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Abstract—Tactile feedback is critical for distinguishing
different object properties. In this article, we determined if
tactile feedback evoked by transcutaneous nerve stimulation can
be used to detect objects of different shape and surface topology.
To evoke tactile sensation at different fingers, a 2x8 electrode
grid was placed along the subject’s upper arm, and two
concurrent electrical stimulation trains targeted the median and
ulnar nerve bundles, which evoked individually modulated
sensations at different fingers. Fingertip forces of the prosthetic
hand were transformed to stimulation current amplitude. Object
shape was encoded based on finger-object contact timing. Surface
topology represented by ridge height and spacing was encoded
through current amplitude and stimulation time interval,
respectively. The elicited sensation allowed subjects to determine
object shape with success rates >84%. Surface topology
recognition resulted in success rates >81%. Our findings suggest
that tactile feedback evoked from transcutaneous nerve
stimulation allows the recognition of object shape and surface
topology. The ability to recognize these properties may help
improve object manipulation and promote fine control of a
prosthetic hand.

Index Terms—Shape recognition, surface topology, tactile
sensation, transcutaneous nerve stimulation.

I. INTRODUCTION

TOUCH sensation is essential for object interaction and

understanding of our surroundings. It promotes essential

object manipulation [1], and allows us to detect object physi-

cal properties without the need for visual/auditory feedback

[2], [3]. A lack of tactile feedback, as in upper limb amputees,

limits the performance in the control of assistive devices [4],

[5]. As prosthetic limbs advance to replicate the motions of

the human hand, it is essential to provide tactile feedback

to the user to reduce future device abandonment [6], [7].

Improvements in object manipulation or identification have

been reported when feedback describing joint angle and/or

grasp force are delivered to prosthesis users [8]–[11].

Neurologically intact individuals use a series of mechanore-

ceptors embedded in our skin for tactile sensing [12]–[15].

Stimuli varying in location, frequency, and intensity transmit

different tactile information by recruiting different types of

mechanoreceptors [13]. During object shape recognition using

multi-finger grasps, the timing of sensation between fingers can

be used. For example, with an identical grasp pattern, a cylin-

drical object will lead to concurrent tactile feedback across fin-

gers, and a spherical object will lead to a timing difference in

sensation across fingers due to different timing of object con-

tact across fingers. Object surface topology can be detected

based on the sensation intensity and especially the variation of

intensity in tactile feedback as a finger runs across a surface.

Similarly, object properties can be encoded through sensory

feedback delivered artificially. Previous studies have used

mechanotactile or electrotactile stimuli for object recognition

[9], [16]–[19]. In order to provide somatotopically matched

feedback, a recent work [19] elicited tactile sensation using

peripheral nerve stimulation via an intrafascicular electrode,

and objects of varying shape can be discriminated by varying

the timing of sensation between fingers. Texture or surface

topology recognition has also been performed using invasive

intraneural stimulation [20], [21]. Although promising, these

invasive procedures can only be tested on a small number of

cases, and wide clinical applications are limited due to the

required surgery procedure and long-term care.

Accordingly, the purpose of this study was to determine if

shape and surface topology recognition could be performed

using transcutaneous electrical stimulation of peripheral

nerves. Using a 2x8 electrode array placed along the subjects’

upper arm, current pulses can be delivered to different elec-

trode pairs to activate selective sets of axons in the median

and ulnar nerves [22]–[25]. Distinct axon recruitment produ-

ces spatially distinct sensation on the palm of the hand. Spa-

tially separated sensations from different electrode pairs can

also be directly summated using concurrent multi-channel

stimulation, forming complex sensation patterns [23]. Build-

ing on this approach, two concurrent stimulation trains were

used to target the median and ulnar nerve bundles, which gen-

erated individually modulated sensation at different fingers.

The prosthetic hand interacted with different objects, and the
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fingertip forces were translated to stimulation amplitudes that

induced tactile sensation to different fingers. The object shape

was encoded by a difference in the onset timing of sensation

between fingers. Surface topology, represented by a range of

ridge height and ridge spacing, was encoded by stimulation

peak intensity (height) and time interval between stimulation

peaks (spacing), respectively.

II. METHODS

A. Subjects

This study recruited ten neurologically intact subjects (9

Male, 1 Female, 21-37 years of age). Before the experiment,

each subject gave informed consent via protocols approved by

the Institutional Review Board of the University of North Car-

olina at Chapel Hill.

B. Experimental Setup

Subjects were seated with one arm comfortably placed on a

table. Alcohol pads were used to clean the skin surface prior

to electrode placement. A 2x8 electrode grid was placed col-

laterally to the vector connecting the center of the axilla and

the medial epicondyle of the humerus (Fig. 1C) in order to

maximize the superficial access to the median and ulnar

nerves. Sensation from the palmar side of the hand is transmit-

ted through these afferent pathways with the median nerve

innervating the index, middle, and a portion of the ring fingers,

while the ulnar nerve innervates the pinky and the remainder

of the ring fingers. To ensure secure electrode-skin contact,

mild inward pressure was applied using a custom vice. Sub-

jects were instructed to report any discomfort throughout the

experiment. The electrode grid allowed for the delivery of

stimulus to different pairs resulting in unique electric field

generation, and in turn the activation of different sets of axons

innervating different regions of the hand.

Electrode pair selection was conducted using a custom

MATLAB (v2016b, MathWorks Inc, Natick, MA) interface

that controlled a switch matrix (Agilent Technologies, Santa

Clara, CA). The matrix linked one of sixteen Ag/AgCl gel-

based electrodes (1 cm in diameter) among a 2x8 grid to either

the anode or the cathode of a stimulator.

Single- and dual-channel stimulation was delivered using a

multi-channel stimulator (STG4008, Multichannel Systems,

Reutlingen, Germany). Charge-balanced biphasic square wave

stimuli (Fig. 1B) were delivered. Although pulse width, fre-

quency, and dual stimulation delay were adjustable, these

parameters were fixed at 200 ms, 150 Hz, and 3.33 ms, respec-

tively, based on previous studies [22], [23].

Current amplitude was determined through a mapping [25]

based on one axial force (orthogonal to contact surface) calcu-

lated from internal torque readings of a sensorized prosthetic

hand (The LUKE DEKA RC ARM, Modius Bionics, Man-

chester, New Hampshire). Unprocessed fingertip forces from

the prosthetic hand were converted to a stimulation current

amplitude using a finger-specific and subject-specific sigmoid

function [25]. Sigmoidal function parameters were determined

using the stimulation current range for a given electrode pair,

the minimum and maximum finger forces, and the steepness

of the function. For a given electrode pair, the sensory thresh-

old and just below the motor threshold were employed as the

stimulation range. The sensory and motor thresholds were

identified by altering the stimulation amplitude in steps of 0.1

mA until finger sensation or finger motion occurred, respec-

tively. This process was repeated three times, and the average

values were calculated to determine each threshold. The steep-

ness (1) and the minimum (0.5 N) and maximum force (6 N)

were kept consistent across subjects and fingers. This range of

finger forces is commonly used in activities of daily living

[26]. The sigmoid function is shown in Equation 1, where I,

IMax, and IMin represent the actual current, maximum current

(i.e., motor threshold), and minimum current (i.e., sensory

threshold), respectively. Steepness, actual force, maximum

force, and minimum force were represented by k, F, FMax, and

FMin, respectively.

I xð Þ ¼ IMax � IMinð Þ
1þ e �k � F � FMax þ FMin

2

� �� � þ IMin (1)

In order to create a double-blinded experiment, prosthesis-

object interaction forces were pre-recorded from the prosthetic

hand’s index and middle finger sensors (Fig. 1). Only the index

and middle fingers were selected due to inconsistent force

recordings from the ring and pinky during preliminary testing

and prior work [25]. The saved force traces were drawn ran-

domly from a pool during the actual study. Prosthesis-object

interactions for shape recognition involved the grasping of two

dimensionally similar shapes at various closing speeds. During

each grasp, the experimenter programmed fingers of the hand to

close on a cube or sphere (Fig. 2E) at one of the four specified

closing speeds (8, 13, 20, or 40 degrees per second). The closing

speeds were determined based on finger flexion of 40 degrees in

1, 2, 3, or 5 seconds. Different objects could be encoded by the

different contact onset timing between index and middle fingers.

Force recordings were repeated 5 times for each combination of

shape and speed to account for any variability in the system.

Fig. 1. Diagram of obtaining the fingertip forces from a sensorized prosthetic
hand (A) and transforming the forces using user- and finger-specific sigmoid
functions to current amplitude. Individually and concurrently modulated stimu-
lation trains to evoke sensation (B). Example sensations are shown. Stimulation
diagram to elicit haptic sensation using a 2x8 electrode grid (C).
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Representative force trace examples from different combina-

tions of shape and hand closing speeds and their average onset

delays are shown in Fig. 2.

To pre-record the interaction force for surface topology, only

the index finger was used. Each surface was slide across the fin-

gertip at approximately 10 cm/s, or 1 Hz using a metronome. Sur-

faces were varied in ridge height and ridge spacing. Ridge height

recognition was evaluated using surfaces with 5 ridges (2 cm

apart) at different height (1, 2, or 3 mm). Ridge spacing recogni-

tion was tested using 2 mm ridges at different spacing (2, 1.5, or

1 cm) over a 10 cm span. Lastly, combined ridge configuration

was tested using 4 distinct surfaces: two ridge heights (2 or 3mm)

and two ridge spacings (2 or 1 cm). Combinations of ridge height

and spacing were selected based on preliminary testing regarding

the sensitivity of the prosthetic hand’s sensors. Force trace record-

ings were repeated 5 times per surface (Fig. 3).

C. Procedure

We first searched through the electrode grid to identify two

electrode pairs that evoked sensation on different fingers. Five

subjects were randomly selected to have pairs that elicited sen-

sation in the median and ulnar region of the hand, while the

other five subjects had sensations along the index and middle

fingers. This allowed for a direct comparison with prior work,

while allowing for a comparison across the two groups. Each

electrode pair was then coupled to either the prosthetic hand’s

index or middle finger sensors based on the medial/lateral

position of the sensation along the hand. Each pair’s stimula-

tion intensity was regulated using their coupled finger forces.

Details of the electrode pairs selected, and sensation regions

are described in Table S1 in the Supplementary Materials.

Once the electrode pairs were selected, their corresponding

sigmoid functions were used to convert the pre-recorded

forces to user-specific stimulation patterns, fixed throughout

the experiment. For each experiment block, the force traces

were randomly selected, resulting in a double-blinded test.

Examples of the force-current transformation for representa-

tive trials are shown in Fig. S1 in the Supplementary Materi-

als. The detailed description of the electrode pair selection,

task familiarization, and stimulation scheme can be found in

the Supplementary Materials.

The first block evaluated the shape recognition, which con-

sisted of 4 hand closing speeds and 5 repetitions per speed for

each object (40 trials in total). At the beginning of the test, the

subject familiarized themselves with the two shapes using an

exemplar speed-specific stimulation pattern that was repeated

3-5 times depending on the subject’s confidence. In each trial,

subjects were given a random force trace (object) and were

then asked to report the perceived shape.

The second block evaluated the surface topology recognition

using varied ridge height, ridge spacing, or both, organized in

three sub-blocks (Fig. 4). Prior to the test of each sub-block, all

corresponding surfaces were given to the subject 3-5 times each

for task familiarization. The first sub-block required subjects to

discern the ridge height relation of three surfaces based on the

stimulation intensity. Stimulation patterns associated with two

random surfaces were delivered, and the subjects were asked to

report if the first or second surface had a higher ridge, or if they

were the same. A total of 18 trials involving all possible ridge

height combinations were evaluated. The second sub-block

evaluated the recognition of ridge spacing based on the stimula-

tion spike interval. A higher ridge spacing corresponded to a

shorter spike interval. In each trial, subjects were given two

ridge spacing conditions, and were asked to report if the first or

second surface had a higher spacing, or if they were the same.

Due to the use of a fixed 10 cm surface and constant sliding

velocity, subjects could make the decision based on the number

of stimulation spikes. To tease out this confounding factor,

stimulation patterns with the same number of spikes were also

Fig. 2. Force traces recorded when grasping the cube and sphere (E) with the
prosthetic’s index (blue) and middle fingers (red). Forces were recorded when
the hand closing speed was set to 8 (A), 13 (B), 20 (C), and 40 (D) degrees per
second, respectively. The bar graph shows the average onset delay between the
middle/index finger contact with the object (F). Error bars represent standard
deviations (std).

Fig. 3. Representative force traces recorded for the surface topology recognition
task, which were used during combined ridge height and spacing test.

Fig. 4. Experimental protocol, involving the electrode pairs selected for the
prosthesis’s index/middle finger sensors, and the experimental blocks for
object shape and surface topology recognition.
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used. A total of 30 trials were tested. The final sub-block evalu-

ated the recognition of ridge height and spacing simultaneously.

In each trial, stimulation patterns resembling one of the four

surfaces were randomly delivered to the subject, and the sub-

jects were asked to report the surface condition (high/low height

and high/low spacing). A total of 16 trials were tested. Through-

out the experiment, 10-second of rest time was provided

between trials. Example force traces used during all familiariza-

tion phases are shown in Fig. S2.

D. Data Processing

To evaluate the recognition accuracy of shape and surface

topology, confusion matrices were constructed for each block

or sub-block to compare the perceived object to the ground

truth. The average and standard error of the accuracy were

also calculated across subjects.

E. Statistical Analysis

To determine if the recognition accuracy was significantly

greater than chance values, one sample t-tests were performed

for each experimental block or sub-block. During shape recog-

nition, the chance of identifying the shape of a given object

was 0.5. For the surface topology recognition, the chance of

identifying the ridge height relation, spacing relation, or both

was 0.33, 0.33, and 0.25, respectively. A chance of 0.5 was

also used to evaluate the recognition of individual surface

topology, i.e., ridge height or spacing. These accuracies were

compared using paired t-tests. Lastly, a paired t-test was also

performed between stimulation patterns involving the same

number of ridges and the stimulation time during the ridge

spacing comparison. A logit transformation [27] was applied

to the proportion data prior to the statistical analysis, in order

to obtain normal distribution of the residual.

III. RESULTS

A. Shape Recognition

For the shape recognition block, involving different hand

closing speeds, Fig. 5A shows a confusion matrix comparing

the actual and perceived object shape across all subjects with

the rows corresponding to individual hand closing speeds.

The results showed that subjects could identify the shape of

the object at all four hand closing speeds. Specifically, the

closing speeds of 8, 13, 20, and 40 degrees per second

resulted in an accuracy and standard error of 85.0% � 3.4%,

89.0% � 3.1%, 83.0% � 3.3%, and 82.0% � 3.9%, respec-

tively (Fig. 5B). All closing speeds resulted in a recognition

accuracy that was significantly greater than the chance value

(p < 0.001). Lastly, when comparing recognition accuracies

across median & ulnar and index & middle sensation groups

(Fig. S3), no statistical difference was found for any of the

closing speeds (p > 0.05).

B. Surface Topology Recognition: Ridge Height

For the ridge height recognitioin between two given surfa-

ces, the confusion matrix in Fig. 6 reports the ridge height rec-

ognition results across all subjects. The results showed that

subjects were able to correctly identify the ridge height rela-

tion in 161 out of 180 trials, resulting in an accuracy of 89.4%

� 1.9%. Errors largely arose from either subjects perceiving

different heights as the same (right colume) or, to a less degee,

same height perceved as different (bottom row). Overall, the

performance was found to be significantly greater than the

chance level (p < 0.001).

C. Surface Topology Recognition: Ridge Spacing

For the ridge spacing recognition, Fig. 7 shows the recogni-

tion accuracy across subjects during trials with equal stimula-

tion time, and with equal number of ridges. The results

showed that subjects correctly identified the relative spacing

with an accuracy of 81.7% � 1.7% and 85.6% � 1.5% with

equal stimulation time, and with equal number of ridges,

respectively. Similar to ridge height, most errors that arose

involved the “same” spacing condition. However, both types

had accuracies significantly greater than chance (p < 0.001)

with no statistical difference between the two encoding condi-

tions (t ¼ 1.74; p > 0.05).

D. Combined Ridge Height and Spacing Recognition

Lastly, we evaluated the surface topology with combined

ridge height and spacing parameters. The surfaces were labeled

Fig. 5. Confusion matrix (A) of the perceived shape against the ground truth
at different hand closing speeds. The individual (Indv) and mean accuracy
(Avg) for both shapes and the standard error (SE) across subjects (B), with
asterisks indicating significance of p<0.001, comparing with chance.

Fig. 6. Confusion matrix quantifying the perceived ridge height in relation
with the ground truth across all subjects. ‘First’ means the first surface had
higher ridges. ‘Second’ means the second surface had higher ridge. ‘Same’
means both surfaces had the same ridge height.
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based on their ridge characteristics with ‘LL’ denoting low

height and low spacing, ‘LH’ denoting low height and high spac-

ing, ‘HL’ denoting high height and low spacing, and ‘HH’

denoting high height and high spacing. The recognition accuracy

across subjects is illustrated in Fig. 8. The results showed that

most surface topologies were correctly identified (138 out of 160

trials), resulting in an accuracy and standard error of 86.3% �
1.8%. Each of the four surface topologies were detected with

an accuracy significantly greater than chance (p< 0.001). Addi-

tionally, the recognition accuracy of individual ridge charac-

teristics were found to be significant greater than chance as well

(p < 0.001). A significant difference was also found across the

two surface characteristics (p< 0.05).

IV. DISCUSSION

This study sought to determine if shape and surface topol-

ogy recognition could be performed based on transcutaneous

nerve stimulation. Independently modulated tactile feedback

at different fingers was evoked concurrently using a multi-

electrode grid. The object shape and surface topology were

encoded by temporal or amplitude information of the stimula-

tion. Our results showed that different shape and surface topol-

ogy can be recognized with accuracies >81%. The evoked

tactile information may improve the quality of object manipu-

lation/interactions, and potentially promote user acceptance

and embodiment of prosthetic device.

Our results demonstrated that shape recognition could be per-

formed at all four hand closing speeds without training, which

suggest that the nerve stimulation and the encoding strategy

were highly informative and intuitive. Our results showed that

the lowest closing speed led to the lowest accuracy for the cube

recognition. This can arise from the large variability of the stim-

ulation onset timings between fingers, which led to a lack of dif-

ference from the sphere onset timing difference between fingers.

Prior studies have shown the ability to perform shape recog-

nition using invasive or non-invasive stimulation techniques

[9], [19], which showed similar recognition performance com-

pared with the current study. Although hand closing speed

was not available in previous studies, the recognition accuracy

tended to be lower at a higher closing speed shown in the cur-

rent study, which may be due to several factors. First, the dif-

ferences in shapes and grasp patterns used in different studies

may have resulted in different force traces and different timing

of the onsets. Second, the experimenter operated the prosthesis

in our current study. Therefore, recognition was exclusively

based on the tactile perception and was not biased by other

information during sensorimotor integration. Direct control of

the prosthetic hand by a user may provide additional informa-

tion regarding finger position, which can further assist shape

recognition. Overall, our findings suggest that non-invasive

stimulation of proximal nerve bundles can reach reasonable

performance on shape recognition. The non-invasive approach

allows routine testing across a large population without the

need of surgery procedure as described in [19]. The more

proximal site compared with the previous study [9] also

reduces the potential for myoelectric control signal interfer-

ence, when the transcutaneous nerve stimulation was deliv-

ered near the muscle activity recording site.

Our results showed that surface topology recognition could be

performed based on ridge height, spacing, or both simulta-

neously. Similar to the shape recognition, training was not

needed, suggesting that the evoked tactile feedback was highly

informative.When ridge height and ridge spacingwere evaluated

concurrently. We found that ridge height recognition accuracy

was significantly higher than ridge spacing recognition accuracy.

This suggests that stimulation intensity perception was more

accurate compared with temporal-related spike interval percep-

tion. Differences in just noticeable difference or psychometric

tests across encoding methods would likely affect their corre-

sponding recognition accuracy. Further studies will be required

to evaluate the recognition resolution of each encodingmethod.

As of now, few studies have quantified surface topology rec-

ognition via non-invasive nerve stimulation. In previous studies,

tactile feedback is delivered using invasive approaches [20],

[21], and ridge spacing is the only variable evaluated. Compared

with prior studies, our accuracies are slightly higher with dispar-

ities due to multiple factors. First, surface characteristics and

the sliding speed of the surface/fingertip can influence the

Fig. 7. Confusion matrix (A) quantifying comparisons between the perceived
ridge spacing relation with the ground truth. The average accuracy and
standard error across the subjects (B) are reported with the asterisk indicating
significance of p < 0.001, comparing to chance. ‘# of Ridges’ denotes the
stimulation patterns had equal number of ridges/spikes, while ‘Time’ denotes
the stimulation patterns lasted the same amount of time.

Fig. 8. Confusion matrix (A) quantifying the perceived surface topology
with the ground truth. The average accuracy and standard error across the
subjects (B) are reported with a single asterisk indicating significance of
p < 0.001. ‘LL’ corresponds to a surface with a low ridge height and spacing,
‘LH’ a surface with a low ridge height and high ridge spacing, ‘HL’ a surface
with a high ridge height and low ridge spacing, and ‘HH’ a surface with a high
ridge height and spacing. �� indicates significant difference of p < 0.05.
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recognition performance. In the current study, the sensors

embedded in the DEKA hand and the size of the finger limited

the size of the ridges, with ridge height at the millimeter scale

and spacing at the centimeter scale and sliding speed of approxi-

mately 10 cm/s. In contrast, Oddo et al. [20] utilized ridge spac-

ing and ridge height on the sub-millimeter and millimeter scale,

respectively, when utilizing a sliding speed of 10 mm/s.

Although the ridge parameters and sliding speeds vary across

studies, the chosen speed of the current study led to similar inter-

ridge intervals, compared with the previous work, which sug-

gests that the recognition difficulty level was similar across stud-

ies. The performance of topology recognition in the current

study was higher compared with the previous work. Differences

in the stimulation approaches could affect the recognition perfor-

mance. Prior studies only stimulated using a set stimulation level

at or around the times when a ridge crossed the fingertip of an

avatar hand [21] or when the force reaches peak values, i.e.,

instances when ridges contact the finger [20]. In essence, the par-

ticipants could use stimulation on/off patterns to recognize sur-

face ridges. In contrast, the force-modulated stimulation in our

current study was delivered continuously when the surface was

slid on the fingertip, because the surface and the fingertip was in

contact throughout a trial. As a result, the participants had to rely

on the change of sensation intensity for surface ridge recogni-

tion. Compared with the event-triggered stimulation approach,

the stimulation directly modulated by the force can provide

more intuitive information about object surface properties.

Multichannel stimulation can be further exploited using

several sensors located across the prosthetic hand. Each of

which would map to the different electrode pairs that produce

sensations along the fingers or the palm. Complex percepts

can then be elicited that realistically replicate the complex

interactions of the human hand with different objects. Reduc-

tions in recognition accuracy were observed (Fig. S3 of the

Supplementary Materials) during shape recognition, which

can be caused by overlapping of sensation regions evoked by

different electrode pairs. [28] Modulating stimulation in a

more biomimetic strategy may help improve the amount of

transferable information. [29] This has been discussed further

in the Supplemental Materials.

A. Limitations and Future Work

The current study has several limitations. First, a previous

study has showed similar evoked haptic perceptions between

neurologically intact participants and individuals with arm

amputations [22], suggesting that the results found in intact

participants can characterize those in amputees. Additionally,

work by Makin et al [30] has shown that several years after

an amputation, the somatosensory cortex representation of

the phantom hand remains unchanged, in contrast to the

motor cortex representation. Nonetheless, further studies

involving upper limb amputees are necessary to quantify the

performance of shape and surface topology recognition. Sec-

ond, the prosthesis was controlled by the experimenter, and

the object-prosthesis interaction forces were recorded prior to

the testing, in order to ensure a double-blinded experimental

design. An experimenter-controlled hand also ensured that

other sensory modality such as proprioceptive feedback dur-

ing muscle activation or incidental feedback, such as vibra-

tion of the prosthesis, would not bias the results. Lastly,

shape recognition only involved two discrepant shapes, i.e., a

cube and a sphere. If a larger number of objects were used,

we expect that the performance would potentially worsen.

The ability to use this encoding method in a range of objects

would need further investigation.

B. Conclusions

Overall, we demonstrated that sensory feedback via transcu-

taneous nerve stimulation targeting the proximal segments of

the median and ulnar nerves could be used to perform object

shape and surface topology recognitions. The findings suggest

that these encoding methods could potentially be employed

when using a sensorized prosthesis or a remotely controlled

device to provide insight about object properties. This sensory

input to the users may also help facilitate a user’s ability to

execute dexterous motions.
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