Incremental Error-Adaptive Modeling of Time-Series
Data Using Radial Basis Functions

Xiaofeng Ma, Manuchehr Aminian, Michael Kirby
Department of Mathematics, Colorado State University, Fort Collins, Colorado, 80523

Abstract

We propose an error-adaptive method for constructing time-series models us-
ing radial basis functions. The quality of the data fit is optimized as part of
the objective function in a linear program. The resulting algorithm is applied
to streaming time-series data. Novel points are identified using a infeasibility
criterion, while feasible points are characterized as nominal and not used for
training. A sparsity promoting term in the objective function serves to deter-
mine the location and number of RBFs required to fit the data. We illustrate the
approach with several examples and show that the fitting procedure is robust
to additive noise.

Keywords: Radial Basis Functions, Adaptive Error Modeling, Dual Simplex
Algorithm, Anomaly Detection.

1. Introduction to Radial Basis Functions

The Radial Basis Function (RBF) expansion is a widely used tool for data

driven modeling of large data sets. It takes the form

N.
flx) =wo+ Y wo(||lz — exl), (1)

k=1
where the RBF functions can be selected from several options [1, 2]. For sim-

plicity, in this paper the function f and weights w; are assumed to be scalars.
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One of the main challenges to using RBF's to discover nonlinear relationships
in data is the need to determine the model parameters. How many RBFs N,
should be used? Further, where should these RBF's be centered on the data, i.e.,
how should these locations {cx} be determined? Much of the algorithmically
oriented RBF literature centers around providing efficient solutions to these
problems, see, e.g., [3, 4] and references therein.

The theoretical foundation of RBFs is supported by a Universal Approxima-
tion Theorem [5] which states that continuous functions on a compact domain
are dense with respect to certain families of RBFs. RBFs have also been ex-
plored in the context of approximation theory [6, 7] and more recently families
of compact RBF's have been proposed [8].

Radial basis function approximations provide a flexible optimization frame-
work for solving for the model parameters. For example, if the centers and
shape parameters of the RBF's are preselected, then the RBF problem for the
unknown weights is simply a linear system. This fact suggests hybrid opti-
mization routines, where the centers are selected, then refined, using nonlinear
optimization after the weights have been found using a linear systems approach.
Updates may also be made either on-line or in batch modes depending on the
application.

In this paper we propose a method for learning radial basis functions where
the quality of the model to be fit is a decision variable to be determined by the
optimization problem. This program is set in the context of streaming data and
is solved using an incremental solution to the simplex algorithm. This approach
has the advantage that sparsity promoting terms may be added to the objective
function. This results in a solution to both the order determination problem as

well as the center location problem.

2. The RBF Learning Problem

We assume that the data is observed sequentially with time being indexed

by i. So, at time t; the point x; is observed. The RBF equation for this point
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is then

bi = wo + Zwk¢(||$z — cxl))-

k=1

where b; represents the target value of the function f, i.e.,

fxi) =b;
If we define the interpolation matrix as

Loo(ler —eal) - oz —enll)

L oo(fzp —all) - ollzp —en.l)

where we assume a total of P observations and a selection of N, centers. The

weights are then found by solving the system
dw = 0. (2)

This approach is widely used for computing radial basis function solutions. Typ-
ically there are far more data points than centers, i.e., P >> N..

However, since the problem is over-determined, it has a unique approximate
optimal solution. The number of centers must be selected in advance, so there
is no opportunity for sparsity promotion in the weight vector w.

We propose an alternative approach to computing the RBF model that re-
volves around the idea of solving Equation (2) as an underdetermined system
with a sparsity promoting constraint. Specifically, we randomly select far more
centers than data points, i.e., N, >> P. As we shall see, the regularizing
sparsity term in combination with the adaptive error constraint serve to pre-
vent over-fitting of the data in a manner that can be controlled by an ad hoc
parameter.

As we are concerned with streaming data, we need notation for the additional
information associated with observing the ith point x;. Thus, we use ®; to

denote the ith row of this matrix (as a column vector).
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Figure 1: The result of applying the simplex algorithm with fixed € to the Mackey-Glass data

set using sequential training over 1000 data points. The lower bars denote that an infeasible

LP resulted from adding the point. The location of the novel point is shown in blue. A total

of N. = 14 RBF's were automatically selected from an initial set of 500 during the streaming

algorithm.
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3. Linear Programming Formulation

We propose to determine the parameters in the RBF approximations by
solving the optimization problem

minimize  |Jw|; + Ce
w,e

(3)
subject to || Pw — bjeo < €
where the fitting parameter ¢ and the weight vector w are the decision variables
in the optimization problem. As we will see below, this optimization problem
is actually a linear programming problem. This LP formulation builds on our
earlier work where we viewed € as a fixed constant [9]. Although the modification
may appear minor, as we shall illustrate, it fundamentally improves the resulting
models and utility of the algorithm. First, observe in Figure 1 that the learning
using a fixed € is spread out over a longer time period than we will observe below.
We will see that taking e as a decision variable leads to more rapid learning of
nominal data and the ability to adapt variations in the level of noise. In contrast,
using a fixed quality parameter € requires a search for this parameter, but more
importantly, does not permit the flexibility of being adapted as part of the

learning problem.

Appeal of the formulation. This formulation has several attractive features over

standard techniques for learning RBF models:

Automated Goodness of Fit. The parameter € serves as the upper
bound on the error of the data fit. This value is minimized via the solution
of the linear program. We see that it adapts over the course of learning. When

noise is artificially added to data this is seen to increase the optimal value of e.

Fast Updates. If the new point is not feasible, one can implement a warm
start of the dual simplex algorithm. In practice, we have observe that very few

iterations of the dual simplex are required to recover optimality.
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Updates not always required. In general, incremental RBF algorithms
implement rank-one updates for every new data point [10]. The algorithm pro-
posed here allows for incremental learning without the need for rank-one updates
to the solution of a linear system. When a new point arrives, one determines if
the solution to the LP is still feasible. If so, it is still optimal, and NO UPDATE

is required.

Low Memory Requirements. This algorithm is designed to operate on
streaming data. Because only infeasible points are required to update the model,

only a small subset of the observed data must be stored.

Data Selection. This algorithm identifies novel points in the data stream.

In practice, we observe that approximately 10% or less of the data is novel.

Order Determination. The number of RBFs is automatically deter-

mined using this algorithm.

Center Locations. The location of the centers {c;} is determined auto-
matically by the algorithm. If one desires, a further location refinement may
be implemented using, e.g., BFGS for nonlinear optimization of the objective
function. We note that this is now much faster using the smaller novel data set

and an appropriate initial number of centers.

A Paradigm for Novelty Detection. We observe that at the beginning of training
that many updates are required but that after many points have been observed
the updates become much less frequent. This is due to the fact that the data
space has been modeled by the RBF and no additional complexity is required
when a new point arrives. However, if the system changes, e.g., the temperature
in a weather system that is changing, then the new data triggers a model update.

The ¢1-norm component of the objective function can be converted into the

more tractable form of a hyperplane by introducing ¢; such that

—t; <w; <t



where t; > 0,7 =0,..., N.. Substituting this into the optimization problem

N
minui}glize z% t; + Ce
i=
subject to [[Pw — b||oc < € (4)

7tl§wl§tla i:O,...,Nc,
€, ti Z 0.
Similarly, the constraint ||®w — b||o, < € can be rewritten equivalently as

[(Pw —b);| <€

for each of the components i = 1,... P. Denoting the i’th row of ® as ®; this

can be further rewritten to

again for each i =1,..., P.
N.
minimize E ty + Ce
w,€ kfo

()

subject to  ||Pw — b||eo < €
—tp <wp <tg, k=0,...,N..

Collecting the constraints and the (now linear) objective function, we have

Nec
minimize E tr +Ce
k=0

subject to @?w—egbi i=1,...,P.
—®Tw —e < —b; i=1,...,P (6)

wr — 1, <0, k=0,...,N,

—wi — 1t <0, k=0,...,N,

€t >0, k=0,...,N..



where the decision variable is 7 = (e, ¢, w) with t,w € RVt ¢ € R. Augmenting

the decision variable to include the slack variables, we have

N,
Ztk—i—Ce
k=1

minimize
subject to @Z-Tw —€e+u; =b;
—Tw—etv =Y
w — tg + s = 0,
—wg —tx + 2, =0,
€, Wiy Vi, Sy 2y e = 0,

i=1,..., P
i=1,..., P
k=0,...,N;
k=0,...,N,
k=0,...

where now x = (e,t,w, s, z,u,v) with t,w, s,z € RN¥e*1 4 v € RP e € R. If we

let @ = N, + 1 and define ¢ = (C eg 0g 0g 0g Op 0p)T. In other words,

N,

minimize Z tr +Ce

subject to
—€Ep OPxQ P
—€p OPxQ —®

0 —Igxq Igxq
0o —Ioxq —Ioxq

Opxq
Opxq
Igxq
0gx@

k=1

Opxq
OPXQ
0gx@
Igxq

Ipxp
Opxp
Ogxp
Ogxp

Opxp
Ipxp
Ogxp
Ogxp

v

To complete the conversion to standard form we need to remove the only free

variable w. The standard mechanism for doing this is to let w = w* —w™ where

wt,w™ > 0. Now we have
—€Ep OpXQ (0]
4| e Opxq -

O —Ioxq Igxq
0 —Ioxq@ —Igxq

—®
i)
—Ioxq
Igxq

Opxq
Opxq
Igxq
0ox@Q

Opxo
OpPxq
0gx@
Igxq

Ipxp
Opxp
Ogxp
Ogxp

Opxp
Ipxp
Ogxp
Ogxp
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With the above definitions for A, z, 5, ¢ the standard form is

minimize s
xr

subject to Az = b,

x> 0.

s 4. Incremental Learning

Rather than solve the above optimization problem for a set of points, we

proceed with an incremental learning algorithm in the sense that the points

arrive one at a time and the model is updated. The initialization of the LP is

immediate with no points.

wo  4.1. Initialization

The feasibility condition is

A()IQ = bo



where

0o —lox@ Iox@ —Ioxq@ Igxq@ Ogxq

Ay = (10)
0 —Igxq@ —Igx@ Igxq@ Ogxq@ Igxq
€
t
w-‘r
o —
-
S
z

where u, v are not part of the decision vector since there are no points. and

A Dbasic feasible solution is simply given by zy = 0.

4.2. Rank 2 update

Now that the LP is initialized for the case of no data we outline the procedure
for updating the RBF solution as each data point is added. We focus on the
case of the first point given the rest of the updates follow the same pattern.

Given a new data point we test the feasibility of the LP, i.e., if either
<I>1Tw —e<b;

or

—@fw —e< —b;

fails to hold the LP may become non-optimal and a new solution must be found.

s Here we take advantage of the structure of the updated constraints and the fact
that since the new LP has an infeasible primal solution, it is dual feasible.

This is accomplished, as the notation above suggests, by introducing the new

basic variables u1,v; > 0 that appear as slack variables
Tw —e+u =b

10



or
—@fw—e—&—vl:—bl
The new constraint matrix now becomes
0o —Ioxq@ Ioxq@ —lox@ Ioxq@ Ogxq 0Og 0Oq
0o —Ioxq@ —Ioxq@ Ioxq@ Ogxq@ Ioxq@ 0Og 0Oq

A= T T T T T (11)
-1 05 ) -7 ) 0o 1 0
T T T T T
-1 0% — ! ! o5 05 0 1
This has the form
Ag 0 O
A= 10
gi 0 1

where the row vector
f=(-1 o5 @f —af of 03),
and

gf = (-1 of —e @ of of).

O

Zo
1= | up
U1

where u; and vy are scalars. Also,

—by
i.e., the resource vector has been augmented by the scalar RBF target of the
first data point.
Thus, if the old basis for the LP was By, then the new basis, augmented by

u, v, becomes

By 0 0
Bi=|fI 1 0
gi 01

11
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where the tilde represents extracting the components of f,g associated with
the basic variables. The inverse of B; may be efficiently computed from By as

described in [11].

5. Results

In this section we present apply the algorithm to several illustrative data
sets. In each case we explore the behavior of the fit over the incremental learning
process, as exhibited the evolution of €. Also, since we have introduced a new
ad hoc parameter C' we explore its impact on the modeling and the extent to
which tuning this parameter can be used to an advantage.

In each example we use the idea of time delayed embeddings [12]. We fit a

model to predict based on previous delays, i.e.,

Tn+T = f(l:nv Ln—T, xn—QT)

where f is mapped by RBFs using the proposed algorithm. In each case we
have selected an embedding dimension of 3 and a time delay 7" based on the

autocorrelation.

5.1. Synthetic Time Series

To investigate the role of the parameter C' we study the performance of the

algorithm on two synthetic time series:

y1(t;0) = sin(t) + sin(2t) + 6 dW(t) (12)
ys(t: 6) = sin(t) + 8 exp {_(’52;2’50)2] AW (1) (13)

where dW (t) are increments of white noise, with realizations of W(¢) ~ A(0,¢)
(distributed normally with mean zero and variance t), and ¢ € [0,1], o, and o
parameters determining the shape of the data. For simplicity in this study, we
fix the domain ¢ € [0,207], to = 107, and o = 2.57.

The purpose of studying these equations is twofold. The first equation (12)

has a stationary additive noise. Since the function is periodic in expected value,

12
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€ and the number of RBF's will asymptotically approach a level characteristic for
the time series and the choice of C. The second equation (13) uses a noise with
time-dependent amplitude. This allows us to study how the algorithm adapts
to novel information, and to what degree a choice of C' allows us to choose a
balance between a large number of RBFs when C' <« 1, or fewer RBFs and a
large € when C > 1.

Figure 2 illustrates the results of one such experiment. Here we set § = 0.4
and a lag time of T' = 7/2 is chosen for the time delayed embedding. We observe
the dynamic behavior of the number of RBFs and ¢ for ten repetitions of random
initial centers. The average of the timeseries is plotted, with the pointwise
bound across all repetitions shown as transparent. In the left panels we illustrate
y1(t, ) (top) and the evolution of the two model parameters. There is a learning
phase for the algorithm over the course of approximately two periods of the
function before the values of € and the number of RBF's level off. Note that there
are two vertical axes in the bottom row; the grid uses the left axes in the two
panels, and reflects £(¢), while the right axes are used for the number of RBFs.
In the right panels the results for ys(t,d) are shown. Similar to y;(¢;d), there
is an initial period where new RBFs are introduced. As the noise in the signal
increases drastically, it is important to note that the algorithm incorporates the
new data into the model by increasing e rather than continuing to add further
RBFs, which we interpret as a resilience in the algorithm towards overfitting the
data. Depending on the application, a balance between these extremes can be
struck based on C' alone. We propose that this feature of the algorithm makes

it useful for a broad class of time series.

5.2. Mackey-Glass

In this experiment we apply the algorithm to Mackey-Glass data set in Fig-
ure 3. Details on this well-studied benchmarking problem may be found in
[3] and references therein. The blue circles identify the locations on the graph
where the new data point is determined to be infeasible and training is required

via updates to the dual simplex algorithm. The black line shows the solution

13
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Figure 2: Ten realizations of time series (12) and (13) are plotted (top row) with corresponding
€(t) and nRBF's(t) (bottom row), with the pointwise mean (solid) and interval between the
pointwise minimum/maximum (shaded) shown in all panels. The typical behavior is an initial
growth of RBF's and € which then stabilizes. The right column demonstrates that the algorithm

incorporates data with non-stationary noise by increasing e rather than the number of RBFs.

for e from the optimization problem as a function of time. We observe in Figure
3 a cluster of blue circles showing up in the first 100 time points. Meanwhile, €
is adjusted to an ”optimal” value region such that the model starts learning the
newly observed pattern with a reasonably small error threshold e. From time
point 200 to 1000, we see that blue circle occurs at peaks and valleys of the
function, as well as at what appear to be inflection points.

As a comparison, the result of sequential simplex algorithm with fixed ¢ =
0.006 on the same data is shown in Figure 1. In the first 100 time points,
less blue circles are observed in Figure 1 when comparing to the new result in
Figure 3. Also we see the "optimal” € value automatically determined by the
optimization problem is less than the pre-determined fixed € in the first 100 time
points. This suggests that, in contrast to the the model with a fixed € = 0.006,
the automated e selection model is increasing the learning rates at the beginning

of the modeling process.

14
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Figure 3: Mackey-Glass data training results. A 3-dimensional embedding with time delay
T =1 is used and we are predicting 1 step ahead. A total of 1000 input-output pairs are
generated for training. A total of 500 initial centers are sampled from the domain of training
data. The RBFs are selected to be Gaussians all with width 10. The sequential simplex
algorithm identifies 164 out of 1000 data points as infeasible requiring dual simplex updates

to solve for primal feasibility.

5.8. Fort Collins Weather Data

The Fort Collins weather data was collected at Christman Field Weather
Station at Colorado State University [13]. The data set contains the temperature
measurements sampled every 5 minutes over September, 2016. The data is
smoothed via simple moving average. The temperature at k-th time point is
the mean of the previous n temperatures. In particular, n is set to be 30 for
this experiment.

In this example the propsed incremental algorithm is used on 8640 data
points corrsponding to data over collected over September, 2016. It is observed
in Figure 4 that when C' = 100, 769 data points are identified as novel during
the streaming process. The red dots identify the location of novel data points
which we see occur a lot in the first 1000 time points as a learning process.
After the first period of learning, we can observe novel data points shows up at
extrema and inflection points. The number of iterations is capped at 15 through

the whole streaming process.

15
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Figure 4: Fort Collins weather data training results (split into two panels). A 3-dimensional
embedding with time delay T' = 6 (30 minutes) is used and we are predicting 12 steps (1 hour)
ahead. A total of 8511 input-output pairs are generated for training. A total of 500 initial
centers are sampled from the domain of training data. The RBF's are selected to be Gaussians
all with width 10. The sequential simplex algorithm identifies 769 out of 8511 data points as
infeasible requiring dual simplex updates to solve for primal feasibility. This plot shows the
location of the novel points with number of iterations used in dual simplex algorithm directly

in the panel below. A total of N. = 16 centers were selected for this model.
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Figure 5: Histogram of number of iterations needed to obtain new optimal solution in dual
simplex algorithm when novel data points are observed in the process of streaming Fort Collins

weather data set.

Analysis of the ad hoc parameter C. The impact of the ad hoc parameter C' is
explored using the Fort Collins weather data set. In Table 1, we see as C' varies
from 10 to 1000, the average number of iterations in dual simplex algorithm is
varying from 0.1239 to 1.958, while the median number of iterations is constantly
0. The number of novel data points is increasing from 613 when C' = 10 to 1208
when C' = 1000. Also we see in Figure 5 the number of iterations required
to obtain a new optimal solution is increasing as we vary C' from 10 to 1000.
When C' = 10000, we see 7216 out of 8511 data points are identified as novel
and median number of iterations required to obtain optimal solution becomes
30 at which the maximum number of iteration is capped,i.e. optimal solution is
not obtained at these novel points. The expense of model training is increasing
as we turn up this ad hoc parameter C.

One fact we also observe from Table 1 is when C' = 10, only 3 RBFs are
needed to fit weather data while as we bring C up to 1000, 31 RBFs are selected.
The optimal error threshold e given by the model at the end of streaming process
is decreasing from 17.15 to 3.39. We see a better goodness of fit with larger value
of C.

C can be viewed as a knob to adjust the desired complexity of the model.
More complex model result in significant increment in the training expense while

simple model is lacking in goodness of fit. The ad hoc parameter C' in this model

17
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serves as a balancing tool between sparsity and accuracy.

Table 1: Impact of the ad hoc parameter C' on the learning of the weather data.

C=10| C =100 | C =1000 | C = 10000
Iterations (mean) 0.1239 | 0.2463 1.958 24.0629
Iterations (median) 0 0 0 30
Iterations (STD) 0.5862 | 1.1115 6.6931 11.6483
Novel data points 613 769 1208 7216
Number of RBFs 3 16 31 50
Error threshold(e) 17.15 5.64 3.39 0.64

6. Prior Art

Radial Basis Functions have been established as a theoretically and algorith-
mically attractive tool for approximating functions see, e.g., [5, 6, 7, 8]. They
have been applied a broad variety of problems including the solution of PDEs
[14, 15] and modeling data [1, 2].

Our interest in RBF's, in addition to basic applications to data modeling,
concern addressing fundamental algorithm aspects that relieve the user from
making parameter decisions. Determining the number of basis functions and
there locations is a fundamental challenge experience by anyone attempting
nonlinear modeling. We made a basic first step in this direction using an au-
tocorrelation test [16]; see also [17]. Additional extensions have been proposed,
including the use of skew RBFs which greatly increase the representation power
of the approximate functions [18, 19, 20]. We have provided convergence results
for this method in [3].

The work here builds on [21] where a two stage optimization approach was
proposed for learning RBFs where one component of the learning was sparsity
driven and employed the simplex algorithm. This paper fundamentally extends

our previous work [9] to the case where the error fitting parameter selection is

18
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automated.

7. Conclusions

We have proposed and algorithm for time-series prediction that employs an
adaptive error to determine the quality of the model fit. The quality of the fit €
is determined as part of the linear program formulation and serves to regularize
the model. We observe that when noise is added to the data in our synthetic
example, the solution value for e compensates to avoid over-fitting. We have
introduced an ad hoc parameter C that can be adjusted to tune the desired
complexity of the representation.

We have illustrated that this approach can be viewed as a tool for anomaly
detection using the LP feasibility test. This also serves the dual purpose of a
data selection tool. Although we did not consider it here, this small data set can
be used to refine the model via a second stage nonlinear optimization problem,
see, [21].

We have focused on fitting the time-series using the time-delayed embedding
framework to predict future values. In future work we will look at the batch

training of spatial data using the adaptive fit idea.
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