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Abstract. We use persistent homology in order to define a family of fractal dimensions, denoted dimi
PH(µ)

for each homological dimension i ≥ 0, assigned to a probability measure µ on a metric space. The case of

0-dimensional homology (i = 0) relates to work by Michael J Steele (1988) studying the total length of a
minimal spanning tree on a random sampling of points. Indeed, if µ is supported on a compact subset of

Euclidean space Rm for m ≥ 2, then Steele’s work implies that dim0
PH(µ) = m if the absolutely continuous

part of µ has positive mass, and otherwise dim0
PH(µ) < m. Experiments suggest that similar results may

be true for higher-dimensional homology 0 < i < m, though this is an open question. Our fractal dimension
is defined by considering a limit, as the number of points n goes to infinity, of the total sum of the i-

dimensional persistent homology interval lengths for n random points selected from µ in an i.i.d. fashion.
To some measures µ, we are able to assign a finer invariant, a curve measuring the limiting distribution of

persistent homology interval lengths as the number of points goes to infinity. We prove this limiting curve

exists in the case of 0-dimensional homology when µ is the uniform distribution over the unit interval, and
conjecture that it exists when µ is the rescaled probability measure for a compact set in Euclidean space

with positive Lebesgue measure.

1. Introduction

Let X be a metric space equipped with a probability measure µ. While fractal dimensions are most
classically defined for a space, there are a variety of fractal dimension definitions for a measure, including
the Hausdorff or packing dimension of a measure [32, 61, 25]. In this paper we use persistent homology

to define a fractal dimension dimi
PH(µ) associated to a measure µ for each homological dimension i ≥ 0.

Roughly speaking, dimi
PH(µ) is determined by how the lengths of the persistent homology intervals for a

random sample, Xn, of n points from X vary as n tends to infinity.
Our definition should be thought of as a generalization, to higher homological dimensions, of fractal

dimensions related to minimal spanning trees, as studied, for example, in [70]. Indeed, the lengths of the 0-
dimensional (reduced) persistent homology intervals corresponding to the Vietoris–Rips complex of a sample
Xn are equal to the lengths of the edges in a minimal spanning tree with Xn as the set of vertices. In
particular, if X is a subset of Euclidean space Rm with m ≥ 2, then [70, Theorem 1] by Steele implies that
dim0

PH(µ) ≤ m, with equality when the absolutely continuous part of µ has positive mass (Proposition 4.2).
Theoretical extensions of our work are considered in [69, 68], and an independent generalization of Steele’s
work to higher homological dimensions is considered in [27].

To some metric spaces X equipped with a measure µ we are able to assign a finer invariant that contains
more information than just the fractal dimension. Consider the set of the lengths of all intervals in the i-
dimensional persistent homology for Xn. Experiments suggest that when probability measure µ is absolutely
continuous with respect to the Lebesgue measure on X ⊆ Rm, the scaled set of interval lengths in each
homological dimension i converges point-wise to some fixed probability distribution (depending on µ and i).
It is easy to prove the weaker notion of convergence distribution-wise in the simple case of 0-dimensional
homology when µ is the uniform distribution over the unit interval, in which case we can also derive a
formula for the limiting distribution. Experiments suggest that when µ is the rescaled probability measure
corresponding to a compact set X ⊆ Rm of positive Lebesgue measure, then a limiting rescaled distribution
exists that depends only on m, i, and the volume of µ (see Conjecture 6.1). We would be interested to know
the formulas for the limiting distributions with higher Euclidean and homological dimensions.

Whereas Steele in [70] studies minimal spanning trees on random subsets of a space, Kozma, Lotker, and
Stupp in [46] study minimal spanning trees built on extremal subsets. Indeed, they define a fractal dimension
for a metric space X as the infimum, over all powers d, such that for any minimal spanning tree T on a finite
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number of points in X, the sum of the edge lengths in T each raised to the power d is bounded. They relate
this extremal minimal spanning tree dimension to the box counting dimension. Their work is generalized
to higher homological dimensions by Schweinhart [67]. By contrast, we instead generalize Steele’s work [70]
on measures to higher homological dimensions. Three differences between [46, 67] and our work are the
following.

• The former references define a fractal dimension for metric spaces, whereas we define a fractal
dimension for measures.
• The fractal dimension in [46, 67] is defined using extremal subsets, whereas we define our fractal

dimension using random subsets.
• We can estimate our fractal dimension computationally using log-log plots as in Section 5, whereas

we do not know a computational technique for estimating the fractal dimensions in [46, 67].

After describing related work in Section 2, we give preliminaries on fractal dimensions and on persistent
homology in Section 3. We present the definition of our fractal dimension and prove some basic properties in
Section 4. We demonstrate example experimental computations in Section 5; our code is publicly available
at https://github.com/CSU-PHdimension/PHdimension. Section 6 describes how limiting distributions,
when they exist, form a finer invariant. Sections 7 and 8 discuss the computational details involved in
sampling from certain fractals and estimating asymptotic behavior, respectively. Finally we present our
conclusion in Section 9. One of the main goals of this paper is to pose questions and conjectures, which are
shared throughout.

2. Related work

2.1. Minimal spanning trees. The paper [70] studies the total length of a minimal spanning tree for
random subsets of Euclidean space. Let Xn be a random sample of points from a compact subset of Rd
according to some probability distribution. Let Mn be the sum of all the edge lengths of a minimal spanning
tree on vertex set Xn. Then for d ≥ 2, Theorem 1 of [70] says that

(1) Mn ∼ Cn(d−1)/d as n→∞,

where the relation ∼ denotes asymptotic convergence, with the ratio of the terms approaching one in the
specified limit. Here, C is a constant depending on d and on the integral

∫
f (d−1)/d, where f is the density

of the absolutely continuous part of the probability distribution1. There has been a wide variety of related
work, including for example [5, 6, 7, 42, 71, 72, 73, 74]. See [45] for a version of the central limit theorem
in this context. The papers [58, 59] study the length of the longest edge in the minimal spanning tree for
points sampled uniformly at random from the unit square, or from a torus of dimension at least two, and [47]
extends this to any Ahlfors regular measure with connected support (i.e., to any connected semi-uniform
metric measure space). By contrast, [46] studies Euclidean minimal spanning trees built on extremal finite
subsets, as opposed to random subsets.

2.2. Umbrella theorems for Euclidean functionals. As Yukich explains in his book [79], there are a
wide variety of Euclidean functionals, such as the length of the minimal spanning tree, the length of the
traveling salesperson tour, and the length of the minimal matching, which all have scaling asymptotics
analogous to (1). To prove such results, one needs to show that the Euclidean functional of interest satisfies
translation invariance, subadditivity, superadditivity, and continuity, as in [22, Page 4]. Superadditivity does
not always hold, for example it does not hold for the minimal spanning tree length functional, but there is
a related “boundary minimal spanning tree functional” that does satisfy superadditivity. Furthermore, the
boundary functional has the same asymptotics as the original functional, which is enough to prove scaling
results. It is intriguing to ask if these techniques will work for functionals defined using higher-dimensional
homology.

1If the compact subset has Hausdorff dimension less than d, then [70] implies C = 0.
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2.3. Random geometric graphs. In this paper we consider simplicial complexes (say Vietoris–Rips or
Čech) with randomly sampled points as the vertex set. The 1-skeleta of these simplicial complexes are
random geometric graphs. We recommend the book [57] by Penrose as an introduction to random geometric
graphs; related families of random graphs are also considered in [60]. Random geometric graphs are often
studied when the scale parameter r(n) is a function of the number of vertices n, with r(n) tending to zero
as n goes to infinity. Instead, in this paper we are more interested in the behavior over all scale parameters
simultaneously. From a slightly different perspective, the paper [44] studies the expected Euler characteristic
of the union of randomly sampled balls (potentially of varying radii) in the plane.

2.4. Persistent homology. Vanessa Robins’ thesis [65] contains many related ideas; we describe one such
example here. Given a set X ⊆ Rm and a scale parameter ε ≥ 0, let

Xε = {y ∈ Rm | there exists some x ∈ X with d(y, x) ≤ ε}

denote the ε-offset of X. The ε-offset of X is equivalently the union of all closed ε balls centered at points in
X. Furthermore, let C(Xε) ∈ N denote the number of connected components of Xε. In Chapter 5, Robins
shows that for a generalized Cantor set X in R with Lebesgue measure 0, the box-counting dimension of X
is equal to the limit

lim
ε→0

log(C(Xε))

log(1/ε)
.

Here Robins considers the entire Cantor set, whereas we study random subsets thereof.
The paper [51], which heavily influenced our work, introduces a fractal dimension defined using persistent

homology. This fractal dimension depends on thickenings of the entire metric space X, as opposed to random
or extremal subsets thereof. As a consequence, the computed dimension of some fractal shapes (such as the
Cantor set cross the interval) disagrees significantly with the Hausdorff or box-counting dimension.

Schweinhart’s paper [67] takes a slightly different approach from ours, considering extremal (as opposed
to random) subsets. After fixing a homological dimension i, Schweinhart assigns a fractal dimension to each
metric space X equal to the infimum over all powers d such that for any finite subset X ′ ⊆ X, the sum
of the i-dimensional persistent homology bar lengths for X ′, each raised to the power d, is bounded. For
low-dimensional metric spaces Schweinhart relates this dimension to the box counting dimension.

More recently, Divol and Polonik [27] independently obtain generalizations of [70, 79] to higher homological
dimensions. In particular, they prove our Conjecture 4.3 in the case when X is a cube, and remark that a
similar construction holds when the cube is replaced by any convex body. Related results are obtained in
two papers by Schweinhart, which are in part inspired by our work: in [69] when X is a ball or sphere, and
afterwards in [68] when points are sampled from a fractal according to an Ahlfors regular measure.

There is a growing literature on the topology of random geometric simplicial complexes, including in
particular the homology of Vietoris–Rips and Čech complexes built on top of random points in Euclidean
space [13, 43, 3]. The paper [14] shows that for n points sampled from the unit cube [0, 1]d with d ≥ 2, the

maximally persistent cycle in dimension 1 ≤ k ≤ d − 1 has persistence of order Θ(( logn
log log n )1/k), where the

asymptotic notation big Theta means both big O and big Omega. The homology of Gaussian random fields
is studied in [4], which gives the expected k-dimensional Betti numbers in the limit as the number of points
increases to infinity, and also in [12]. The paper [30] studies the number of simplices and critical simplices in
the alpha and Delaunay complexes of Euclidean point sets sampled according to a Poisson process. An open
problem about the birth and death times of the points in a persistence diagram coming from sublevelsets of
a Gaussian random field is stated in Problem 1 of [29]. The paper [19] shows that the expected persistence
diagram, from a wide class of random point clouds, has a density with respect to the Lebesgue measure. We
refer the reader also to [41, 55], which are related to our Conjecture 6.2 in the setting of point processes.

The paper [16] explores what attributes of an algebraic variety can be estimated from a random sample,
such as the variety’s dimension, degree, number of irreducible components, and defining polynomials; one of
their estimates of dimension is inspired by our work.

In an experiment in [1], persistence diagrams are produced from random subsets of a variety of synthetic
metric space classes. Machine learning tools, with these persistence diagrams as input, are then used to
classify the metric spaces corresponding to each random subset. The authors obtain high classification rates
between the different metric spaces. It is likely that the discriminating power is based not only on the
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underlying homotopy types of the shape classes, but also on the shapes’ dimensions as detected by persistent
homology.

3. Preliminaries

This section contains background material and notation on fractal dimensions and persistent homology.

3.1. Fractal dimensions. The concept of fractal dimension was introduced by Hausdorff and others [40, 15,
31] to describe spaces like the Cantor set. It was later popularized by Mandelbrot [52], and found extensive
application in the study of dynamical systems. The attracting sets of a simple dynamical system is often
a submanifold, with an obvious dimension, but in non-linear and chaotic dynamical systems the attracting
set may not be a manifold. The Cantor set, defined by removing the middle third from the interval [0, 1],
and then recursing on the remaining pieces, is a typical example. It has the same cardinality as R, but it is
nowhere-dense, meaning it at no point resembles a line. The typical fractal dimension of the Cantor set is
log3(2). Intuitively, the Cantor set has “too many” points to have dimension zero, but also should not have
dimension one.

We speak of fractal dimensions in the plural because there are many different definitions. In particular,
fractal dimensions can be divided into two classes, which have been called “metric” and “probabilistic” [33].
The former describe only the geometry of a metric space. Two widely-known definitions of this type, which
often agree on well-behaved fractals, but are not in general equal, are the box-counting and Hausdorff
dimensions. For an inviting introduction to fractal dimensions see [32]. Dimensions of the latter type
take into account both the geometry of a given set and a probability distribution supported on that set—
originally the “natural measure” of the attractor given by the associated dynamical system, but in principle
any probability distribution can be used. The information dimension is the best known example of this type.
For detailed comparisons, see [34]. Our persistent homology fractal dimension, Definition 4.1, is of the latter
type.

For completeness, we exhibit some of the common definitions of fractal dimension. The primary definition
for sets is given by the Hausdorff dimension [35].

Definition 3.1. Let S be a subset of a metric space X, let d ∈ [0,∞), and let δ > 0. The Hausdorff measure
of S is

Hd(S) = inf
δ

inf


∞∑
j=1

diam(Bj)
d | S ⊆

∞⋃
j=1

Bj and diam(Bj) ≤ δ


 ,

where the inner infimum is over all coverings of S by balls Bj of diameter at most δ. The Hausdorff dimension
of S is

dimH(S) = inf
d
{Hd(S) = 0.}

The Hausdorff dimension of the Cantor set, for example, is log3(2).
In practice it is difficult to compute the Hausdorff dimension of an arbitrary set, which has led to a

number of alternative fractal dimension definitions in the literature. These dimensions tend to agree on
well-behaved fractals, such as the Cantor set, but they need not coincide in general. Two worth mentioning
are the box-counting dimension, which is relatively simple to define, and the correlation dimension.

Definition 3.2. Let S ⊆ X a metric space, and let Nε denote the infimum of the number of closed balls of
radius ε required to cover S. Then the box-counting dimension of S is

dimB(S) = lim
ε→0

log(Nε)

log(1/ε)
,

provided this limit exists. Replacing the limit with a lim sup gives the upper box-counting dimension, and a
lim inf gives the lower box-counting dimension.

The box-counting definition is unchanged if Nε is instead defined by taking the number of open balls of
radius ε, or the number of sets of diameter at most ε, or (for S a subset of Rn) the number of cubes of
side-length ε [77, Definition 7.8], [32, Equivalent Definitions 2.1]. It can be shown that dimB(S) ≥ dimH(S).
This inequality can be strict; for example if S = Q ∩ [0, 1] is the set of all rational numbers between zero
and one, then dimH(S) = 0 < 1 = dimB(S) [32, Chapter 3]. If S is a self-similar shape that is nice enough,
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i.e. satisfies an “open set” condition, then [32, Theorem 9.3] (for example) shows that the box-counting and
Hausdorff dimensions agree: dimB(S) = dimH(S).

In Section 4 we introduce a fractal dimension based on persistent homology which shares key similarities
with the Hausdorff and box-counting dimensions. It can also be easily estimated via log-log plots, and it is
defined for arbitrary metric spaces (though our examples will tend to be subsets of Euclidean space). A key
difference, however, will be that ours is a fractal dimension for measures, rather than for subsets.

There are a variety of classical notions of a fractal dimension for a measure, including the Hausdorff,
packing, and correlation dimensions of a measure [32, 61, 25]. We give the definitions of two of these.

Definition 3.3 ((13.16) of [32]). The Hausdorff dimension of a measure µ with total mass one is defined as

dimH(µ) = inf{dimH(S) | S is a Borel subset with µ(S) > 0}.
We have dimH(µ) ≤ dimH(supp(µ)), and it is possible for this inequality to be strict [32, Exercise 3.10]2.

We also give the definition of the correlation dimension of a measure.

Definition 3.4. Let X be a subset of Rm equipped with a measure µ, and let Xn be a random sample of n
points from X. Let θ : R→ R denote the Heaviside step function, meaning θ(x) = 0 for x < 0 and θ(x) = 1
for x ≥ 0. The correlation integral of µ is defined (for example in [37, 76]) to be

C(r) = lim
n→∞

1

n2

∑
x,x′∈Xn

x6=x′

θ (r − ‖x− x′‖) .

It can be shown that C(r) ∝ rν , and the exponent ν is defined to be the correlation dimension of µ.

In [37, 38] it is shown that the correlation dimension gives a lower bound on the Hausdorff dimension of
a measure. The correlation dimension can be easily estimated from a log-log plot, similar to the methods
we use in Section 5. A different definition of the correlation dimension is given and studied in [24, 53]. The
correlation dimension is a particular example of the family of Rènyi dimensions, which also includes the
information dimension as a particular case [63, 64]. A collection of possible axioms that one might like to
have such a fractal dimension satisfy is given in [53].

3.2. Persistent homology. The field of applied and computational topology has grown rapidly in recent
years, with the topic of persistent homology gaining particular prominence. Persistent homology has enjoyed
a wealth of meaningful applications to areas such as image analyis, chemistry, natural language processing,
and neuroscience, to name just a few examples [2, 10, 21, 26, 49, 50, 78, 80]. The strength of persistent
homology lies in its ability to characterize important features in data across multiple scales. Roughly
speaking, homology provides the ability to count the number of independent k-dimensional holes in a space,
and persistent homology provides a means of tracking such features as the scale increases. We provide a
brief introduction to persistent homology in this preliminaries section, but we point the interested reader
to [8, 28, 39] for thorough introductions to homology, and to [17, 23, 36] for excellent expository articles on
persistent homology.

Geometric complexes, which are at the heart of the work in this paper, associate to a set of data points a
simplicial complex—a combinatorial space that serves as a model for an underlying topological space from
which the data has been sampled. The building blocks of simplicial complexes are called simplices, which
include vertices as 0-simplices, edges as 1-simplices, triangles as 2-simplices, tetrahedra as 3-simplices, and
their higher-dimensional analogues as k-simplices for larger values of k. An important example of a simplicial
complex is the Vietoris–Rips complex.

Definition 3.5. Let X be a set of points in a metric space and let r ≥ 0 be a scale parameter. We define
the Vietoris–Rips simplicial complex VR(X ; r) to have as its k-simplices those collections of k + 1 points in
X that have diameter at most r.

In constructing the Vietoris–Rips simplicial complex we translate our collection of points in X into a
higher-dimensional complex that models topological features of the data. See Figure 1 for an example of a
Vietoris–Rips complex constructed from a set of data points, and see [28] for an extended discussion.

2See also [33] for an example of a measure whose information dimension is less than the Hausdorff dimension of its support.
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Figure 1. An example of a set of data points in Rm with an associated Vietoris–Rips
complex at a fixed scale.

It is readily observed that for various data sets, there is not necessarily an ideal choice of the scale param-
eter so that the associated Vietoris–Rips complex captures the desired features in the data. The perspective
behind persistence is to instead allow the scale parameter to increase and to observe the corresponding
appearance and disappearance of topological features. To be more precise, each hole appears at a certain
scale and disappears at a larger scale. Those holes that persist across a wide range of scales often reflect
topological features in the shape underlying the data, whereas the holes that do not persist for long are
often considered to be noise. However, in the context of this paper (estimating fractal dimensions), the holes
that do not persist are perhaps better described as measuring the local geometry present in a random finite
sample.

For a fixed set of points, we note that as scale increases, simplices can only be added and cannot be
removed. Thus, for r0 < r1 < r2 < · · · , we obtain a filtration of Vietoris–Rips complexes

VR(X; r0) ⊆ VR(X; r1) ⊆ VR(X; r2) ⊆ · · · .
The associated inclusion maps induce linear maps between the corresponding homology groups Hk(VR(X; ri)),
which are algebraic structures whose ranks (roughly speaking) count the number of independent k-dimensional
holes in the Vietoris–Rips complex. A technical remark is that homology depends on the choice of a group
of coefficients; it is simplest to use field coefficients (for example R, Q, or Z/pZ for p prime), in which case
the homology groups are furthermore vector spaces. The corresponding collection of vector spaces and linear
maps is called a persistent homology module.

A useful tool for visualizing and extracting meaning from persistent homology is a barcode. The basic
idea is that each generator of persistent homology can be represented by an interval, whose start and end
times are the birth and death scales of a homological feature in the data. These intervals can be arranged as
a barcode graph in which the x-axis corresponds to the scale parameter. See Figure 2 for an example. If Y
is a finite metric space, then we let PHi(Y ) denote the corresponding collection of i-dimensional persistent
homology intervals. Indeed, any persistent homology module decomposes uniquely as a direct sum of interval
summands.

Zero-dimensional barcodes always produce one infinite interval, as in Figure 2, which are problematic for
our purposes. Therefore, in the remainder of this paper we will always use reduced homology, which has
the effect of simply eliminating the infinite interval from the 0-dimensional barcode while leaving everything
else unchanged. As a consequence, there will never be any infinite intervals in the persistent homology of a
Vietoris–Rips simplicial complex, even in homological dimension zero.

Remark 1. It is well-known (see for example [65]) and easy to verify that for any finite metric space X,
the lengths of the 0-dimensional (reduced) persistent homology intervals of the Vietoris–Rips complex of X
correspond exactly to the lengths of the edges in a minimal spanning tree with vertex set X.

4. Definition of the persistent homology fractal dimension for measures

Let X be a metric space equipped with a probability measure µ, and let Xn ⊆ X be a random sample of n
points from X distributed independently and identically according to µ. Build a filtered simplicial complex
K on top of vertex set Xn, for example a Vietoris–Rips complex VR(X ; r) (Definition 3.5), an intrinsic Čech
complex Č(X,X; r), or an ambient Čech complex Č(X,Rm; r) if X is a subset of Rm [18]. Recall that the
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Figure 2. An example of Vietoris–Rips complexes at increasing scales, along with associ-
ated persistent homology intervals. The 0-dimensional persistent homology intervals shows
how 21 connected components merge into a single connected component as the scale in-
creases. The 1-dimensional persistent homology intervals show two 1-dimensional holes, one
short-lived and the other long-lived.

i-dimensional persistent homology of this filtered simplicial complex, which decomposes as a direct sum of
interval summands, is denoted by PHi(Xn). We let Li(Xn) be the sum of the lengths of the intervals in
PHi(Xn). In the case of homological dimension zero, the sum L0(Xn) is simply the sum of all the edge
lengths in a minimal spanning tree with Xn as its vertex set (since we are using reduced homology).

Definition 4.1 (Persistent homology fractal dimension). Let X be a metric space equipped with a prob-
ability measure µ, let Xn ⊆ X be a random sample of n points from X distributed according to µ, and
let Li(Xn) be the sum of the lengths of the intervals in the i-dimensional persistent homology for Xn. We
define the i-dimensional persistent homology fractal dimension of µ to be

dimi
PH(µ) = inf

d>0

{
d
∣∣∣ ∃ constant C(i, µ, d) such that Li(Xn) ≤ Cn(d−1)/d with probability one as n→∞

}
.

The constant C can depend on i, µ, and d. Here “Li(Xn) ≤ Cn(d−1)/d with probability one as n → ∞”
means that we have limn→∞ P[Li(Xn) ≤ Cn(d−1)/d] = 1. This dimension may depend on the choices of
filtered simplicial complex (say Vietoris–Rips or Čech), and on the choice of field coefficients for homology
computations; for now those choices are suppressed from the definition.

A measure µ on X ⊆ Rm is nonsingular if the absolutely continuous part of µ has positive mass.

Proposition 4.2. Let µ be a measure on X ⊆ Rm with m ≥ 2. Then dim0
PH(µ) ≤ m, with equality if µ is

nonsingular.

Proof. By Theorem 2 of [70], we have that limn→∞ n−(m−1)/mL0(Xn) = c
∫
Rm f(x)(m−1)/m dx, where c is a

constant depending on m, and where f is the absolutely continuous part of µ. To see that dim0
PH(µ) ≤ m,

note that

L0(Xn) ≤
(
c

∫
Rm

f(x)(m−1)/m dx+ ε

)
n(m−1)/m

with probability one as n→∞ for any ε > 0. �

We conjecture that the i-dimensional persistent homology of compact subsets of Rm have the same scaling
properties as the functionals in [70, 79].
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Conjecture 4.3. Let µ be a probability measure on a compact set X ⊆ Rm with m ≥ 2, and let µ be
nonsingular. Then for all 0 ≤ i < m, there is a constant C ≥ 0 (depending on µ, m, and i) such that
Li(Xn) = Cn(m−1)/m with probability one as n→∞.

Let µ be a probability measure with compact support that is absolutely continuous with respect to
Lebesgue measure in Rm for m ≥ 2. Note that Conjecture 4.3 would imply that the persistent homology
fractal dimension of µ is equal to m. The tools of subadditivity and superadditivity behind the umbrella
theorems for Euclidean functionals, as described in [79] and Section 2.2, may be helpful towards proving this
conjecture. In some cases, for example when X is a cube or ball (or more generally convex), then versions
of Conjecture 4.3 are proven in [27, 69].

One could alternatively define birth-time (for i > 0) or death-time fractal dimensions by replacing Li(Xn)
with the sum of the birth times, or alternatively the sum of the death times, in the persistent homology
barcodes PHi(Xn).

5. Experiments

A feature of Definition 4.1 is that we can use it to estimate the persistent homology fractal dimension of
a measure µ. Indeed, suppose we can sample from X according to the probability distribution µ. We can
therefore sample collections of points Xn of size n, compute the statistic Li(Xn), and then plot the results
in a log-log fashion as n increases. In the limit as n goes to infinity, we expect the plotted points to be
well-modeled by a line of slope d−1

d , where d is the i-dimensional persistent homology fractal dimension of µ.
In many of the experiments in this section, the measures µ are simple enough (or self-similar enough) that
we would expect the persistent homology fractal dimension of µ to be equal to the Hausdorff dimension of
µ.

In our computational experiments, we have used the persistent homology software packages Ripser [9],
Javaplex [75], and code from Duke (see the acknowledgements in Section 10). For the case of 0-dimensional
homology, we can alternatively use well-known algorithms for computing minimal spanning trees, such as
Kruskal’s algorithm or Prim’s algorithm [48, 62]. We estimate the slope of our log-log plots (of Li(Xn)
as a function of n) using both a line of best fit, and alternatively a technique designed to approximate
the asymptotic scaling described in Section 8. Our code is publicly available at https://github.com/

CSU-PHdimension/PHdimension.

5.1. Estimates of persistent homology fractal dimensions. We display several experimental results,
for shapes of both integral and non-integral fractal dimension. In Figure 3, we show the log-log plots of
Li(Xn) as a function of n, where Xn is sampled uniformly at random from a disk, a square, and an equilateral
triangle, each of unit area in the plane R2. Each of these spaces constitutes a manifold of dimension two, and
we thus expect these shapes to have persistent homology fractal dimension d = 2 as well. Experimentally,
this appears to be the case, both for homological dimensions i = 0 and i = 1. Indeed, our asymptotically
estimated slopes lie in the range 0.49 to 0.54, which is fairly close to the expected slope of d−1

d = 1
2 .

In Figure 4 we perform a similar experiment for the cube in R3 of unit volume. We expect the cube to have
persistent homology fractal dimension d = 3, corresponding to a slope in the log-log plot of d−1

d = 2
3 . This

appears to be the case for homological dimension i = 0, where the slope is approximately 0.65. However, for
i = 1 and i = 2, our estimated slope is far from 2

3 , perhaps because our computational limits do not allow
us to take n, the number of randomly chosen points, to be sufficiently large.

In Figure 5 we use log-log plots to estimate some persistent homology fractal dimensions of the Cantor
set cross the interval (expected dimension d = 1 + log3(2)), of the Sierpiński triangle (expected dimension
d = log2(3)), of Cantor dust in R2 (expected dimension d = log3(4)), and of Cantor dust in R3 (expected
dimension d = log3(8)). As noted in Section 3, various notions of fractal dimension tend to agree for well-
behaved fractals. Thus, in each case above, we provide the Hausdorff dimension d in order to define an
expected persistent homology fractal dimension. The Hausdorff dimension is well-known for the Sierpiński
triangle, Cantor dust in R2, and Cantor dust in R3. The Hausdorff dimension for the Cantor set cross the
interval can be shown to be 1 + log3(2), which follows from [32, Theorem 9.3] or [54, Theorem III]. In
Section 5.2 we define these fractal shapes in detail, and we also explain our computational technique for
sampling points from them at random.
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Summarizing the experimental results for self-similar fractals, we find reasonably good estimates of fractal
dimension for homological dimension i = 0. More specifically, for the Cantor set cross the interval, we expect
d−1
d ≈ 0.3869, and we find slope estimates from a linear fit of all data and an asymptotic fit to be 0.3799

and 0.36488, respectively. In the case of the Sierpiński triangle, the estimate is quite good: we expect
d−1
d ≈ 0.3691, and the slope estimates from both a linear fit and an asymptotic fit are approximately 0.37.

Similarly, the estimates for Cantor dust in R2 and R3 are close to the expected values: (1) For Cantor dust
in R2, we expect d−1

d ≈ 0.2075 and estimate d−1
d ≈ 0.25. (2) For Cantor dust in R3, we expect d−1

d ≈ 0.4717

and estimate d−1
d ≈ 0.49. For i > 0 many of these estimates of the persistent homology fractal dimension

are not close to the expected (Hausdorff) dimensions, perhaps because the number of points n is not large
enough. The theory behind these experiments has now been verified in [68].

It is worth commenting on the Cantor set, which is a self-similar fractal in R. Even though the Hausdorff
dimension of the Cantor set is log3(2), it is not hard to see that the 0-dimensional persistent homology
fractal dimension of the Cantor set is 1. This is because as n → ∞ a random sample of points from the
Cantor set will contain points in R arbitrarily close to 0 and to 1, and hence L0(Xn) → 1 as n → ∞. This
is not surprising—we do not necessarily expect to be able to detect a fractional dimension less than one by
using minimal spanning trees (which are 1-dimensional graphs). For this reason, if a measure µ is defined
on a subset of Rm, we sometimes restrict attention to the case m ≥ 2. See Figure 6 for our experimental
computations on the Cantor set.

Finally, we include one example with data drawn from a two-dimensional manifold in R3. We sample
points from a torus with major radius 5 and minor radius 3. We expect the persistent homology fractal
dimensions to be 2, and this is supported in the experimental evidence for 0-dimensional homology shown
in Figure 7 with approximate slope d−1

d = 1
2 .
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Figure 3. Log scale plots and slope estimates of the number n of sampled points versus
L0(Xn) (left) or L1(Xn) (right). Subsets Xn are drawn uniformly at random from (top) the
unit disk in R2, (middle) the unit square, and (bottom) the unit triangle. All cases have
slope estimates close to d−1

d = 1
2 , which is consistent with the expected dimension. The

asymptotic scaling estimates of the slope are computed as described in Section 8.
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Figure 4. Log scale plots of the number n of sampled points from the cube versus L0(Xn)
(left), L1(Xn) (right), and L2(Xn) (bottom). The dimension estimate from 0-dimensional
persistent homology is reasonably close to the expected slope d−1

d = 2
3 , while the 1- and

2-dimensional cases are less accurate, likely due to computational limitations.
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Figure 5. (Top row) Cantor set cross unit interval; expected slope d−1
d ≈ 0.3869. (Second

row) Sierpiński triangle; expected slope d−1
d ≈ 0.3691. (Third row) Cantor dust in R2;

expected slope d−1
d ≈ 0.2075. (Bottom row) Cantor dust in R3; expected slope d−1

d ≈ 0.4717.
The 0-dimensional estimates are close to the expected dimensions. The higher-dimensional
estimates are not as accurate, perhaps due to computational limitations.
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Figure 6. Log scale plot of the number n of sampled points from the Cantor set versus
L0(Xn). Note that L0(Xn) approaches one, as expected.

Figure 7. Log scale plot of the number n of sampled points from a torus with major radius
5 and minor radius 3 versus L0(Xn). Estimated lines of best fit from L0(Xn) have slope
approximately equal to 1

2 , recovering d−1
d for a dimension estimate of d = 2. We restrict to

0-dimensional homology in this setting due to computational limitations.
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5.2. Randomly sampling from self-similar fractals. The Cantor set C = ∩∞l=0Cl is a countable inter-
section of nested sets C0 ⊇ C1 ⊇ C2 ⊇ · · · , where the set Cl at level l is a union of 2l closed intervals, each
of length 1

3l . More precisely, C0 = [0, 1] is the closed unit interval, and Cl is defined recursively via

Cl =
Cl−1

3
∪
(

2

3
+
Cl−1

3

)
for l ≥ 1.

In our experiment for the Cantor set (Figure 6), we do not sample from the Cantor distribution on the entire
Cantor set C, but instead from the left endpoints of level Cl of the Cantor set, where l is chosen to be very
large (we use l = 100,000). More precisely, in order to sample points, we choose a binary sequence {ai}li=1

uniformly at random, meaning that each term ai is equal to either 0 or 1 with probability 1
2 , and furthermore

the value ai is independent from the value of aj for i 6= j. The corresponding random point in the Cantor

set is
∑l
i=1

2ai
3i . Note that this point is in C and furthermore is the left endpoint of some interval in Cl.

So we are selecting left endpoints of intervals in Cl uniformly at random, but since l is large this is a good
approximation to sampling from the entire Cantor set according to the Cantor distribution.

We use a similar procedure to sample at random for our experiments on the Cantor set cross the interval,
on Cantor dust in R2, on Cantor dust in R3, and on the Sierpiński triangle (Figure 5). The Cantor set cross
the interval is C × [0, 1] ⊆ R2, equipped with the Euclidean metric. We computationally sample by choosing
a point from Cl as described in the paragraph above for l = 100,000, and by also sampling a point from the
unit interval [0, 1] uniformly at random. Cantor dust is the subset C×C of R2, which we sample by choosing
two points from Cl as described previously. The same procedure is done for the Cantor dust C×C×C in R3.
The Sierpiński triangle S ⊆ R2 is defined in a similar way to the Cantor set, with S = ∩∞l=0Sl a countable
intersection of nested sets S0 ⊇ S1 ⊇ S2 ⊇ · · · . Here each Sl is a union of 3l triangles. We choose l = 100,000
to be large, and then sample points uniformly at random from the bottom left endpoints of the triangles in
Sl. More precisely, we choose a ternary sequence {ai}li=1 uniformly at random, meaning that each term ai
is equal to either 0, 1, or 2 with probability 1

3 . The corresponding random point in the Sierpiński triangle is∑l
i=1

1
2i~vi ∈ R2, where vector ~vi is given by

~vi =


(0, 0)T if ai = 0

(1, 0)T if ai = 1

( 1
2 ,
√

3
2 )T if ai = 2.

Note this point is in S and furthermore is the bottom left endpoint of some triangle in Sl.

6. Limiting distributions

To some metric measure spaces, (X,µ), we are able to assign a finer invariant that contains more infor-
mation than just the persistent homology fractal dimension. Consider the set of the lengths of all intervals
in PHi(Xn), for each homological dimension i. Experiments suggest that for some X ⊆ Rm, the scaled set
of interval lengths in each homological dimension converges point-wise to some fixed probability distribution
which depends on µ and on i.

More precisely, for a fixed probability measure µ, let F̂
(i)
n be the empirical cumulative distribution function

of the i-dimensional persistent homology interval lengths in PHi(Xn), where Xn is a fixed sample of n points
from X drawn in an i.i.d. fashion according to µ. If µ is absolutely continuous with respect to the Lebesgue

measure on some compact set, then the function F̂
(i)
n (t) converges point-wise to the Heaviside step function

as n→∞, since the fraction of interval lengths less than any fixed ε > 0 is converging to one as n→∞. More
interestingly, for µ a sufficiently nice measure on X ⊆ Rm, the rescaled empirical cumulative distribution

function F̂
(i)
n (n−1/mt) may converge to a non-constant curve. A back-of-the-envelope motivation for this

rescaling is that if Li(Xn) = Cn(m−1)/m with probability one as n→∞ (Conjecture 4.3), then the average
length of a persistent homology interval length is

Li(Xn)

# intervals
=
Cn(m−1)/m

# intervals
,

which is proportional to n−1/m if the number of intervals is proportional to n. We make this precise in the
following conjectures.
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Figure 8. Empirical CDF’s for the H0 and H1 interval lengths computed from 10,000 points
sampled from the unit square according to the uniform distribution and beta distribution
with shape and size parameter both set to 2. The limiting distributions appear to be
different.

Conjecture 6.1. Let µ be a probability measure on a compact set X ⊆ Rm, and let µ be absolutely continuous

with respect to the Lebesgue measure. Then the limiting distribution F̂ (i)(t) = limn→∞ F̂
(i)
n (n−1/mt), which

depends on µ and i, exists.

In Section 6.1 we show that Conjecture 6.1 holds when µ is the uniform distribution on an interval, and
in Section 6.2 we perform experiments in higher dimensions.

Question 1. Assuming Conjecture 6.1 is true, what is the limiting rescaled distribution when µ is the
uniform distribution on an m-dimensional ball, or alternatively an m-dimensional cube?

Conjecture 6.2. Let the compact set X ⊆ Rm have positive Lebesgue measure, and let µ be the corresponding
probability measure (i.e., µ is the restriction of the Lebesgue measure to X, rescaled to have mass one). Then

the limiting distribution F̂ (i)(t) = limn→∞ F̂
(i)
n (n−1/mt) exists and depends only on m, i, and the volume of

X.

Question 2. Assuming Conjecture 6.2 is true, what is the limiting rescaled distribution when X has unit
volume?

Remark 2. Conjecture 6.2 is false if µ is not a uniform measure (i.e. a rescaled Lebesgue measure). Indeed,
the uniform measure on a square (experimentally) has a different limiting rescaled distribution than a
(nonconstant) beta distribution on the same unit square, as seen in Figure 8.

Remark 3. Conjecture 6.2 is related to [19], and in the case of stationary point processes, to [41, Theo-
rem 1.11] and [55].

6.1. The uniform distribution on the interval. In the case where µ is the uniform distribution on the
unit interval [0, 1], then a weaker version of Conjecture 6.1 (convergence distribution-wise) is known to be
true, and furthermore a formula for the limiting rescaled distribution is known. If Xn is a subset of [0, 1]
drawn uniformly at random, then (with probability one) the points in Xn divide [0, 1] into n+ 1 pieces. The
joint probability distribution function for the lengths of these pieces is given by the flat Dirichlet distribution,
which can be thought of as the uniform distribution on the n-simplex (the set of all (t0, . . . , tn) with ti ≥ 0
for all i, such that

∑n
i=0 ti = 1). Note that the intervals in PH0(Xn) have lengths t1, . . . , tn−1, omitting t0

and tn which correspond to the two subintervals on the boundary of the interval.
The probability distribution function of each ti, and therefore of each interval length in PH0(Xn), is the

marginal of the Dirichlet distribution, which is given by the Beta distribution B(1, n) [11]. After simplifying,
15



Figure 9. Empirical CDF’s for H0 interval lengths, H1 birth times, H1 death times, and
H1 interval lengths computed from an increasing number of n points drawn uniformly from

the 2-dimensional unit square, and rescaled by n1/2. It is plausible that both F
(0)
n (n−1/2t)

and F
(1)
n (n−1/2t) converge point-wise to a limiting probability distribution.

the true cumulative distribution function (which we denote by F
(0)
n instead of the empirical cumulative

distribution function F̂
(0)
n ) of B(1, n) is given by [66]

F (0)
n (t) =

B(t; 1, n)

B(1, n)
=

∫ t
0
s0(1− s)n−1ds

Γ(1)Γ(n)
Γ(n+1)

= 1− (1− t)n.

As n goes to infinity, F
(0)
n (t) converges pointwise to the constant function 1. However, after rescaling,

F
(0)
n (n−1t) converges to a more interesting distribution independent of n. Indeed, we have F

(0)
n

(
t
n

)
=

1− (1− t
n )n, and the limit as n→∞ is

lim
n→∞

F (0)
n

(
t
n

)
= 1− e−t.

This is the cumulative distribution function of the exponential distribution with rate parameter one. There-
fore, the rescaled interval lengths in the limit as n → ∞ are distributed according to the exponential
distribution Exp(1).

6.2. Experimental evidence for Conjecture 6.1 in R2. We now move to the case where µ is the uniform
distribution on the unit square in R2. It is known that the sum of the edge lengths of the minimal spanning
tree, given by L0(Xn) where Xn is a random sample of n points from the unit square, converges as n→∞ to
Cn1/2, for a constant C [70]. However, to our knowledge the limiting distribution of all (rescaled) edge lengths
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Figure 10. Plot of 20,000 points sampled at random from the Sierpiński triangle of sepa-
ration δ = 2.

is not known. We instead analyze this example empirically. The experiments in Figure 9 suggest that as n

increases, it is plausible that both F
(0)
n (n−1/2t) and F

(1)
n (n−1/2t) converge point-wise to a limiting probability

distribution. We have tried to fit these limiting probability distributions to standard distributions, without
yet having found obvious candidates.

6.3. Examples where a limiting distribution does not exist. In this section we give experimental
evidence that the assumption of being a rescaled Lebesgue measure in Conjecture 6.1 is necessary. Our
example computation is done on a separated Sierpiński triangle.

For a given separation value δ ≥ 0, the separated Sierpiński triangle can be defined as the set of all points

in R2 of the form
∑∞
i=1

1
(2+δ)i~vi, where each vector ~vi ∈ R2 is either (0, 0), (1, 0), or ( 1

2 ,
√

3
2 ). The Hausdorff

dimension of this self-similar fractal shape is log2+δ(3) ([32, Theorem 9.3] or [54, Theorem III]), and note
that when δ = 0, we recover the standard (non-separated) Sierpiński triangle. See Figure 10 for a picture
when δ = 2. Computationally, when we sample a point from the separated Sierpiński triangle, we sample a

point of the form
∑l
i=1

1
(2+δ)i~vi, where in our experiments we use l = 100,000.

In the following experiment we sample random points from the separated Sierpiński triangle with δ = 2.
As the number of random points n goes to infinity, it appears that the rescaled3 CDF of H0 interval lengths
are not converging to a fixed probability distribution, but instead to a periodic family of distributions, in
the following sense. If you fix k ∈ N then the distributions on n = k, 3k, 9k, 27k, . . . , 3jk, . . . points appear to
converge as j → ∞ to a fixed distribution. Indeed, see Figure 11 for the limiting distribution on 3j points,
and for the limiting distribution on 3j · 2 points. However, the limiting distribution for 3jk points and the
limiting distribution for 3jk′ points appear to be the same if and only if k and k′ differ by a power of 3.
See Figure 12, which shows four snapshots from one full periodic orbit.

Here is an intuitively plausible explanation for why the rescaled CDFs for the separated Sierpiński triangle
converge to a periodic family of distributions, rather than a fixed distribution: Imagine focusing a camera
at the origin of the Sierpiński triangle and zooming in. Once you get to (2 + δ)× magnification, you see the
same image again. This is one full period. However, for magnifications between 1× and (2 + δ)× you see
a different image. In our experiments sampling random points, zooming in by a factor of (2 + δ)× is the
same thing as sampling three times as many points (indeed, the Hausdorff dimension is log2+δ(3)). When
zooming in you see the same image only when the magnification is at a multiple of 2 + δ, and analogously

3Since the separated Sierpiński triangle has Hausdorff dimension log2+δ(3), the rescaled distributions we plot are

F
(0)
n (n−1/mt) with m = log2+δ(3).
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Figure 11. This figure shows the empirical rescaled CDFs of H0 interval lengths for
n = 3j points (left) and for n = 3j · 2 points (right) sampled from the separated Sierpiński
triangle with δ = 2. Each figure appears to converge to a fixed limiting distribution as
j →∞, but the two limiting distributions are not equal.

0 500
0.9

1

H
0

0 500
0.9

1

H
1

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

0 500

k=1
k=1.25
k=1.5
k=1.75
k=2.0
k=2.25
k=2.5
k=2.75
k=3.0

Figure 12. Empirical rescaled CDF’s for H0 interval lengths, and H1 interval lengths
computed from an increasing number of n = k · 36 points from the separated Sierpiński
triangle with δ = 2, moving left to right. Note that as k increases between adjacent powers
of three, the “bumps” in the distribution shift to the right, until the starting distribution
reappears.

when sampling random points perhaps we should expect to see the same probability distribution of interval
lengths only when the number of points is multiplied by a power of 3.

7. Another way to randomly sample from the Sierpiński triangle

An alternate approach to constructing a sequence of measures converging to the Sierpiński triangle is
using a particular Lindenmayer system, which generates a sequence of instructions in a recursive fashion [56,
Figure 7.16]. Halting the recursion at any particular level l will give a (non-fractal) approximation to the
Sierpiński triangle as a piecewise linear curve with a finite number of segments; see Figure 13.

Let µl be the uniform measure on the piecewise linear curve at level l. In Figure 14 we sample n points from
µl and compute Li(Xn), displayed in a log-log plot, for i = 0 and 1. Since each µl for l fixed is non-fractal
(and 1-dimensional) in nature, the ultimate asymptotic behavior will be d = 1 once the number of points n is
sufficiently large (depending on the level l). However, for level l sufficiently large (depending on the number
of points n) we see that there is an intermediate regime in the log-log plots which scale with the expected
fractal dimension near log2(3). As pointed out by an anonymous reviewer, one could potentially prove
that the scaling in the intermediate regime is indeed log2(3), as follows. The 0 or 1-dimensional persistent
homology of the entire Sierpiński curve at level l could likely be computed, for example using ideas similar
to [51, Proposition 3.2]. Then, the difference between the persistent homology of the entire curve and a
random sample Xn of n points could perhaps be controlled by using the stability of persistent homology [18]
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Figure 13. The Sierpiński triangle as the limit of a sequence of curves. We can uniformly
randomly sample from the curve at level l to generate a sequence of measures µl converging
to the Sierpiński triangle measure as l→∞.

Figure 14. Scaling behaviors for various “depths” of the Sierpinski arrowhead curves vi-
sualized in Figure 13, in homological dimensions 0 and 1.

and ideas analogous to those in [68, Lemma 9 and Proposition 5], although rigorously controlling the effects
of noise in all homological dimensions may not be easy. We expect a similar relationship between the number
of points n and the level l to hold for many types of self-similar fractals.

We also give intuition why, for any fixed level l, the 0-dimensional persistent homology dimension of the
curve µl is one. Note that µl consists of 3l line segments (see Figure 13). Suppose XN is a sample of N points
from µl that is dense enough so that the minimal spanning tree with vertex set XN consists exclusively of
edges between two vertices that are either on the same line segment of µl or on adjacent line segments of µl.
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If we then consider a nested sequence XN ⊆ XN+1 ⊆ XN+2 ⊆ . . . of increasing finite subsets of µl, it follows
that L0(Xn) for n ≥ N is a monotonically increasing sequence bounded above by the length of the curve µl.
In this setting we have L0(Xn) ≤ C where C is the length of µl; note that C = Cn(d−1)/d when d = 1.

8. Asymptotic approximation of the scaling exponent

From Definition 4.1 we consider how to estimate the exponent (d − 1)/d numerically for a given metric
measure space (X,µ). For a fixed number of points n, a pair of values (n, `n) is produced, where `n =
Li(Xn) for a sampling Xn from (X,µ) of cardinality n. If the scaling holds asymptotically for n sampled
past a sufficiently large point, then we can approximate the exponent by sampling for a range of n values
and observing the rate of growth of `n. A common technique used to estimate power law behavior (see
for example [20]) is to fit a linear function to the log-transformed data. The reason for doing this is a
hypothesized asymptotic scaling y ∼ eCxα as x→∞ becomes a linear function after taking the logarithm:
log(y) ∼ C + α log(x).

However, the expected power law in the data only holds asymptotically for n→∞. We observe in practice
that the trend for small n is subdominant to its asymptotic scaling. Intuitively we would like to throw out
the non-asymptotic portion of the sequence, but deciding where to threshold depends on the sequence. We
propose the following approach to address this issue.

Suppose in general we have a countable set of measurements (n, `n), with n ranging over some subset of
the positive integers. Create a sequence in monotone increasing order of n so that we have a (nk, `nk

)∞k=1

with nk > nj for k > j. For any pairs of integers p, q with 1 ≤ p < q, we denote the log-transformed data of
the corresponding terms in the sequence as

Spq =
{(

log(nk), log(`nk
)
)
| p ≤ k ≤ q

}
⊆ R2.

Each finite collection of points Spq has an associated pair of linear least-squares coefficients (Cpq, αpq), where
the line of best fit to the set Spq is given by y = Cpq +αpqx. For our purposes we are more interested in the
slope αpq than the intercept Cpq. We expect that we can obtain the fractal dimension by considering the
joint limits in p and q: if we define α as

α = lim
p,q→∞

αpq,

then we can recover the dimension by solving α = d−1
d . A possibly overly restrictive assumption is that the

asymptotic behavior of `nk
is monotone. If this is the case, we may expect any valid joint limit p, q → ∞

will be defined and produce the same value. For example, setting q = p+ r we expect the following to hold:

α = lim
p→∞

lim
r→∞

αp,p+r.

In general, the joint limit may exist under a wider variety of ways in which one allows q to grow relative to
p.

Now define a function A : R2 → R, which takes on values A( 1
p ,

1
q ) = αpq, and define A(0, 0) so that A is

continuous at the origin. Assuming αpq → α as above, then any sequence (xk, yk)k → (0, 0) will produce the
same limiting value A(0, 0) and the limit lim(x,y)→(0,0)A(x, y) is well-defined. This suggests an algorithm
for finite data:

(1) Obtain a collection of estimates αpq for various values of p, q, and then
(2) use the data {( 1

p ,
1
q , A( 1

p ,
1
q ))} to extrapolate an estimate for A(0, 0) = α, from which we can solve

for the fractal dimension d.

For simplicity, we currently fix q = nmax and collect estimates varying only p; i.e., we only collect estimates
of the form αp nmax

. In practice it is safest to use a low-order estimator to limit the risks of extrapolation. We

use linear fit for the two-dimensional data A( 1
p ,

1
q ) to produce a linear approximation Â(ξ, η) = a+ bξ + cη,

giving an approximation α = A(0, 0) ≈ Â(0, 0) = a.
Shown in Figure 15 is an example applied to the function

(2) f(x) =

(
100x+

1

10
x2

)
(1 + 0.1ε(x))
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Figure 15. Top: Approximations αpq for selections of (p, q) in the function f(x) in (2).
Top inset: sampling of f(x) (blue circles) and the corresponding asymptotic best fit (black).
(Bottom left) Log-absolute-error of the coefficients. Note that the approximation is generally
poor for |p− q| small, due to a small number of sample points. (Bottom right) Same values,
with the coordinates mapped as ξ = 1/p, η = 1/q. The value to be extrapolated is at
(ξ, η) = (0, 0).
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with ε = dW (x), with W (x) a sampling of standard Brownian noise, and x regularly sampled in [400, 20000].
The theoretical asymptotic is α = 2 and should be attainable for sufficiently large x and enough sample
points to overcome noise. Note that there is a balance needed to both keep a sufficient number of points to
have a robust estimation (we want q−p to be large) and to avoid including data in the pre-asymptotic regime
(thus p must be relatively large). Visually, this is seen near the top side of the triangular region, where the
error drops to roughly the order of 10−3. The challenge for an arbitrary function is not knowing precisely
where this balance is; see [20, Sections 1, 3.3-3.4] in the context of estimating xmin (in their language) for
the tails of probability density functions.

It is important to note that the effects of noise and pre-asymptotic data in estimation of α can be
non-negligible even for what are seemingly sufficiently large values of x. For example, we observe that
even when removing noise (ε(x) → 0) and performing a similar power fit on the restriction of the data to
x ∈ [19000, 20000] we obtain an estimated exponent α̂ ≈ 1.9393. Note the transition from first to second
order behavior begins at x = 103, which is an order of magnitude earlier. Given this, we expect a rule
of thumb recovering more than one significant digit reliably when performing random sampling requires
sampling at least two orders of magnitude beyond when a transition in power law behavior occurs (this can
certainly be made precise if one has a formula for the function in advance).

We note that the asymptotic estimates of slope in Figures 3, 5, and 7 often perform better than the lines
of best fit, especially in Figure 3 for 1-dimensional homology. This improved performance is likely because
whereas a linear fit places all random samples Xn of n data points (for varying values of n) on an equal
footing, an asymptotic estimate weights more heavily the random samples Xn in which n is large.

9. Conclusion

When points are sampled at random from a subset of Euclidean space, there are a wide variety of Euclidean
functionals (such as the minimal spanning tree, the traveling salesperson tour, the optimal matching) which
scale according to the dimension of Euclidean space [79]. In this paper we explore whether similar properties
are true for persistent homology, and how one might use these scalings in order to define a persistent
homology fractal dimension for measures. We provide experimental evidence for some of our conjectures,
though that evidence is limited by the sample sizes on which we are able to compute. Our hope is that our
experiments are only a first step toward inspiring researchers to further develop the theory underlying the
scaling properties of persistent homology.
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[53] Pertti Mattila, Manuel Morán, and José-Manuel Rey. Dimension of a measure. Studia Math, 142(3):219–233, 2000.

[54] Pat A .P. Moran. Additive functions of intervals and Hausdorff measure. Proceedings of the Cambridge Philosophical

Society, 42(1):15–23, 1946.
[55] Takashi Owada and Omer Bobrowski. Convergence of persistence diagrams for topological crackle. arXiv preprint

arXiv:1810.01602, 2018.
[56] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Chaos and fractals: New frontiers of science. Springer Science

& Business Media, 2006.

[57] Mathew Penrose. Random geometric graphs, volume 5. Oxford University Press, Oxford, 2003.
[58] Mathew D Penrose. The longest edge of the random minimal spanning tree. The annals of applied probability, pages

340–361, 1997.

[59] Mathew D Penrose et al. A strong law for the longest edge of the minimal spanning tree. The Annals of Probability,
27(1):246–260, 1999.

[60] Mathew D Penrose and Joseph E Yukich. Central limit theorems for some graphs in computational geometry. Annals of

Applied probability, pages 1005–1041, 2001.
[61] Yakov B Pesin. Dimension theory in dynamical systems: contemporary views and applications. University of Chicago

Press, 2008.

[62] Robert Clay Prim. Shortest connection networks and some generalizations. Bell Labs Technical Journal, 36(6):1389–1401,
1957.
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