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Comparing EMG-Based Human-Machine
Interfaces for Estimating Continuous,

Coordinated Movements
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Abstract— Electromyography (EMG)-based interfaces
are trending toward continuous, simultaneous control with
multiple degrees of freedom. Emerging methods range from
data-driven approaches to biomechanical model-based
methods. However, there has been no direct comparison
between these two types of continuous EMG-based
interfaces. The aim of this study was to compare
a musculoskeletal model (MM) with two data-driven
approaches, linear regression (LR) and artificial neural
network (ANN), for predicting continuous wrist and hand
motions for EMG-based interfaces. Six able-bodied subjects
and one transradial amputee subject performed (missing)
metacarpophalangeal (MCP) and wrist flexion/extension,
simultaneously or independently, while four EMG signals
were recorded from forearm muscles. To add variation to
the EMG signals, the subjects repeated the MCP and wrist
motions at various upper extremity postures. For each
subject, the EMG signals collected from the neutral posture
were used to build the EMG interfaces; the EMG signals
collected from all postures were used to evaluate the
interfaces. The performance of the interface was quantified
by Pearson’s correlation coefficient (r) and the normalized
root mean square error (NRMSE) between measured
and estimated joint angles. The results demonstrated
that the MM predicted movements more accurately, with
higher r values and lower NRMSE, than either LR or ANN.
Similar results were observed in the transradial amputee.
Additionally, the variation in r across postures, an indicator
of reliability against posture changes, was significantly
lower (better) for the MM than for either LR or ANN. Our
findings suggest that incorporating musculoskeletal knowl-
edge into EMG-based human-machine interfaces could
improve the estimation of continuous, coordinated motion.
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I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signals have been
widely used as control inputs for human-machine inter-

face (HMI), such as prosthesis control [1]–[5], rehabilita-
tion virtual reality control [6]–[9], rehabilitation device con-
trol [10]–[15], teleoperation [16]–[18], and other applications.
A traditional EMG-based HMI uses the amplitude of EMG
from an agonist-antagonist muscle pair to control 1 degree
of freedom (DoF). However, this process requires the user to
cocontract the two muscles to generate a switching command
for sequential control of two or more DoFs [19], [20]. Pattern
recognition-based myoelectric control has been developed to
improve the functionality (i.e., switching more intuitively
among DoFs) of EMG-based HMIs [9], [21]–[32]. Never-
theless, the pattern recognition-based control scheme is still
nonintuitive, since it is discrete-motion control, only allowing
the user to control one joint or motion class at a time.

EMG-based HMIs are trending toward continuous (or pro-
portional), coordinated control of multiple joints at a time
(hereafter referred to as continuous control). Continuous con-
trol is a hallmark of physiologic motor control [33] and, thus,
may make myoelectric control more intuitive. It could also
allow users to perform tasks more efficiently than they would
if they could only control one joint at a time. Advanced EMG
decoders based on data-driven, machine learning algorithms
have been developed to estimate joint angles from surface
EMG for continuous control [33]–[41]. Three continuous con-
trol algorithms are notable for their relatively high offline and
real-time performance in estimating continuous movements
from EMG: (1) nonnegative matrix factorization (NMF) for
wrist movements [34], [37], (2) linear regression (LR) for
wrist and hand movements [38]–[40], and (3) artificial neural
network (ANN) for wrist and hand movements [33], [35], [36].

Recently, several research groups explored the possibility
of building EMG-based continuous controllers from muscu-
loskeletal models (MMs) [42]–[48]. The motivation for an
MM-based control is that by encoding explicit representations
of anatomical structures of the musculoskeletal system, it may
better mimic physiologic human movement than data-driven
algorithms, which are naïve to musculoskeletal anatomy. One
research group developed an MM of the shoulder and the
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elbow for dynamic simulation of arm movements [42], [44].
An MM that included 24 muscles crossing the wrist and
fingers, and 23 DoF was proposed for real-time control [43].
An MM that included 10 muscles crossing the wrist and
fingers, and 3 DoF was developed for real-time prosthesis
control [47]. In our group, we recently developed an EMG
HMI based on an MM for continuous control of wrist and hand
movements [45], [49]. The parameters of our MM, identified
through an optimization procedure using measured kinematics
and EMG data [45], only need to be calculated once for
each subject. Promisingly, our previous results demonstrated
that the MM-based HMI could reasonably estimate joint
angles offline [45] and enable effective real-time control for
performing virtual tasks while mimicking the dynamics of the
intact human hand [50].

As the number and variety of continuous control
approaches grows, an emerging challenge is determining
which approaches are most promising and worth advanc-
ing toward clinical application. Some research has been
performed to compare among control approaches in order
to identify promising ones. Linear and nonlinear regression
algorithms were compared for continuous control of wrist
movements [38]. LR, ANN, and NMF were compared for con-
tinuous control of wrist movements [51]. However, no one has
compared existing data-driven continuous control approaches
with an MM-based approach.

In this study, we focused on continuous myoelectric
control rather than discrete control methods, such as
pattern recognition-based myoelectric control. Therefore,
we chose to compare our MM to LR and ANN, two of the
three data-driven algorithms highlighted above that enable
continuous myoelectric control. We compared performance
among the three algorithms (MM, LR, and ANN) for
estimating simultaneous wrist and hand movements from
EMG. Because NMF is a semi-supervised approach requiring
clearly identified positive and negative directions of movement
in each DoF, it is not suitable for estimating hand movements
from EMG signals and, therefore, was not selected for our
comparison in this study. To account for EMG variability
due to differences in limb posture [52]–[59], we quantified
estimation performance from EMG measured across several
upper limb postures. To purely study the performance of
the algorithms and minimize the effect of human adaptation
efforts, it was essential that we conducted a comparison
of the estimation performance among those three different
methods on an offline data set rather than for real-time
control. We hypothesized that the estimation performance of
the MM would be better than that of the LR and ANN.

II. METHODS

A. Subjects

Six able-bodied (AB) subjects (male, ages 19-32, right
hand dominant) and one amputee subject (male, age 42, right
transradial amputation) participated in the experiment. The
protocol was approved by the Institutional Review Board of
the University of North Carolina at Chapel Hill. All subjects
signed informed consent forms to participate. The amputee

Fig. 1. The 9 different upper limb postures tested in the experiments.

subject used both a body-powered prosthesis and a myoelectric
prosthesis with direct control in daily life.

B. Experiment Protocol

Kinematic and EMG data were recorded synchronously
from all AB subjects in nine upper limb postures (P1-P9 in
Fig. 1). The postures, covering a wide range of the upper
limb workspace and different hand orientations with respect
to gravity, reflected the variety of limb postures that might
be assumed to perform daily living tasks. Since the amputee
subject fatigued relatively quickly, EMG and kinematic data
were recorded for three of the nine upper limb postures (P3,
P5, and P7). In each posture, the subjects conducted five
different types of movements either at a fixed speed (rhythm)
or with continuously variable speed (random): (a) wrist flex-
ion/extension (WFLX/EXT) only, rhythm; (b) metacarpopha-
langeal (MCP) flexion/extension (MFLX/EXT) only, rhythm;
(c) WFLX/EXT only, random; (d) MFLX/EXT only, random;
(e) simultaneous WFLX/EXT and MFLX/EXT, random. All
AB subjects conducted the movements with the dominant
limb, while the amputee subject conducted mirrored bilateral
movements. In each trial, one type of movement was con-
ducted for 20 s. Two trials were conducted for each type of
movement. The subject rested for approximately one minute
between each trial to avoid fatigue.

C. Data Acquisition

We computed wrist and hand kinematics from the
three-dimensional positions of fourteen retro-reflective mark-
ers recorded at 120 Hz by an infrared motion capture system
(Vicon Motion Systems Ltd. UK). We placed the markers
over the following anatomical locations (Fig. 2a): xiphoid,
acromion, C7 spinous process, medial clavicle, humeral mid-
shaft, medial humeral epicondyle, lateral humeral epicondyle,
radial midshaft, radial styloid process, ulnar styloid process,
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Fig. 2. Experimental setup. (a) The positions of the markers and the
surface EMG electrodes on an AB subject; (b) The positions of the
fine-wire EMG electrodes on the amputee subject.

2nd and 5th MCP joints, and 2nd and 5th proximal interpha-
langeal joints. Because the (intended) wrist and hand motion
could not be determined directly from the residual limb of the
amputee subject, we recorded kinematic data from the intact
limb during the mirrored bilateral movements.

For all AB subjects, surface EMG signals were recorded
from four muscles (Fig. 2a): extensor digitorum (ED), flexor
digitorum (FD), extensor carpi radialis longus (ECRL), and
flexor carpi radialis (FCR). The skin was cleaned with an
alcohol pad to reduce the impedance. Four bipolar surface
electrodes (SX230 W4X8, Biometrics Ltd., UK) were placed
on the target muscles using medical adhesive tape. The
electrodes were connected to an amplifier (K800 Amplifier,
Biometrics Ltd. UK), which was connected to the analog-to-
digital (AD) interface unit of the motion capture system. The
surface EMG signals were recorded at 960 Hz.

For the transradial amputee, the same four muscles were
targeted from the residual forearm (Fig. 2b). Identifying the
muscle-specific EMG needed for the MM-based interface is
difficult with surface electrodes in some transradial amputees,
since muscles associated with MCP flexion and extension
lie deep to muscles associated with wrist movement in the
proximal residual forearm. Therefore, fine-wire electrodes
were used to record EMG from the amputee subject. Under
ultrasound guidance, fine-wire bipolar EMG electrodes were
inserted percutaneously into the belly of the target muscles.
The fine-wire electrodes were connected to an EMG sys-
tem (MA300 DTU, Motion Lab Systems, USA), which was
connected to the analog-to-digital (AD) interface unit of the
motion capture system. The fine-wire EMG signals were also
recorded at 960 Hz.

D. Data Processing

We used a modified existing upper extremity MM in Open-
Sim [60] to calculate upper limb joint angles. The wrist joint
was modeled as a hinge joint with 1 DoF (flexion/extension),
and the MCP joints of the hand were modeled as a single
hinge joint with 1 DoF (flexion/extension).

The EMG were filtered using a 4th-order Butterworth
high-pass filter with a cutoff frequency at 40 Hz, rectified,

filtered using a 4th-order Butterworth low-pass filter with a
cutoff frequency at 6 Hz, and then normalized by the maxi-
mum EMG acquired during maximum voluntary contraction.
The normalized EMG were downsampled to 120 Hz and used
to calculate muscle activations using a nonlinear model of
excitation-activation dynamics [61], [62]. The transformation
functions from the downsampled EMG to muscle activations
were as follows:

ui (t) = αei (t − d) − β1ui (t − 1) − β2ui (t − 2) (1)

ai (t) = eAui (t) − 1

eA − 1
(2)

where ei (t) is the downsampled EMG of muscle i at time t ,
d is the electromechanical delay, ui (t) is the postprocessed
EMG of muscle i at time t , α, β1, β2 are the coefficients
defining the second order dynamics, ai (t) is the activation of
muscle i at time t . A set of constraints was used to ensure a
stable solution and maintain the unit gain of equation (1):

β1 = C1 + C2 (3)

β2 = C1 · C2 (4)

|C1| < 1 (5)

|C2| < 1 (6)

α − β1 − β2 = 1 (7)

E. Algorithms Modeling

We defined the posture P3 as the neutral posture, as it was
the upper limb posture the subjects assumed when placing
EMG electrodes. For all three algorithms (MM, LR, and
ANN), the experimentally derived muscle activations and the
2-DoF joint angles of the neutral posture P3 were used as the
training data to optimize the parameters of the models. Data
from the first half of the trials in P3 (5 trials, 6000 sample
points in total for each subject), one trial for each type of
movement, were used for optimization of the first half of
the models. The first half of the models were then tested in
the second half of the trials in 9 tested postures (45 trials,
54000 sample points in total for each subject). Data from
the second half of the trials in P3 (5 trials, 6000 sample points
in total for each subject), one trial for each type of movement,
were used for optimization of the second model. The second
half of the models were then tested in the first half of the trials
in 9 tested postures (45 trials, 54000 sample points in total for
each subject).

Regarding the MM, a planar lumped-parameter MM of the
wrist and hand was used in the current study [45], [50]. The
model included two DoFs, WFLX/EXT and MFLX/EXT. Four
muscles were included in the model: one antagonist muscle
pair crossing the wrist only and another antagonist muscle pair
crossing both the wrist and MCP joints. This muscle arrange-
ment was chosen for the following reasons: 1. it is similar to
the arrangement of muscles that cross the biological wrist and
MCP joints; 2. it permitted independent control of wrist and
MCP joint movements in both directions. Each muscle was
modeled as a Hill-type actuator with a contractile element and
a parallel elastic element [63]. To reduce the number of model
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TABLE I
CONSTRAINTS OF THE PARAMETERS OF THE

MUSCULOSKELETAL MODEL

parameters, a series elastic element representing a tendon in
the Hill-type model was not included. Six parameters were
optimized for each muscle: maximum isometric force, muscle
length at neutral position, optimal muscle length, parallel
elastic element stiffness, and moment arms at the WFLX/EXT
and MFLX/EXT. We set the moment arms to zero at joints in
which a muscle does not cross anatomically. We constrained
all parameters to the approximate ranges of physiologic values
(Table 1). We assumed that all moment arms were constant
across joint angles [45]. We used the optimization function
GlobalSearch in MATLAB (Mathworks, MA) to calculate the
muscle parameters for each subject. The muscle parameters
were optimized to minimize the mean squared error between
estimated and measured joint angles.

Regarding the LR modeling, one linear regression model
was used for each DoF (two LR models total) to estimate joint
angles from the experimentally derived muscle activations
based on the selection in the previous studies [39]–[41].

y = aT ∗ x (8)

where y was the estimated joint angle, a was the vector of
coefficients for each muscle activation, and x was the vector of
muscle activation for each of the four muscles. Two different
LR models were used instead of one model to obtain better
estimates of the two joint angles.

Regarding the ANN modeling, one three-layer network
was used for each DoF (two ANN models total) to estimate
joint angles from the experimentally derived muscle activa-
tions [33], [36], [38], [51]. We tested the performance of ANN
while the number of neurons in the hidden layer was set from
1 to 10. Three neurons in the hidden layer achieved the best
performance. Therefore, the number of neurons in the hidden
layer was set to 3.

F. Evaluation Metrics and Methods

For each subject, the MM, LR, and ANN were then tested
by data recorded from each of the nine tested postures. The
procedures for comparing the MM, LR, and ANN are shown
in Fig. 3. To quantify the performance of the algorithms

Fig. 3. Block diagram of the procedures of comparing the MM, LR,
and ANN.

in each joint, we computed Pearson’s correlation coefficient
(r) between the measured and estimated angles for each joint.

rx,y =
∑n

1 (xi − x̄)(yi − ȳ)√∑n
1 (xi − x̄)2

√∑n
1 (yi − ȳ)2

(9)

where xi is the i th measured joint angle, x̄ is the mean of
measured joint angles, yi is the i th estimated joint angle, ȳ is
the mean of estimated joint angles, and n is the number of data
samples. The higher the coefficient is, the better the waveforms
match between measured and estimated joint movements.

Additionally, the normalized root mean square
error (NRMSE) was calculated at each joint by (1) calculating
the total root mean square error (RMSE) between measured
and estimated joint angles across a trial and (2) normalizing
the RMSE by each subject’s approximate maximum range
of motion of the respective joint measured during the
experiment.

N RM SE =
√

1
n

∑n
1 (xi − yi )

2

(xmax − xmin)
(10)

where xmax and xmin are the maximum and minimum values
of measured joint angles, respectively, xi is the i th measured
joint angle, yi is the i th estimated joint angle, and n is the
number of data samples. The NRMSE quantified the match of
measured and estimated joint movements in both waveform
and magnitude.

G. Statistical Analysis

Two-way repeated measures ANOVA was conducted on r
and NRMSE. ANOVA included two independent variables:
algorithm type (MM, LR, and ANN) and posture (9 different
upper limb postures). One-way repeated measures ANOVA
was conducted on variations in r and NRMSE across different
postures, including algorithm type (MM, LR, and ANN) as
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Fig. 4. (a) Pearson’s correlation coefficient (r) between measured and
estimated joint angles averaged across all AB subjects, movement types,
joints, and postures for the test on MM (white bar), LR (black bar), and
ANN (gray bar). (b) Variation in r across different postures. Tests marked
by ∗ indicate significant differences between algorithm types. Error bars
represent the standard error.

the independent variable. To satisfy the normality requirement,
a Fisher’s transformation was applied to the measured values.
In all ANOVA tests, a full statistical model was generated first.
If no significant interaction was detected, a reduced ANOVA
model with only main effects was conducted. Whenever signif-
icance was detected for the main factors, a Tukey comparison
was performed. For all tests, the significance level was set to
p = 0.05.

III. RESULTS

The r values of MM, LR, and ANN were 0.88, 0.63, and
0.70, respectively, when averaged across all AB subjects,
movement types, joints, and postures (Fig. 4a). The two-way
ANOVA on r values revealed no two-way interaction
(p = 0.209). ANOVA with only main effects indicated all
variables to be statistically significant (p < 0.001 for all
studied variables). For the factor of algorithm type, Tukey
comparison revealed that the r value of MM was significantly
higher than that of LR (p < 0.001) and ANN (p < 0.001).

Fig. 5. (a) NRMSE between measured and estimated joint angles
averaged across all AB subjects, movement types, joints, and postures
for the test on MM (white bar), LR (black bar), and ANN (gray bar).
(b) Variation in NRMSE across different postures. Tests marked by∗ indicate significant differences between algorithm types. Error bars
represent the standard error.

It also revealed that the r value of ANN was significantly
higher than that of LR (p < 0.001).

Fig. 4b shows the variation in r across different postures.
The one-way ANOVA on the variation in r across different
postures revealed a significant main effect of algorithm type
(p = 0.004). Tukey comparison revealed that the variation in
r of MM was significantly lower than that of LR (p < 0.001)
and ANN (p < 0.001).

The NRMSE values of MM, LR, and ANN were 0.13,
0.21, and 0.18, respectively, when averaged across all AB
subjects, movement types, joints, and postures (Fig. 5a). The
two-way ANOVA on NRMSE revealed no two-way interaction
(p = 0.197). ANOVA with only main effects indicated all
variables to be statistically significant (p < 0.001 for all
studied variables). For the factor of algorithm type, Tukey
comparison revealed that the NRMSE of MM was significantly
lower than that of LR (p < 0.001) and ANN (p < 0.001).
It also revealed that the NRMSE of ANN was significantly
lower than that of LR (p < 0.001).

Fig. 5b shows the variation in NRMSE across different
postures. The one-way ANOVA on the variation in NRMSE
across different postures revealed no significant main effect of
algorithm type ( p = 0.281).

All portions of the data sets for MM had r values over 0.2,
while several portions of the data sets for LR and ANN were
negative (Fig. 6). All portions of the data sets for MM had
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Fig. 6. Left side: histograms of the pearson’s correlation coefficient
(r) for the MM (white bar), LR (black bar), and ANN (gray bar). right side:
histograms of the NRMSE for the MM (white bar), LR (black bar), and
ANN (gray bar).

Fig. 7. Representative estimation performance during simultaneous
2-DoF random movements of the test on MM, LR, and ANN in the neutral
posture P3 for AB subject 2. Measured joint angles are solid black lines.
The estimated joint angles of MM, LR, and ANN are dashed red lines,
blue lines, and green lines, respectively.

NRMSE values below 0.5, while several portions of the data
sets for LR and ANN were over 0.5 (Fig. 6).

The estimated and measured joint angles for an exemplary
trial of simultaneous 2-DoF random movement in neutral
posture P3 for AB subject 2 are shown in Fig. 7. Qualita-
tively, the MM attained the best estimation performance (both
waveform and magnitude) among all three algorithms (MM,
LR, and ANN). There were instances when the LR estimated
MCP movement that was much larger than the measured MCP
movement, which could explain why the LR had the largest
NRMSE among the three algorithms.

To better demonstrate the science/principle of the MM for
EMG interface design, we investigated the biological processes

from the muscle activations to the joint angles of the MM.
Fig. 8 shows an example of the biological processes during
simultaneous 2-DoF random movements in the neutral posture
P3 for AB subject 2. Particularly at the WFLX/EXT DoF from
2 to 4 seconds, the MM predicted the joint angles much closer
to the measured joint angles than the LR and ANN in Fig. 7.
The active force of the muscle ECRL and the passive force of
the muscle FCR counteracted to generate the joint moment at
the WFLX/EXT DoF around 0 Nm and ensured the joint angle
held at -80 degrees consistently. However, the LR and ANN
did not account for those biological processes from the muscle
activations to the joint angles and therefore could not capture
the passive force that plays an important role in generating
human motions from muscle activations.

For the amputee subject, we compared r value and NRMSE,
averaged across all movement types, joints, and postures,
derived from the test on MM, LR, and ANN, respectively.
The average r values of the MM, LR, and ANN were 0.80,
062, and 0.57, respectively (Fig. 9a). The average NRMSE
values of the test on MM, LR, and ANN were 0.15, 0.22, and
0.23, respectively (Fig. 9b). Qualitatively, the MM attained the
best estimation performance (both waveform and magnitude)
among all three algorithms (Fig. 10), just as we observed for
the AB subjects.

IV. DISCUSSION

In the present study, we compared the movement estimation
performance of three algorithms used for EMG-based HMIs:
MM, LR, and ANN. Overall, the MM could predict the trend
(as indicated by r values) and magnitude (as indicated by
NRMSE) of movements significantly better across the tested
postures than either LR or ANN. The results were similar
for both AB subjects and the amputee subject. Additionally,
the variation in r across different postures of MM was signifi-
cantly lower than that of either LR or ANN, indicating that the
MM could estimate movement more reliably across postures
than either LR or ANN.

Compared to LR and ANN, the better performance and
higher reliability of the MM across different upper limb pos-
tures was potentially caused by the following characteristics: 1.
The MM generally reflected the anatomical and physiological
constraints of the neural, muscular, and skeletal systems of the
wrist and hand, though in a simplified form. Since the muscu-
loskeletal structure in both the human and model were fixed,
the primary biomechanical actions of the muscles crossing the
fingers and wrist were likely preserved across different upper
limb postures. 2. Each EMG was measured primarily from
one muscle and applied to a virtual muscle with comparable
biomechanical behavior; thus, the output movements with acti-
vation of the biological and virtual muscles would generally
match. 3. The MM accounted for the biological processes
from the muscle activations to the joint angles and could
capture the passive force, which was important to balance
the active force while the subject held a joint at the position
far from the neutral position (see Fig. 8). However, the data-
driven approaches compared in this study (LR and ANN) were
modeled based on the structure of the training data without
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Fig. 8. Biological processes from the muscle activations to the joint angles of the MM during simultaneous 2-DoF random movements in the neutral
posture P3 for AB subject 2. (a) Muscle activations of the four muscles; (b) Muscle forces of the four muscles; (c) Joint moments at the two joints;
(d) Joint angles at the joints (measured joint angles are solid black lines and estimated joint angles are dashed red lines); (e) Active forces of the
four muscles; (f) Passive forces of the four muscles.

Fig. 9. (a) Comparison of the Pearson’s correlation coefficient derived
from the test on MM (white bar), LR (black bar), and ANN (gray bar);
(b) Comparison of the NRMSE derived from the test on MM (white bar),
LR (black bar), and ANN (gray bar). Error bars represent the standard
error.

accounting for anatomical and physiological constraints and
therefore cannot capture the passive force.

The estimation performance (r value and NRMSE) of
both the MM and ANN was significantly better than that
of LR for AB subjects. We attributed this to the fact that
the neuromuscular system of the hand is a nonlinear system
and, thus, difficult to characterize well with a linear model.
Conversely, the nonlinear MM and ANN algorithms likely
had better capability to characterize the nonlinear features of
the neuromuscular system of the hand. It was interesting that
the variation in r across different postures was significantly
higher (worse) with ANN than with LR, even though the
estimation performance was better (higher r value and lower

NRMSE) with ANN than with LR. In other words, ANN was
more accurate but less consistent across postures than LR.
We attributed this to the fact that since ANN was a nonlinear
algorithm and LR was a linear algorithm, ANN likely overfit
the training data set in the neutral posture and could not be
generalized to the other postures as accurately as LR.

The r value of the MM was over 0.83 in all tested postures
for AB subjects, indicating that the MM could estimate the
trend of the wrist and hand movements (i.e., waveform)
very well across the nine different tested postures. However,
the NRMSE of the MM was over 0.1 in the nine different
postures, indicating that the MM could not estimate the
magnitude as well as it could estimate the trend of the wrist
and hand movements. Nevertheless, matching the measured
joint motion exactly (both waveform and magnitude) is very
likely not necessary for EMG-based HMIs. This is because (1)
engineers can modify the control gain in EMG-based HMIs
to better match the magnitude of joint motion, and (2) human
users are adaptive and can adjust the EMG activation level
volitionally to produce the desired magnitude of joint motion,
given that the MM can predict the waveform fairly accurately.

Several studies suggested that human adaptation would
be helpful to ensure the high performance of continuous
EMG HMIs for real-time control [38], [40], [41]. Other
study demonstrated that offline estimation performance has
poor correlation with online, real-time control performance
of continuous EMG HMIs [51]. We agree that, with the
human in the loop during real-time continuous myoelectric
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Fig. 10. Representative estimation performance during simultaneous
2-DoF random movements of the test on MM, LR, and ANN in the neutral
posture P3 for the amputee subject. Measured joint angles are solid black
lines. The estimated joint angles of MM, LR, and ANN are dashed red
lines, blue lines, and green lines, respectively.

control, the human’s adaptability could compensate to achieve
good online performance with different control algorithms,
even those with relatively poor offline performance. How-
ever, typical outcome metrics used in real-time myoelectric
control studies do not sufficiently capture human adaptation
effort (i.e., cognitive load and training time) to evaluate its
contribution to control performance. Based on our offline
comparison between the MM and data-driven approaches,
we propose that accounting for anatomical musculoskeletal
structure when developing continuous EMG interfaces could
improve estimation performance. The better offline estimation
performance of the MM may decrease the required human
adaptation effort to ensure good real-time control performance.

There were several limitations of the current study. We com-
pared the MM with only two representative data-driven algo-
rithms that are widely used for EMG HMI. In future work,
more data-driven algorithms should be considered. We tested
one amputee subject to demonstrate the potential application
of the MM for multifunctional prosthesis control. Recent
studies [43], [45], [47] have shown that EMG-driven MM is a
potentially viable method for prosthetic control in individuals
with upper limb amputations since it is likely that the internal
representation of MM of their missing limbs still exist. In this
study we found that even for this amputee subject, the MM
predicted movements more accurately than either LR or ANN.
It would be an interesting future study to test more amputee
subjects with MM-based neural interface in order to investi-
gate the underneath mechanism and neural representation of
missing limbs in individuals with limb losses. This future
study might also inform the further design of MM-based
neural interface tailored to amputee population for improved
performance. Another limitation is that the amputee subject
completed the testing in only 3 of the 9 upper limb postures
to avoid fatigue. Appropriately planned resting time should be
given to amputee subjects to ensure completing the testing in
all 9 upper limb postures in the future.

Identifying EMG signals from specific muscles is necessary
for the MM-based interface. To ensure that we could record
muscle-specific EMG from the amputee subject, we used
fine-wire electrodes. Fine-wire electrodes are suitable for lab
testing, but not for daily practice. Recently, implantable myo-
electric sensors (IMES) have been developed and evaluated
in humans [64]. IMES could be a potential solution for the
clinical application of MM for prosthesis control in the future.
In addition to IMES, high-density (HD) EMG electrodes,
which can obtain spatially more specific information, can
be an alternative technique that does not require invasive
recordings. We will use HD EMG recordings and existing
source separation methods to locate specific muscles and EMG
recording sites on the amputee’s residual limb.

Our study showed the relatively superior estimation per-
formance of MM for only 2 DoFs. An advantage of the
regression learning approaches is that they can easily be
extended to more DoFs. However, DoFs can also be added
to the MM, as we previously demonstrated by adding wrist
supination/pronation to the 2-DoF MM to construct a 3-DoF
MM [65]. An important open question is whether the superior
estimation performance of the MM would be preserved for
>2 DoFs. To address this question in future work, we will
compare the 3-DoF MM with the data-driven approaches in
offline and real-time experiments.

V. CONCLUSION

Our study preliminarily compared estimation performance
among three algorithms used for EMG-based HMIs: MM,
LR, and ANN. Performance was evaluated for a variety of
challenging movement conditions involving independent and
simultaneous wrist and MCP joint movements across nine
upper limb postures, which reflected the movements required
to perform daily living tasks. Our results demonstrated that
the MM, which directly incorporates knowledge about muscu-
loskeletal structure and biological movement production, could
estimate the trend (as indicated by r value) and magnitude (as
indicated by NRMSE) of AB movements significantly better
than either LR or ANN. Similar results were observed in
the amputee subject. The results also indicated that the MM
was more robust across different upper limb postures than
either LR or ANN. Thus, incorporating neurophysiological
knowledge into EMG-based HMIs may help improve the
estimation of continuous, coordinated motion.
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