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Introduction

Tactile feedback plays a critical role when we interact 
with objects, and a lack of such feedback can limit 
motor performance and limit control of assistive 
devices, such as prosthetic arms or remotely operated 
manipulators [1, 2]. For example, advanced prosthetic 
arms now allow the users to produce complex grasp 
patterns; however, dexterous control of these devices 
is still limited, partly because of the lack of sensory 
feedback [3–6]. Additionally, providing feedback 
associated with prosthetic joint angles or grasp forces 
can effectively improve prosthesis users’ ability to 
interact with objects of different properties and to 
effectively perceive various object properties, such as 

size, stiffness, or shape, with or without visual feedback 
[7–10].

Among the different object properties, stiffness 
is an important feature that characterizes an object’s 
resistance to imposed forces. Stiffness perception 
allows us to perform fine motor control, such as 
interacting and manipulating delicate objects [2, 11].  
Unfortunately, identifying object stiffness only 
through visual perception can be unreliable [12–16]. 
We typically sense tactile information through a series 
of mechanoreceptors embedded in our skin [17–19]. 
The different types of mechanoreceptors respond to 
different stimuli, which can transmit different types 
of tactile information, such as force dynamics and the 
area or location of skin contact. Regarding stiffness 
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Abstract
Objective. Haptic feedback is crucial when we manipulate objects. Information pertaining to 
an object’s stiffness in particular can help facilitate fine motor control. In this study, we seek to 
determine whether objects of different stiffness levels can be recognized using haptic feedback 
provided by transcutaneous electrical stimulation of peripheral nerves. Approach. Using a 
stimulation electrode grid placed along the medial side of the upper arm, the median and ulnar 
nerve bundles were targeted to evoke haptic sensation on the palmar side of the hand. Stimulation 
current amplitude was modulated in real-time with the fingertip force recorded from a sensorized 
prosthetic hand. In order to evaluate which stimulation pattern was more critical, object stiffness 
was encoded either by the rate of change of the stimulus amplitude or the level of peak stimulus 
amplitude, as the prosthesis grasped the objects. Main results. Both encoding methods allowed the 
subjects to differentiate objects of different stiffness levels with  >90% accuracy. No significant 
difference was observed between the two encoding methods, which indicated that both the rate of 
change of the stimulation amplitude and the peak stimulation amplitude could effectively provide 
stiffness information of the objects. Significance. The outcomes suggest that it is possible to elicit 
haptic sensations describing various object stiffness levels using transcutaneous nerve stimulation. 
The haptic feedback associated with object stiffness can facilitate object manipulation/interactions. 
It may also improve user experience during human–machine interactions, when object stiffness 
information is incorporated.
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perception, when we grasp a deformable object, the 
rate of change of the force imposed on the skin surface 
carries stiffness information. For example, a higher 
rate of change represents a stiffer object. Meanwhile, 
with a given degree of object deformation, the peak 
force sensed by the skin also carries stiffness informa-
tion, with a higher peak force representing a more stiff 
object. However, it is not clear which information is 
more critical for stiffness perception [14, 17–20].

Previous studies have evaluated stiffness recog-
nition using various stimulation modalities such as 
mechanical indentation or vibration [21, 22], or elec-
trical stimulation [23–26]. For example, to restore 
haptic sensation of individuals with arm amputa-
tion, Raspopovic et  al [25] elicited haptic sensation 
using proximal peripheral nerve stimulation via an 
intrafascicular electrode, and showed that the object 
stiffness, encoded by the rate of change of the stimu-
lation intensity, could be recognized by a prosthetic 
hand user. However, during stiffness recognition, the 
peak stimulation intensities were not constant for dif-
ferent objects in this study. As a result, it was not clear 
whether stiffness recognition was based on the rate 
of change in the stimulation intensity or on the peak 
stimulation intensity.

To overcome these limitations, the purpose of this 
study was to determine whether objects with differ-
ent stiffness levels can be differentiated using trans-
cutaneous electrical stimulation of the proximal seg-
ments of the peripheral nerves. Previously, a 2  ×  8 
electrode array was placed along a subject’s upper 
arm. The electrode array stimulation has been shown 
to activate selective sets of afferent fibers in the proxi-
mal segments of the median and ulnar nerves [27, 28]. 
Spatially and amplitude modulated sensations can be 
perceived by the participants at distinct regions of their 
hands [27]. Based on this stimulation approach, the 
stiffness level was encoded using two separate meth-
ods: (1) the rate of change of stimulation intensity with 
an identical finger flexion velocity and (2) the peak 
stimulation intensity with an identical level of object 
deformation and identical velocity as well. Isolation 
of these two encoding methods, through the use of 
an experimenter-controlled prosthetic hand, allowed 
us to evaluate which method provided information 
that was more critical for stiffness recognition. Dur-
ing the testing, the subjects associated the stimulation 
patterns with the object stiffness, and all other sensory 
(visual, auditory, and proprioceptive) information was 
not available to the subject. The performance of these 
two stiffness encoding methods were compared using 
either index-thumb pinch or middle-thumb pinch of a 
sensorized prosthetic hand. Our results demonstrated 
that the stiffness recognition performance was com-
parable between the two encoding methods. Our find-
ings suggest that object stiffness can be identified using 
different encoding methods (i.e. the rate of change of 
the stimulation amplitude and peak stimulation ampl
itude). The outcomes can allow us to readily evaluate 

the sensorimotor integration processes in prosthetic 
control in order to improve dexterity and promote 
user confidence.

Methods

Subjects
Ten neurologically intact subjects (seven males, 
three females, 20–35 years of age) were recruited for 
this study. All recruited individuals had no known 
neurological disorder, and each gave informed consent 
via protocols approved by the Institutional Review 
Board of the University of North Carolina at Chapel 
Hill.

Experimental setup
Each subject was asked to be seated with one arm 
comfortably placed on a table in front of him or her. 
The experimenter palpated the medial side of the 
resting upper limb directly below the short head of 
the biceps brachii, in order to identify the location 
of the brachial artery. This artery, running parallel 
to the median and ulnar nerve bundles, was used as 
a biological landmark for the placement of a 2  ×  8 
electrode grid. The grid was placed parallel to the 
vector that connects the medial epicondyle of the 
humerus and the center of the axilla (figure 1(A)), after 
the skin was cleaned with alcohol pads. This location 
maximizes the access to the median and ulnar nerve 
bundles from skin surface, which are responsible for 
sensation in the palmar side of the hand. The median 
nerve innervates the index, middle, and a portion of 
the ring finger, while the ulnar nerve innervates the 
remainder of the ring finger and the pinky. Once the 
electrode grid placement was complete, the electrodes 
were secured with the application of a mild inward 
pressure through a custom vice. Subjects were asked 
to report any discomfort or occurrence of restrictive 
blood flow throughout the experiment. The selection 
of distinct electrode pairs in the stimulation grid 
allows for the generation of unique electric field 
distributions, which can activate different sets of axons 
in the nerve bundles, innervating different regions of 
the hand.

The electrode pair selection was performed using 
a custom MATLAB (v2016b, MathWorks Inc, Natick, 
MA) interface. The interface controlled the selection 
of sixteen Ag/AgCl gel electrodes (1 cm in diameter) 
using a switch matrix (Agilent Technologies, Santa 
Clara, CA). The matrix linked one of the 16 electrodes 
among the 2  ×  8 grid to either the anode or the cath-
ode of the stimulator, leading to bipolar stimulations. 
When different electrode pairs were selected, perceived 
haptic sensation can be altered due to the change in the 
recruited sensory axons [27, 28].

A multi-channel fully programmable stimulator 
(STG4008, Multichannel Systems, Reutlingen, Ger-
many) was used to deliver a customized single-channel 
electrical stimulus to each subject. The stimulation 
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parameters were controlled using a custom MATLAB 
interface, which could control the output current of a 
charge-balanced biphasic square wave stimulus in real 
time (figure 1(B)). A pulse width of 200 µs and a pulse 
frequency of 150 Hz were selected based on earlier 
studies [27, 28].

To capture the stiffness of different objects, a sen-
sorized prosthetic hand (The LUKE DEKA RC ARM, 
Modius Bionics, Manchester, New Hampshire) was 
used to interact with different objects using a pinch 
grip. The DEKA hand has sensors in each finger. The 
sensors could capture the forces applied at each of the 
prosthetic’s fingertips, as determined by a calibra-
tion using a force transducer (LCM201-100N, Omega 
Engineering Inc., Stamford, CT, USA). Real-time 
acquisition of the force and joint position of the finger 
was performed. The index finger could be controlled 
independently; however, the middle, ring, and pinky 
could only be actuated concurrently. The robotic hand 
was controlled using the same MATLAB interface, 
which implemented a joint-position control scheme. 
This control scheme could adjust the speed and the 
final position of the finger joints. Prosthetic control 
was performed by the experimenter to ensure that the 
stiffness encoding methods were properly separated. 
This also ensured that subjects did not receive con-
founding information from proprioceptive or other 
tactile feedback when active control of the prosthetic 
hand was performed. Subjects were also visually and 
auditorily blinded to ensure differentiation could not 
be made based on those sources of sensory feedback.

To encode the object stiffness, the stimulation  
current amplitude was altered based on the force  
readings from the prosthetic’s index or middle finger 

(figure 1(B)). As the individual prosthetic index or 
middle finger contacts an object, fingertip force was 
recorded by the embedded sensors. A sigmodal trans-
fer function was used to convert the recorded finger 
force to the stimulation current amplitude delivered 
to the subject. A sigmoidal function was selected as it 
is common in psychometric testing for human tactile 
perception [29, 30]. The sigmoidal function was con-
structed based on the allowable stimulation current 
range, the minimum and maximum force readings, 
and the desired steepness of the function. The allowable 
current range for a given subject was based on the dif-
ference between the minimum current (i.e. the sensory 
threshold) and the maximum current (i.e. just below 
the motor threshold). The sensory and motor thresh-
olds were subject specific, and were identified by adjust-
ing the stimulation amplitude in steps of 0.1 mA until 
finger sensation or finger motion first occurs, respec-
tively. The steepness and the force minimum and maxi-
mum (N) were kept consistent across subjects with val-
ues of 1, 0.5, and 2.75 for the index finger pinch, and 
1, 0.5, and 6 for the middle finger pinch, respectively. 
These force values and corresponding finger forces fall 
within the range most commonly utilized by neurolog-
ically-intact individuals during activities of daily living 
[31]. The function used to calculate the necessary stim-
ulation current level for a given force is shown in equa-
tion (1), where I, IMax, and IMin each represent the actual 
delivered, maximum, and minimum stimulation cur
rent, respectively. Steepness, actual force, maximum 
force, and minimum force were implemented using the 
variables k, F, FMax, and FMin, respectively. A non-zero 
minimum force of 0.5 N was used due to a non-zero 
force reading when the finger flexed.

Figure 1.  Diagram illustrating the placement of the 2  ×  8 electrode grid along the upper arm (A) and flowchart describing how the 
fingertip forces recorded by the sensorized hand modulates stimulation amplitude. (B) Flowchart includes image of the prosthetic 
hand, example sigmoidal transfer function that transforms force to stimulation current amplitude, and stimulation train with 
constant frequency/pulse width and modifiable amplitude. This force-current amplitude transformation was utilized for both 
encoding methods.

J. Neural Eng. 17 (2020) 016002
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I (F) =
(IMax − IMin)

1 + e
(
−k ∗

(
F − FMax + FMin

2

)) + IMin.� (1)

Procedure
The experiment began by delivering electrical stimuli 
to various electrode pairs until clearly evoked sensation 
in either the index or middle finger was reported by 
the subject. Index finger sensation was elicited during 
the index pinch grip, while middle finger sensation 
was elicited during the middle pinch grip. Stimulus 
intensity during single (index or middle) finger contact 
was regulated based on its corresponding sensors.

For the main experiment, object stiffness recogni-
tion was performed using two methods to determine 
which sensory encoding provided a more accurate 
gauging of different stiffness levels. The first method 
was based on the rate of change of the force/sensa-
tion with a fixed finger closing speed and a fixed fin-
ger peak force. In this setting, an object with a higher 
stiffness corresponded to a higher rate of change 
of the force. Three cubes with similar dimensions 
(5 cm  ×  5 cm  ×  4 cm) but with varying stiffness levels 
were used: a wooden block with a high stiffness (mini-
mal deformation), a stiff foam with a moderate stiff-
ness (2.9 N mm−1), and a soft foam with a low stiffness 
(1.7 N mm−1). The index pinch had a peak finger force 
of 2.5 N, while a peak force of 5 N was selected for mid-
dle finger pinch. Peak forces were selected based on the 
maximum consistent force achievable with the lowest 
stiffness object during respective pinch grasp. Figure 2 
shows exemplar curves of the index finger force and 
current amplitudes for each object.

The second method was based on the amplitude 
of force/sensation with a fixed flexion end-position. 
In this setting, an object with a higher stiffness corre-
sponded to a higher peak force. During the testing of 
this encoding method, the subjects were instructed to 
differentiate object stiffness based on the peak stimu-
lation amplitude. Because the wooden block was not 
deformable, a styrofoam cube was used in its place to 
represent the highest stiffness level (6.5 N mm−1). The 
same stiff and soft foam cubes from the first method 
were used here. The final position of each finger was 
selected to be the maximum deformation of the sty-
rofoam cube. The input and output curves are shown 
in figure 3. All the peak forces and final positions were 
determined based on preliminary evaluations and 
the force and measurement capabilities of each joint. 
These values were kept consistent across subjects.

For each stiffness encoding method, stiffness rec-
ognition was tested using three comparison tech-
niques tested in three blocks. The three conditions 
were designed based on the uncertainty of how well 
the subjects could successfully identify the response 
to a given test, which can provide insight on how they 
were able to differentiate the various percepts elicited. 

The first condition ‘Ordering of 2 Objects’ evaluated 
the stiffness relation during the binary evaluation of 
two objects. The subjects were asked to identify if the 
first was stiffer, the second was stiffer, or if they had the 
same stiffness. This condition tested subjects’ ability 
to recognize differences between two objects, includ-
ing the possibility that the objects possess the same 
stiffness. A total of 18 trials involving all the possible 
object combinations were evaluated. The second con-
dition ‘Ordering of 3 Objects’ evaluated the identifi-
cation of the stiffness order of three objects. The sub-
jects were asked to rank order the stiffness levels after 
the three objects were offered sequentially. A total of 
12 trials involving the three different objects sequen-
tially in all possible random orders were evaluated. 
The final condition ‘Identification of Random Object’ 
evaluated the stiffness perception when identifying a 
random object during a single trial. The subjects were 
asked to identify the stiffness level (high, moderate, or 
low) of the object. This condition required the subjects 
to memorize the stiffness levels initially. The subjects 
then used that information to perceive the stiffness 
level of random objects. A total of 24 trials were tested. 
For each block, 10 s of rest time were provided between 
consecutive trials. The order of the testing blocks was 
randomized between subjects. A flowchart displaying 
the experimental protocols is shown in figure 4.

Data analyses
To determine the accuracy of the stiffness identification 
for each combination of the encoding method and 
comparison technique, six confusion matrices were 
created that compared the actual relative stiffness level 
to the perceived stiffness level across all subjects. In 
each figure, the high, moderate, and low stiffness were 
presented by the numbers 1, 2, and 3, respectively.

Statistical analyses
One sample t-tests were performed to determine if the 
recognition accuracy was significantly greater than 
chance values. A logit transformation was applied to 
the proportions prior to the statistical analysis due to 
the rightly skewed distribution of the data, since the 
percentage of accuracy is close to the upper bound of 
1. This transformation can help correct this skewed 
distribution and lead to normal distribution of the 
residual [32]. For the three comparison techniques, the 
random chance of accurately identifying the stiffness 
relation, rank order, or individual stiffness level was 
0.33, 0.16, and 0.33, respectively. Wilcoxon signed-
ranked tests were also performed for each combination 
of encoding method and evaluation technique to 
ensure that there was no significant difference between 
the middle and index pinch tasks. Additionally, paired 
t-tests were performed for each technique to determine 
if one encoding method was significantly better than 
the other.

J. Neural Eng. 17 (2020) 016002
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Results

Stiffness recognition based on ordering of 2 objects
We first evaluated if the subjects could identify the 
relative stiffness level between two given objects. Using 
binary comparisons, each subject was asked to report 
if the first object was stiffer, the second was stiffer, or 
if they had the same stiffness. Figure 5(A) shows the 
confusion matrices illustrating the actual stiffness pair 
presented and the perceived stiffness relation across all 
subjects, when the prosthetic hand pinched the objects 
at a fixed closing speed and stopped when a fixed force 
was reached. The high, moderate, and low stiffness 
were presented by the numbers 1, 2, and 3, respectively. 
The results showed that all the subjects could identify 
the relative stiffness based on the rate of change in the 
fingertip force (stimulation amplitude) with an average 
accuracy of 91.7%  ±  2.9%. During the second method 
(figure 5(B)), the amount of object deformation was 
fixed, and the object stiffness was associated with the 
peak force (peak stimulation amplitude). The subjects 

had similar success by correctly identifying 163 out of 
the 180 object pairs, resulting in an average accuracy 
of 90.6%  ±  6.4% across subjects. Performance of 
both encoding methods were found to be significantly 
greater than the chance value (p   <  0.001). In contrast, 
when comparing the two methods, no statistical 
difference was found between the two encoding 
methods (t  =  0.49; p   >  0.05).

In addition, the type of recognition errors was 
summarized as well. Specifically, most of the recogni-
tion errors arose from the trials where two objects with 
different stiffness levels were recognized as the same. 
This situation occurred in 9 out of 15 and 10 out of 17 
errors in the two encoding methods. It is important to 
note, however, that no object pairs with the stiffest and 
the least stiff object were incorrectly identified.

Stiffness recognition based on ordering of 3 objects
We then evaluated if the subjects could identify the 
relative stiffness level among three objects of varying 
stiffness. The confusion matrices presented in figure 6 

Figure 2.  Hand grip on objects of varying different stiffness with stiffness decreasing from left to right. (A) The graphs correspond 
to the finger force, (B) joint angle, (C) and the associated stimulation current (D) when using rate of change of stimulation 
amplitude as the stiffness encoding method.

J. Neural Eng. 17 (2020) 016002
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illustrate all possible three object sequences and their 
respective level of stiffness recognition across subjects. 
The results showed that both stiffness encoding 
methods led to similar performance in stiffness 
recognition. Specifically, with a fixed peak force, the 

subjects were able to correctly identify the stiffness 
order in 114 out of 120 trials with an average accuracy 
across subjects of 95.0%  ±  10.5%, based on the rate of 
change in the fingertip force (stimulation amplitude). 
With the peak fingertip force as the stiffness encoding, 

Figure 3.  Hand grip on objects of varying different stiffness with stiffness decreasing from left to right. (A) The graphs correspond 
to the finger force, (B) joint angle, (C) and the associated stimulation current (D) when using peak stimulation amplitude as the 
stiffness encoding method.

Figure 4.  Flowchart illustrating the experimental protocol.

J. Neural Eng. 17 (2020) 016002
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the subjects were able to correctly identify the stiffness 
order with an accuracy of 91.7%  ±  11.1%, or 110 out 
of 120 accurate trials. The confusion matrices also 
showed that the types of errors were largely composed 
of incorrectly identifying adjacent stiffness levels. 
Both encoding methods were found to be significantly 
greater than the chance value (p   <  0.001), with 
no statistical difference between the two encoding 
methods (t  =  0.25; p   >  0.05).

Stiffness recognition based on identification of 
random object
Lastly, we evaluated if the subjects could identify 
the stiffness level of a single object given randomly 
during each trial. The subjects were asked to report 
whether the perceived stiffness corresponded to a 
high, moderate, or low stiffness object. The confusion 
matrices of stiffness recognition across subjects are 
shown in figure 7.

The results showed that the majority of the per-
ceived stiffness levels were correctly identified for both 

encoding methods. Specifically, with the rate of change 
of stimulation amplitude as stiffness encoding, 222 out 
of 240 trials were correctly identified, resulting in an 
accuracy of 92.5%  ±  7%, based on the rate of change 
in the fingertip force. Similarly, 220 out of the 240 trials 
were correctly identified with peak stimulation ampl
itude, resulting in an accuracy of 91.7%  ±  7.9%. Both 
encoding methods were significantly greater than the 
chance value (p   <  0.001). Statistical analysis showed 
that the results were similar between the two encoding 
methods (t  =  0.68; p   >  0.05). For all combinations of 
encoding methods and comparison technique, Wil-
coxon sign ranked tests found no significant difference 
across middle and index pinch tasks as well.

Discussion

This study sought to identify if stiffness recognition 
could be performed using transcutaneous nerve 
stimulation delivered to the proximal segments of 
the median and ulnar nerves. Two stiffness encoding 

Figure 5.  Confusion matrices quantifying the instances when comparing the perceived relative stiffness with the ground truth using 
the rate of change of stimulation amplitude (A) or the peak stimulation amplitude (B) as stiffness encoding. The average accuracy 
and the standard deviation (C) between subjects are displayed as well for both encoding strategies with an asterisk indicating 
significance of P  <  0.001. ‘First’ means the first object was stiffer. ‘Second’ means the second object was stiffer. ‘Same’ means both 
objects are the same stiffness. ‘1’ corresponds to the stiffest object, ‘2’ corresponds to the moderate stiff object, and ‘3’ corresponds 
to the least stiff object. There was a maximum of 20 trials or instances for each stiffness pair across all subjects.

Figure 6.  Confusion matrices quantifying the instances when comparing the perceived relative stiffness order with the ground 
truth using the rate of change of stimulation amplitude (A) or the peak stimulation amplitude (B) as stiffness encoding. The 
average accuracy and the standard deviation (C) between subjects are displayed as well for both encoding methods with an asterisk 
indicating significance of p   <  0.001. ‘1’ corresponds to the stiffest object, ‘2’ corresponds to the moderate stiff object, and ‘3’ 
corresponds to the least stiff object. There was a maximum of 20 trials or instances for each condition across all subjects.

J. Neural Eng. 17 (2020) 016002
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methods were evaluated to determine which method 
was more critical for stiffness recognition. Specifically, 
using an electrode grid, different electrical field 
distributions can be induced, which can then activate 
different afferent nerve fibers producing distinct 
haptic sensations in the subject’s hand. Electrode 
pairs evoking either middle or index finger haptic 
sensation were utilized in this study, with the current 
amplitude being modulated by the fingertip force of 
the DEKA hand. Our results demonstrated that both 
encoding methods allowed the subjects to accurately 
(>90%) identify the stiffness levels of different objects. 
The results suggest that it is possible to elicit haptic 
sensations describing various object stiffness levels 
using transcutaneous nerve stimulation. The haptic 
feedback associated with object stiffness can help to 
improve the performance of dexterous movement, 
ensure successful object manipulation/interactions, 
and potentially promote user embodiment when using 
prosthetic arms/hands.

The first stiffness encoding method allowed the 
subjects to differentiate stiffness levels based on the 
rate of change of the sensation intensity when the 
peak force (stimulation amplitude) was maintained 
constant across different objects. The fixed peak force 
ensured that the judgment was not assisted based on 
varying levels of peak sensation intensity. Our results 
demonstrated that different object stiffness levels 
could be correctly identified during all the three evalu-
ation techniques with accuracies  >90%. The subjects 
did not require any training before the actual experi-
ment, and each subject’s decisions were made imme-
diately following the end of each trial, suggesting that 
the nerve stimulation provided was highly informative 
as well.

Previous studies have shown that stiffness discrim-
ination could be performed using similar encoding 
methods with accuracies being slightly lower [23, 24]  
or comparable with our results after multiple sessions 
[25]. Differences in discrimination accuracy may be 
caused by multiple factors. First, the experimenter 

controlled the prosthesis in our current study. Sub-
ject’s stiffness discrimination was exclusively based 
on sensation without any sensorimotor integration 
process. A direct control of the prosthetic hand can 
provide the user with additional information during 
sensorimotor integration. Alternatively, as subjects 
control the prosthetic hand, differences in grasp tra-
jectory caused by the user can lead to altered percep-
tion during discrimination. For example, variations in 
grasp force and aperture could likely affect the rate of 
change of the force profile, which can affect the indi-
vidual’s perception of the stiffness. Further studies 
need to evaluate the role of sensorimotor integration 
in sensory perception. Second, the accuracy of stiffness 
recognition may also be affected by the range of allow-
able stimulation parameters for a given individual and 
stimulation technique. The just-noticeable difference 
(JND) describes the smallest change of a stimulation 
parameter that can be perceived by the subject. As the 
range of allowable stimulation parameters decreases, 
the number of distinct percepts, determined by the 
JND, decreases as well, thereby limiting the distin-
guishability of objects with similar stiffness levels. Our 
results support this notion as the highest recognition 
accuracy was observed in the two individuals with the 
widest range of stimulation amplitudes. Lastly, differ-
ent objects were used across studies, which can also 
affect the accuracy of the stiffness recognition. Dif-
ferences in object stiffness will affect the distinguish-
ability between objects. It is expected that objects of 
similar stiffness levels would be harder to differenti-
ate compared to those with large differences. Overall, 
our results revealed that the non-invasive stimulation 
targeting major nerve bundles can reach comparable 
accuracy of object stiffness recognition, compared 
with implantable nerve interface techniques in earlier 
work [24, 25]. Our non-invasive approach can reduce 
the concerns with stability and post-surgery care that 
come with invasive approaches, and also reduce the 
potential for myoelectric control interference of distal 
transcutaneous nerve stimulation.

Figure 7.  Confusion matrices quantifying the instances when comparing the perceived stiffness with the ground truth using the rate 
of change of stimulation amplitude (A) or the peak stimulation amplitude (B) as stiffness encoding. The average accuracy with the 
standard deviation as error bars (C) between subjects are displayed as well for both encoding strategies with an asterisk indicating 
significance of p   <  0.001. There was a maximum of 80 trials or instances for each condition across all subjects.
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The second stiffness encoding method allowed 
individuals to differentiate stiffness based on the peak 
force (stimulation intensity) with identical levels of 
deformation. This encoding method for stiffness iden-
tification has never been evaluated using elicited sen-
sory feedback. Compared with the previous encoding 
method (rate of change of sensation), similar recogni-
tion accuracy was observed, which indicates that each 
subject can discriminate between force levels. Future 
work will need to be conducted to identify the poten-
tial JND to determine the discrimination resolution of 
varying stiffness levels. As one would expect, a limita-
tion to this encoding method is that the level of defor-
mation needs to be kept consistent in order to properly 
evaluate various object stiffness levels.

Throughout the experiment, visual feedback was 
blocked to strictly evaluate subjects’ ability to discern 
stiffness based on the delivered tactile sensation. Inte-
gration of vision with this tactile sensation can poten-
tially allow for improved discrimination of stiffness, as 
information pertaining to finger position/movement 
will be available. Information received through visual 
stimulus has been shown to assist in discriminating 
stiffness [12]; however, a lack of visual cues or in some 
cases altered/incorrect perception can result in errors as 
detailed by multiple studies [13–16, 33]. For this rea-
son, subjects were blinded in this study to examine the 
extent in which stiffness could be determined using 
both encoding methods. In addition, with active con-
trol of the robot, proprioceptive feedback can also be 
integrated with the tactile information, which could 
allow for a better estimate of object stiffness. Horch et al 
and D’Anna et al [24, 34] have shown that the addition 
of proprioceptive feedback, delivered using direct nerve 
stimulation, can improve stiffness identification with 
objects of varying sizes and levels of stiffness. Addi-
tionally, if kinesthetic feedback cannot be evoked with 
our technique, vibrotactile or electrotactile devices can 
be employed as a substitution to provide information 
associated with joint angles. Multiple studies have dem-
onstrated that these tactors are simple to implement 
and can be effective when used to deliver propriocep-
tive stimulus to an individual [26, 35–37].

For example, a study utilizing current amplitude-
modulated electrotactile feedback demonstrated that 
object stiffness, along with weight and size, could be 
correctly identified when combining two sources of 
stimuli corresponding to finger aperture and force 
[26]. The success of this study suggests that provid-
ing useful non-invasive multisensory feedback might 
improve control as well as provide additional insight 
about various object properties. In this earlier study, 
the feedback was delivered to the skin under the elec-
trode. In contrast, the nerve stimulation used in our 
current study elicited haptic sensation in the referred 
fingers directly, which could provide more intuitive 
feedback, which may require less training and cog-
nitive processing due to locational similarities [38]. 
Similarly, transcutaneous nerve stimulation on the 

forearm of the amputees can activate the afferent fibers 
in the distal branches of the median and ulnar nerves 
[23]. With varying stimulation parameters corre
sponding to different object stiffness, the amputees can 
recognize object stiffness with high accuracy. However, 
stimulation of distal nerve branch can potentially 
induce interference on myoelectric signal recordings 
for future studies.

Limitations and future work
Limitations of this study include the lack of user-
control of the prosthesis, the lack of amputee subjects, 
potential for confounding factors during stiffness 
recognition, and the absence of stimulation adjustment 
to potential sensory adaptation after continuous 
stimulation. As previously mentioned, the lack of user-
control may result in varied recognition accuracies. In 
this study, control was delegated to the experimenter 
in order to ensure the two encoding methods were 
properly separated. Additionally, this decision ensured 
that confounding factors, resulting from individual’s 
proprioceptive feedback during muscle activation and 
finger movements, could provide either converging 
or interfering information to the users, which could 
bias the results. Studies have also shown that sensory 
perception may be affected during the active control 
of hand motion due to added cognitive load [39]; 
however, minimum difference has been reported when 
comparing the discriminative ability between these 
two scenarios [40, 41]. Additionally, simply replaying 
predefined stimulation profiles could still have 
addressed our current research question. Utilization 
of the robotic hand accounted for the potential 
variability that may arise from the placement of the 
objects, sensor recordings from the robotic hand, 
or the delay in delivering the real-time stimulation. 
As a result, an experimenter-controlled approach 
appeared to be the appropriate decision for this study. 
Clearly, further studies are necessary to evaluate the 
performance of stiffness recognition when users 
directly control the prostheses, especially for clinical 
applications. Given that both encoding methods 
showed similar performance, the users may actively 
control the prosthetic hand using either strategies 
by slowly adjusting the grip aperture to produce 
different force profiles. Earlier work has shown that the 
somatosensory cortex representation of the phantom 
hand is largely stable [42] even years after amputation. 
In a previous study, we have also shown that evoked 
sensory perceptions through transcutaneous nerve 
stimulation are similar between intact individuals 
and arm amputees [27], which suggests that results 
demonstrated in intact individuals can be translatable 
and characteristic to those expected in amputees. 
Nonetheless, further studies including upper limb 
amputees are necessary to evaluate the performance of 
stiffness recognition.

The discrimination of stiffness was performed 
based on specific stimulation patterns. In other words, 
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the subjects associated the stimulation patterns with 
the object stiffness. Indeed, the stimulation patterns 
matched the physical stiffness parameters, rather than 
random stimulation patterns. The elicited haptic feed-
back was not natural compared with the biological 
feedback. But the subject was able to correctly identify 
the patterns immediately after the stimulation without 
any prior training, which suggested that the informa-
tion was more intuitive than substituted sensory infor-
mation, which typically requires training and the rec-
ognition process was also slow. During the experiment 
subjects were asked to differentiate the stiffness of the 
three objects based on the rate of stimulus change or 
the peak stimulation amplitude. During either process, 
it was emphasized that discriminations of the percepts 
should be performed by solely the rate of change or 
the peak stimulation amplitude. Despite the explicit 
instructions to the subjects, there is still a possibil-
ity that other factors may have been utilized, such as 
stimulation duration for the first method or the rate of 
change for the second method. As the peak deforma-
tion was held constant for the second method, the rate 
of change of the stimulus would vary with different 
object stiffness levels. If the flexion velocity of the finger 
was altered to ensure identical rate of stimulus change, 
then stimulation duration would be a confounding 
factor instead. Future studies are necessary to isolate 
these confounding variables and further evaluate user 
performance. Lastly, sensory adaptation over time 
can alter the perception of various elicited sensations 
with continuous stimulation. Investigation on sen-
sory adaptation have been performed with implanted 
electrode nerve stimulation, which suggested that sen-
sory adaptation may be partly mediated by a desen-
sitization of the mechanotransduction sites [43]. 
Additionally, sensory adaptation has been evaluated 
using skin surface electrotactile stimulation [44–46],  
with one study [46] showing that adaptation can be 
delayed with intermittent stimulation. Future studies 
are needed to understand the occurrence of sensory 
adaptation, which can help develop necessary com-
pensatory stimulation paradigms to accommodate the 
expected changes.

Conclusion

In summary, our findings demonstrated that stiffness 
recognition could be performed via transcutaneous 
nerve stimulation targeting the proximal segment of 
the nerve bundles. Two stiffness encoding methods, the 
rate of change of stimulation amplitude and the peak 
stimulation amplitude, showed similar performance, 
suggesting that either could be implemented 
individually or in combination with other feedback 
mechanisms when using a sensorized prosthesis or 
remotely controlling a robotic device. Implementation 
of haptic feedback allowing stiffness recognition can 

better replicate the sensations perceived during natural 
touch. It can also lead to increased user intuition and 
embodiment, which can help improving current 
prosthesis acceptance rate.
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