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Interference Removal From Electromyography
Based on Independent Component Analysis

Yang Zheng and Xiaogang Hu

Abstract—High-density = surface electromyography
(HD-EMG) provides detailed information about muscle
activation. However, HD-EMG recordings can be interfered
by motion artifacts and power line noise. In this paper,
an interference detection and removal method with minimal
distortion of the EMG was developed based on the
independent component analysis (ICA). After the source
separation, the independent components with power
line noise were detected based on the spectra and were
processed with notch filters. Components with motion
artifacts were identified by analyzing the peak frequency
of the spectrum, and motion artifacts were filtered with
a high-pass filter and an amplitude thresholding method.
The EMG signals were then reconstructed based on the
processed source signals. The denoising performance
was evaluated on both simulated and experimental
EMG signals. The results showed that our method was
significantly better than the digital filter method and the
conventional ICA-based method where components with
interferences were set to zero. Namely, our method showed
a minimal distortion of the denoised EMG amplitude and
frequency and a higher yield of decomposed motor units.
Our interference detection and removal algorithm can be
used as an effective preprocessing procedure and can
benefit macro level EMG analysis and micro level motor
unit analysis.

Index Terms— Biosignal processing, independent com-
ponent analysis, motion artifacts, noise reduction, power
line noise.

I. INTRODUCTION

URFACE electromyography (sEMG) is a noninvasive

technique that can capture muscle activities with elec-
trodes placed on the skin over muscle bellies [1]. It has been
widely used in various purposes such as basic physiology, clin-
ical diagnosis, rehabilitation, and ergonomics [2]. Recently,
high-density SEMG (HD-EMG) can obtain a large number of
EMG channels with closely spaced electrodes, and provide
insight into the spatial distribution of myoelectric intensity
from a wide muscle region. This information can help improve
the identification of motor tasks [3], [4], reveal the distribu-
tion changes of muscle activation during stimulation-induced
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fatigue [5], [6], and help us understand muscle anatomy [7].
In addition, HD-EMG recordings also allow the extraction of
motor unit (MU) activities non-invasively [8].

However, HD-EMG array typically have small electrode
diameters (e.g., less than 3 mm), which are prone to changes
in the electrode-electrolyte contact. As a result, the record-
ings can be contaminated with interference signals, including
motion artifacts and large common mode interferences like
power line noise. In order to reduce noise interference, several
techniques have been developed. For example, Baratta et al.
has developed a power line noise subtraction method based
on the unrealistic assumption that the power line noise is
constant throughout the recording [9]. Given the frequency
characteristics of the motion artifact and the power line noise,
a digital filter is commonly used [10], [11], despite the fact
that the EMG signals are inevitably distorted due to spectral
overlap. In contrast to the frequency filtering approach, recent
efforts have tried to extract the time courses of artifact-
related components. For instance, a moving median filter has
been used to extract the artifact, and then subtracted it from
the original signals [11]. More advanced noise component
extraction technique, such as the empirical mode decom-
position (EMD), has also been developed [12]. However,
the EMD can fail to isolate artifacts when the artifacts contain
oscillations overlapping with EMG signals.

Blind source separation techniques (e.g., independent com-
ponent analysis (ICA) and canonical correlation analy-
sis (CCA)) have provided an effective denoising tool by
isolating individual source signals, including artifacts and
the underlying physiological activities [13]-[17]. The ICA
method estimates the different sources by maximizing the
non-Gaussianity or mutual independence [18], while the CCA
algorithm forces the sources to be mutually uncorrelated and
maximally auto-correlated [19]. The CCA method was mainly
used to reduce the white Gaussian noise [13], [15]. In addi-
tion, previous studies that utilized blind source separation have
reduced the noise by setting the noise-related components to
zero [13], [15]. There are several drawbacks in this approach.
First, the noise component may still contain EMG activities.
Second, simply setting the noise components to zero leads to
a singular covariance matrix of the denoised EMG signals,
which makes it impossible to perform spatial whitening as
required by ICA-based EMG decomposition [20].

In our current study, an interference detection and removal
method based on ICA was developed to remove motion
artifacts and power line noise (the power line noise represents
the interference at 60 Hz and higher order harmonics) from
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Fig. 1. The three steps of the ICA-FT noise removal method.

the HD-EMG signals. Instead of simply setting noise-related
components to zero (termed ICA-Z method, Z means Zero)
as in the conventional ICA approach, the power line noise
in the components were detected based on their spectra and
processed with notch filters. Components with motion arti-
facts were identified by analyzing the peak frequency of the
spectra. Motion artifacts were then filtered with a high-pass
filter and an amplitude thresholding method (termed ICA-FT
method, FT means Filtering and Thresholding). Our approach
was first evaluated on synthetic EMG signals, given that
the ground-truth (clean EMG signals and MU activities) was
known in simulated signals. We first calculated the difference
(i.e., root mean squared error) between the denoised EMG and
the clean EMG, and then quantified the number and accuracy
of identifiable MU spike trains through EMG decomposition.
The results showed that the ICA-FT method demonstrated
a significant superiority to both the ICA-Z method and the
conventional digital filter method, manifested as a smaller
degree of distortion to the original EMG signals and a higher
yield of decomposed MUs. Different denoising methods were
then evaluated on experimental EMG recordings. The results
showed that the ICA-FT method led to a smaller distortion of
the amplitude and the median frequency of EMG signals.

Il. METHODS
A. Noise Detection and Removal Approach

The ICA-FT method included three steps (Fig. 1). The first
step used a blind source separation technique, i.e. Infomax
ICA [18] to extract individual independent components from
the noise-contaminated EMG signals (termed noisy EMG
in the subsequent text and figures). The second procedure
involved the identification and processing of the components
that contained artifacts. The last step reconstructed EMG sig-
nals with the processed components (termed ICA-FT-denoised
EMG in the subsequent text and figures). The three steps were
described in detail in the subsequent sections.

1) Noise Separation: Infomax ICA is typically used to
extract n mutually independent sources/components [18].

In our current study, some of the components mainly reflected
the noise from n channels of the EMG signals.

Consider unknown n source signals s = [s1, 52, ..., snl”,
which are mutually independent. Each source is assumed to
have moments of any order with a zero mean. The obtained
signals x = [x1,x2,... ,x,]T can be considered as a linear
mixture of the n source signals, x = As, where A € R"*" is an
unknown non-singular mixing matrix. The process of Infomax
ICA can be described as: given a set of signal mixtures x and
a set of identical independent model cumulative distribution
functions g, the unmixing matrix W, which maximizes the
joint entropy of the signals y = g(c)(y = (1 + ¢~ ¢)~! in this
study), are solved, where ¢ = Wx are the signals extracted
by W. Signals y are mutually independent. The Infomax ICA
was implemented using a previously developed toolbox [21].

2) Component Processing: The second step identified and
processed the components with power line noise and motion
artifacts. The goal was to reserve as much EMG infor-
mation as possible after eliminating the noise. In order to
eliminate the power line noise, the spectrum of individual
components was estimated. If there was substantial spectral
power at the frequencies of power line noise, notch filters (4™
order Butterworth filter, zero-phase digital filtering, stop band:
57.5-62.5 Hz, 117.5-122.5 Hz, 177.5-182.5 Hz, and 237.5-
242.5 Hz) were applied to the component (see Supplementary
Material for details).

The procedure to eliminate motion artifacts involved two
steps. The first step used a high-pass filter (Butterworth filter
with an order of 4, zero-phase digital filtering) to remove
the low-frequency activities if the frequency of peak spectral
power of a component was smaller than 10 Hz, which was
caused by motion artifacts. The second step further removed
the residual of motion artifacts after the high-pass filtering.
The basic idea was to locate the sporadic high peaks caused
by the motion artifacts by characterizing the distribution of
the peak values, and then set the samples related with motion
artifacts to zero (see Supplementary Material for details).

3) EMG Signal Reconstruction: The final step used the
mixing matrix W~ to obtain the ICA-FT-denoised EMG
signals, X = W€, where ¢ represented all the components,
including the ones after processing. In the ICA-Z method, all
components that were detected to contain artifacts through
the ICA-FT procedure were set to zero and were used to
reconstruct the ICA-Z-denoised EMG.

B. EMG and Interference Simulation

To simulate EMG signals, we first obtained the templates of
realistic motion artifacts and MU action potentials (MUAPs)
(see Supplementary Material for details) from experimen-
tal EMG signals as described in the next section. Briefly,
the MUAP templates were estimated through a spike trig-
gering averaging of the EMG signals [22]. MUAP templates
of 104 MUs were obtained eventually. The motion artifact
templates were also extracted from EMG signals obtained in
the experiment using Infomax ICA [18]. Fig. 2a illustrates
exemplar six of the total 50 motion artifact templates.

The synthetic clean EMG signals were simulated using
a motoneuron recruitment model [23] and a convolution

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on December 20,2020 at 00:40:03 UTC from IEEE Xplore. Restrictions apply.



ZHENG AND HU: INTERFERENCE REMOVAL FROM EMG BASED ON ICA

889

O

Excitatory drive

b
- 4
E 15 30 0
g 0 02t j—m
3 0 0 -
Z 15 0 5 10
£ (c) Clean EMG
< .30 i EMG1
0 5 10 0 5 10 EMG2
EMG3
5 ’ ——
€ EMG4 "
38 EMG5
20 0
s
£
<
-30 - -3

o
o
N
o
o
o
-
o

75 7.5

5-75

Amplitude/mV
o o
7 %
S
o

-15 -7.5

10

Time/s

5
Time/s Time/s

Fig. 2. Extracted motion artifact templates from EMG signals (a). The
excitatory drive function as the input to the motoneuron pool (b). Six
representative channels of EMG signals obtained with the convolutive
mixture model (c). Six representative channels of EMG signals contam-
inated with motion artifacts and power line noise (SNR, 5 dB) (d).

model [24]. The input to the motoneuron pool was an exci-
tatory drive function representing the net synaptic input. The
excitatory drive was normalized by the maximum drive level
corresponding to the maximum voluntary contraction (MVC).
In the current study, the excitatory drive was a two-step
trapezoid function that lasted for 10 seconds (Fig. 2b). The
motoneuron pool contained a total of 120 neurons, and under
the excitatory drive shown in Fig. 2b the actual number of
recruited neurons was 91. In order to simulate the stochastic
nature of motoneuron discharge times, each discharge timing
was adjusted such that the inter-spike intervals were normally
distributed with a 10% coefficient of variation and a mean
value determined by the firing rate at an excitatory drive level.
The multi-channel EMG signals can be described as a
convolutive mixture of a series of delta functions, which
represent the discharge timings of the MUs [24], [25]:

m L—1
xi(k) =D hij()s(k — 1)+ ni (k)
j=11=0
i=1,2,...,n; k=0,1,...,Dr (1)

where x; (k) is the ith EMG channel, & is the discrete time,
Dr is the total number of recorded data samples, m and n are
the number of recruited MUs and EMG channels, respectively.
n; (k) is the additive white noise at channel i, and its amplitude
is set at a value corresponding to a signal-to-noise ratio (SNR)
of 15 dB. The impulse responses in this convolutive mixture is
the MUAP £;; () of the jth MU recorded at channel i, s; (k)
is the MU discharge train of the jth MU, and L the MUAP
duration. Five 10-second 64-channel clean EMG segments
were simulated (Fig. 2c).

Power line interference and motion artifacts were then added
to obtain the noisy EMG (Fig. 2d). Multiple trials were
simulated to investigate the performance of the noise removal
method under different noise conditions.

Common
ground

Fig. 3. Experiment setup with the HD-EMG electrode array covering the
extensor digitorum communis muscles and four load cells measuring the
extension force of individual fingers.

The power line noise was added to the EMG as follows:
a) Randomly select a clean EMG segment and estimate the
average variance of the EMG signals across all channels.
b) Based on the pre-set SNR (0 dB and 5 dB) of the power
line noise, calculate the magnitude Agg of the power line noise
(sinewave function) at 60 Hz. For higher order harmonics,
the amplitude was calculated as Agp(2/3)7 " 60-1 " where fj
was the frequency of the harmonics. The amplitude of harmon-
ics was determined according to previous studies [26], [27].

The motion artifacts were added to the EMG as follows:
a) Randomly select Ny, motion artifacts from the motion
artifact template pool. b) For a given motion artifact, randomly
select 4 or 5 channels of EMG out of the 64 channels, and
add the motion artifact to the selected channels. The saturation
amplitude after added artifacts was set to =5 mV. The number
Nma was 6 or 10, yielding a total of 24-30 or 40-50 EMG
channels contaminated by the motion artifacts.

The denoising methods were first tested on individual types
of interferences. For each SNR level or number of motion
artifacts, ten trials were simulated. Then, both types of inter-
ferences were added to simulate noisy EMG signals. For each
combination of the SNR and the number of motion artifacts,
the procedures were repeated 10 times.

C. Experimental EMG Acquisition

Eight healthy subjects (age: 20-34, one female and seven
males) were recruited to perform a finger extension task. All
subjects gave informed consent with protocols approved by the
Institutional Review Board of the University of North Carolina
at Chapel Hill.

During the experiment, the subjects were seated comfort-
ably in an arm chair. The index, middle, ring, and pinkie
fingers were individually secured to four load cells (SM-200N,
Interface, Scottsdale, AZ). The isometric extension forces
were sampled at 1000 Hz. An 8 x 20 high-density EMG
electrode array, with a 3-mm electrode diameter and a 10-mm
inter-electrode distance covering the entire extensor digitorum
communis, was used to record the muscle activities during fin-
ger extension (Fig. 3). Monopolar EMG signals were amplified
with a gain of 1000 and a pass-band of 10-900 Hz, and were
sampled at 2048 Hz via EMG-USB2+ (OT Bioelettronica,
Torino, Italy).

The MVC of individual fingers were first measured. The
main experiment involved a finger extension force tracking
task of 5 minutes. Subjects were required to control the
extension force of one finger to follow a pseudorandom force
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target, of which the level varied randomly between 20% and
40% MVC. The dynamic change in the force level can lead
to changes of muscle geometry, and potentially can lead to
motion artifacts. A total of six trials were obtained with two
trials for each finger (index, middle, and ring).

D. Performance Evaluation of Simulated EMG

The performance of simulated EMG was evaluated from
two aspects: 1) the degree of distortion of the denoised EMG
measured as the root mean square error (RMSE) between the
denoised EMG and the clean EMG, and 2) the number and
the accuracy of the decomposed spike trains from the denoised
EMG compared with that from the noisy EMG. For compar-
ison, both the ICA-Z method and the conventional method
using high-pass and notch filters (termed Filter method) were
used as control conditions. The notch filters, used in the
ICA-FT method, were applied to all the EMG channels,
and the high-pass filter was applied to channels with motion
artifacts. The motion artifacts could have a wide frequency
bandwidth overlapping with EMG signals. Therefore, there
should be a trade-off between eliminating motion artifacts and
maintaining EMG information. In order to identify the optimal
cutoff frequency of the Filter method, eight cutoff frequencies
were tested ranging from 25 - 200 Hz with a 25 Hz interval.

1) EMG Distortion Evaluation: The RMSE between the
denoised EMG and the clean EMG was calculated as

I 1 v
c d 2
R=-— Z(T Z CHOREAG) ) @
where x{ () and xl.d (t) were the corresponding clean EMG and
denoised EMG of the ith channel, n was the totally number of
EMG channels, and Ty was the total number of data samples.

2) Extraction of MU Spike Train: MU spike trains were
extracted from the simulated noisy EMG, the ICA-FT-denoised
EMG, and the Filter-denoised EMG using an EMG decom-
position method based on the FastICA algorithm [28], [29].
The K-means ++ algorithm was then used to identify the MU
firing events from the source signal extracted from FastICA.
Given that the same spike trains can be obtained through
multiple iterations, 200 iterations were performed for each
trial, in order to obtain as many spike trains as possible.

In order to quantify the number of the detected spike trains
and the detection accuracy of the MUs, the true spike trains
were compared with individual decomposed spike trains to
determine whether they were identified. First, the common
spikes were identified between a given true spike train and
individual decomposed spike trains. Two spikes were consid-
ered common if the time delay between them was smaller
than 2.5 ms. Then, the accuracy of the decomposed spike
train was calculated as A = Ncom/(Nugue + Ndec) X 100%,
where Ncom was the number of common spikes, Ny and
Ngec Were the number of spike events in the true and decom-
posed spike train, respectively. For a given true spike train,
the detection accuracies were calculated for all the decom-
posed spike trains, and the one with the highest accuracy was
selected. If the highest accuracy was larger than an accuracy
threshold (50%), the given true spike train was considered to

be identified successfully. The total number of identified spike
trains and the average detection accuracy across all identified
spike trains were calculated for individual trials.

E. Performance Evaluation of Experimental EMG

In order to evaluate the performance of different denoising
methods in realistic applications, the amplitude (root mean
square (RMS)) and median frequency of experimental EMG
signals were investigated before and after different denoising
methods. Sixty eight (9 £ 3 segments per subject) 10-second
segments were manually selected from the experimental EMG
during constant contraction levels. Each segment contained
64 channels based on the EMG amplitude and the location
of the motion artifacts. As a result, the motion artifacts
were either involved in the first 5 seconds (33 segments
and 28 + 4 channels contaminated with motion artifacts)
or the last 5 seconds (35 segments and 27 + 5 channels
contaminated with motion artifacts). The different denoising
methods were only performed on the 5-second portions with
noise. We then calculated the RMS and the median frequency
of individual channels from both the denoised portion and
the clean portion. The absolute difference of the RMS (or
median frequency) between the denoised and clean portions
was calculated and averaged across the channels with motion
artifacts. The difference of RMS (or median frequency) was
also averaged across the channels without motion artifacts,
in order to quantify how the denoising procedures distorted
the EMG signals. Lastly, before the denoising procedures,
the difference of RMS and median frequency of the EMG
channels without motion artifacts was also calculated as a
ground-truth. Since the contraction level was constant and
the EMG activity was relatively stable, we expected that
the difference in the RMS and the median frequency would
be small, if the denoising procedures only removed motion
artifacts with minimal distortion of the EMG signals.

F. Statistical Analysis

All the evaluation variables were analyzed with a repeated
measures ANOVA, and a post-hoc pairwise comparison was
performed when necessary, using the Holm—Bonferroni cor-
rection method. A significant level was set to a = 0.05 for all
the testing.

Ill. RESULTS
A. EMG Distortion Evaluation

Fig. 4 illustrates two representative components extracted
from a noisy EMG segment. The component shown in Fig. 4a
contained mainly motion artifacts, which were eliminated
through the ICA-FT procedure. The component shown in
Fig. 4b contained both motion artifacts and EMG spikes. The
ICA-FT procedures eliminated the motion artifact and retained
the EMG activities. However, the conventional ICA-Z method
would remove both motion artifacts and EMG activities by
setting the component to zero.

Fig. 5 illustrates the clean EMG from one representative
channel (a), and the corresponding noisy EMG (c), the Filter-
denoised EMG (50 Hz high-pass; 60 Hz, 120 Hz, 180 Hz,
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respectively.

and 240 Hz notch) (e), the ICA-Z-denoised EMG (g) and
the ICA-FT-denoised EMG (i). All noise reduction methods
can effectively reduce the power line noise as shown in
the time-frequency spectrum in Fig. 5f, 5h, and 5j. Motion
artifacts had wide frequency bandwidths overlapping with
the EMG signals (Fig. 5d). When a high-pass filter was
used, the high-frequency components of the motion artifacts
cannot be removed completely (Fig. 5f). In contrast, motion
artifacts were not evident from the ICA-Z-denoised EMG
and the ICA-FT-denoised EMG. However, the ICA-Z method
also eliminated EMG activities, as shown from the decreased
amplitude and the changed time-frequency spectrum of the
ICA-Z-denoised EMG compared with the clean EMG.

When the noisy EMG only contained power line noise,
the RMSE of different denoised EMG are illustrated in Fig. 6a.
The ANOVA results showed that there was significant differ-
ences between the three types of EMG for both SNR levels
(SNR, 5 dB: F(2,18) = 164.75, p < 0.0001; SNR, 0 dB:
F(2, 18) = 228.04, p < 0.0001). Further post-hoc test showed
that the RMSE of the ICA-FT-denoised EMG was significantly
smaller than that of the other two types of EMG (p < 0.0001),
and the RMSE of the ICA-Z-denoised EMG was significantly
larger than that of the Filter-denoised EMG (p < 0.0001).
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Fig. 6. The average root mean square error (RMSE) between the
clean EMG and the denoised EMG obtained with the different denoising
methods. The noisy EMG only contained power line noise (a). The
noisy EMG only contained motion artifacts (b). The noisy EMG was
contaminated with both power line noise and motion artifacts (c). The
error bar represents standard error. *, p < 0.05, **, p < 0.0001.

When the noisy EMG only contained motion artifacts
(Fig. 6b), the RMSE of the high-pass filter approach first
decreased and then increased as the cutoff frequency increased
from 25 Hz to 200 Hz, and the smallest RMSE was obtained
with a cutoff frequency around 50 to 75 Hz. Therefore,
the RMSE values obtained with the cutoff frequencies of 50 Hz
and 75 Hz were compared with the RMSE of the ICA-denoised
EMG. The ANOVA results showed that there was significant
differences between the four types of EMG (ICA-FT-denoised,
ICA-Z-denoised, Filter-denoised at 50 and 75 Hz) for both
noise conditions (number of motion artifact (# MA), 6:
F(3,27) 39.48, p < 0.0001; # MA, 10: F(3,27)
39.10, p < 0.0001). Further post-hoc test showed that the
RMSE of the ICA-FT-denoised EMG was significantly smaller
compared with the ICA-Z-denoised EMG and both Filter-
denoised EMG signals (p < 0.0001). There was no signif-
icant difference between the ICA-Z-denoised EMG and the
Filter-denoised EMG (p > 0.1).

When the noisy EMG signals contained both power line
noise and motion artifacts (Fig. 6c), similar results were
observed as in Fig. 6b. The RMSE values obtained with the
cutoff frequencies of 50 and 75 Hz were compared with the
RMSE of the ICA-FT and ICA-Z conditions. The ANOVA
results showed that there was significant differences between
the four types of EMG (ICA-FT-denoised, ICA-Z-denoised,
Filter-denoised at 50 and 75 Hz) for all the noise conditions
(SNR, 5 dB, # MA, 6: F(3,27) = 46.25, p < 0.0001; SNR,
5 dB, # MA, 10: F(3,27) = 101.75, p < 0.0001; SNR, 0 dB,
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Fig. 7. Decomposition yield of individual trials using the different types
of EMG signals (left y axis). The average decomposition accuracy using
different types of EMG (right y axis). The error bar represents standard
error. *, p < 0.05, **, p < 0.0001.

# MA, 6: F(3,27) = 64.48, p < 0.0001; SNR, 0 dB, # MA,
10: F(3,27) = 96.77, p < 0.0001). Further post-hoc showed
that the RMSE of the ICA-FT-denoised EMG was significantly
smaller compared with the other three types of EMG for all
the noise conditions (p < 0.0001). In addition, the RMSE of
the ICA-Z-denoised EMG was significantly larger than that of
the Filter-denoised EMG when SNR = 5 dB and # MA =6
(p < 0.05).

B. Evaluation of MU Spike Trains

Spike trains were extracted via EMG decomposition algo-
rithms using the ICA-FT-denoised EMG, the Filter-denoised
EMG (50 Hz high-pass and notch filters) and the raw noisy
EMG. The decomposition results of an example trial are shown
in the Supplementary Material. The ICA-Z-denoised EMG was
not used because the covariance matrix of the denoised EMG
was singular, and whitening procedure cannot be performed.

The decomposition yield and accuracy of all the conditions
are summarized in Fig. 7. The ANOVA showed that the types
of EMG (ICA-FT-denoised, Filter-denoised and raw noisy
EMG) had significant influence on the decomposition yield for
all the conditions (SNR, 5 dB, # MA, 6: F(2, 18) = 21.85,
p < 0.0001; SNR, 5 dB, # MA, 10: F(2,18) = 94.73,
p < 0.0001; SNR, 0 dB, # MA, 6: F(2,18) = 30.68,
p < 0.0001; SNR, 0 dB, # MA, 10: F(2,18) = 146.21, p <
0.0001). Further post-hoc test showed that the decomposition
yield of the ICA-FT-denoised EMG was significantly larger
than that of the Filter-denoised EMG or raw noisy EMG
for all the noise conditions (# MA, 6: p < 0.05; # MA,
10: p < 0.0001). The filter method significantly increase the
decomposition yield compared with that using the raw noisy
EMG only when the SNR was 5 dB and the number of motion
artifacts was 10 (p < 0.05). Even though the decomposition
yield between different types of EMG differed significantly,
the decomposition accuracy showed no significant difference
in any conditions (SNR, 5 dB, # MA, 6: F(2,18) = 0.82,
p = 0.45; SNR, 5 dB, # MA, 10: F(2,18) = 0.21, p = 0.81;
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Fig. 8. The difference between the denoised and clean portions in
median frequency of channels with motion artifacts (a) and without
motion artifacts (b). The difference in RMS of channels with motion
artifacts (c) and without motion artifacts (d). The error bar represents
the standard error. *, p < 0.05.

SNR, 0 dB, # MA, 6: F(2, 18) = 0.42, p = 0.67; SNR, 0 dB,
# MA, 10: F(2, 18) = 1.55, p = 0.24).

C. Evaluation of Experimental EMG

The differences in RMS or median frequency across all
subjects are illustrated in Fig. 8. Regarding the difference
in median frequency from channels with motion artifacts
(Fig. 8a), the ANOVA showed that the different denoising
methods had a significant effect (F(3,21) = 46.1, p <
0.0001). Post-hoc test showed a significant difference between
any two types of EMG (p < 0.05). The ANOVA showed
that the different denoising methods also had a significant
effect (F(2, 14) = 25.4, p < 0.0001) on the channels without
motion artifacts (Fig. 8b). Post-hoc test indicated that the
difference in median frequency of the ICA-Z-denoised EMG
was significantly larger than that of the ICA-FT-denoised EMG
and the ground-truth (p < 0.05), while there was no significant
difference between the ICA-FT-denoised and the ground-truth
(p > 0.05).

The different denoising methods also significantly influ-
enced the difference in RMS of channels with motion artifacts
as shown in Fig. 8c (F(3,21) = 19.3, p < 0.0001). Post-
hoc test showed that the difference in RMS of the ground-
truth and the ICA-FT-denoised EMG was significantly smaller
compared with the ICA-Z-denoised EMG and the Filter-
denoised EMG (p < 0.05). However, there was no significant
difference between the ground-truth and the ICA-FT-denoised
EMG (p > 0.05). Considering the difference in RMS of the
channels without motion artifacts (Fig. 8d), there were signifi-
cant differences between denoising methods (F(2, 14) = 21.6,
p < 0.0001). Further post-hoc test showed that the difference
in RMS of the ICA-Z-denoised EMG was significantly larger
compared with the ground-truth and the ICA-FT-denoised
EMG, and there was no significant difference between the
ICA-FT-denoised EMG and the ground-truth (p > 0.05).

V. DISCUSSION

In this study, an ICA-based denoising method was devel-
oped to automatically detect and remove motion artifacts
and power line noise from HD-EMG signals. The denoising
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performance was first assessed using simulated EMG. Our
results showed that the ICA-FT-denoised EMG had a sig-
nificantly smaller RMSE compared with the Filter-denoised
EMG and the ICA-Z-denoised EMG, which demonstrated a
lower degree of EMG distortion. The ICA-FT method also
significantly increased the yield of EMG decomposition even
if the EMG signals were severely contaminated with motion
artifacts and power line noise, in comparison with conventional
methods. The different denoising methods were then evaluated
on experimental EMG recordings. The ICA-FT method again
showed minimal distortion of the EMG signals (RMS and
median frequency), compared with the ICA-Z method and
the conventional filter method. Overall, our findings demon-
strated high performance of the ICA-FT denoising method
for HD-EMG signal preprocessing. The method can benefit
subsequent signal processing either focused on the macro level
EMG features or on the micro level MU discharge properties.

The evaluation of EMG distortion reveals the advantage
of our method on recovering the underlying EMG activities,
compared with the conventional filtering method and the
ICA-Z method. Power line noise generally contaminates all
channels during data recording, and notch filters are applied to
all channels. Since the frequency of power line noise is within
the frequency bandwidth of EMG activities, the notch filtering
will inevitably eliminate some EMG information. As for the
removal of motion artifacts, the conventional filtering method
is not able to remove all the motion artifacts because of over-
lapping frequency bandwidths between the motion artifacts
and the EMG signals. The cut-off frequency of high-pass filters
is typically limited to a low frequency range to reduce the
impact on the actual EMG activities. As a result, a low cut-off
frequency can still leave substantial residuals of the motion
artifacts in EMG recordings. Even though the conventional
ICA-Z method [13], [15] can extract the interferences from
EMG activities, it is possible that the components containing
interferences still involved EMG activities, as shown in our
results. Simply setting the components to zero would eliminate
EMG activities, resulting in distortion of the denoised EMG.
In contrast, in the ICA-FT denoising method, filtering proce-
dures were performed only on the components that involved
substantial power line noise and/or motion artifact. The EMG
information in other components was not distorted. Thus,
when the components were mapped back to the EMG channel
space, the residual of the noise had little influence on the
underlying EMG signals.

Macro features (e.g., RMS and median frequency) are typi-
cally extracted from EMG recordings in different myoelectric-
based applications such as pattern recognition [30], [31].
Motion artifacts can substantially distort the RMS and median
frequency estimation. In our current study, the effect of
different denoising methods on the RMS and median fre-
quency estimation was investigated using experimental EMG
recordings. Different denoising methods were applied to the
noise-contaminated portion of EMG signals. The difference of
RMS (or median frequency) between the denoised portion and
the clean portion was used to quantify the denoising effect. The
results showed that the ICA-FT-denoised EMG had smaller
differences in the RMS or the median frequency, compared

with the Filter-denoised EMG and the ICA-Z-denoised EMG.
The results demonstrated that the ICA-FT method had the
smallest EMG distortion while removing the interference,
compared with other methods.

Micro features, involving MU decomposition of EMG sig-
nals, were also evaluated. The decomposition yield of the
ICA-FT-denoised EMG significantly increased, in comparison
with both the yields from the Filter-denoised EMG and the
noisy EMG. One possible explanation was that the FastICA
iterations used for the EMG decomposition frequently con-
verged to the motion artifacts. Since the motion artifacts
cannot be eliminated completely through the filtering method,
the number of detected MUs using the Filter-denoised EMG
had no significant difference compared with the raw noisy
EMG. In some trials, the number of detected MUs using the
Filter-denoised EMG was even smaller than that using the raw
noisy EMG, possibly because the digital filter procedure also
removed substantial EMG information.

On the other hand, the detection accuracy of spike trains
had no significant difference among the different types of
EMG signals. It was possible that the motion artifacts were
independent of the MU firing spikes, and the MU spike trains
can be extracted from the EMG independently. It was also
possible that the motion artifacts generally lasted for a short
period. If a MU can be detected, it only affected several spike
events near the motion artifacts, which may not substantially
affect the overall detection accuracy. The average detection
accuracy using the ICA-FT-denoised EMG was slightly lower
(by less than 1.0%) compared with the other two types of
EMG. It was likely that some detected MUs with the ICA-
FT-denoised EMG had lower detection accuracy, because the
algorithm had higher chance converging to the spike trains
with low SNRs, which led to a lower average decomposition
accuracy across all detected MUs. Nevertheless, considering
the benefit of significantly increased yield, the effect of slightly
decreased accuracy was negligible. A high detection accuracy
(>95%) was obtained regardless the types of EMG signals.
The consistently high accuracy can arise from the fact that a
relatively low amplitude of white Gaussian noise (15 dB SNR)
was added in the convolution mixing model, which can affect
the detection accuracy of spike trains.

One limitation of the ICA-FT denoising method is that
the white Gaussian noise is not varied and removed, mainly
because the amplitude of white Gaussian noise is small with
the development of advanced amplifier techniques. Neverthe-
less, the removal of white Gaussian noise need to be addressed
in further studies by combining ICA with CCA, which is more
effective in isolating white Gaussian noise.

V. CONCLUSIONS

In general, our results showed that the ICA-FT noise
detection and removal method can effectively eliminate motion
artifacts and power line noise from HD-EMG recordings
without interfering the EMG signals. The major difference
of our developed method compared with previous studies
based on the blind source separation techniques lies in the
processing of noise related independent components. Notch
filters at power line frequency were applied to the components
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with substantial power line noise. The motion artifacts were
removed by combining a high-pass filtering and a motion
artifact suppression procedure. These procedures allowed us
to just focus on noise activities, and retain as much EMG
information as possible. Our results showed that the ICA-FT
denoising method can significantly improve the denoising
performance compared with the conventional digital filter
and ICA-Z methods, with minimal distortion of the denoised
EMG. Our developed denoising algorithm can be used as
a preprocessing procedure of HD-EMG recordings that can
benefit different types of applications from macro level EMG
analysis to micro level MU analysis.
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