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Abstract

Objective. Haptic feedback is crucial when we manipulate objects. Information pertaining to
an object’s stiffness in particular can help facilitate fine motor control. In this study, we seek to
determine whether objects of different stiffness levels can be recognized using haptic feedback
provided by transcutaneous electrical stimulation of peripheral nerves. Approach. Using a
stimulation electrode grid placed along the medial side of the upper arm, the median and ulnar

nerve bundles were targeted to evoke haptic sensation on the palmar side of the hand. Stimulation
current amplitude was modulated in real-time with the fingertip force recorded from a sensorized
prosthetic hand. In order to evaluate which stimulation pattern was more critical, object stiffness
was encoded either by the rate of change of the stimulus amplitude or the level of peak stimulus
amplitude, as the prosthesis grasped the objects. Main results. Both encoding methods allowed the
subjects to differentiate objects of different stiffness levels with >90% accuracy. No significant
difference was observed between the two encoding methods, which indicated that both the rate of
change of the stimulation amplitude and the peak stimulation amplitude could effectively provide
stiffness information of the objects. Significance. The outcomes suggest that it is possible to elicit
haptic sensations describing various object stiffness levels using transcutaneous nerve stimulation.
The haptic feedback associated with object stiffness can facilitate object manipulation/interactions.

It may also improve user experience during human—machine interactions, when object stiffness

information is incorporated.

Introduction

Tactile feedback plays a critical role when we interact
with objects, and a lack of such feedback can limit
motor performance and limit control of assistive
devices, such as prosthetic arms or remotely operated
manipulators [1, 2]. For example, advanced prosthetic
arms now allow the users to produce complex grasp
patterns; however, dexterous control of these devices
is still limited, partly because of the lack of sensory
feedback [3-6]. Additionally, providing feedback
associated with prosthetic joint angles or grasp forces
can effectively improve prosthesis users’ ability to
interact with objects of different properties and to
effectively perceive various object properties, such as

size, stiffness, or shape, with or without visual feedback
[7-10].

Among the different object properties, stiffness
is an important feature that characterizes an object’s
resistance to imposed forces. Stiffness perception
allows us to perform fine motor control, such as
interacting and manipulating delicate objects [2, 11].
Unfortunately, identifying object stiffness only
through visual perception can be unreliable [12-16].
We typically sense tactile information through a series
of mechanoreceptors embedded in our skin [17-19].
The different types of mechanoreceptors respond to
different stimuli, which can transmit different types
of tactile information, such as force dynamics and the
area or location of skin contact. Regarding stiffness
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perception, when we grasp a deformable object, the
rate of change of the force imposed on the skin surface
carries stiffness information. For example, a higher
rate of change represents a stiffer object. Meanwhile,
with a given degree of object deformation, the peak
force sensed by the skin also carries stiffness informa-
tion, with a higher peak force representing a more stiff
object. However, it is not clear which information is
more critical for stiffness perception [14, 17-20].

Previous studies have evaluated stiffness recog-
nition using various stimulation modalities such as
mechanical indentation or vibration [21, 22], or elec-
trical stimulation [23-26]. For example, to restore
haptic sensation of individuals with arm amputa-
tion, Raspopovic et al [25] elicited haptic sensation
using proximal peripheral nerve stimulation via an
intrafascicular electrode, and showed that the object
stiffness, encoded by the rate of change of the stimu-
lation intensity, could be recognized by a prosthetic
hand user. However, during stiffness recognition, the
peak stimulation intensities were not constant for dif-
ferent objects in this study. As a result, it was not clear
whether stiffness recognition was based on the rate
of change in the stimulation intensity or on the peak
stimulation intensity.

To overcome these limitations, the purpose of this
study was to determine whether objects with differ-
ent stiffness levels can be differentiated using trans-
cutaneous electrical stimulation of the proximal seg-
ments of the peripheral nerves. Previously, a 2 x 8
electrode array was placed along a subject’s upper
arm. The electrode array stimulation has been shown
to activate selective sets of afferent fibers in the proxi-
mal segments of the median and ulnar nerves [27, 28].
Spatially and amplitude modulated sensations can be
perceived by the participants at distinct regions of their
hands [27]. Based on this stimulation approach, the
stiffness level was encoded using two separate meth-
ods: (1) the rate of change of stimulation intensity with
an identical finger flexion velocity and (2) the peak
stimulation intensity with an identical level of object
deformation and identical velocity as well. Isolation
of these two encoding methods, through the use of
an experimenter-controlled prosthetic hand, allowed
us to evaluate which method provided information
that was more critical for stiffness recognition. Dur-
ing the testing, the subjects associated the stimulation
patterns with the object stiffness, and all other sensory
(visual,auditory, and proprioceptive) information was
not available to the subject. The performance of these
two stiffness encoding methods were compared using
either index-thumb pinch or middle-thumb pinch of a
sensorized prosthetic hand. Our results demonstrated
that the stiffness recognition performance was com-
parable between the two encoding methods. Our find-
ings suggest that object stiffness can be identified using
different encoding methods (i.e. the rate of change of
the stimulation amplitude and peak stimulation ampl-
itude). The outcomes can allow us to readily evaluate
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the sensorimotor integration processes in prosthetic
control in order to improve dexterity and promote
user confidence.

Methods

Subjects

Ten neurologically intact subjects (seven males,
three females, 20-35 years of age) were recruited for
this study. All recruited individuals had no known
neurological disorder, and each gave informed consent
via protocols approved by the Institutional Review
Board of the University of North Carolina at Chapel
Hill.

Experimental setup

Each subject was asked to be seated with one arm
comfortably placed on a table in front of him or her.
The experimenter palpated the medial side of the
resting upper limb directly below the short head of
the biceps brachii, in order to identify the location
of the brachial artery. This artery, running parallel
to the median and ulnar nerve bundles, was used as
a biological landmark for the placement of a 2 x 8
electrode grid. The grid was placed parallel to the
vector that connects the medial epicondyle of the
humerus and the center of the axilla (figure 1(A)), after
the skin was cleaned with alcohol pads. This location
maximizes the access to the median and ulnar nerve
bundles from skin surface, which are responsible for
sensation in the palmar side of the hand. The median
nerve innervates the index, middle, and a portion of
the ring finger, while the ulnar nerve innervates the
remainder of the ring finger and the pinky. Once the
electrode grid placement was complete, the electrodes
were secured with the application of a mild inward
pressure through a custom vice. Subjects were asked
to report any discomfort or occurrence of restrictive
blood flow throughout the experiment. The selection
of distinct electrode pairs in the stimulation grid
allows for the generation of unique electric field
distributions, which can activate different sets of axons
in the nerve bundles, innervating different regions of
the hand.

The electrode pair selection was performed using
a custom MATLAB (v2016b, MathWorks Inc, Natick,
MA) interface. The interface controlled the selection
of sixteen Ag/AgCl gel electrodes (1 cm in diameter)
using a switch matrix (Agilent Technologies, Santa
Clara, CA). The matrix linked one of the 16 electrodes
among the 2 x 8 grid to either the anode or the cath-
ode of the stimulator, leading to bipolar stimulations.
When different electrode pairs were selected, perceived
haptic sensation can be altered due to the change in the
recruited sensory axons [27,28].

A multi-channel fully programmable stimulator
(STG4008, Multichannel Systems, Reutlingen, Ger-
many) was used to deliver a customized single-channel
electrical stimulus to each subject. The stimulation
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parameters were controlled using a custom MATLAB
interface, which could control the output current of a
charge-balanced biphasic square wave stimulus in real
time (figure 1(B)). A pulse width of 200 s and a pulse
frequency of 150 Hz were selected based on earlier
studies [27,28].

To capture the stiffness of different objects, a sen-
sorized prosthetic hand (The LUKE DEKA RC ARM,
Modius Bionics, Manchester, New Hampshire) was
used to interact with different objects using a pinch
grip. The DEKA hand has sensors in each finger. The
sensors could capture the forces applied at each of the
prosthetic’s fingertips, as determined by a calibra-
tion using a force transducer (LCM201-100N, Omega
Engineering Inc., Stamford, CT, USA). Real-time
acquisition of the force and joint position of the finger
was performed. The index finger could be controlled
independently; however, the middle, ring, and pinky
could only be actuated concurrently. The robotic hand
was controlled using the same MATLAB interface,
which implemented a joint-position control scheme.
This control scheme could adjust the speed and the
final position of the finger joints. Prosthetic control
was performed by the experimenter to ensure that the
stiffness encoding methods were properly separated.
This also ensured that subjects did not receive con-
founding information from proprioceptive or other
tactile feedback when active control of the prosthetic
hand was performed. Subjects were also visually and
auditorily blinded to ensure differentiation could not
be made based on those sources of sensory feedback.

To encode the object stiffness, the stimulation
current amplitude was altered based on the force
readings from the prosthetic’s index or middle finger

(figure 1(B)). As the individual prosthetic index or
middle finger contacts an object, fingertip force was
recorded by the embedded sensors. A sigmodal trans-
fer function was used to convert the recorded finger
force to the stimulation current amplitude delivered
to the subject. A sigmoidal function was selected as it
is common in psychometric testing for human tactile
perception [29, 30]. The sigmoidal function was con-
structed based on the allowable stimulation current
range, the minimum and maximum force readings,
and the desired steepness of the function. The allowable
current range for a given subject was based on the dif-
ference between the minimum current (i.e. the sensory
threshold) and the maximum current (i.e. just below
the motor threshold). The sensory and motor thresh-
olds were subject specific,and were identified by adjust-
ing the stimulation amplitude in steps of 0.1 mA until
finger sensation or finger motion first occurs, respec-
tively. The steepness and the force minimum and maxi-
mum (N) were kept consistent across subjects with val-
ues of 1, 0.5, and 2.75 for the index finger pinch, and
1, 0.5, and 6 for the middle finger pinch, respectively.
These force values and corresponding finger forces fall
within the range most commonly utilized by neurolog-
ically-intact individuals during activities of daily living
[31]. The function used to calculate the necessary stim-
ulation current level for a given force is shown in equa-
tion (1), where I, Iy, and Iy, each represent the actual
delivered, maximum, and minimum stimulation cur-
rent, respectively. Steepness, actual force, maximum
force, and minimum force were implemented using the
variables k, F, Faray, and Fi, respectively. A non-zero
minimum force of 0.5N was used due to a non-zero
force reading when the finger flexed.
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Procedure

The experiment began by delivering electrical stimuli
to various electrode pairs until clearly evoked sensation
in either the index or middle finger was reported by
the subject. Index finger sensation was elicited during
the index pinch grip, while middle finger sensation
was elicited during the middle pinch grip. Stimulus
intensity during single (index or middle) finger contact
was regulated based on its corresponding sensors.

For the main experiment, object stiffness recogni-
tion was performed using two methods to determine
which sensory encoding provided a more accurate
gauging of different stiffness levels. The first method
was based on the rate of change of the force/sensa-
tion with a fixed finger closing speed and a fixed fin-
ger peak force. In this setting, an object with a higher
stiffness corresponded to a higher rate of change
of the force. Three cubes with similar dimensions
(5cm x 5cm x 4cm) but with varying stiffness levels
were used: a wooden block with a high stiffness (mini-
mal deformation), a stiff foam with a moderate stiff-
ness (2.9N mm '), and a soft foam with a low stiffness
(1.7N mm™ ). The index pinch had a peak finger force
of 2.5N, while a peak force of 5 N was selected for mid-
dle finger pinch. Peak forces were selected based on the
maximum consistent force achievable with the lowest
stiffness object during respective pinch grasp. Figure 2
shows exemplar curves of the index finger force and
current amplitudes for each object.

The second method was based on the amplitude
of force/sensation with a fixed flexion end-position.
In this setting, an object with a higher stiffness corre-
sponded to a higher peak force. During the testing of
this encoding method, the subjects were instructed to
differentiate object stiffness based on the peak stimu-
lation amplitude. Because the wooden block was not
deformable, a styrofoam cube was used in its place to
represent the highest stiffness level (6.5N mm™'). The
same stiff and soft foam cubes from the first method
were used here. The final position of each finger was
selected to be the maximum deformation of the sty-
rofoam cube. The input and output curves are shown
in figure 3. All the peak forces and final positions were
determined based on preliminary evaluations and
the force and measurement capabilities of each joint.
These values were kept consistent across subjects.

For each stiffness encoding method, stiffness rec-
ognition was tested using three comparison tech-
niques tested in three blocks. The three conditions
were designed based on the uncertainty of how well
the subjects could successfully identify the response
to a given test, which can provide insight on how they
were able to differentiate the various percepts elicited.

L Vargasetal

The first condition ‘Ordering of 2 Objects’ evaluated
the stiffness relation during the binary evaluation of
two objects. The subjects were asked to identify if the
first was stiffer, the second was stiffer, or if they had the
same stiffness. This condition tested subjects’ ability
to recognize differences between two objects, includ-
ing the possibility that the objects possess the same
stiffness. A total of 18 trials involving all the possible
object combinations were evaluated. The second con-
dition ‘Ordering of 3 Objects’ evaluated the identifi-
cation of the stiffness order of three objects. The sub-
jects were asked to rank order the stiffness levels after
the three objects were offered sequentially. A total of
12 trials involving the three different objects sequen-
tially in all possible random orders were evaluated.
The final condition ‘Identification of Random Object’
evaluated the stiffness perception when identifying a
random object during a single trial. The subjects were
asked to identify the stiffness level (high, moderate, or
low) of the object. This condition required the subjects
to memorize the stiffness levels initially. The subjects
then used that information to perceive the stiffness
level of random objects. A total of 24 trials were tested.
For each block, 10 s of rest time were provided between
consecutive trials. The order of the testing blocks was
randomized between subjects. A flowchart displaying
the experimental protocols is shown in figure 4.

Data analyses

To determine theaccuracy of the stiffnessidentification
for each combination of the encoding method and
comparison technique, six confusion matrices were
created that compared the actual relative stiffness level
to the perceived stiffness level across all subjects. In
each figure, the high, moderate, and low stiffness were
presented by the numbers 1,2, and 3, respectively.

Statistical analyses

One sample #-tests were performed to determine if the
recognition accuracy was significantly greater than
chance values. A logit transformation was applied to
the proportions prior to the statistical analysis due to
the rightly skewed distribution of the data, since the
percentage of accuracy is close to the upper bound of
1. This transformation can help correct this skewed
distribution and lead to normal distribution of the
residual [32]. For the three comparison techniques, the
random chance of accurately identifying the stiffness
relation, rank order, or individual stiffness level was
0.33, 0.16, and 0.33, respectively. Wilcoxon signed-
ranked tests were also performed for each combination
of encoding method and evaluation technique to
ensure that there was no significant difference between
the middle and index pinch tasks. Additionally, paired
t-tests were performed for each technique to determine
if one encoding method was significantly better than
the other.
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Figure 2. Hand grip on objects of varying different stiffness with stiffness decreasing from left to right. (A) The graphs correspond
to the finger force, (B) joint angle, (C) and the associated stimulation current (D) when using rate of change of stimulation
amplitude as the stiffness encoding method.

Results

Stiffness recognition based on ordering of 2 objects

We first evaluated if the subjects could identify the
relative stiffness level between two given objects. Using
binary comparisons, each subject was asked to report
if the first object was stiffer, the second was stiffer, or
if they had the same stiffness. Figure 5(A) shows the
confusion matrices illustrating the actual stiffness pair
presented and the perceived stiffness relation across all
subjects, when the prosthetic hand pinched the objects
at a fixed closing speed and stopped when a fixed force
was reached. The high, moderate, and low stiffness
were presented by the numbers 1,2, and 3, respectively.
The results showed that all the subjects could identify
the relative stiffness based on the rate of change in the
fingertip force (stimulation amplitude) with anaverage
accuracy of 91.7% = 2.9%. During the second method
(figure 5(B)), the amount of object deformation was
fixed, and the object stiffness was associated with the
peak force (peak stimulation amplitude). The subjects

had similar success by correctly identifying 163 out of
the 180 object pairs, resulting in an average accuracy
of 90.6% =+ 6.4% across subjects. Performance of
both encoding methods were found to be significantly
greater than the chance value (p < 0.001). In contrast,
when comparing the two methods, no statistical
difference was found between the two encoding
methods (+ = 0.49; p > 0.05).

In addition, the type of recognition errors was
summarized as well. Specifically, most of the recogni-
tion errors arose from the trials where two objects with
different stiffness levels were recognized as the same.
This situation occurred in 9 out of 15 and 10 out of 17
errors in the two encoding methods. It is important to
note, however, that no object pairs with the stiffest and
the least stiff object were incorrectly identified.

Stiffness recognition based on ordering of 3 objects

We then evaluated if the subjects could identify the
relative stiffness level among three objects of varying
stiffness. The confusion matrices presented in figure 6
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illustrate all possible three object sequences and their
respective level of stiffness recognition across subjects.
The results showed that both stiffness encoding
methods led to similar performance in stiffness
recognition. Specifically, with a fixed peak force, the

subjects were able to correctly identify the stiffness
order in 114 out of 120 trials with an average accuracy
across subjects of 95.0% =+ 10.5%, based on the rate of
change in the fingertip force (stimulation amplitude).
With the peak fingertip force as the stiffness encoding,
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the subjects were able to correctly identify the stiffness
order with an accuracy of 91.7% = 11.1%, or 110 out
of 120 accurate trials. The confusion matrices also
showed that the types of errors were largely composed
of incorrectly identifying adjacent stiffness levels.
Both encoding methods were found to be significantly
greater than the chance value (p < 0.001), with
no statistical difference between the two encoding
methods (+ = 0.25;p > 0.05).

Stiffness recognition based on identification of
random object
Lastly, we evaluated if the subjects could identify
the stiffness level of a single object given randomly
during each trial. The subjects were asked to report
whether the perceived stiffness corresponded to a
high, moderate, or low stiffness object. The confusion
matrices of stiffness recognition across subjects are
shownin figure 7.

The results showed that the majority of the per-
ceived stiffness levels were correctly identified for both

encoding methods. Specifically, with the rate of change
of stimulation amplitude as stiffness encoding, 222 out
of 240 trials were correctly identified, resulting in an
accuracy of 92.5% = 7%, based on the rate of change
in the fingertip force. Similarly, 220 out of the 240 trials
were correctly identified with peak stimulation ampl-
itude, resulting in an accuracy of 91.7% = 7.9%. Both
encoding methods were significantly greater than the
chance value (p < 0.001). Statistical analysis showed
that the results were similar between the two encoding
methods (t = 0.68; p > 0.05). For all combinations of
encoding methods and comparison technique, Wil-
coxon sign ranked tests found no significant difference
across middle and index pinch tasks as well.

Discussion

This study sought to identify if stiffness recognition
could be performed using transcutaneous nerve
stimulation delivered to the proximal segments of
the median and ulnar nerves. Two stiffness encoding
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methods were evaluated to determine which method
was more critical for stiffness recognition. Specifically,
using an electrode grid, different electrical field
distributions can be induced, which can then activate
different afferent nerve fibers producing distinct
haptic sensations in the subject’s hand. Electrode
pairs evoking either middle or index finger haptic
sensation were utilized in this study, with the current
amplitude being modulated by the fingertip force of
the DEKA hand. Our results demonstrated that both
encoding methods allowed the subjects to accurately
(>90%) identify the stiffness levels of different objects.
The results suggest that it is possible to elicit haptic
sensations describing various object stiffness levels
using transcutaneous nerve stimulation. The haptic
feedback associated with object stiffness can help to
improve the performance of dexterous movement,
ensure successful object manipulation/interactions,
and potentially promote user embodiment when using
prosthetic arms/hands.

The first stiffness encoding method allowed the
subjects to differentiate stiffness levels based on the
rate of change of the sensation intensity when the
peak force (stimulation amplitude) was maintained
constant across different objects. The fixed peak force
ensured that the judgment was not assisted based on
varying levels of peak sensation intensity. Our results
demonstrated that different object stiffness levels
could be correctly identified during all the three evalu-
ation techniques with accuracies >90%. The subjects
did not require any training before the actual experi-
ment, and each subject’s decisions were made imme-
diately following the end of each trial, suggesting that
the nerve stimulation provided was highly informative
as well.

Previous studies have shown that stiffness discrim-
ination could be performed using similar encoding
methods with accuracies being slightly lower [23, 24]
or comparable with our results after multiple sessions
[25]. Differences in discrimination accuracy may be
caused by multiple factors. First, the experimenter

controlled the prosthesis in our current study. Sub-
ject’s stiffness discrimination was exclusively based
on sensation without any sensorimotor integration
process. A direct control of the prosthetic hand can
provide the user with additional information during
sensorimotor integration. Alternatively, as subjects
control the prosthetic hand, differences in grasp tra-
jectory caused by the user can lead to altered percep-
tion during discrimination. For example, variations in
grasp force and aperture could likely affect the rate of
change of the force profile, which can affect the indi-
vidual’s perception of the stiffness. Further studies
need to evaluate the role of sensorimotor integration
in sensory perception. Second, the accuracy of stiffness
recognition may also be affected by the range of allow-
able stimulation parameters for a given individual and
stimulation technique. The just-noticeable difference
(JND) describes the smallest change of a stimulation
parameter that can be perceived by the subject. As the
range of allowable stimulation parameters decreases,
the number of distinct percepts, determined by the
JND, decreases as well, thereby limiting the distin-
guishability of objects with similar stiffness levels. Our
results support this notion as the highest recognition
accuracy was observed in the two individuals with the
widest range of stimulation amplitudes. Lastly, differ-
ent objects were used across studies, which can also
affect the accuracy of the stiffness recognition. Dif-
ferences in object stiffness will affect the distinguish-
ability between objects. It is expected that objects of
similar stiffness levels would be harder to differenti-
ate compared to those with large differences. Overall,
our results revealed that the non-invasive stimulation
targeting major nerve bundles can reach comparable
accuracy of object stiffness recognition, compared
with implantable nerve interface techniques in earlier
work [24, 25]. Our non-invasive approach can reduce
the concerns with stability and post-surgery care that
come with invasive approaches, and also reduce the
potential for myoelectric control interference of distal
transcutaneous nerve stimulation.
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The second stiffness encoding method allowed
individuals to differentiate stiffness based on the peak
force (stimulation intensity) with identical levels of
deformation. This encoding method for stiffness iden-
tification has never been evaluated using elicited sen-
sory feedback. Compared with the previous encoding
method (rate of change of sensation), similar recogni-
tion accuracy was observed, which indicates that each
subject can discriminate between force levels. Future
work will need to be conducted to identify the poten-
tial JND to determine the discrimination resolution of
varying stiffness levels. As one would expect, a limita-
tion to this encoding method is that the level of defor-
mation needs to be kept consistent in order to properly
evaluate various object stiffness levels.

Throughout the experiment, visual feedback was
blocked to strictly evaluate subjects’ ability to discern
stiffness based on the delivered tactile sensation. Inte-
gration of vision with this tactile sensation can poten-
tially allow for improved discrimination of stiffness, as
information pertaining to finger position/movement
will be available. Information received through visual
stimulus has been shown to assist in discriminating
stiffness [12]; however, a lack of visual cues or in some
cases altered/incorrect perception can result in errors as
detailed by multiple studies [13—16, 33]. For this rea-
son, subjects were blinded in this study to examine the
extent in which stiffness could be determined using
both encoding methods. In addition, with active con-
trol of the robot, proprioceptive feedback can also be
integrated with the tactile information, which could
allow for a better estimate of object stiffness. Horch et al
and D’Anna et al [24, 34] have shown that the addition
of proprioceptive feedback, delivered using direct nerve
stimulation, can improve stiffness identification with
objects of varying sizes and levels of stiffness. Addi-
tionally, if kinesthetic feedback cannot be evoked with
our technique, vibrotactile or electrotactile devices can
be employed as a substitution to provide information
associated with joint angles. Multiple studies have dem-
onstrated that these tactors are simple to implement
and can be effective when used to deliver propriocep-
tive stimulus to an individual [26,35-37].

For example, a study utilizing current amplitude-
modulated electrotactile feedback demonstrated that
object stiffness, along with weight and size, could be
correctly identified when combining two sources of
stimuli corresponding to finger aperture and force
[26]. The success of this study suggests that provid-
ing useful non-invasive multisensory feedback might
improve control as well as provide additional insight
about various object properties. In this earlier study,
the feedback was delivered to the skin under the elec-
trode. In contrast, the nerve stimulation used in our
current study elicited haptic sensation in the referred
fingers directly, which could provide more intuitive
feedback, which may require less training and cog-
nitive processing due to locational similarities [38].
Similarly, transcutaneous nerve stimulation on the
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forearm of the amputees can activate the afferent fibers
in the distal branches of the median and ulnar nerves
[23]. With varying stimulation parameters corre-
sponding to different object stiffness, the amputees can
recognize object stiffness with high accuracy. However,
stimulation of distal nerve branch can potentially
induce interference on myoelectric signal recordings
for future studies.

Limitations and future work
Limitations of this study include the lack of user-
control of the prosthesis, the lack of amputee subjects,
potential for confounding factors during stiffness
recognition,and theabsence of stimulation adjustment
to potential sensory adaptation after continuous
stimulation. As previously mentioned, the lack of user-
control may result in varied recognition accuracies. In
this study, control was delegated to the experimenter
in order to ensure the two encoding methods were
properly separated. Additionally, this decision ensured
that confounding factors, resulting from individual’s
proprioceptive feedback during muscle activation and
finger movements, could provide either converging
or interfering information to the users, which could
bias the results. Studies have also shown that sensory
perception may be affected during the active control
of hand motion due to added cognitive load [39];
however, minimum difference has been reported when
comparing the discriminative ability between these
two scenarios [40, 41]. Additionally, simply replaying
predefined stimulation profiles could still have
addressed our current research question. Utilization
of the robotic hand accounted for the potential
variability that may arise from the placement of the
objects, sensor recordings from the robotic hand,
or the delay in delivering the real-time stimulation.
As a result, an experimenter-controlled approach
appeared to be the appropriate decision for this study.
Clearly, further studies are necessary to evaluate the
performance of stiffness recognition when users
directly control the prostheses, especially for clinical
applications. Given that both encoding methods
showed similar performance, the users may actively
control the prosthetic hand using either strategies
by slowly adjusting the grip aperture to produce
different force profiles. Earlier work has shown that the
somatosensory cortex representation of the phantom
hand is largely stable [42] even years after amputation.
In a previous study, we have also shown that evoked
sensory perceptions through transcutaneous nerve
stimulation are similar between intact individuals
and arm amputees [27], which suggests that results
demonstrated in intact individuals can be translatable
and characteristic to those expected in amputees.
Nonetheless, further studies including upper limb
amputees are necessary to evaluate the performance of
stiffness recognition.

The discrimination of stiffness was performed
based on specific stimulation patterns. In other words,
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the subjects associated the stimulation patterns with
the object stiffness. Indeed, the stimulation patterns
matched the physical stiffness parameters, rather than
random stimulation patterns. The elicited haptic feed-
back was not natural compared with the biological
feedback. But the subject was able to correctly identify
the patterns immediately after the stimulation without
any prior training, which suggested that the informa-
tion was more intuitive than substituted sensory infor-
mation, which typically requires training and the rec-
ognition process was also slow. During the experiment
subjects were asked to differentiate the stiffness of the
three objects based on the rate of stimulus change or
the peak stimulation amplitude. During either process,
it was emphasized that discriminations of the percepts
should be performed by solely the rate of change or
the peak stimulation amplitude. Despite the explicit
instructions to the subjects, there is still a possibil-
ity that other factors may have been utilized, such as
stimulation duration for the first method or the rate of
change for the second method. As the peak deforma-
tion was held constant for the second method, the rate
of change of the stimulus would vary with different
object stiffnesslevels. If the flexion velocity of the finger
was altered to ensure identical rate of stimulus change,
then stimulation duration would be a confounding
factor instead. Future studies are necessary to isolate
these confounding variables and further evaluate user
performance. Lastly, sensory adaptation over time
can alter the perception of various elicited sensations
with continuous stimulation. Investigation on sen-
sory adaptation have been performed with implanted
electrode nerve stimulation, which suggested that sen-
sory adaptation may be partly mediated by a desen-
sitization of the mechanotransduction sites [43].
Additionally, sensory adaptation has been evaluated
using skin surface electrotactile stimulation [44-46],
with one study [46] showing that adaptation can be
delayed with intermittent stimulation. Future studies
are needed to understand the occurrence of sensory
adaptation, which can help develop necessary com-
pensatory stimulation paradigms to accommodate the
expected changes.

Conclusion

In summary, our findings demonstrated that stiffness
recognition could be performed via transcutaneous
nerve stimulation targeting the proximal segment of
the nerve bundles. Two stiffness encoding methods, the
rate of change of stimulation amplitude and the peak
stimulation amplitude, showed similar performance,
suggesting that either could be implemented
individually or in combination with other feedback
mechanisms when using a sensorized prosthesis or
remotely controlling a robotic device. Implementation
of haptic feedback allowing stiffness recognition can
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better replicate the sensations perceived during natural
touch. It can also lead to increased user intuition and
embodiment, which can help improving current
prosthesis acceptance rate.
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