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Object Shape and Surface Topology Recognition
Using Tactile Feedback Evoked through
Transcutaneous Nerve Stimulation

Luis Vargas™, He Huang

Abstract—Tactile feedback is critical for distinguishing
different object properties. In this article, we determined if
tactile feedback evoked by transcutaneous nerve stimulation can
be used to detect objects of different shape and surface topology.
To evoke tactile sensation at different fingers, a 2x8 electrode
grid was placed along the subject’s upper arm, and two
concurrent electrical stimulation trains targeted the median and
ulnar nerve bundles, which evoked individually modulated
sensations at different fingers. Fingertip forces of the prosthetic
hand were transformed to stimulation current amplitude. Object
shape was encoded based on finger-object contact timing. Surface
topology represented by ridge height and spacing was encoded
through current amplitude and stimulation time interval,
respectively. The elicited sensation allowed subjects to determine
object shape with success rates >84%. Surface topology
recognition resulted in success rates >81%. Our findings suggest
that tactile feedback evoked from transcutaneous nerve
stimulation allows the recognition of object shape and surface
topology. The ability to recognize these properties may help
improve object manipulation and promote fine control of a
prosthetic hand.

Index Terms—Shape recognition, surface topology, tactile
sensation, transcutaneous nerve stimulation.

I. INTRODUCTION

OUCH sensation is essential for object interaction and

understanding of our surroundings. It promotes essential
object manipulation [1], and allows us to detect object physi-
cal properties without the need for visual/auditory feedback
[2], [3]. A lack of tactile feedback, as in upper limb amputees,
limits the performance in the control of assistive devices [4],
[5]. As prosthetic limbs advance to replicate the motions of
the human hand, it is essential to provide tactile feedback
to the user to reduce future device abandonment [6], [7].
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Improvements in object manipulation or identification have
been reported when feedback describing joint angle and/or
grasp force are delivered to prosthesis users [8]-[11].

Neurologically intact individuals use a series of mechanore-
ceptors embedded in our skin for tactile sensing [12]-[15].
Stimuli varying in location, frequency, and intensity transmit
different tactile information by recruiting different types of
mechanoreceptors [13]. During object shape recognition using
multi-finger grasps, the timing of sensation between fingers can
be used. For example, with an identical grasp pattern, a cylin-
drical object will lead to concurrent tactile feedback across fin-
gers, and a spherical object will lead to a timing difference in
sensation across fingers due to different timing of object con-
tact across fingers. Object surface topology can be detected
based on the sensation intensity and especially the variation of
intensity in tactile feedback as a finger runs across a surface.

Similarly, object properties can be encoded through sensory
feedback delivered artificially. Previous studies have used
mechanotactile or electrotactile stimuli for object recognition
[9], [16]-[19]. In order to provide somatotopically matched
feedback, a recent work [19] elicited tactile sensation using
peripheral nerve stimulation via an intrafascicular electrode,
and objects of varying shape can be discriminated by varying
the timing of sensation between fingers. Texture or surface
topology recognition has also been performed using invasive
intraneural stimulation [20], [21]. Although promising, these
invasive procedures can only be tested on a small number of
cases, and wide clinical applications are limited due to the
required surgery procedure and long-term care.

Accordingly, the purpose of this study was to determine if
shape and surface topology recognition could be performed
using transcutaneous electrical stimulation of peripheral
nerves. Using a 2x8 electrode array placed along the subjects’
upper arm, current pulses can be delivered to different elec-
trode pairs to activate selective sets of axons in the median
and ulnar nerves [22]-[25]. Distinct axon recruitment produ-
ces spatially distinct sensation on the palm of the hand. Spa-
tially separated sensations from different electrode pairs can
also be directly summated using concurrent multi-channel
stimulation, forming complex sensation patterns [23]. Build-
ing on this approach, two concurrent stimulation trains were
used to target the median and ulnar nerve bundles, which gen-
erated individually modulated sensation at different fingers.
The prosthetic hand interacted with different objects, and the
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Fig. 1. Diagram of obtaining the fingertip forces from a sensorized prosthetic
hand (A) and transforming the forces using user- and finger-specific sigmoid
functions to current amplitude. Individually and concurrently modulated stimu-
lation trains to evoke sensation (B). Example sensations are shown. Stimulation
diagram to elicit haptic sensation using a 2x8 electrode grid (C).

fingertip forces were translated to stimulation amplitudes that
induced tactile sensation to different fingers. The object shape
was encoded by a difference in the onset timing of sensation
between fingers. Surface topology, represented by a range of
ridge height and ridge spacing, was encoded by stimulation
peak intensity (height) and time interval between stimulation
peaks (spacing), respectively.

II. METHODS
A. Subjects

This study recruited ten neurologically intact subjects (9
Male, 1 Female, 21-37 years of age). Before the experiment,
each subject gave informed consent via protocols approved by
the Institutional Review Board of the University of North Car-
olina at Chapel Hill.

B. Experimental Setup

Subjects were seated with one arm comfortably placed on a
table. Alcohol pads were used to clean the skin surface prior
to electrode placement. A 2x8 electrode grid was placed col-
laterally to the vector connecting the center of the axilla and
the medial epicondyle of the humerus (Fig. 1C) in order to
maximize the superficial access to the median and ulnar
nerves. Sensation from the palmar side of the hand is transmit-
ted through these afferent pathways with the median nerve
innervating the index, middle, and a portion of the ring fingers,
while the ulnar nerve innervates the pinky and the remainder
of the ring fingers. To ensure secure electrode-skin contact,
mild inward pressure was applied using a custom vice. Sub-
jects were instructed to report any discomfort throughout the
experiment. The electrode grid allowed for the delivery of
stimulus to different pairs resulting in unique electric field
generation, and in turn the activation of different sets of axons
innervating different regions of the hand.

Electrode pair selection was conducted using a custom
MATLAB (v2016b, MathWorks Inc, Natick, MA) interface
that controlled a switch matrix (Agilent Technologies, Santa

Clara, CA). The matrix linked one of sixteen Ag/AgCl gel-
based electrodes (1 cm in diameter) among a 2x8 grid to either
the anode or the cathode of a stimulator.

Single- and dual-channel stimulation was delivered using a
multi-channel stimulator (STG4008, Multichannel Systems,
Reutlingen, Germany). Charge-balanced biphasic square wave
stimuli (Fig. 1B) were delivered. Although pulse width, fre-
quency, and dual stimulation delay were adjustable, these
parameters were fixed at 200 us, 150 Hz, and 3.33 ms, respec-
tively, based on previous studies [22], [23].

Current amplitude was determined through a mapping [25]
based on one axial force (orthogonal to contact surface) calcu-
lated from internal torque readings of a sensorized prosthetic
hand (The LUKE DEKA RC ARM, Modius Bionics, Man-
chester, New Hampshire). Unprocessed fingertip forces from
the prosthetic hand were converted to a stimulation current
amplitude using a finger-specific and subject-specific sigmoid
function [25]. Sigmoidal function parameters were determined
using the stimulation current range for a given electrode pair,
the minimum and maximum finger forces, and the steepness
of the function. For a given electrode pair, the sensory thresh-
old and just below the motor threshold were employed as the
stimulation range. The sensory and motor thresholds were
identified by altering the stimulation amplitude in steps of 0.1
mA until finger sensation or finger motion occurred, respec-
tively. This process was repeated three times, and the average
values were calculated to determine each threshold. The steep-
ness (1) and the minimum (0.5 N) and maximum force (6 N)
were kept consistent across subjects and fingers. This range of
finger forces is commonly used in activities of daily living
[26]. The sigmoid function is shown in Equation 1, where I,
Inmax, and Iy, represent the actual current, maximum current
(i.e., motor threshold), and minimum current (i.e., sensory
threshold), respectively. Steepness, actual force, maximum
force, and minimum force were represented by k, F, Fy.x, and
Fuin, respectively.
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In order to create a double-blinded experiment, prosthesis-
object interaction forces were pre-recorded from the prosthetic
hand’s index and middle finger sensors (Fig. 1). Only the index
and middle fingers were selected due to inconsistent force
recordings from the ring and pinky during preliminary testing
and prior work [25]. The saved force traces were drawn ran-
domly from a pool during the actual study. Prosthesis-object
interactions for shape recognition involved the grasping of two
dimensionally similar shapes at various closing speeds. During
each grasp, the experimenter programmed fingers of the hand to
close on a cube or sphere (Fig. 2E) at one of the four specified
closing speeds (8, 13, 20, or 40 degrees per second). The closing
speeds were determined based on finger flexion of 40 degrees in
1, 2, 3, or 5 seconds. Different objects could be encoded by the
different contact onset timing between index and middle fingers.
Force recordings were repeated 5 times for each combination of
shape and speed to account for any variability in the system.
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Fig. 2. Force traces recorded when grasping the cube and sphere (E) with the
prosthetic’s index (blue) and middle fingers (red). Forces were recorded when
the hand closing speed was set to 8 (A), 13 (B), 20 (C), and 40 (D) degrees per
second, respectively. The bar graph shows the average onset delay between the

middle/index finger contact with the object (F). Error bars represent standard
deviations (std).
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Representative force trace examples from different combina-
tions of shape and hand closing speeds and their average onset
delays are shown in Fig. 2.

To pre-record the interaction force for surface topology, only
the index finger was used. Each surface was slide across the fin-
gertip at approximately 10 cm/s, or 1 Hz using a metronome. Sur-
faces were varied in ridge height and ridge spacing. Ridge height
recognition was evaluated using surfaces with 5 ridges (2 cm
apart) at different height (1, 2, or 3 mm). Ridge spacing recogni-
tion was tested using 2 mm ridges at different spacing (2, 1.5, or
1 cm) over a 10 cm span. Lastly, combined ridge configuration
was tested using 4 distinct surfaces: two ridge heights (2 or 3 mm)
and two ridge spacings (2 or 1 cm). Combinations of ridge height
and spacing were selected based on preliminary testing regarding
the sensitivity of the prosthetic hand’s sensors. Force trace record-
ings were repeated 5 times per surface (Fig. 3).

C. Procedure

We first searched through the electrode grid to identify two
electrode pairs that evoked sensation on different fingers. Five
subjects were randomly selected to have pairs that elicited sen-
sation in the median and ulnar region of the hand, while the
other five subjects had sensations along the index and middle
fingers. This allowed for a direct comparison with prior work,
while allowing for a comparison across the two groups. Each
electrode pair was then coupled to either the prosthetic hand’s
index or middle finger sensors based on the medial/lateral
position of the sensation along the hand. Each pair’s stimula-
tion intensity was regulated using their coupled finger forces.
Details of the electrode pairs selected, and sensation regions
are described in Table S1 in the Supplementary Materials.

Once the electrode pairs were selected, their corresponding
sigmoid functions were used to convert the pre-recorded
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Fig. 3. Representative force traces recorded for the surface topology recognition
task, which were used during combined ridge height and spacing test.
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Fig. 4. Experimental protocol, involving the electrode pairs selected for the
prosthesis’s index/middle finger sensors, and the experimental blocks for
object shape and surface topology recognition.

forces to user-specific stimulation patterns, fixed throughout
the experiment. For each experiment block, the force traces
were randomly selected, resulting in a double-blinded test.
Examples of the force-current transformation for representa-
tive trials are shown in Fig. S1 in the Supplementary Materi-
als. The detailed description of the electrode pair selection,
task familiarization, and stimulation scheme can be found in
the Supplementary Materials.

The first block evaluated the shape recognition, which con-
sisted of 4 hand closing speeds and 5 repetitions per speed for
each object (40 trials in total). At the beginning of the test, the
subject familiarized themselves with the two shapes using an
exemplar speed-specific stimulation pattern that was repeated
3-5 times depending on the subject’s confidence. In each trial,
subjects were given a random force trace (object) and were
then asked to report the perceived shape.

The second block evaluated the surface topology recognition
using varied ridge height, ridge spacing, or both, organized in
three sub-blocks (Fig. 4). Prior to the test of each sub-block, all
corresponding surfaces were given to the subject 3-5 times each
for task familiarization. The first sub-block required subjects to
discern the ridge height relation of three surfaces based on the
stimulation intensity. Stimulation patterns associated with two
random surfaces were delivered, and the subjects were asked to
report if the first or second surface had a higher ridge, or if they
were the same. A total of 18 trials involving all possible ridge
height combinations were evaluated. The second sub-block
evaluated the recognition of ridge spacing based on the stimula-
tion spike interval. A higher ridge spacing corresponded to a
shorter spike interval. In each trial, subjects were given two
ridge spacing conditions, and were asked to report if the first or
second surface had a higher spacing, or if they were the same.
Due to the use of a fixed 10 cm surface and constant sliding
velocity, subjects could make the decision based on the number
of stimulation spikes. To tease out this confounding factor,
stimulation patterns with the same number of spikes were also
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asterisks indicating significance of p<0.001, comparing with chance.

used. A total of 30 trials were tested. The final sub-block evalu-
ated the recognition of ridge height and spacing simultaneously.
In each trial, stimulation patterns resembling one of the four
surfaces were randomly delivered to the subject, and the sub-
jects were asked to report the surface condition (high/low height
and high/low spacing). A total of 16 trials were tested. Through-
out the experiment, 10-second of rest time was provided
between trials. Example force traces used during all familiariza-
tion phases are shown in Fig. S2.

D. Data Processing

To evaluate the recognition accuracy of shape and surface
topology, confusion matrices were constructed for each block
or sub-block to compare the perceived object to the ground
truth. The average and standard error of the accuracy were
also calculated across subjects.

E. Statistical Analysis

To determine if the recognition accuracy was significantly
greater than chance values, one sample #-tests were performed
for each experimental block or sub-block. During shape recog-
nition, the chance of identifying the shape of a given object
was 0.5. For the surface topology recognition, the chance of
identifying the ridge height relation, spacing relation, or both
was 0.33, 0.33, and 0.25, respectively. A chance of 0.5 was
also used to evaluate the recognition of individual surface
topology, i.e., ridge height or spacing. These accuracies were
compared using paired #-tests. Lastly, a paired r-test was also
performed between stimulation patterns involving the same
number of ridges and the stimulation time during the ridge
spacing comparison. A logit transformation [27] was applied
to the proportion data prior to the statistical analysis, in order
to obtain normal distribution of the residual.

III. RESULTS
A. Shape Recognition

For the shape recognition block, involving different hand
closing speeds, Fig. SA shows a confusion matrix comparing
the actual and perceived object shape across all subjects with
the rows corresponding to individual hand closing speeds.
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Fig. 6. Confusion matrix quantifying the perceived ridge height in relation
with the ground truth across all subjects. ‘First’ means the first surface had
higher ridges. ‘Second” means the second surface had higher ridge. ‘Same’
means both surfaces had the same ridge height.

The results showed that subjects could identify the shape of
the object at all four hand closing speeds. Specifically, the
closing speeds of 8, 13, 20, and 40 degrees per second
resulted in an accuracy and standard error of 85.0% =+ 3.4%,
89.0% =+ 3.1%, 83.0% =+ 3.3%, and 82.0% =+ 3.9%, respec-
tively (Fig. 5B). All closing speeds resulted in a recognition
accuracy that was significantly greater than the chance value
(p < 0.001). Lastly, when comparing recognition accuracies
across median & ulnar and index & middle sensation groups
(Fig. S3), no statistical difference was found for any of the
closing speeds (p > 0.05).

B. Surface Topology Recognition: Ridge Height

For the ridge height recognitioin between two given surfa-
ces, the confusion matrix in Fig. 6 reports the ridge height rec-
ognition results across all subjects. The results showed that
subjects were able to correctly identify the ridge height rela-
tion in 161 out of 180 trials, resulting in an accuracy of 89.4%
£ 1.9%. Errors largely arose from either subjects perceiving
different heights as the same (right colume) or, to a less degee,
same height perceved as different (bottom row). Overall, the
performance was found to be significantly greater than the
chance level (p < 0.001).

C. Surface Topology Recognition: Ridge Spacing

For the ridge spacing recognition, Fig. 7 shows the recogni-
tion accuracy across subjects during trials with equal stimula-
tion time, and with equal number of ridges. The results
showed that subjects correctly identified the relative spacing
with an accuracy of 81.7% + 1.7% and 85.6% + 1.5% with
equal stimulation time, and with equal number of ridges,
respectively. Similar to ridge height, most errors that arose
involved the “same” spacing condition. However, both types
had accuracies significantly greater than chance (p < 0.001)
with no statistical difference between the two encoding condi-
tions (t = 1.74; p > 0.05).

D. Combined Ridge Height and Spacing Recognition

Lastly, we evaluated the surface topology with combined
ridge height and spacing parameters. The surfaces were labeled
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based on their ridge characteristics with ‘LL’ denoting low
height and low spacing, ‘LH’ denoting low height and high spac-
ing, ‘HL’ denoting high height and low spacing, and ‘HH’
denoting high height and high spacing. The recognition accuracy
across subjects is illustrated in Fig. 8. The results showed that
most surface topologies were correctly identified (138 out of 160
trials), resulting in an accuracy and standard error of 86.3% +
1.8%. Each of the four surface topologies were detected with
an accuracy significantly greater than chance (p < 0.001). Addi-
tionally, the recognition accuracy of individual ridge charac-
teristics were found to be significant greater than chance as well
(p < 0.001). A significant difference was also found across the
two surface characteristics (p < 0.05).

IV. DISCUSSION

This study sought to determine if shape and surface topol-
ogy recognition could be performed based on transcutaneous
nerve stimulation. Independently modulated tactile feedback
at different fingers was evoked concurrently using a multi-
electrode grid. The object shape and surface topology were
encoded by temporal or amplitude information of the stimula-
tion. Our results showed that different shape and surface topol-
ogy can be recognized with accuracies >81%. The evoked
tactile information may improve the quality of object manipu-
lation/interactions, and potentially promote user acceptance
and embodiment of prosthetic device.

Our results demonstrated that shape recognition could be per-
formed at all four hand closing speeds without training, which
suggest that the nerve stimulation and the encoding strategy
were highly informative and intuitive. Our results showed that
the lowest closing speed led to the lowest accuracy for the cube
recognition. This can arise from the large variability of the stim-
ulation onset timings between fingers, which led to a lack of dif-
ference from the sphere onset timing difference between fingers.

Prior studies have shown the ability to perform shape recog-
nition using invasive or non-invasive stimulation techniques
[9], [19], which showed similar recognition performance com-
pared with the current study. Although hand closing speed
was not available in previous studies, the recognition accuracy
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with the ground truth. The average accuracy and standard error across the
subjects (B) are reported with a single asterisk indicating significance of
p < 0.001. ‘LL’ corresponds to a surface with a low ridge height and spacing,
‘LH’ a surface with a low ridge height and high ridge spacing, ‘HL’ a surface
with a high ridge height and low ridge spacing, and ‘HH’ a surface with a high
ridge height and spacing. ** indicates significant difference of p < 0.05.

tended to be lower at a higher closing speed shown in the cur-
rent study, which may be due to several factors. First, the dif-
ferences in shapes and grasp patterns used in different studies
may have resulted in different force traces and different timing
of the onsets. Second, the experimenter operated the prosthesis
in our current study. Therefore, recognition was exclusively
based on the tactile perception and was not biased by other
information during sensorimotor integration. Direct control of
the prosthetic hand by a user may provide additional informa-
tion regarding finger position, which can further assist shape
recognition. Overall, our findings suggest that non-invasive
stimulation of proximal nerve bundles can reach reasonable
performance on shape recognition. The non-invasive approach
allows routine testing across a large population without the
need of surgery procedure as described in [19]. The more
proximal site compared with the previous study [9] also
reduces the potential for myoelectric control signal interfer-
ence, when the transcutaneous nerve stimulation was deliv-
ered near the muscle activity recording site.

Our results showed that surface topology recognition could be
performed based on ridge height, spacing, or both simulta-
neously. Similar to the shape recognition, training was not
needed, suggesting that the evoked tactile feedback was highly
informative. When ridge height and ridge spacing were evaluated
concurrently. We found that ridge height recognition accuracy
was significantly higher than ridge spacing recognition accuracy.
This suggests that stimulation intensity perception was more
accurate compared with temporal-related spike interval percep-
tion. Differences in just noticeable difference or psychometric
tests across encoding methods would likely affect their corre-
sponding recognition accuracy. Further studies will be required
to evaluate the recognition resolution of each encoding method.

As of now, few studies have quantified surface topology rec-
ognition via non-invasive nerve stimulation. In previous studies,
tactile feedback is delivered using invasive approaches [20],
[21], and ridge spacing is the only variable evaluated. Compared
with prior studies, our accuracies are slightly higher with dispar-
ities due to multiple factors. First, surface characteristics and
the sliding speed of the surface/fingertip can influence the
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recognition performance. In the current study, the sensors
embedded in the DEKA hand and the size of the finger limited
the size of the ridges, with ridge height at the millimeter scale
and spacing at the centimeter scale and sliding speed of approxi-
mately 10 cm/s. In contrast, Oddo et al. [20] utilized ridge spac-
ing and ridge height on the sub-millimeter and millimeter scale,
respectively, when utilizing a sliding speed of 10 mm/s.
Although the ridge parameters and sliding speeds vary across
studies, the chosen speed of the current study led to similar inter-
ridge intervals, compared with the previous work, which sug-
gests that the recognition difficulty level was similar across stud-
ies. The performance of topology recognition in the current
study was higher compared with the previous work. Differences
in the stimulation approaches could affect the recognition perfor-
mance. Prior studies only stimulated using a set stimulation level
at or around the times when a ridge crossed the fingertip of an
avatar hand [21] or when the force reaches peak values, i.e.,
instances when ridges contact the finger [20]. In essence, the par-
ticipants could use stimulation on/off patterns to recognize sur-
face ridges. In contrast, the force-modulated stimulation in our
current study was delivered continuously when the surface was
slid on the fingertip, because the surface and the fingertip was in
contact throughout a trial. As a result, the participants had to rely
on the change of sensation intensity for surface ridge recogni-
tion. Compared with the event-triggered stimulation approach,
the stimulation directly modulated by the force can provide
more intuitive information about object surface properties.

Multichannel stimulation can be further exploited using
several sensors located across the prosthetic hand. Each of
which would map to the different electrode pairs that produce
sensations along the fingers or the palm. Complex percepts
can then be elicited that realistically replicate the complex
interactions of the human hand with different objects. Reduc-
tions in recognition accuracy were observed (Fig. S3 of the
Supplementary Materials) during shape recognition, which
can be caused by overlapping of sensation regions evoked by
different electrode pairs. [28] Modulating stimulation in a
more biomimetic strategy may help improve the amount of
transferable information. [29] This has been discussed further
in the Supplemental Materials.

A. Limitations and Future Work

The current study has several limitations. First, a previous
study has showed similar evoked haptic perceptions between
neurologically intact participants and individuals with arm
amputations [22], suggesting that the results found in intact
participants can characterize those in amputees. Additionally,
work by Makin et al [30] has shown that several years after
an amputation, the somatosensory cortex representation of
the phantom hand remains unchanged, in contrast to the
motor cortex representation. Nonetheless, further studies
involving upper limb amputees are necessary to quantify the
performance of shape and surface topology recognition. Sec-
ond, the prosthesis was controlled by the experimenter, and
the object-prosthesis interaction forces were recorded prior to
the testing, in order to ensure a double-blinded experimental

design. An experimenter-controlled hand also ensured that
other sensory modality such as proprioceptive feedback dur-
ing muscle activation or incidental feedback, such as vibra-
tion of the prosthesis, would not bias the results. Lastly,
shape recognition only involved two discrepant shapes, i.e., a
cube and a sphere. If a larger number of objects were used,
we expect that the performance would potentially worsen.
The ability to use this encoding method in a range of objects
would need further investigation.

B. Conclusions

Overall, we demonstrated that sensory feedback via transcu-
taneous nerve stimulation targeting the proximal segments of
the median and ulnar nerves could be used to perform object
shape and surface topology recognitions. The findings suggest
that these encoding methods could potentially be employed
when using a sensorized prosthesis or a remotely controlled
device to provide insight about object properties. This sensory
input to the users may also help facilitate a user’s ability to
execute dexterous motions.
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