0.956
(2.00×10−3)

0.956
(2.43×10−3)

Avg.
Neuron
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.531
(3.79×10−4)

0.387
(9.13×10−3)

0.696
(2.42×10−3)

0.691
(7.38×10−3)

0.682
(6.27×10−3)

0.704
(3.94×10−3)

0.703
(5.09×10−3)

0.697
(3.93×10−3)

α = 0.2 0.578
(1.19×10−3)

0.449
(1.26×10−2)

0.756
(3.39×10−3)

0.754
(2.72×10−3)

0.740
(4.01×10−3)

0.758
(5.78×10−3)

0.757
(3.93×10−3)

0.749
(6.50×10−3)

α = 0.3 0.602
(4.42×10−4)

0.476
(1.17×10−2)

0.776
(3.18×10−3)

0.787
(2.55×10−3)

0.769
(4.44×10−3)

0.785
(4.97×10−3)

0.774
(4.11×10−3)

0.783
(3.78×10−3)

α = 0.4 0.616
(7.58×10−4)

0.518
(9.72×10−3)

0.795
(3.44×10−3)

0.805
(3.89×10−3)

0.791
(5.40×10−3)

0.803
(3.35×10−3)

0.799
(3.56×10−3)

0.804
(2.69×10−3)

α = 0.5 0.626
(1.07×10−3)

0.539
(1.27×10−2)

0.799
(2.59×10−3)

0.811
(4.07×10−3)

0.807
(3.15×10−3)

0.819
(2.79×10−3)

0.811
(6.29×10−3)

0.815
(6.10×10−3)
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Table 3. Average test error, weight sparsity, and neuron sparsity of Lenet-5 models trained on MNIST
with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test
Error
(%)

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.682
(0.023)

0.532
(0.031)

0.568
(0.026)

0.568
(0.021)

0.576
(0.027)

0.602
(0.027)

0.582
(0.028)

0.554
(0.056)

α = 0.2 0.846
(0.033)

0.584
(0.038)

0.630
(0.017)

0.582
(0.035)

0.584
(0.049)

0.616
(0.021)

0.592
(0.026)

0.578
(0.032)

α = 0.3 0.980
(0.033)

0.590
(0.028)

0.642
(0.013)

0.600
(0.030)

0.588
(0.019)

0.618
(0.037)

0.594
(0.022)

0.596
(0.039)

α = 0.4 1.014
(0.019)

0.562
(0.015)

0.680
(0.038)

0.652
(0.025)

0.604
(0.033)

0.630
(0.035)

0.630
(0.048)

0.628
(0.020)

α = 0.5 1.066
(0.024)

0.598
(0.027)

0.682
(0.043)

0.616
(0.052)

0.572
(0.012)

0.654
(0.015)

0.586
(0.034)

0.670
(0.026)

Avg.
Weight
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 2.38×10−4

(1.97×10−5)
0.541
(0.024)

0.661
(0.073)

0.757
(0.015)

0.768
(0.019)

0.680
(0.167)

0.773
(7.48×10−3)

0.719
(0.066)

α = 0.2 2.26×10−4

(9.43×10−6)
0.583
(0.017)

0.728
(0.170)

0.845
(4.79×10−3)

0.857
(6.15×10−3)

0.821
(0.041)

0.854
(5.60×10−3)

0.836
(6.76×10−3)

α = 0.3 2.19×10−4

(1.36×10−5)
0.603
(0.020)

0.810
(0.078)

0.886
(3.69×10−3)

0.889
(3.62×10−3)

0.878
(9.43×10−4)

0.827
(0.115)

0.879
(3.97×10−3)

α = 0.4 2.22×10−4

(1.47×10−5)
0.627
(0.019)

0.845
(0.040)

0.896
(3.57×10−3)

0.905
(3.66×10−3)

0.846
(0.097)

0.899
(4.23×10−3)

0.852
(0.097)

α = 0.5 2.24×10−4

(1.02×10−5)
0.633
(0.013)

0.886
(6.40×10−3)

0.905
(2.87×10−3)

0.922
(0.015)

0.902
(2.64×10−3)

0.871
(0.084)

0.848
(0.080)

Avg.
Neuron
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.363
(0.047)

0.315
(0.030)

0.389
(0.120)

0.497
(0.014)

0.496
(0.030)

0.426
(0.172)

0.513
(9.57×10−3)

0.440
(0.107)

α = 0.2 0.574
(2.22×10−3)

0.392
(0.016)

0.498
(0.185)

0.627
(0.011)

0.631
(0.012)

0.549
(0.169)

0.634
(9.30×10−3)

0.608
(0.015)

α = 0.3 0.599
(2.61×10−3)

0.418
(0.021)

0.570
(0.154)

0.697
(9.73×10−3)

0.692
(8.19×10−3)

0.684
(5.69×10−3)

0.613
(0.154)

0.686
(8.60×10−3)

α = 0.4 0.614
(1.71×10−3)

0.482
(0.020)

0.586
(0.184)

0.721
(8.16×10−3)

0.725
(9.97×10−3)

0.642
(0.151)

0.724
(0.015)

0.655
(0.150)

α = 0.5 0.625
(1.55×10−3)

0.492
(0.024)

0.708
(8.94×10−3)

0.735
(3.73×10−3)

0.759
(0.020)

0.733
(8.59×10−3)

0.683
(0.143)

0.570
(0.216)
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Table 4. Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models trained on MNIST
after 200 epochs across 5 runs. Standard deviations are in parentheses.

Avg.
Test
Error
(%)

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.962
(0.041)

0.470
(0.036)

0.486
(0.030)

0.418
(0.010)

0.432
(0.023)

0.408
(0.013)

0.418
(0.026)

0.436
(0.012)

α = 0.4 1.454
(0.070)

0.486
(0.030)

0.502
(0.035)

0.436
(0.026)

0.49
(0.017)

0.456
(0.016)

0.47
(0.035)

0.446
(0.031)

α = 0.6 2.396
(0.066)

0.512
(0.035)

0.510
(0.028)

0.494
(0.031)

0.500
(0.023)

0.488
(0.019)

0.498
(0.025)

0.522
(0.019)

α = 0.8 3.396
(0.096)

0.502
(0.020)

0.544
(0.026)

0.542
(0.025)

0.536
(0.037)

0.524
(0.015)

0.536
(0.014)

0.524
(0.015)

α = 1.0 4.74
(0.148)

0.524
(0.26)

0.568
(0.004)

0.566
(0.041)

0.576
(0.014)

0.544
(0.024)

0.552
(0.017)

0.556
(0.022)

Avg.
Weight
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 5.99×10−5

(9.28×10−6)
0.655
(4.10×10−3)

0.284
(6.47×10−3)

0.302
(6.68×10−3)

0.306
(0.014)

0.297
(5.42×10−3)

0.298
(8.63×10−3

0.299
(7.74×10−3)

α = 0.4 5.84×10−5

(7.95×10−6)
0.710
(2.45×10−3)

0.489
(7.38×10−3)

0.510
(1.85×10−3)

0.502
(8.01×10−3)

0.507
(8.80×10−3)

0.510
(0.011)

0.505
(7.25×10−3)

α = 0.6 6.06×10−5

(1.22×10−5)
0.737
(2.13×10−3)

0.593
(5.67×10−3)

0.606
(5.41×10−3)

0.603
(7.61×10−3)

0.605
(5.46×10−3)

0.599
(0.012)

0.609
(6.96×10−3)

α = 0.8 7.18×10−5

(6.24×10−6)
0.755
(5.67×10−3)

0.661
(6.11×10−3)

0.660
(6.42×10−3)

0.663
(7.30×10−3)

0.661
(8.74×10−3)

0.665
(3.95×10−3)

0.661
(5.72×10−3)

α = 1.0 6.90×10−5

(7.33×10−6)
0.767
(2.92×10−3)

0.695
(5.08×10−3)

0.696
(4.68×10−3)

0.697
(2.38×10−4)

0.698
(6.51×10−3)

0.699
(4.27×10−3)

0.689
(9.47×10−3)

Avg.
Neuron
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.472
(7.10×10−4)

0.299
(2.40×10−3)

0.153
(4.06×10−3)

0.160
(4.54×10−3)

0.164
(8.58×10−3)

0.158
(3.68×10−3)

0.158
(5.20×10−3)

0.159
(5.87×10−3)

α = 0.4 0.494
(1.01×10−3)

0.329
(2.10×10−3)

0.280
(5.64×10−3)

0.287
(7.55×10−4)

0.280
(6.57×10−3)

0.281
(5.05×10−3)

0.285
(8.48×10−3)

0.284
(7.22×10−3)

α = 0.6 0.506
(7.23×10−4)

0.343
(1.78×10−3)

0.351
(4.72×10−3)

0.354
(2.47×10−3)

0.35
(7.17×10−3)

0.352
(3.99×10−3)

0.347
(9.65×10−3)

0.353
(5.88×10−3)

α = 0.8 0.516
(6.72×10−4)

0.355
(8.23×10−3)

0.404
(6.20×10−3)

0.391
(4.66×10−3)

0.396
(7.60×10−3)

0.395
(9.59×10−3)

0.399
(3.89×10−3)

0.398
(6.39×10−3)

α = 1.0 0.526
(9.45×10−4)

0.361
(5.36×10−3)

0.432
(5.02×10−3)

0.424
(5.62×10−3)

0.427
(2.64×10−3)

0.427
(7.36×10−3)

0.430
(6.37×10−3)

0.417
(0.011)

Frontiers 27



Bui et al. Nonconvex Sparse Group Regularization

Table 5. Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models trained on MNIST
with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test
Error
(%)

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.916
(0.010)

0.452
(0.033)

0.440
(0.021)

0.384
(0.015)

0.404
(0.019)

0.384
(0.020)

0.392
(0.023)

0.398
(0.015)

α = 0.4 1.414
(0.073)

0.448
(0.012)

0.456
(0.024)

0.414
(0.021)

0.426
(0.016)

0.426
(0.017)

0.428
(0.034)

0.412
(0.012)

α = 0.6 1.890
(0.033)

0.464
(0.022)

0.472
(0.013)

0.434
(0.010)

0.460
(0.026)

0.440
(0.017)

0.452
(0.016)

0.454
(0.024)

α = 0.8 1.966
(0.010)

0.478
(0.007)

0.506
(0.014)

0.484
(0.019)

0.504
(0.015)

0.482
(0.019)

0.488
(0.016)

0.492
(0.007)

α = 1.0 2.046
(0.019)

0.492
(0.024)

0.530
(0.014)

0.514
(0.026)

0.520
(0.035)

0.506
(0.019)

0.514
(0.014)

0.492
(0.016)

Avg.
Weight
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 5.86×10−5

(4.32×10−6)
0.384
(0.112)

0.201
(0.005)

0.248
(0.012)

0.249
(0.017)

0.254
(0.013)

0.250
(0.013)

0.244
(0.006)

α = 0.4 6.45×10−5

(9.15×10−6)
0.541
(0.155)

0.424
(0.006)

0.467
(0.007)

0.449
(0.012)

0.466
(0.011)

0.460
0.020)

0.468
(0.015)

α = 0.6 1.41×10−4

(1.74×10−5)
0.502
(0.157)

0.541
(0.010)

0.563
(0.016)

0.563
(0.016)

0.568
(0.011)

0.559
(0.015)

0.565
(0.008)

α = 0.8 1.39×10−4

(1.06×10−6)
0.576
(0.166)

0.619
(0.012)

0.620
(0.012)

0.625
(0.014)

0.624
(0.014)

0.628
(0.007)

0.626
(0.012)

α = 1.0 1.47×10−4

(7.84×10−6)
0.518
(0.169)

0.658
(0.010)

0.661
(0.007)

0.658
(0.007)

0.664
(0.006)

0.659
(0.007)

0.653
(0.008)

Avg.
Neuron
Sparsity

`0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.470
(5.97×10−4)

0.293
(2.61×10−3)

0.099
(3.77×10−3)

0.122
(7.25×10−3)

0.123
(9.71×10−3)

0.126
(8.39×10−3)

0.123
(7.86×10−3)

0.120
(4.93×10−3)

α = 0.4 0.494
(6.51×10−4)

0.328
(1.43×10−3)

0.224
(4.23×10−3)

0.243
(6.85×10−3)

0.231
(0.011)

0.241
(3.74×10−3)

0.238
(0.015)

0.249
(0.014)

α = 0.6 0.198
(6.25×10−5)

0.343
(4.82×10−3)

0.296
(9.94×10−3)

0.305
(0.013)

0.307
(0.014)

0.311
(6.32×10−3)

0.303
(0.010)

0.306
(9.24×10−3)

α = 0.8 0.217
(2.03×10−5)

0.353
(3.37×10−3)

0.357
(0.012)

0.343
(0.015)

0.350
(0.011)

0.348
(0.013)

0.356
(4.78×10−3)

0.358
(0.016)

α = 1.0 0.229
(3.98×10−5)

0.359
(2.78×10−3)

0.387
(0.010)

0.379
(3.75×10−3)

0.382
(5.85×10−3)

0.385
(6.37×10−3)

0.383
(4.66×10−3)

0.373
(9.97×10−3)
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Table 6. Average test error, weight sparsity, and neuron sparsity of Resnet-40 models trained on CIFAR
10 with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test Error
(%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 6.932
(0.154)

6.154
(0.199)

6.442
(0.065)

6.456
(0.176)

6.618
(0.128)

6.500
(0.158)

6.512
(0.126)

α = 1.5 7.248
(0.145)

6.504
(0.122)

6.850
(0.078)

7.108
(0.084)

6.948
(0.124)

6.958
(0.158)

6.820
(0.177)

α = 2.0 7.306
(0.206)

6.860
(0.174)

7.494
(0.092)

7.642
(0.176)

7.450
(0.192)

7.388
(0.140)

7.384
(0.122)

α = 2.5 7.590
(0.148)

7.298
(0.105)

7.760
(0.079)

8.146
(0.178)

8.026
(0.196)

8.096
(0.137)

7.968
(0.190)

α = 3.0 7.672
(0.082)

7.542
(0.135)

8.424
(0.081)

8.740
(0.166)

8.426
(0.192)

8.624
(0.083)

8.598
(0.144)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 0.350
(0.009)

0.201
(0.018)

0.189
(0.007)

0.191
(0.008)

0.213
(0.015)

0.205
(0.015)

0.224
(0.016)

α = 1.5 0.371
(0.012)

0.322
(0.008)

0.345
(0.013)

0.313
(0.008)

0.354
(0.029)

0.330
(0.020)

0.343
(0.008)

α = 2.0 0.385
(0.009)

0.431
(0.013)

0.457
(0.012)

0.422
(0.014)

0.466
(0.015)

0.428
(0.013)

0.451
(0.012)

α = 2.5 0.386
(0.010)

0.509
(0.017)

0.525
(0.010)

0.507
(0.011)

0.534
(0.012)

0.522
(0.026)

0.537
(0.013)

α = 3.0 0.401
(0.008)

0.551
(0.015)

0.594
(0.009)

0.568
(0.009)

0.598
(0.012)

0.569
(0.014)

0.585
(0.006)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 0.035
(0.003)

0.096
(0.011)

0.087
(0.004)

0.082
(0.005)

0.102
(0.008)

0.093
(0.010)

0.105
(0.012)

α = 1.5 0.040
(0.006)

0.154
(0.006)

0.159
(0.008)

0.144
(0.009)

0.168
(0.013)

0.151
(0.009)

0.155
(0.004)

α = 2.0 0.048
(0.004)

0.207
(0.005)

0.203
(0.008)

0.188
(0.006)

0.217
(0.015)

0.195
(0.009)

0.209
(0.009)

α = 2.5 0.045
(0.005)

0.247
(0.010)

0.232
(0.010)

0.225
(0.017)

0.245
(0.011)

0.233
(0.008)

0.244
(0.006)

α = 3.0 0.048
(0.007)

0.274
(0.012)

0.271
(0.008)

0.249
(0.004)

0.272
(0.016)

0.259
(0.008)

0.268
(0.011)
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Table 7. Average test error, weight sparsity, and neuron sparsity of Resnet-40 models trained on CIFAR
100 with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test Error
(%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 30.102
(0.234)

28.636
(0.140)

29.260
(0.306)

29.610
(0.275)

29.044
(0.155)

29.316
(0.154)

29.274
(0.249)

α = 2.5 30.326
(0.272)

29.322
(0.144)

30.140
(0.180)

30.454
(0.295)

30.180
(0.175)

30.426
(0.253)

30.204
(0.159)

α = 3.0 30.378
(0.154)

29.750
(0.258)

31.134
(0.099)

31.482
(0.361)

31.048
(0.118)

31.164
(0.236)

31.108
(0.129)

α = 3.5 30.666
(0.267)

30.588
(0.285)

31.966
(0.260)

32.438
(0.272)

31.930
(0.156)

31.984
(0.182)

31.822
(0.365)

α = 4.0 30.982
(0.277)

31.436
(0.069)

33.106
(0.281)

33.210
(0.230)

32.758
(0.279)

33.240
(0.171)

33.094
(0.219)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 0.286
(0.002)

0.129
(0.024)

0.182
(0.018)

0.164
(0.010)

0.198
(0.012)

0.162
(0.017)

0.187
(0.015)

α = 2.5 0.299
(0.005)

0.233
(0.010)

0.283
(0.005)

0.251
(0.021)

0.292
(0.010)

0.271
(0.015)

0.284
(0.016)

α = 3.0 0.303
(0.003)

0.321
(0.008)

0.365
(0.009)

0.355
(0.018)

0.377
(0.012)

0.363
(0.023)

0.372
(0.010)

α = 3.5 0.306
(0.004)

0.409
(0.013)

0.441
(0.014)

0.418
(0.012)

0.444
(0.014)

0.418
(0.016)

0.442
(0.006)

α = 4.0 0.313
(0.010)

0.456
(0.014)

0.511
(0.015)

0.461
(0.011)

0.501
(0.013)

0.480
(0.017)

0.507
(0.012)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 0.001
(0.001)

0.054
(0.007)

0.074
(0.007)

0.064
(0.008)

0.083
(0.005)

0.063
(0.004)

0.078
(0.007)

α = 2.5 0.003
(0.001)

0.092
(0.005)

0.113
(0.004)

0.093
(0.010)

0.116
(0.005)

0.103
(0.004)

0.111
(0.005)

α = 3.0 0.004
(0.001)

0.126
(0.004)

0.140
(0.005)

0.133
(0.007)

0.145
(0.003)

0.138
(0.009)

0.146
(0.003)

α = 3.5 0.002
(0.001)

0.157
(0.006)

0.166
(0.005)

0.158
(0.005)

0.182
(0.017)

0.156
(0.004)

0.171
(0.005)

α = 4.0 0.005
(0.002)

0.177
(0.007)

0.195
(0.005)

0.176
(0.007)

0.193
(0.004)

0.180
(0.011)

0.193
(0.004)
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Table 8. Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models trained on CIFAR
10 with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test Error
(%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 3.822
(0.054)

4.092
(0.159)

4.050
(0.058)

4.036
(0.074)

4.004
(0.104)

3.994
(0.039)

4.152
(0.089)

α = 0.05 3.856
(0.089)

3.946
(0.106)

3.874
(0.029)

3.838
(0.067)

3.862
(0.076)

3.812
(0.097)

3.872
(0.110)

α = 0.1 4.000
(0.076)

3.960
(0.062)

3.784
(0.082)

3.824
(0.088)

3.832
(0.047)

3.800
(0.082)

3.792
(0.113)

α = 0.2 4.146
(0.092)

3.928
(0.115)

3.824
(0.034)

3.874
(0.093)

3.780
(0.096)

3.764
(0.129)

3.962
(0.078)

α = 0.5 4.524
(0.090)

4.486
(0.077)

4.444
(0.086)

4.408
(0.063)

4.448
(0.084)

4.340
(0.115)

4.382
(0.068)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.362
(0.016)

0.045
(0.001)

0.040
(0.002)

0.044
(0.002)

0.039
(0.002)

0.040
(0.001)

0.043
(0.001)

α = 0.05 0.464
(0.003)

0.117
(0.003)

0.145
(0.006)

0.156
(0.005)

0.145
(0.007)

0.145
(0.004)

0.161
(0.006)

α = 0.1 0.483
(0.003)

0.417
(0.005)

0.438
(0.004)

0.450
(0.005)

0.441
(0.005)

0.428
(0.004)

0.446
(0.013)

α = 0.2 0.495
(0.003)

0.673
(0.002)

0.669
(0.005)

0.672
(0.003)

0.679
(0.003)

0.666
(0.004)

0.688
(0.003)

α = 0.5 0.503
(0.003)

0.868
(0.001)

0.864
(0.002)

0.857
(0.001)

0.865
(0.001)

0.858
(0.002)

0.867
(0.001)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.033
(0.002)

0.018
(0.001)

0.015
(0.001)

0.018
(0.001)

0.014
(0.001)

0.015
(0.001)

0.017
(0.001)

α = 0.02 0.050
(0.002)

0.056
(0.001)

0.068
(0.003)

0.074
(0.003)

0.069
(0.004)

0.069
(0.003)

0.077
(0.002)

α = 0.1 0.055
(0.002)

0.178
(0.002)

0.189
(0.002)

0.190
(0.002)

0.188
(0.002)

0.182
(0.003)

0.191
(0.006)

α = 0.2 0.059
(0.001)

0.297
(0.002)

0.294
(0.005)

0.293
(0.001)

0.299
(0.001)

0.289
(0.002)

0.307
(0.003)

α = 0.5 0.061
(0.001)

0.440
(0.002)

0.434
(0.002)

0.428
(0.001)

0.435
(0.001)

0.429
(0.003)

0.436
(0.001)
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Table 9. Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models trained on CIFAR
100 with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg.
Test Error
(%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 18.696
(0.184)

19.792
(0.084)

19.494
(0.241)

19.498
(0.189)

19.368
(0.188)

19.474
(0.051)

19.632
(0.182)

α = 0.05 18.714
(0.203)

19.284
(0.134)

18.816
(0.141)

19.106
(0.277)

18.936
(0.085)

18.846
(0.082)

19.094
(0.272)

α = 0.1 19.120
(0.387)

19.168
(0.067)

18.648
(0.268)

18.690
(0.181)

18.446
(0.108)

18.680
(0.292)

18.724
(0.084)

α = 0.2 20.298
(0.078)

18.902
(0.130)

18.440
(0.115)

18.694
(0.150)

18.502
(0.108)

18.290
(0.107)

18.614
(0.326)

α = 0.5 21.370
(0.259)

19.604
(0.107)

19.648
(0.203)

19.732
(0.147)

19.488
(0.262)

19.552
(0.186)

19.732
(0.156)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.281
(0.017)

0.013
(0.001)

0.011
(0.001)

0.013
(<0.001)

0.011
(0.001)

0.011
(0.001)

0.013
(0.001)

α = 0.05 0.412
(0.004)

0.014
(0.001)

0.015
(0.002)

0.017
(0.001)

0.014
(0.001)

0.015
(0.001)

0.018
(0.001)

α = 0.1 0.440
(0.013)

0.054
(0.002)

0.070
(0.003)

0.069
(0.001)

0.073
(0.002)

0.066
(0.002)

0.080
(0.001)

α = 0.2 0.458
(0.016)

0.332
(0.004)

0.356
(0.005)

0.346
(0.002)

0.355
(0.004)

0.345
(0.003)

0.361
(0.003)

α = 0.5 0.478
(0.003)

0.697
(0.001)

0.693
(0.004)

0.685
(0.002)

0.700
(0.002)

0.686
(0.001)

0.698
(0.002)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.008
(0.001)

0.002
(<0.001)

0.002
(<0.001)

0.003
(<0.001)

0.001
(<0.001)

0.002
(<0.001)

0.002
(<0.001)

α = 0.02 0.030
(0.001)

0.003
(<0.001)

0.005
(0.001)

0.006
(<0.001)

0.005
(0.001)

0.005
(0.001)

0.006
(<0.001)

α = 0.1 0.037
(0.001)

0.033
(0.001)

0.044
(0.002)

0.041
(<0.001)

0.046
(0.001)

0.040
(0.001)

0.050
(0.001)

α = 0.2 0.043
(0.003)

0.153
(0.002)

0.157
(0.002)

0.150
(0.001)

0.157
(0.002)

0.148
(0.001)

0.160
(0.001)

α = 0.5 0.052
(0.001)

0.303
(0.001)

0.298
(0.001)

0.294
(0.004)

0.304
(0.002)

0.293
(0.002)

0.303
(0.001)
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Table 10. Average test error, weight sparsity, and neuron sparsity of SGL1-regularized Lenet-5 models
trained on MNIST after 200 epochs across 5 runs. The models are trained with different algorithms.
Standard deviations are in parentheses. (SGD is stochastic gradient descent.)

Avg.
Test
Error
(%)

direct SGD proximal
SGD

proposed

α = 0.1 0.758
(0.029)

1.306
(0.031)

0.722
(0.028)

α = 0.2 0.760
(0.006)

2.954
(0.051)

0.704
(0.031)

α = 0.3 0.798
(0.023)

4.992
(0.161)

0.732
(0.045)

α = 0.4 0.836
(0.034)

7.304
(0.147)

0.792
(0.034)

α = 0.5 0.772
(0.019)

9.610
(0.170)

0.720
(0.039)

Avg.
Weight
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.935
(0.001)

0.994
(<0.001)

0.889
(0.004)

α = 0.2 0.951
(0.002)

0.997
(<0.001)

0.926
(0.001)

α = 0.3 0.960
(<0.001)

0.998
(<0.001)

0.945
(0.001)

α = 0.4 0.963
(0.001)

0.998
(<0.001)

0.952
(0.001)

α = 0.5 0.966
(0.001)

0.998
(<0.001)

0.954
(0.002)

Avg.
Neuron
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.735
(0.003)

0.784
(0.004)

0.691
(0.007)

α = 0.2 0.778
(0.004)

0.902
(0.005)

0.754
(0.003)

α = 0.3 0.802
(0.001)

0.960
(0.002)

0.787
(0.003)

α = 0.4 0.813
(0.003)

0.972
(0.001)

0.805
(0.004)

α = 0.5 0.821
(0.004)

0.976
(0.002)

0.811
(0.004)
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Table 11. Average test error, weight sparsity, and neuron sparsity of SGL1-regularized Lenet-5 models
trained on MNIST with lowest test errors across 5 runs. The models are trained with different algorithms.
Standard deviations are in parentheses. (SGD is stochastic gradient descent.)

Avg.
Test
Error
(%)

direct SGD proximal
SGD

proposed

α = 0.1 0.594
(0.032)

1.152
(0.026)

0.568
(0.021)

α = 0.2 0.634
(0.031)

2.320
(0.042)

0.582
(0.035)

α = 0.3 0.692
(0.028)

3.360
(0.075)

0.600
(0.030)

α = 0.4 0.684
(0.014)

4.272
(0.051)

0.652
(0.025)

α = 0.5 0.636
(0.022)

5.020
(0.094)

0.616
(0.052)

Avg.
Weight
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.449
(0.172)

0.939
(0.011)

0.757
(0.015)

α = 0.2 0.531
(0.012)

0.971
(0.005)

0.845
(0.005)

α = 0.3 0.451
(0.217)

0.992
(<0.001)

0.886
(0.004)

α = 0.4 0.449
(0.213)

0.989
(0.005)

0.896
(0.004)

α = 0.5 0.559
(0.007)

0.994
(<0.001)

0.905
(0.003)

Avg.
Neuron
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.317
(0.139)

0.698
(0.024)

0.497
(0.014)

α = 0.2 0.444
(0.015)

0.743
(0.021)

0.627
(0.011)

α = 0.3 0.382
(0.185)

0.863
(0.003)

0.697
(0.010)

α = 0.4 0.399
(0.196)

0.828
(0.061)

0.721
(0.008)

α = 0.5 0.519
(0.013)

0.883
(0.003)

0.735
(0.004)
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