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Abstract

We propose an error-adaptive method for constructing time-series models us-

ing radial basis functions. The quality of the data fit is optimized as part of

the objective function in a linear program. The resulting algorithm is applied

to streaming time-series data. Novel points are identified using a infeasibility

criterion, while feasible points are characterized as nominal and not used for

training. A sparsity promoting term in the objective function serves to deter-

mine the location and number of RBFs required to fit the data. We illustrate the

approach with several examples and show that the fitting procedure is robust

to additive noise.

Keywords: Radial Basis Functions, Adaptive Error Modeling, Dual Simplex

Algorithm, Anomaly Detection.

1. Introduction to Radial Basis Functions

The Radial Basis Function (RBF) expansion is a widely used tool for data

driven modeling of large data sets. It takes the form

f(x) = w0 +

Nc∑
k=1

wkφ(‖x− ck‖), (1)

where the RBF functions can be selected from several options [1, 2]. For sim-

plicity, in this paper the function f and weights wk are assumed to be scalars.
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One of the main challenges to using RBFs to discover nonlinear relationships

in data is the need to determine the model parameters. How many RBFs Nc5

should be used? Further, where should these RBFs be centered on the data, i.e.,

how should these locations {ck} be determined? Much of the algorithmically

oriented RBF literature centers around providing efficient solutions to these

problems, see, e.g., [3, 4] and references therein.

The theoretical foundation of RBFs is supported by a Universal Approxima-10

tion Theorem [5] which states that continuous functions on a compact domain

are dense with respect to certain families of RBFs. RBFs have also been ex-

plored in the context of approximation theory [6, 7] and more recently families

of compact RBFs have been proposed [8].

Radial basis function approximations provide a flexible optimization frame-15

work for solving for the model parameters. For example, if the centers and

shape parameters of the RBFs are preselected, then the RBF problem for the

unknown weights is simply a linear system. This fact suggests hybrid opti-

mization routines, where the centers are selected, then refined, using nonlinear

optimization after the weights have been found using a linear systems approach.20

Updates may also be made either on-line or in batch modes depending on the

application.

In this paper we propose a method for learning radial basis functions where

the quality of the model to be fit is a decision variable to be determined by the

optimization problem. This program is set in the context of streaming data and25

is solved using an incremental solution to the simplex algorithm. This approach

has the advantage that sparsity promoting terms may be added to the objective

function. This results in a solution to both the order determination problem as

well as the center location problem.

2. The RBF Learning Problem30

We assume that the data is observed sequentially with time being indexed

by i. So, at time ti the point xi is observed. The RBF equation for this point
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is then

bi = w0 +
m∑
k=1

wkφ(‖xi − ck‖).

where bi represents the target value of the function f , i.e.,

f(xi) = bi

If we define the interpolation matrix as

Φ =


1 φ(‖x1 − c1‖) . . . φ(‖x1 − cNc‖)

...
...

...
...

1 φ(‖xP − c1‖) . . . φ(‖xP − cNc‖)


where we assume a total of P observations and a selection of Nc centers. The

weights are then found by solving the system

Φw = b. (2)

This approach is widely used for computing radial basis function solutions. Typ-

ically there are far more data points than centers, i.e., P >> Nc.

However, since the problem is over-determined, it has a unique approximate

optimal solution. The number of centers must be selected in advance, so there

is no opportunity for sparsity promotion in the weight vector w.35

We propose an alternative approach to computing the RBF model that re-

volves around the idea of solving Equation (2) as an underdetermined system

with a sparsity promoting constraint. Specifically, we randomly select far more

centers than data points, i.e., Nc >> P . As we shall see, the regularizing

sparsity term in combination with the adaptive error constraint serve to pre-40

vent over-fitting of the data in a manner that can be controlled by an ad hoc

parameter.

As we are concerned with streaming data, we need notation for the additional

information associated with observing the ith point xi. Thus, we use Φi to

denote the ith row of this matrix (as a column vector).45
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Figure 1: The result of applying the simplex algorithm with fixed ε to the Mackey-Glass data

set using sequential training over 1000 data points. The lower bars denote that an infeasible

LP resulted from adding the point. The location of the novel point is shown in blue. A total

of Nc = 14 RBFs were automatically selected from an initial set of 500 during the streaming

algorithm.
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3. Linear Programming Formulation

We propose to determine the parameters in the RBF approximations by

solving the optimization problem

minimize
w,ε

‖w‖1 + Cε

subject to ‖Φw − b‖∞ ≤ ε
(3)

where the fitting parameter ε and the weight vector w are the decision variables

in the optimization problem. As we will see below, this optimization problem

is actually a linear programming problem. This LP formulation builds on our

earlier work where we viewed ε as a fixed constant [9]. Although the modification50

may appear minor, as we shall illustrate, it fundamentally improves the resulting

models and utility of the algorithm. First, observe in Figure 1 that the learning

using a fixed ε is spread out over a longer time period than we will observe below.

We will see that taking ε as a decision variable leads to more rapid learning of

nominal data and the ability to adapt variations in the level of noise. In contrast,55

using a fixed quality parameter ε requires a search for this parameter, but more

importantly, does not permit the flexibility of being adapted as part of the

learning problem.

Appeal of the formulation. This formulation has several attractive features over

standard techniques for learning RBF models:60

Automated Goodness of Fit. The parameter ε serves as the upper

bound on the error of the data fit. This value is minimized via the solution

of the linear program. We see that it adapts over the course of learning. When

noise is artificially added to data this is seen to increase the optimal value of ε.

Fast Updates. If the new point is not feasible, one can implement a warm65

start of the dual simplex algorithm. In practice, we have observe that very few

iterations of the dual simplex are required to recover optimality.
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Updates not always required. In general, incremental RBF algorithms

implement rank-one updates for every new data point [10]. The algorithm pro-

posed here allows for incremental learning without the need for rank-one updates70

to the solution of a linear system. When a new point arrives, one determines if

the solution to the LP is still feasible. If so, it is still optimal, and NO UPDATE

is required.

Low Memory Requirements. This algorithm is designed to operate on

streaming data. Because only infeasible points are required to update the model,75

only a small subset of the observed data must be stored.

Data Selection. This algorithm identifies novel points in the data stream.

In practice, we observe that approximately 10% or less of the data is novel.

Order Determination. The number of RBFs is automatically deter-

mined using this algorithm.80

Center Locations. The location of the centers {ck} is determined auto-

matically by the algorithm. If one desires, a further location refinement may

be implemented using, e.g., BFGS for nonlinear optimization of the objective

function. We note that this is now much faster using the smaller novel data set

and an appropriate initial number of centers.85

A Paradigm for Novelty Detection. We observe that at the beginning of training

that many updates are required but that after many points have been observed

the updates become much less frequent. This is due to the fact that the data

space has been modeled by the RBF and no additional complexity is required

when a new point arrives. However, if the system changes, e.g., the temperature90

in a weather system that is changing, then the new data triggers a model update.

The `1-norm component of the objective function can be converted into the

more tractable form of a hyperplane by introducing ti such that

−ti ≤ wi ≤ ti

6



where ti ≥ 0, i = 0, . . . , Nc. Substituting this into the optimization problem

minimize
w,ε

Nc∑
i=0

ti + Cε

subject to ‖Φw − b‖∞ ≤ ε

−ti ≤ wi ≤ ti, i = 0, . . . , Nc,

ε, ti ≥ 0.

(4)

Similarly, the constraint ‖Φw − b‖∞ ≤ ε can be rewritten equivalently as

|(Φw − b)i| ≤ ε

for each of the components i = 1, . . . P . Denoting the i’th row of Φ as Φi this

can be further rewritten to

−ε ≤ ΦTi w − bi ≤ ε

again for each i = 1, . . . , P .

minimize
w,ε

Nc∑
k=0

tk + Cε

subject to ‖Φw − b‖∞ ≤ ε

− tk ≤ wk ≤ tk, k = 0, . . . , Nc.

(5)

Collecting the constraints and the (now linear) objective function, we have

minimize

Nc∑
k=0

tk + Cε

subject to ΦTi w − ε ≤ bi i = 1, . . . , P.

−ΦTi w − ε ≤ −bi i = 1, . . . , P.

wk − tk ≤ 0, k = 0, . . . , Nc

−wk − tk ≤ 0, k = 0, . . . , Nc

ε, tk ≥ 0, k = 0, . . . , Nc.

(6)
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where the decision variable is x = (ε, t, w) with t, w ∈ RNc+1, ε ∈ R. Augmenting

the decision variable to include the slack variables, we have

minimize

Nc∑
k=1

tk + Cε

subject to ΦTi w − ε+ ui = bi i = 1, . . . , P.

−ΦTi w − ε+ vi = −bi i = 1, . . . , P.

wk − tk + sk = 0, k = 0, . . . , Nc

−wk − tk + zk = 0, k = 0, . . . , Nc

ε, ui, vi, sk, zk, tk ≥ 0, k = 0, . . . , Nc.

(7)

where now x = (ε, t, w, s, z, u, v) with t, w, s, z ∈ RNc+1, u, v ∈ RP , ε ∈ R. If we

let Q = Nc + 1 and define c = (C eQ 0Q 0Q 0Q 0P 0P )T . In other words,

minimize

Nc∑
k=1

tk + Cε

subject to


−eP 0P×Q Φ 0P×Q 0P×Q IP×P 0P×P

−eP 0P×Q −Φ 0P×Q 0P×Q 0P×P IP×P

0Q −IQ×Q IQ×Q IQ×Q 0Q×Q 0Q×P 0Q×P

0Q −IQ×Q −IQ×Q 0Q×Q IQ×Q 0Q×P 0Q×P





ε

t

w

s

z

u

v


=


b

b

0Q

0Q



To complete the conversion to standard form we need to remove the only free

variable w. The standard mechanism for doing this is to let w = w+−w− where

w+, w− ≥ 0. Now we have

A =


−eP 0P×Q Φ −Φ 0P×Q 0P×Q IP×P 0P×P

−eP 0P×Q −Φ Φ 0P×Q 0P×Q 0P×P IP×P

0Q −IQ×Q IQ×Q −IQ×Q IQ×Q 0Q×Q 0Q×P 0Q×P

0Q −IQ×Q −IQ×Q IQ×Q 0Q×Q IQ×Q 0Q×P 0Q×P

 (8)

8



x =



ε

t

w+

w−

s

z

u

v


and

b̂ =


b

b

0Q

0Q


With the above definitions for A, x, b̂, c the standard form is

minimize
x

cTx

subject to Ax = b,

x ≥ 0.

(9)

4. Incremental Learning95

Rather than solve the above optimization problem for a set of points, we

proceed with an incremental learning algorithm in the sense that the points

arrive one at a time and the model is updated. The initialization of the LP is

immediate with no points.

4.1. Initialization100

The feasibility condition is

A0x0 = b0
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where

A0 =

0Q −IQ×Q IQ×Q −IQ×Q IQ×Q 0Q×Q

0Q −IQ×Q −IQ×Q IQ×Q 0Q×Q IQ×Q

 (10)

x0 =



ε

t

w+

w−

s

z


where u, v are not part of the decision vector since there are no points. and

b̂0 =

0Q

0Q


A basic feasible solution is simply given by x0 = 0.

4.2. Rank 2 update

Now that the LP is initialized for the case of no data we outline the procedure

for updating the RBF solution as each data point is added. We focus on the

case of the first point given the rest of the updates follow the same pattern.

Given a new data point we test the feasibility of the LP, i.e., if either

ΦT1 w − ε ≤ b1

or

−ΦT1 w − ε ≤ −b1

fails to hold the LP may become non-optimal and a new solution must be found.

Here we take advantage of the structure of the updated constraints and the fact105

that since the new LP has an infeasible primal solution, it is dual feasible.

This is accomplished, as the notation above suggests, by introducing the new

basic variables u1, v1 ≥ 0 that appear as slack variables

ΦT1 w − ε+ u1 = b1
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or

−ΦT1 w − ε+ v1 = −b1

The new constraint matrix now becomes

A1 =


0Q −IQ×Q IQ×Q −IQ×Q IQ×Q 0Q×Q 0Q 0Q

0Q −IQ×Q −IQ×Q IQ×Q 0Q×Q IQ×Q 0Q 0Q

−1 0TQ ΦT1 −ΦT1 0TQ 0TQ 1 0

−1 0TQ −ΦT1 ΦT1 0TQ 0TQ 0 1

 (11)

This has the form

A1 =


A0 0 0

fT1 1 0

gT1 0 1


where the row vector

fT1 =
(
−1 0TQ ΦT1 −ΦT1 0TQ 0TQ

)
,

and

gT1 =
(
−1 0TQ −ΦT1 ΦT1 0TQ 0TQ

)
.

x1 =


x0

u1

v1


where u1 and v1 are scalars. Also,

b̂1 =


b̂0

b1

−b1


i.e., the resource vector has been augmented by the scalar RBF target of the

first data point.

Thus, if the old basis for the LP was B0, then the new basis, augmented by

u, v, becomes

B1 =


B0 0 0

f̃T1 1 0

g̃T1 0 1


11



where the tilde represents extracting the components of f, g associated with

the basic variables. The inverse of B1 may be efficiently computed from B0 as110

described in [11].

5. Results

In this section we present apply the algorithm to several illustrative data

sets. In each case we explore the behavior of the fit over the incremental learning

process, as exhibited the evolution of ε. Also, since we have introduced a new115

ad hoc parameter C we explore its impact on the modeling and the extent to

which tuning this parameter can be used to an advantage.

In each example we use the idea of time delayed embeddings [12]. We fit a

model to predict based on previous delays, i.e.,

xn+T = f(xn, xn−T , xn−2T )

where f is mapped by RBFs using the proposed algorithm. In each case we

have selected an embedding dimension of 3 and a time delay T based on the

autocorrelation.120

5.1. Synthetic Time Series

To investigate the role of the parameter C we study the performance of the

algorithm on two synthetic time series:

y1(t; δ) = sin(t) + sin(2t) + δ dW(t) (12)

y2(t; δ) = sin(t) + δ exp

[
−(t− t0)2

2σ2

]
dW(t) (13)

where dW(t) are increments of white noise, with realizations of W(t) ∼ N (0, t)

(distributed normally with mean zero and variance t), and δ ∈ [0, 1], t0, and σ

parameters determining the shape of the data. For simplicity in this study, we

fix the domain t ∈ [0, 20π], t0 = 10π, and σ = 2.5π.125

The purpose of studying these equations is twofold. The first equation (12)

has a stationary additive noise. Since the function is periodic in expected value,
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ε and the number of RBFs will asymptotically approach a level characteristic for

the time series and the choice of C. The second equation (13) uses a noise with

time-dependent amplitude. This allows us to study how the algorithm adapts130

to novel information, and to what degree a choice of C allows us to choose a

balance between a large number of RBFs when C � 1, or fewer RBFs and a

large ε when C � 1.

Figure 2 illustrates the results of one such experiment. Here we set δ = 0.4

and a lag time of T = π/2 is chosen for the time delayed embedding. We observe135

the dynamic behavior of the number of RBFs and ε for ten repetitions of random

initial centers. The average of the timeseries is plotted, with the pointwise

bound across all repetitions shown as transparent. In the left panels we illustrate

y1(t, δ) (top) and the evolution of the two model parameters. There is a learning

phase for the algorithm over the course of approximately two periods of the140

function before the values of ε and the number of RBFs level off. Note that there

are two vertical axes in the bottom row; the grid uses the left axes in the two

panels, and reflects ε(t), while the right axes are used for the number of RBFs.

In the right panels the results for y2(t, δ) are shown. Similar to y1(t; δ), there

is an initial period where new RBFs are introduced. As the noise in the signal145

increases drastically, it is important to note that the algorithm incorporates the

new data into the model by increasing ε rather than continuing to add further

RBFs, which we interpret as a resilience in the algorithm towards overfitting the

data. Depending on the application, a balance between these extremes can be

struck based on C alone. We propose that this feature of the algorithm makes150

it useful for a broad class of time series.

5.2. Mackey-Glass

In this experiment we apply the algorithm to Mackey-Glass data set in Fig-

ure 3. Details on this well-studied benchmarking problem may be found in

[3] and references therein. The blue circles identify the locations on the graph155

where the new data point is determined to be infeasible and training is required

via updates to the dual simplex algorithm. The black line shows the solution
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Figure 2: Ten realizations of time series (12) and (13) are plotted (top row) with corresponding

ε(t) and nRBFs(t) (bottom row), with the pointwise mean (solid) and interval between the

pointwise minimum/maximum (shaded) shown in all panels. The typical behavior is an initial

growth of RBFs and ε which then stabilizes. The right column demonstrates that the algorithm

incorporates data with non-stationary noise by increasing ε rather than the number of RBFs.

for ε from the optimization problem as a function of time. We observe in Figure

3 a cluster of blue circles showing up in the first 100 time points. Meanwhile, ε

is adjusted to an ”optimal” value region such that the model starts learning the160

newly observed pattern with a reasonably small error threshold ε. From time

point 200 to 1000, we see that blue circle occurs at peaks and valleys of the

function, as well as at what appear to be inflection points.

As a comparison, the result of sequential simplex algorithm with fixed ε =

0.006 on the same data is shown in Figure 1. In the first 100 time points,165

less blue circles are observed in Figure 1 when comparing to the new result in

Figure 3. Also we see the ”optimal” ε value automatically determined by the

optimization problem is less than the pre-determined fixed ε in the first 100 time

points. This suggests that, in contrast to the the model with a fixed ε = 0.006,

the automated ε selection model is increasing the learning rates at the beginning170

of the modeling process.
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Figure 3: Mackey-Glass data training results. A 3-dimensional embedding with time delay

T = 1 is used and we are predicting 1 step ahead. A total of 1000 input-output pairs are

generated for training. A total of 500 initial centers are sampled from the domain of training

data. The RBFs are selected to be Gaussians all with width 10. The sequential simplex

algorithm identifies 164 out of 1000 data points as infeasible requiring dual simplex updates

to solve for primal feasibility.

5.3. Fort Collins Weather Data

The Fort Collins weather data was collected at Christman Field Weather

Station at Colorado State University [13]. The data set contains the temperature

measurements sampled every 5 minutes over September, 2016. The data is175

smoothed via simple moving average. The temperature at k-th time point is

the mean of the previous n temperatures. In particular, n is set to be 30 for

this experiment.

In this example the propsed incremental algorithm is used on 8640 data

points corrsponding to data over collected over September, 2016. It is observed180

in Figure 4 that when C = 100, 769 data points are identified as novel during

the streaming process. The red dots identify the location of novel data points

which we see occur a lot in the first 1000 time points as a learning process.

After the first period of learning, we can observe novel data points shows up at

extrema and inflection points. The number of iterations is capped at 15 through185

the whole streaming process.
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Figure 4: Fort Collins weather data training results (split into two panels). A 3-dimensional

embedding with time delay T = 6 (30 minutes) is used and we are predicting 12 steps (1 hour)

ahead. A total of 8511 input-output pairs are generated for training. A total of 500 initial

centers are sampled from the domain of training data. The RBFs are selected to be Gaussians

all with width 10. The sequential simplex algorithm identifies 769 out of 8511 data points as

infeasible requiring dual simplex updates to solve for primal feasibility. This plot shows the

location of the novel points with number of iterations used in dual simplex algorithm directly

in the panel below. A total of Nc = 16 centers were selected for this model.
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Figure 5: Histogram of number of iterations needed to obtain new optimal solution in dual

simplex algorithm when novel data points are observed in the process of streaming Fort Collins

weather data set.

Analysis of the ad hoc parameter C. The impact of the ad hoc parameter C is

explored using the Fort Collins weather data set. In Table 1, we see as C varies

from 10 to 1000, the average number of iterations in dual simplex algorithm is

varying from 0.1239 to 1.958, while the median number of iterations is constantly190

0. The number of novel data points is increasing from 613 when C = 10 to 1208

when C = 1000. Also we see in Figure 5 the number of iterations required

to obtain a new optimal solution is increasing as we vary C from 10 to 1000.

When C = 10000, we see 7216 out of 8511 data points are identified as novel

and median number of iterations required to obtain optimal solution becomes195

30 at which the maximum number of iteration is capped,i.e. optimal solution is

not obtained at these novel points. The expense of model training is increasing

as we turn up this ad hoc parameter C.

One fact we also observe from Table 1 is when C = 10, only 3 RBFs are

needed to fit weather data while as we bring C up to 1000, 31 RBFs are selected.200

The optimal error threshold ε given by the model at the end of streaming process

is decreasing from 17.15 to 3.39. We see a better goodness of fit with larger value

of C.

C can be viewed as a knob to adjust the desired complexity of the model.

More complex model result in significant increment in the training expense while205

simple model is lacking in goodness of fit. The ad hoc parameter C in this model
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serves as a balancing tool between sparsity and accuracy.

Table 1: Impact of the ad hoc parameter C on the learning of the weather data.

C = 10 C = 100 C = 1000 C = 10000

Iterations (mean) 0.1239 0.2463 1.958 24.0629

Iterations (median) 0 0 0 30

Iterations (STD) 0.5862 1.1115 6.6931 11.6483

Novel data points 613 769 1208 7216

Number of RBFs 3 16 31 50

Error threshold(ε) 17.15 5.64 3.39 0.64

6. Prior Art

Radial Basis Functions have been established as a theoretically and algorith-

mically attractive tool for approximating functions see, e.g., [5, 6, 7, 8]. They210

have been applied a broad variety of problems including the solution of PDEs

[14, 15] and modeling data [1, 2].

Our interest in RBFs, in addition to basic applications to data modeling,

concern addressing fundamental algorithm aspects that relieve the user from

making parameter decisions. Determining the number of basis functions and215

there locations is a fundamental challenge experience by anyone attempting

nonlinear modeling. We made a basic first step in this direction using an au-

tocorrelation test [16]; see also [17]. Additional extensions have been proposed,

including the use of skew RBFs which greatly increase the representation power

of the approximate functions [18, 19, 20]. We have provided convergence results220

for this method in [3].

The work here builds on [21] where a two stage optimization approach was

proposed for learning RBFs where one component of the learning was sparsity

driven and employed the simplex algorithm. This paper fundamentally extends

our previous work [9] to the case where the error fitting parameter selection is225

18



automated.

7. Conclusions

We have proposed and algorithm for time-series prediction that employs an

adaptive error to determine the quality of the model fit. The quality of the fit ε

is determined as part of the linear program formulation and serves to regularize230

the model. We observe that when noise is added to the data in our synthetic

example, the solution value for ε compensates to avoid over-fitting. We have

introduced an ad hoc parameter C that can be adjusted to tune the desired

complexity of the representation.

We have illustrated that this approach can be viewed as a tool for anomaly235

detection using the LP feasibility test. This also serves the dual purpose of a

data selection tool. Although we did not consider it here, this small data set can

be used to refine the model via a second stage nonlinear optimization problem,

see, [21].

We have focused on fitting the time-series using the time-delayed embedding240

framework to predict future values. In future work we will look at the batch

training of spatial data using the adaptive fit idea.
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