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1. Introduction

In this paper, we consider the following uncertain upper-
triangular system

X = X+ filXipa, %), i=1n—1, (1)
Xn = apu,

where x = (xq, ..., x,;)T € R" is the system state vector, u € R
is the control input, a;, i = 1,...,n — 1, are unknown positive
constants and f;, i = 1,...,n — 1, are functions satisfying the

basic assumption as follows:

Assumption 1. There exist positive constants ; > 0 and ¢; > 0
such that the functions f; satisfy

n
xir, o) < G(beal ™+ Y bgl), 1=isn—1, @)
j=i42

in a neighborhood of the origin, where ¢; and §; do not need to
be known.
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Many practical control systems such as the cart-pendulum
system (Mazenc & Bowong, 2003) and the ball and beam sys-
tem (Barbu, Sepulchre, Lin, & Kokotovic, 1997) can be modeled
as upper-triangular systems. The stabilization problem of upper-
triangular systems has been extensively investigated in the lit-
erature, including Arcak, Teel, and Kokotovic (2001), Ding, Qian,
and Li (2010), Krishnamurthy and Khorrami (2004), Qian and Lin
(2012), Teel (1992) and Ye and Jiang (1998). However, most of
those stabilization results were achieved under the assumptions
that (i) the parameters a; or their bounds are known, and (ii) the
functions f; are bounded by known higher-order nonlinearities.
Without these two conditions, the stabilization problem of (1)
becomes very challenging. In particular, when g; are unknown, it
is impossible to design a linear feedback controller u = —(k1x; +
kixa + - - - 4+ knxy,) to achieve the local asymptotic stability of the
equilibrium x = 0 for all unknown parameters a; > 0 even when
fi=0,i=1,...,n— 1. For example, when n = 3 and f; = 0 for
i = 1, 2, the characteristic polynomial of the closed-loop system
of

X1=01Xy, X, =aX3, X3=—a3(kix1+koxs+Kk3x3) (3)

is A3 + asksA? + ayaskaA + ajazasks, which is Hurwitz stable if
and only if Z—? > kalg due to the classical Routh stability criterion.
Hence, for any given linear feedback controller, system (3) cannot
be locally asymptotically stable for all the uncertain parameters
ai.

In addition, the linear feedback controller is sensitive to the
upper-triangular , e.g., f; in (1). For example, the system

X1 =X+ f1, Xa =X3, X3 = —X; — X3 — 2X3, (4)


https://doi.org/10.1016/j.automatica.2020.108954
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.108954&domain=pdf
mailto:zhujiandong@njnu.edu.cn
mailto:chunjiang.qian@utsa.edu
https://doi.org/10.1016/j.automatica.2020.108954

2 J. Zhu and C. Qian / Automatica 118 (2020) 108954

is asymptotically stable when f; = 0, but its stability is lost
when f; = —x3. To overcome the limitation of linear controllers,
we change the linear structure of the controller by increasing
the powers of the states. For example, when n = 3, the linear
controller u = —(k1x1 + kaX2 + k3x3) is changed into

u=—(((k1x1)°" + kax2)**?> + k3x3) (5)

with any given positive gains k;. We are going to show that
the nonlinear controller (5) can guarantee the local asymptotic
stability of the equilibrium x = 0 of system (1) with n = 3
for all possible unknown positive parameters a; and functions f;
satisfying Assumption 1 with some §; and c;.

It should be noted that Assumption 1 is less restrictive than
the traditional higher-order growth condition (Teel, 1992). From
the right side of (2), we see that only the power of |x;, 1| is greater
than 1, while in Teel (1992) this is also required for |x;;,| through
|x,|. Moreover, the constants §; > 0 and ¢; > 0 in Assumption 1
do not need to be known.

One underlying philosophy in appropriately increasing the
powers of the states of a linear controller is the theory of ho-
mogeneous systems (Hermes, 1995; Rosier, 1992). However, the
traditional homogeneity is still not sufficient to handle the un-
known parameters a; due to the strong similarity between linear
systems and homogeneous systems.

To overcome the limitation of traditional homogeneity, in
Polendo and Qian (2007) and Zhang, Qian, and Li (2013), the con-
cept of homogeneity with monotone degrees (HMD) is proposed
for the stability analysis and the controller design of inherently
nonlinear systems. In our early paper (Zhu & Qian, 2018), the
following power integrator system driven by a linear feedback
controller is investigated:

=x,, i=12,..,n-1, (6)
Xn = —(kix1 + koxa + -+ - + knXxn )",
where x = (x1,X2,...,X,) is the state vector, p; > p, >

> pp, > 1 are ratios of positive odd integers, and k; are
constants. System (6) has a homogeneity with strictly decreasing
degrees (HSDD) with respect to the homogeneous weight vector
(1,1,..., 1) € RN"; see Definition 2. HSDD plays an instrumental
role in distinguishing the convergence rate of each state and
consequently proving the stability result. A natural question is
whether the result of Zhu and Qian (2018) can be extended by
using the HSDD with respect to the general homogeneous weight
vector (rq, 12, ..., Iy) instead of (1,1,...,1) € "

In this paper, we reveal that a linear controller can be changed
into a nested nonlinear form to achieve the local asymptotic
stability of x = 0 for system (1) with respect to all the unknown
positive parameters and a class of uncertain upper-triangular
perturbations satisfying Assumption 1. By using the Lyapunov
second method and Chetaev instability theorem, a necessary and
sufficient condition for the local asymptotic stability of the equi-
librium x = 0 of the closed-loop system for all uncertainties is
established.

2. Stabilization with a nested controller

In this section, we first introduce the concept of HSDD. Then,
based on the notion of HSDD, we can increase the powers of the
states in a linear controller to locally asymptotically stabilize the
uncertain upper-triangular system (1).

Definition 2. A continuous vector field v : R" — NR" with
v = [v1,...,v,]" is said to satisfy homogeneity with strictly
decreasing degrees (HSDD), if we can find positive real numbers

(r,...,ry) and real numbers @u; > @y > --- > u, such that
Vi(€MXq, ..., €Mx,) = €'iThiy(x) for all x € R", ¢ > 0 and
i=1,2,...,n The constants r; and w; are called homogeneous

weights and degrees, respectively.

HSDD is a special case of the homogeneity with monotone
degrees (HMD); the latter merely requires wq > uy; > --- >
un (Polendo & Qian, 2008). If all the degrees w; are the same, HMD
becomes the traditional homogeneity (Hermes, 1995).

As discussed in the introduction, a linear controller cannot
guarantee the local asymptotic stability of the equilibrium x =
0 for (1) for all the unknown constants a;. Choosing constants
ri > 1 as a ratio of two positive odd integers, and w;, i =
1,...,n — 1, as ratios of an even positive and an odd positive
integers satisfying pq > uy > -+ > up_1 > 0 = u,, we define
the powers r; as ri 1 =1+ i, i=1,...,n. Itis easy to check
that every r; > 1 is a ratio of two positive odd integers. With
the help of the above powers, we replace the linear controller

—(kix1 + koXp + - - - 4 knx,) by
n
u=—((- ((kaxy" +kzXz)'2 +k3><3)’3 +-
+ kn—lxn—l)r"_1 + knxn) = —bu(X1, ..., Xn). (7)

Remark 3. The function ¢, in controller (7) can be obtained by
the following recurrence:

d1(x1) = kixq,

Gir1(X1, ..., Xip1) = (di(x1, ...
foreachi=1,2,...,

; ))r'ﬂm + kit1Xiy1 (8)
n—1.
The closed-loop system (1) under controller (7) is

X=X +filkip, . %), =12, 01, 9)
Xn=—nPn(X1, ..., Xn).
In order to analyze the local asymptotic stability of x =

0, we transform system (9) to a new system via a diffeomor-
phism around the origin. Denote each ¢; by e; and let e =

[e1,e2,...,ea]T = @(x). It is easy to check that the inverse
mapping of e = ®@(x) is
X1 = kjles, xi:ki‘l(ei—e?_/f‘l), i=2,....n (10)

Since r; > r;_1, both the transformation e = @(x) and its in-
verse mapping (10) are continuously differentiable, which implies
that the transformation e = @(x) is a diffeomorphism. Therefore,
the closed-loop system (9), or (1) and (7), can be equivalently
transformed into the following system:

k1 aq 2 ~ ’(1(11 :l

é1 = —(ea—e;! )+kifi(e)=— e;' +gi(e), (11)
kz k2
. kg i1 -
&= —(eir1i—e; ' )+ kifie)
ki1
1 ki qa
i r, 1 i—1Wi—-1 r, 1
+r1] i—1 ( ki ll+gi ())
kia; =L
= _k~,+1ei Cgle), i=2,3,...,n—1, (12)
1

"
n rnfl -1 kn—lan 1

én = _knanen+ €1 (_ rn ! +gn 1(6))
n—1 kn
= _knanen +gﬂ(e)7 (13)
whereﬁ =fio® !, i=1,2,...,n—1,and g are recursively
defined by
kia
gi(e) = “ et kifi(e) (14)
kia;
gi(x) = —eir1 + kifi(e)

Kiyq
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rooae-1 k1@ r1l1
e. _
+ri—1 i—1 ( ki l 1 +gl ( ))
i=2,....n, (15)
R e S P AT M s
gle) = ——e) (—————e" 11 +gn-1(e)). (16)
Tn—1 kn

Remark 4. The above system transformation is valid when the
uncertain parameters a; are constant. When the latter are time-
varying, the transformation is no longer applicable.

Corresponding to Assumption 1 imposed on uncertain func-
tions of the original system, we can have an estimation on g;
as shown in the following proposition, whose proof is listed
in Appendix.

Proppsition 5. Fori = 1,...,n, there are positive constants C;
and §; such that
S HETE (1)
gl <Y Il T+l T Z lejl) (17)
Jj=1 j=it1

in a neighborhood of the origin.

Now, we can present our main result in this paper.

Theorem 6. Assume that all the f; satisfy Assumption 1, the gains
k; are nonzero, and r; are ratios of positive odd integers determined
byri1 =r+uwp,i=1,...,n wherer; > 0 and puy > up >
<+ > Up_1 > Wn = 0. Then the uncertain system (9) is locally
asymptotically stable for all a; > 0 and f; satisfying Assumption 1
ifand only ifk; > 0 foralli=1,2,...,n

Proof Construct the following Lyapunov/Chetaev function V(e) =

> where

llal’

a7l =12, on— 1 h=—ka," (18)

li=_ki+1k,‘_ n

and o; = 2rr; ' > 2, i=1,2,...,
along (12) can be easily calculated as

n. The derivative of V(e)

n r’il n

vie)=) ¢ e+ e gi(e), (19)
i=1 i=1

where 1,1 =1, and o, = 2. From (19), it follows that
n n

Ve)= ) €= Ihlled“lgi(e). (20)
i=1 i=1

where m; =a; — 145 = ““Lzr”, i=1,2,...,n are ratios of an

even integer and an odd one. Applymg (17) to (20), we can find
constants p;, p; and p; such that

i) = Y=Y gl
n
S e el

i=1 j=1

Hi +r,

(148)

o

n—-1 n
=Y bileil e

i=1 j=i+1

Denoting ¢; = |e;|™ fori = 1,...,n, we can rewrite the above

inequality as

V(e Z Gi— Z,Oz mlrl
i

—ZZ,OJQ m’ |gj| ™ _Z sz o ji.

i=1 j=1 i=1 j=i+1

= Z;i_H(C)’ 21

where ¢ = [{1, 82, -+ -, Gnl-

In what follows, we verify that H(¢) is composed of higher-
order terms with respect to ¢.

First, by the expression of m; below (20), it is clear that

i—1 1 A i T
& Pla4d) =1- Ly P44

m; m;r;i mir; mir;i

=14 s S (22)
ili

Similarly, we have

—1+M1+Ti_l_ Ti+1 Mt T

m; m;t; Wi+2rn 2

In addition, since w; > p; for j < i and 2r, > r;, the following
holds

-1 pi+r Fit1 Mi+Ti
+ >1-— =
m; m;r; i+ 2m, Mi+ 21,

Finally, by the fact that r; > riyq and pu; > p;forj > i+ 1, we
have

(23)

i— 1 1 Ti 1
o 4+ =1- i+1 +—
m; m; m;r;i m;
Tit1 Tj
Wit 2rn i+ 2r,

With the help of inequalities (22), (23) and (24), we conclude that
H(¢) has an order higher than 1 in terms of ¢. Therefore, there
exists a sufficiently small neighborhood D C R" of the origin such
that

n n
€)>82§i2826;ﬂi, YeeD (25)
i=1 i=1
for a constant ¢ > 0. From (18), it is easily seen that
i<0(i=1,2,...,n) & k>0(i=1,2,...,n). (26)

Ifk;>0(i=1,2,...,n), itis clear that V(e) is negative definite
due to (26). This, together with (25), implies that the zero solution
of (9) is asymptotically stable by Lyapunov Stability Theorem.
Therefore the positivity of k; is sufficient for the local asymptotic
stability of (9) .

On the other hand, if there exists a k; < 0, by (26) there exists
an l; > 0. In this case, we know that the set G := {e € %" | V(e) >
0} is not empty and e = 0 is a boundary point of G. Therefore,
from (25) and Chetaev Instability Theorem, it follows that x = 0
for (9) is unstable. This implies that the positivity of k; is also
necessary for the local asymptotic stability of (9). O

3. Examples

Example 1. The dynamics of the orientation of a car can be
described as follows (Mellodge & Kachroo, 2004; Zhu & Yuan,
2014):

é:%tamp, b= o, d)=]1u, (27)
where 0 is the car’s angle with respect to the x-axis, ¢ is the
steering wheel’s angle with respect to the car longitudinal axis,
w is the angular velocity of the steering wheels, v is the linear
velocity of the center of the rear axle during the cruise stage, [
the length between the steering wheels and the rear wheels, J is
the moment of inertia, and u is the external torque. If v, [ and J
are unknown constants, system (27) can be written as the form
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of (1) satisfying Assumption 1 with f; = 7(tan¢ —¢)) and f, = 0.
We choose r1 = 3,1, = 5 and r3 = 2. Then by (7) we get the
controller as follows:

u=—(((ki0Y” + ka9)*'* + kz). (28)

w
w

Let k; = 1, k; = 2 and k3 = 1. The local asymptotic stability can
be easily verified. With some simulations when v = 2, [ = 3 and
J = 4, we find that the closed ball By3 = {x € %3 | ||x|| < 0.3} is
a subset of the attracting region.

Example 2. Consider the upper-triangular system:

X1 = a1Xz2 + b1ixs + biaxs + C11X;/3X4 + C12X;/3Xi/3,

Xy = @xX3 + ba1X4 + C21X3X4, (29)
X3 = a3Xq + C31X3,

X4 = Q4l,

where a; > 0, b; # 0 and ¢; # 0 are unknown parameters. Choose
r =51 =17/3,r3 = 31/5,r4 = 33/5 with w1 = 2/3 > uy =
8/15 > pu3 = 2/5 > ug = 0, under which the nested nonlinear
controller is designed as

u= (((l<1x1 +kax2)B + kaxs)3 4 kaxa). (30)

By (29), we have that

3,23
fi = buixz + biaxa + C11X2 *X4 +C12Xg Y / ,

fr = baixa + cux3xg, f3= C31X4-
By the Young’s Inequality, we get that

4/3 4/3
fil < Ibullxs| + [bialxal + lenllxa]* + |crrl|xal®
+ |c12]1x3] + [€12]|X4].

If [x4] < 1, then [fi] < c1(1X2]"1 + [x3] 4 [x4]), o] < co(lxs|™2 +
Xal), Ufs] < cs|xa|'™ for some¢; > 0,8; = 1/3 and 6, = &5 = 1.
Therefore, Assumption 1 is satisfied and from Theorem 6 the
local asymptotic stability of x = 0 for (29) with those unknown
parameters follows. The attracting basin can be estimated by a
numerical method. In particular, when a; = 1,byy = 2, b, = 1.2,
11 = 3, Cip = -3, a; = 1.2, b21 = 1.1, 1 = -3, as = 1.2,
31 = —3,a4 =11, ki =1, ky =2, k3 = 3, ks = 1, we find
that at least the closed ball Bs = {x € \* | ||x|| < 5} lies in the
attracting basin.

4. Conclusion

This paper introduces a new concept of homogeneity with
strictly decreasing degrees (HSDD) and an approach of design-
ing a nested state feedback stabilizer for a class of uncertain
upper-triangular nonlinear systems. It is shown that a linear con-
troller can be converted into a nested nonlinear form to realize
the local asymptotic stability of the equilibria of the uncertain
upper-triangular systems.

Appendix. Proof of Proposition 5

Under (10) and the expression offi below (13), Assumption 1
can be represented as follows

TSI B 0
s -1 T -1 -1
F@) = ik e—e I+ Ik llg— e )
jfi+2
Tit1 1+5; Tj
= Ti 14

<Glle," | +leal™i 4 Z lejl + g5 1)

Jj=i+2

in a neighborhood of the origin, where ¢; is a positive constant.
Since rr—’l > 1, in a neighborhood of e = 0 there exists positive
i

constant 5,' such that

el <Elel T 043 fey (A1)

j=it1

By the relationship of gj(e) and g;_
exist positive constants o; such that

1(e) defined in (12), there

1e)l) (A2)

foranyi=1,2,3,...,nwithgy =0 andfn = 0. In the following,
we prove (17) based on (A.1) and (A.2).

For the case of i = 1, from (14) and (A.1), it follows that there
is a constant C; > 0 such that

(1+51 +Z|e] (AB)

= iy g
lgi(e)l < oi(leip1|+Ifi(e)l+lei—1]-1 +lei_1]"-1 “|gi-

lg1(e)] =Ci(leq |

which implies that (17) holds for the case of i = 1.
Suppose that (17) holds for the case of i — 1, that is,

i-2 witi—1 i—1trioq
- (1+5 )
lgl-_1|sc,~_1(§ el T+ e ”+§ |e,) (A4)
=1

By the Young's inequality, we have

XIy1? < X[+ |yt Y x, y e R, (A5)

.
where ¢ and d are positive constants. Letting [x| = |e;_1|"-1,

1 .
Iyl = lgi—1(e)l'i, ¢ = pi—1, and d = r; and applying (A.5) to (A.2)
yield
Hi—1 ¥ pizy
oilleir1l + Lfi(e)l + leicl 1+ lei—g] 1 g (e)])

Hi—1+Ti

oillens] + (@) +2leis] T1 + g ). (A8)

By (A.4) and Jensen’s inequality, we have

/\

gi(e)] <

IA

Wi+ Mo Hi—1+Ti 1+r1 i—2 MJ“H, 1 Him1th
g T =0T (Zm T
n |Ei 1|H1 r,1+;l 1 M- 1+1(H51 1)+ e |Mx rrrr[
i—1t7i
n Z el ) (A7)
Jj=i+1

For j <i— 2, by the fact that u; > pi_1, we have

HitTior pia+ T Wi+
Tj T Tj
Mot T iy Tl — riz
TjTi
. 14T o — Tl
- Mi—1Mi-1 i—1Mi—1 iMi—1 —0. (A.8)
1Ty

In addition, considering the power of |e;_{],

i1 +1; 1 A
Pl B Pl 5= B g (A.9)
Ti—1 Ti Ti—1
For the powers of |e;|, we have
i +r T _l’_ i1 — . T P — .
Mi-1 i _ Nin Mi-1 — i _ Ll(l-i— Mi-1 IM). (A.10)

T Ti Ti Titq
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By (A.7)-(A.10), we conclude that in a neighborhood of the
origin there exist positive constants &; and &; = % such that

i—2 Kt

[ | ot i1t
gl T < a(>lel T el
j=1
Tit1 5 1
el T 43 e, (A11)

Jj=i+1
Substituting (A.1) and (A.11) into (A.6) yields (17) for the case
of i.
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