

**Adhesion and Running Speed of a Tropical Arboreal Ant
(*Cephalotes atratus*) on Rough, Narrow, and Inclined
Substrates**

Journal:	<i>Integrative and Comparative Biology</i>
Manuscript ID	ICB-2020-0055.R1
Manuscript Type:	Symposium article
Date Submitted by the Author:	03-Jun-2020
Complete List of Authors:	Stark, Alyssa; Villanova University, Biology Yanoviak, Stephen; University of Louisville, Department of Biology
Keywords:	performance, Formicidae, Panama, locomotion, behavior

SCHOLARONE™
Manuscripts

1 Adhesion and Running Speed of a Tropical Arboreal Ant (*Cephalotes atratus*) on Rough, 2 Narrow, and Inclined Substrates

Alyssa Y. Stark^{1,*} and Stephen P. Yanoviak^{2,3}

6 ¹Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085
7 USA

⁹ ² Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY
¹⁰ 40292 USA

12 ³ Smithsonian Tropical Research Institute, Balboa, Republic of Panama

15 *Author for correspondence: alyssa.stark@villanova.edu; (610) 519-4838

18 **Keywords:** performance, Formicidae, Panama, locomotion, behavior

19 **Running Title:** Arboreal Ant Adhesion and Locomotion

20 Word Count: 4,765

1
2
3 21 **Abstract**
4
5
6 22 Arboreal ants must navigate variably sized and inclined linear structures across a range of
7
8 23 substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal
9
10 24 ants use specialized adhesive pads and claws to maintain effective attachment to canopy
11
12 25 substrates. Here, we explored the effect of substrate structure, including small and large-scale
13
14 26 substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and
15
16 27 running speed of workers of one common, intermediately-sized, arboreal ant species. Normal
17
18 28 (orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf
19
20 29 substrates, particularly at small size scales, but running speed on these substrates remained
21
22 30 relatively constant. Running speed also varied minimally when running up and down inclined
23
24 31 substrates, except when the substrate was positioned completely vertical. On vertical surfaces,
25
26 32 ants ran significantly faster down than up. Ant running speed was slower on relatively narrow
27
28 33 substrates. The results of this study show that variation in the physical properties of tree surfaces
29
30 34 differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor
31
32 35 performance was much more robust to surface roughness than was adhesive performance. The
33
34 36 results provide a basis for understanding how performance correlates of functional morphology
35
36 37 contribute to determining local ant distributions and foraging decisions in the tropical rainforest
37
38 38 canopy.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

40 **Introduction**

41 An animal's ability to locomote over the range of conditions that occur within its local
42 environment ultimately affects its survival (Arnold 1983; Vogel 1988; Bennett and Huey 1990;
43 Garland Jr and Losos 1994; Ricklefs and Miles 1994; Alexander 2003; Irschick and Higham
44 2016; Biewener and Patek 2018). For cursorial animals, substrate characteristics are strong
45 selective pressures; camels and mountain goats have limb and biomechanical modifications that
46 promote efficient locomotion on sand and rock faces (respectively), but not vice versa (Dagg
47 1974; Lewinson and Stefanyshyn 2016). Such traits facilitate foraging and escape from
48 predation, but are only effective across a range of substrate characteristics. Thus, selection
49 should favor biased use of pathways that minimize costs relative to benefits (e.g., Schoener
50 1979; Stephens and Krebs 1986; Ydenberg et al. 1994; Yunger et al. 2002). Potentially important
51 costs include metabolic energy expenditure, frequency of injury, and duration of exposure to
52 hazards (Stephens and Krebs 1986).

53 The biased use of pathways to minimize costs is particularly relevant for small organisms
54 like ants, where local habitat complexity rapidly increases as body size decreases (Kaspari and
55 Weiser 1999; Yanoviak and Kaspari 2000; Grevé et al. 2019). The duration of foraging trips and
56 the frequency of worker loss are likely to increase in more complex habitats (Fewell et al. 1996).
57 Longer foraging trips result in reduced food intake rate (Carroll and Janzen 1973; Fewell 1988)
58 and lost workers are costly to ant colonies as lost biomass (Wilson 1968). Thus, ants and other
59 small foragers commonly choose paths of least resistance (i.e., shorter, less complex routes;
60 Fewell 1988; Torres-Contreras and Vasquez 2004; Devigne and Detrain 2006; Farji-Brener et al.
61 2007; Clay et al. 2010).

1
2
3 62 Worker ants that forage primarily in tree crowns must maintain contact with three-
4
5 dimensional substrates to avoid falling. Indeed, unique behaviors among small wingless arboreal
6
7 organisms such as gliding and swimming suggest that falling is costly and climbing should be
8
9 optimized (Cartmill 1985; Yanoviak et al. 2005; Yanoviak et al. 2009; Yanoviak and Frederick
10
11 2014; Yanoviak et al. 2015). Arboreal ants generally use compliant tarsal pads coated with an
12
13 adhesion-mediating fluid and curved claws to adhere to, and mechanically interlock with canopy
14
15 substrates, respectively (Federle et al. 2002; Endlein and Federle 2008). Although adhesion and
16
17 locomotion are functionally linked (Federle and Endlein 2004; Endlein and Federle 2008), direct
18
19 comparisons between adhesive performance and locomotor performance are few, particularly
20
21 under variable environmental conditions (but see Federle et al. 2000; Stark and Yanoviak 2018).
22
23
24
25
26 72 Given that the energetic costs of locomotion in ants are relatively low (e.g., Fewell 1988),
27
28 and endurance constraints (e.g., oxygen debt during bursts of activity; Bennett and Huey 1990)
29
30 are trivial at this small scale, the maintenance of secure attachment and consistent motion during
31
32 foraging bouts in a variety of environmental conditions presumably are key limiting factors.
33
34
35 76 Locomotor speed likely is constrained by the robustness and versatility of the adhesive system in
36
37 complex environments, especially for broad-ranging foragers. Thus, when attachment is
38
39 compromised, we expect a compensatory reduction in locomotor performance (measured as
40
41 running speed); however, this expectation is not always supported, suggesting that the functional
42
43 morphology of locomotion in ants is very robust to environmental variation (Federle et al. 2000;
44
45 Clay et al. 2010; Yanoviak et al. 2012; Stark and Yanoviak 2018).
46
47
48 82 Although the forest canopy is a linear network of stems from the perspective of small
49
50 cursorial organisms like ants, rough, narrow, and steeply inclined surfaces are difficult to avoid
51
52 in this setting (Schoener 1968; Mattingly and Jayne 2004). Stem roughness is likely to be
53
54
55
56
57
58
59
60

1
2
3 especially problematic for ants because adhesive performance is dependent on the relationship
4
5 between surface asperity size and adhesive unit size (e.g., tarsal pad, claw tip). In instances
6
7 where the asperity size and adhesive unit size match, adhesion and mechanical interlocking can
8
9 fail due to a decrease in contact area (Figure 1; Scholz et al. 2010; Zhou et al. 2014; Song et al.
10
11 2016). Conversely, as surface asperity size increases, adhesive performance should increase,
12
13 although this is dependent on body size (Figure 1; Yanoviak et al. 2017). In addition to surface
14
15 roughness, natural vegetative substrates have diverse features that potentially impact ant
16
17 performance (Federle et al. 2000; Koch et al. 2008; Barthlott et al. 2017). Finally, arboreal ants
18
19 commonly locomote on the stems of climbing plants (e.g., vines) that vary in inclination and
20
21 diameter, and these factors potentially influence ant foraging behavior (Clay et al. 2010;
22
23 Yanoviak et al. 2012).

24
25
26 The primary goal of this study was to measure the effect of local substrate characteristics
27
28 (roughness, diameter, and inclination) on arboreal ant adhesive and locomotor performance. We
29
30 hypothesized that adhesive performance and running speed vary according to the match between
31
32 substrate asperity size and attachment structure size. Specifically, we predicted lower adhesive
33
34 performance on substrates with fine asperity size and higher adhesive performance on substrates
35
36 with large asperities, relative to smooth surfaces (Figure 1). We expected locomotor
37
38 performance, measured as running speed, to slow as a consequence of reduced adhesion on fine
39
40 rough substrates and on very rough, structurally complex substrates like tree bark. Secondarily,
41
42 we predicted that ant running speed would also slow with declining stem diameter and increasing
43
44 angle of stem inclination, due to the biomechanical limitations of appendages and adhesive
45
46 anatomy. We explored these predictions with laboratory and field experiments on artificial and
47
48 natural substrates with one common tropical arboreal ant species.

108

109 **Materials and Methods**

110 Data were collected on Barro Colorado Island (BCI), Panama (9.15°N, 79.85°W) during
111 the 2015 wet season (May - July) and in June 2019. More information about this site is available
112 elsewhere (Croat 1978; Leigh 1996). We measured adhesive and locomotor performance of
113 workers of a common arboreal ant species (*Cephalotes atratus* L., Hymenoptera, Formicidae,
114 Myrmicinae). Workers were hand collected from at least two colonies daily, and housed (alive)
115 with their nestmates in small plastic containers until needed (generally < 12 hr). Only intact
116 individuals that could articulate all legs were used in experiments. Prior to experimental testing
117 in the laboratory or the field, focal ants were acclimated to the appropriate conditions
118 (laboratory: ca. 22°C and 80% RH; field: ca. 30°C and 80% RH) for at least 1 hr. All ants were
119 weighed to the nearest 0.1 mg following experiments.

120

121 *Ant Adhesive Morphology*

122 We used tarsal pad area and tarsal claw diameter as basic measures of ant adhesive
123 morphology. Tarsal pad area values were obtained from prior studies (Stark et al. 2018) in which
124 digital images of tarsal pads engaged with a glass surface were measured using NIH ImageJ
125 (version1.46r; see Stark et al. 2018 for details). Tarsal claw diameter was measured using
126 scanning electron microscopy (SEM; Zeiss Supra 35 SEM, Jena, Germany). Ant tarsi were
127 separated from three frozen individuals and mounted so that the claw tips were in clear view
128 (i.e., facing up or laterally). We used NIH ImageJ to measure the diameter of the claw tips on
129 digital SEM images. Specifically, we used the *oval measurement* tool (locking it into a circle) to

1
2
3 130 outline the perimeter of the tarsal claw tip, then converted the area of the circular overlay to
4
5 131 diameter.
6
7
8 132
9
10 133 *Surface Characterization*
11
12 134 We used plate glass and seven different grades of sandpaper (grit size = P2500, P2000,
13
14 P1500, P320, P120, P80, and P36; Table 1) to test ant adhesion and locomotor performance on
15
16 smooth and variably rough substrates. For the purposes of this project, we assumed glass
17
18 137 roughness is effectively zero. The surface asperities of plate glass exist at the nanometer scale,
19
20 thus they are at least three orders of magnitude smaller than the micrometer-scale size of the
21
22 138 attachment structures of ants.
23
24 139
25

26 140 We quantified the asperity size of each sandpaper grit size as the average maximum
27
28 141 length of 5 particles chosen in three different locations on a sandpaper sample (i.e., 15 particles
29
30 per sandpaper type). Specifically, a digital grid was overlaid on images of each of the three
31
32 142 sample locations on a sheet of sandpaper. Due to the broad range in asperity size, grid areas were
33
34 143 set at 10 mm² for P36 grit sandpaper, 2 mm² for P80 grit sandpaper, 0.75 mm² for P120 grit
35
36 144 sandpaper, and 0.05 mm² for the remaining grit sizes (P2500, P2000, P1500, P320). These grid
37
38 145 sizes provided six complete squares per sample area; we selected the largest exposed particle
39
40 146 within each of the 5 clearest grid squares for measurement. Digital images of the sample areas
41
42 147 were taken with a Zeiss Axio Zoom V16 microscope fitted with an Axiocam 305 color camera
43
44 148 (Jena, Germany). We used the *grid plug-in* and *line tool* in NIH ImageJ to draw grid lines and
45
46 149 measure the largest dimension of selected particles, respectively.
47
48 150
49
50

51 151 We measured ant adhesion on leaves from five different tree species: *Anacardium*
52
53 152 *excelsum*, *Cavanillesia platanifolia*, *Dipteryx oleifera*, *Ochroma pyramidalis*, and *Pseudobombax*
54
55
56
57
58
59
60

1
2
3 153 *septenatum*. We chose these species because they are common trees near the BCI lab clearing,
4 and superficially appear to span a broad range of surface roughness. In each case, we harvested
5 mature leaves from portions of the trees receiving full sun exposure. Only leaves free of
6 conspicuous epiphylls and damage were used for experiments. We quantified the surface
7 characteristics of each leaf species by first making sodium alginate impressions of the leaf
8 surface, and then making plaster casts of the impressions. The roughness profiles of these casts
9 were obtained with a Veeco contact profilometer (Plainview, NY, USA). On each cast, three
10 linear 6.102 mm passes using 5 mg of force were made with a 12.5 μ m stylus tip. These passes
11 did not include leaf veins. Profilometry data were uploaded to TopoBank (version 0.7.5;
12 <https://contact.engineering/>) to calculate root-mean-square (RMS) height deviation, following the
13 conventions of Jacobs et al. (2017). RMS height deviation is the average of the profile height
14 deviations from the mean height. Curvature was removed from the profile plots. The RMS height
15 deviation of each pass was used to calculate the mean RMS height deviation for each leaf
16 species. All leaves were measured and used in experiments within 24 h of collection. To prevent
17 dehydration and decay between trials, leaves were stored in a plastic bag with a wet paper towel
18 in the laboratory.

19
20
21 169 We used stems of two liana (woody vine) taxa (*Tontelea ovalifolia* and *Bauhinia* sp.) and
22 bark from the trunks of three tree species (*Anacardium excelsum*, *Alseis blackiana* and *Dipteryx*
23 *oleifera*) to characterize ant locomotor performance on non-foliar natural plant substrates.
24 Similar to the leaf substrates, we chose these focal species because they differed conspicuously
25 in surface roughness, which was quantified in a separate study (Yanoviak et al. 2017).
26 Specifically, field-based laser scanning was used to measure the mean amplitude of the bark
27 surface asperities, and a laser scanning confocal microscope was used to image surface
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 176 topography of liana stem samples (Yanoviak et al. 2017). Hereafter, all natural substrates used in
4
5 177 experiments are referred to by genus only.
6
7 178
8
9

10 179 *Adhesive Performance Experiments*
11

12 180 The adhesive performance of ants was measured on sandpaper and tree leaves mounted to
13
14 181 a flat surface. Adhesion to plate glass was used as a reference. In each case, tarsal adhesion was
15
16 182 measured by clamping a thin nylon thread (Aurlfil, Milano, Italy) to a hand-held 10 or 20 g
17
18 183 analog spring gauge (0.1g and 0.2g resolution respectively; Pesola, Schindellegi, Switzerland),
19
20 184 and tying the free end around the ant petiole (Stark et al. 2018; Stark and Yanoviak 2018; Stark
21
22 185 et al. 2019). We measured the adhesion of live ants clinging to experimental substrates in two
23
24 186 orientations. First, ants were pulled approximately orthogonal to the horizontally positioned
25
26 187 substrate surface (i.e., normal adhesion), then the substrate was mounted vertically using a stage
27
28 188 with a clamp and ants were slid approximately parallel to the vertical substrate surface (i.e., shear
29
30 189 adhesion; see Stark and Yanoviak 2018 for a schematic of the experimental set-up). In both
31
32 190 orientations, each ant was induced to securely attach its adhesive pads by applying slight
33
34 191 pressure to the gaster. Normal adhesion was defined as the maximum load (g) an ant could
35
36 192 maintain before detaching from the experimental substrate (i.e., losing grip and springing free of
37
38 193 the horizontal surface). Shear adhesion was defined as the maximum load (g) an ant resisted
39
40 194 during an approximately 3 cm slide along the vertically positioned substrate. Ants were oriented
41
42 195 head down for these experiments, so that their tarsal pads were fully engaged during vertical
43
44 196 sliding. Each ant was tested in both orientations three times, but only the maximum of the three
45
46 197 measurements in each orientation was used for statistical analysis. We tested normal and shear
47
48 198 adhesion of fifteen ants per substrate.
49
50
51
52
53
54
55
56
57
58
59
60

199

200 *Locomotor Performance Experiments*

201 Locomotor performance (running speed, cm s^{-1}) was measured on 1 cm diameter wooden
202 dowels wrapped with sandpaper, leaves attached to a flat substrate, or ca. 1 cm diameter vines.
203 Running speed on bark was measured in the field by releasing ants on tree trunks at
204 approximately 1.5m above the ground (Yanoviak et al. 2017). A 1 cm glass rod was used as a
205 baseline reference for running speed on a smooth, hard substrate. We tested the effect of
206 substrate diameter on locomotor performance by measuring ant running speed on glass rods of
207 varying diameter (2, 5, 7, 9, 12 mm). Similarly, we tested the effects of substrate inclination on
208 locomotor performance by measuring ant running speed on a 1 cm glass rod secured at different
209 angles relative to horizontal (0, 30, 60, and 90°). In all experiments, running speed was measured
210 as the time required for an ant to traverse a 10 cm section of the test substrate. Only
211 uninterrupted, straight runs were used. Each ant was tested three times ($n = 30$ ants per
212 treatment), and only the maximum speed observed for a given ant was used for statistical
213 analysis.

214

215 *Statistical Analysis*

216 Normal and shear adhesion data did not fit the assumptions of a linear model, so we used
217 nonparametric Kruskal-Wallis tests with post hoc Wilcoxon comparisons when significant
218 differences occurred among treatment groups. Normal and shear adhesion were analyzed
219 separately as a function of either sandpaper grit size or leaf species. Load resisted divided by
220 body mass was used as the response variable to account for differences in body size. Body mass

1
2
3 221 and body size measures (e.g., head width) are highly correlated in *C. atratus* and other ants (Corn
4
5 222 1980; Kaspari and Weiser 1999; Yanoviak et al. 2005).

6
7 223 Running speed data fit the assumptions of a linear model, therefore we used three
8
9 224 separate analysis of covariance (ANCOVA) tests to investigate differences in running speed on
10
11 225 sandpaper substrates and natural substrates (leaves, vines) in the laboratory, and tree trunks in the
12
13 226 field. Running speed on tree trunks in the field was analyzed separately from leaves and vines
14
15 227 because ambient temperature differences affect running speed (Hurlbert et al. 2008; Yanoviak et
16
17 228 al. 2017). We used multiple regression to test for differences in running speed on dowels of
18
19 229 different diameter, where mass and diameter were the independent variables. Finally, we used an
20
21 230 ANCOVA to test for differences in running speed on 1 cm dowels secured at different angles of
22
23 231 inclination. Ant mass was used as the covariate in all ANCOVA models. Differences among
24
25 232 means in ANCOVA tests were determined with post hoc Tukey HSD tests. Data were
26
27 233 transformed when necessary to meet normality and homogeneity of variance assumptions.
28
29 234 Analyses were conducted with JMP 10.0.0 software (SAS Institute, Inc. 2012) and all means are
30
31 235 reported \pm s.e.m.

32
33 236

34 237 **Results**

35 238 *Ant Morphology*

36
37 239 The average mass of individual *C. atratus* workers used in this study was 40.3 ± 0.32 mg.
38
39 240 The range of worker mass (12.4 - 79.0 mg) used in this study matches the range of worker sizes
40
41 241 commonly encountered in the field (Corn 1980; Yanoviak et al. 2005). Their average tarsal pad
42
43 242 area was 0.0140 ± 0.00078 mm² (Stark et al. 2018) and average tarsal claw diameter was $0.014 \pm$
44
45 243 0.0005 mm.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

244

245 *Surface Characterization*

246 Sandpaper asperity sizes ranged from 0.02-1.19 mm in average maximum length (Table
247 1). These values are higher than reported by Federation of European Producers of Abrasives
248 (FEPA) because we used the largest linear dimension of maximum particle size, not average
249 particle size. The RMS height deviation of fresh leaves ranged ca. 0.01-0.02 mm (Table 2). Vine
250 and tree bark asperity height was reported elsewhere (Yanoviak et al. 2017), and ranged ca. 0.09-
251 2.15 mm (Table 2).

252

253 *Adhesive and Locomotor Performance on Artificially Rough Substrates*

254 Normal and shear adhesion of *C. atratus* ant workers on sandpaper substrates varied as a
255 function of the asperity size (i.e., sandpaper grit size; Normal Adhesion: $\chi^2 = 111.32$, df = 7, P <
256 0.0001; Shear Adhesion: $\chi^2 = 98.67$, df = 7, P < 0.0001; Figure 2A and 2B). In general, shear
257 adhesion was higher than normal adhesion, and substrates with larger asperity size produced
258 higher forces. Specifically, normal adhesion was significantly different among asperity sizes
259 except the largest sandpaper grits (P120, P80, P36). Normal adhesion to smooth glass produced
260 the same load resistance as adhesion to sandpaper grit P320, but not smaller asperity sizes (grit >
261 P320). Indeed, adhesion was lower (effectively zero) on these substrates than on smooth glass
262 (0.5 ± 0.07 g load resisted). Likewise, shear adhesion differed among asperity sizes except the
263 roughest sandpaper grits (P120, P80, P36). Adhesion consistently was higher on these rough
264 substrates than on substrates with small asperity sizes. Shear adhesion loads did not differ for
265 ants tested on smooth glass and on fine-grit sandpaper (P2000, P1500).

1
2
3 266 The running speed of *C. atratus* ant workers varied as a function of substrate asperity size
4
5 267 ($F_{15,224} = 3.45$, $P < 0.0001$; Figure 2C). Specifically, running speed was consistently slower on
6
7 268 smooth glass than on sandpaper, and tended to be marginally slower on the roughest sandpaper
8
9 269 grits (P80 and P36).
10
11 270
12
13
14 271 *Adhesive and Locomotor Performance on Natural Substrates*
15
16
17 272 Normal and shear adhesive performance of *C. atratus* workers differed among natural
18
19 273 substrate types (i.e., leaves; Normal Adhesion: $\chi^2 = 12.84$, $df = 4$, $P = 0.0121$; Shear Adhesion:
20
21 274 $\chi^2 = 20.74$, $df = 4$, $P = 0.0004$; Figure 3). Similar to adhesion results on sandpaper, normal
22
23 275 adhesion was much lower than shear adhesion on leaves. Normal adhesion was higher on
24
25 276 *Ochroma* leaves than on the *Cavanillesia* and *Dipteryx* leaves, but was similar among all other
26
27 277 leaf comparisons. Shear adhesion was higher on *Ochroma* and *Anacardium* leaves than on
28
29 278 *Dipteryx* and *Pseudobombax* leaves. All other paired comparisons were statistically similar.
30
31
32 279 The running speed of *C. atratus* ant workers differed as a function of leaf and vine type in
33
34 280 the laboratory ($F_{13,196} = 2.82$, $P = 0.0010$) and bark type in the field ($F_{5,85} = 8.05$, $P < 0.0001$).
35
36 281 Specifically, ant running speed was faster on *Dipteryx* and *Anacardium* leaves and *Bauhinia* vine
37
38 282 stems than on *Ochroma* leaves in the laboratory (Figure 4). In the field, ant running speed was
39
40 283 lower on *Anacardium* bark than on *Dipteryx* and *Alseis* bark (Figure 4).
41
42
43 284
44
45
46 285 *Locomotion on Narrow and Inclined Substrates*
47
48
49 286 The average running speed of *C. atratus* ant workers increased as substrate diameter
50
51 287 increased ($F_{2,147} = 69.90$, $P < 0.0001$, $R^2 = 0.49$; Figure 5). Running speed also differed as a
52
53 288 function of running orientation (running up or down an incline; $F_{15,96} = 2.35$, $P = 0.0065$; Figure
54
55
56
57
58
59
60

1
2
3 289 6) and substrate angle had a significant effect on running speed (interaction: $F = 3.69$, $df = 3$, $P =$
4
5 290 0.0146). The significant interaction was driven by orientation (single effect: $F = 12.55$, $df = 1$, P
6
7 291 = 0.0006), such that ants running upward on a vertical dowel ran slower than those running
8
9 292 downward.
10
11 293
12
13 294 **Discussion**
14
15
16 295 The relatively linear, reticulate substrates that characterize the tropical rainforest canopy
17
18 296 present a variety of physical challenges for wingless arboreal ants. Reduction in worker ant
19
20 297 adhesion and running speed on highly variable substrates may increase the likelihood of falling,
21
22 298 extend the time needed to discover food, elevate energy requirements, and prolong exposure to
23
24 299 dangerous abiotic and biotic factors (i.e., temperature, rain, wind, predators, competitors; Denny
25
26 300 et al. 2001; Gissel Nielsen 2001; Sarty et al. 2006; Farji-Brener et al. 2018; Radnan et al. 2018;
30
31 301 Stark et al. 2018). The results of this study show that the adhesive performance and locomotor
32
33 302 performance of workers of one common arboreal ant species are resilient to variation in substrate
34
35 303 roughness, diameter, and orientation. However, in some conditions the adhesive mechanism
36
37 304 completely failed or running speed significantly declined. Thus, it is likely that *C. atratus*
38
39 305 workers establish foraging routes that minimize the inclusion of substrates effecting reduced
40
41 306 adhesion and running speed, as observed in other cursorial animals (Pounds 1988; Irschick and
42
43 307 Losos 1999; Jones and Jayne 2012).
44
45
46 308 Surface roughness is a ubiquitous and unpredictable environmental variable that can
47
48 309 impact the adhesive performance of many organisms, especially when asperity size matches
49
50 310 adhesive unit size (Huber et al. 2007; Gorb and Gorb 2009; Scholz et al. 2010; Wolff and Gorb
51
52 311 2012; Gillies et al. 2014; Salerno et al. 2017; Pillai et al. 2020). The results of this study show
53
54
55
56
57
58
59
60

1
2
3 312 that when comparing asperity size, tarsal pad area, and claw tip size of *C. atratus* workers, the
4
5 313 finest polishing paper is similarly scaled (i.e., asperity size of P2500 is ca. 0.02 mm and tarsal
6
7 314 pad area and claw tip diameter are ca. 0.01 mm² and ca. 0.01 mm wide, respectively). This
8
9 315 similarity likely explains the low adhesive performance of *C. atratus* workers on P2500
10
11 316 sandpaper, even in shear sliding. Presumably this outcome is due to additional friction between
12
13 317 the tarsal pads and claws when sliding (Dai et al. 2002; Federle et al. 2004).
14
15

16
17 318 By contrast, the increase in adhesive performance with asperity size is counter to
18
19 319 theoretical predictions and other experimental results (Fuller and Tabor 1975). However, these
20
21 320 models do not take into account mechanical interlocking and friction from claws, which only
22
23 321 occurs at high surface asperity sizes (Dai et al. 2002). The results of this study suggest that
24
25 322 significant mechanical interlocking and friction from claws of *C. atratus* workers begins to occur
26
27 323 when surface asperities are ca. 0.13 mm wide (P320 sandpaper grit substrate) and dominate when
28
29 324 surface asperities are ca. 0.4 mm wide (P120 sandpaper grit substrate). The lack of difference in
30
31 325 adhesive and locomotor performance on grits at the larger end of our experimental range of
32
33 326 asperity (> 0.5 mm grain size) suggests that such asperities are the equivalent of boulders for
34
35 327 ants. Consequently, it appears that differences in size among grains averaging 0.5-1.2 mm in
36
37 328 maximum dimension are irrelevant to locomotion in *C. atratus* workers. The results also suggest
38
39 329 that shear sliding helps claws interlock at smaller surface asperity sizes better than when pulled
40
41 330 orthogonally from a substrate (i.e., asperity size \geq 0.3 mm vs. asperity size \geq 0.4 mm,
42
43 331 respectively). Evaluating these possibilities was beyond the scope of this study, but could be
44
45 332 accomplished via microscopic examination of tarsal-substrate interactions on diverse surfaces
46
47 333 (e.g., Stark et al. 2018).
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 334 Surface roughness is just one parameter that potentially influences ant performance on
4 natural substrates; variables like wettability, trichrome density, and the presence of wax crystals
5 are also important (Davidson et al. 1989; Federle et al. 2000; Gorb and Gorb 2011; Stark and
6 Yanoviak 2018). The plaster casting process used in this study generates a structurally imperfect
7 replica of leaf surface properties, which likely contributed to the lack of strong RMS height
8 deviation differences among leaf species that were otherwise superficially distinct. Indeed, the
9 range of RMS height deviation observed among leaf casts was small, and matched the
10 attachment structure size of ants (tarsal pads and claws). Regardless, when qualitatively
11 comparing adhesion to glass and rough sandpaper with leaf adhesion, adhesion of *C. atratus*
12 workers to natural leaf substrates was much lower overall. However, the normal and shear loads
13 ants resisted on leaves were much higher than their body mass, suggesting that the risk of falling
14 from a leaf surface is low under most natural circumstances. While the surface roughness of
15 sandpaper and natural substrates (leaves, bark) used in this study are not easily comparable due
16 to differences in characterization (i.e., asperity length vs. RMS height deviation vs. peak-valley
17 asperity height), it was clear that surface roughness is significantly smaller on leaves than
18 sandpaper and bark surfaces. Improving surface roughness measurement and quantification of
19 substrates in the field would be a potentially useful future direction for this work.

20
21
22 351 The results of this study highlight the robustness of running speed across a variety of
23 natural and artificial surface asperity sizes. Specifically, the running speed of *C. atratus* workers
24 is very consistent across a range of leaf, vine, bark, and sandpaper substrates, as observed in
25 related studies (Yanoviak et al. 2017). However, the slower running speeds on *Anacardium* bark
26 (and our observations in the field) suggest that roughness amplitudes matching larger anatomical
27 structures of worker ants, such as tarsi and legs, impose significant obstacles to locomotion

1
2
3 357 (Figure 1; Yanoviak et al. 2017). Very rough or unstable substrates like bark or gravel potentially
4
5 358 reduce foraging efficiency (e.g., causing dropping of heavy loads when returning to the nest;
6
7 359 Bernadou et al. 2011), making navigation on rough substrates even more costly. Thus, we would
8
9 360 expect *C. atratus* workers to avoid foraging on very rough bark and very smooth substrates (at
10
11 361 the roughness scale of glass), which also reduced running speed.
12
13
14
15 362 A key result of this work is the comparison of adhesive performance and running speed.
16
17
18 363 In particular, while running speed across artificial and natural substrates did not show strong
19
20 364 differences, adhesion varied significantly. This countered our prediction that adhesive
21
22 365 performance dictates running speed (Figure 1). The mechanism responsible for this discontinuity
23
24 366 has not been resolved (Stark et al. 2015; Stark and Yanoviak 2018). Many biological materials
25
26 367 like ant adhesive pads are viscoelastic, and thus dependent on the rate of material extension
27
28 368 (Federle et al. 2004; Vincent 2012). Therefore, it is possible that speed is maintained on poorly
29
30 369 adhesive substrates by increasing shear sliding rate (i.e., strain rate; Stark et al. 2015). It is also
31
32 370 possible that ants do not need their adhesive structures while running. For example, ants running
33
34 371 horizontally and vertically can make contact mainly with their proximal tarsal segments (i.e.,
35
36 372 running on their "heels"), and use tarsal hairs for additional friction as needed (Reinhardt et al.
37
38 373 2009; Wöhrl et al. 2017).
39
40
41
42
43 374 Running up or down inclined substrates often reduces running speed (Birn-Jeffery and
44
45 375 Higham 2014), and running on narrow substrates likely makes correct tarsal placement more
46
47 376 difficult, thereby slowing forward progress (Lammers and Biknevicius 2004; Frantsevich and
48
49 377 Cruse 2005). Given the prevalence of narrow and inclined substrates in arboreal habitats, (e.g.,
50
51 378 50% of the surfaces were < 0.8 cm in diameter and angled at ca. 60° in a Bahamian forest;
52
53 379 Mattingly and Jayne 2004), arboreal organisms likely routinely encounter physical challenges
54
55
56
57
58
59
60

1
2
3 380 that impact running speed. The results of this work show that substrate inclination and diameter
4
5 381 affect running speed of *C. atratus* workers, although such effects are limited to extreme
6
7 382 circumstances (i.e., narrow or vertical substrates). Similar inclination-related results were
8
9 383 reported in the field and laboratory for ants running up and down slopes (Seidl and Wehner
10
11 384 2008; Ravindra 2014), but other studies found limited effects of substrate inclination (Seidl and
12
13 385 Wehner 2008; Weihmann and Blickhan 2009; Holt and Askew 2012; Khuong et al. 2013; Norton
14
15 386 et al. 2014). Inclination generally slows ascent in cursorial animals (Jayne and Byrnes 2015), and
16
17 387 different experimental outcomes likely reflect differences among species (Grevé et al. 2019) and
18
19 388 slope (i.e., most studies were not conducted on vertical substrates). Likewise, only very narrow
20
21 389 vine substrates seem to constrain foraging substrate choice in arboreal ants (Clay et al. 2010).
22
23
24 390 This pattern supports the habitat constraint hypothesis - i.e., that foraging worker ants should
25
26 391 avoid substrates and conditions that negatively impact performance (Irschick and Losos 1999).
27
28
29
30
31 392
32
33 393 **Conclusion**
34
35
36 394 The results of this study show that canopy substrates can affect adhesive performance of
37
38 395 foraging worker ants, but that locomotor performance is maintained in most contexts. Given this
39
40 396 outcome, we would expect ants like *C. atratus* (with relatively larger workers) to avoid foraging
41
42 397 in locations of the canopy where adhesion is compromised (i.e., smooth substrates). Conversely,
43
44 398 we do not expect foraging paths to be influenced by substrate structure except where substrates
45
46 399 are vertical or narrow. Indeed, running down a vertical substrate (verses a lower angle of
47
48 400 inclination) may maximize time and energy benefits. Future work should focus on field
49
50 401 observations of foraging arboreal ants in the canopy and more detailed analyses of the kinematics
51
52 402 of adhesion and locomotion on variable substrates.
53
54
55
56
57
58
59
60

1
2
3 403
4
5404 **Acknowledgements**

405 We thank Oris Acevedo, Belkys Jimenez, Melissa Cano, and the staff of the Smithsonian
406 Tropical Research Institute for logistical support in Panama, and the faculty and staff at the
407 Micro/Nano Technology Center and the Huson Imaging & Characterization Laboratory at the
408 University of Louisville. We also thank Keegan Thompson for help with sample preparation and
409 Tevis Jacobs for help with leaf surface profilometry analysis. This research was supported by
410 National Science Foundation grant DEB-1252614 to SPY.

21
22
23412 **Data Availability Statement**

413 The data underlying this article will be shared on request to the corresponding author.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

414 **Figure Captions**

415 **Figure 1.** Predicted performance (adhesion and running speed) of adhesive animals on rough
416 substrates. On smooth to rough substrates performance is expected to be lower on fine-scale
417 rough substrates that match the asperity size of the attachment structures (pads, claws) due to low
418 contact area. Within this regime the attachment structure size dominates performance. On very
419 rough substrates, body size effects dominate and performance is lowest on very rough substrates
420 that match the size scale of feet and legs. Under this circumstance, surface asperities become
421 significant obstacles. As substrate roughness increases, performance increases because the
422 asperities essentially become hills at the scale of the whole animal while being relatively smooth
423 at the adhesive interface. Ultimately, larger and larger hills increasingly have their own surface
424 asperities (i.e., at the micrometer scale), which interact with adhesive structures at the smooth to
425 rough end of the scale while also resisting the gravitational forces of inclination. This latter
426 complex interaction is not illustrated here, but was partially explored experimentally.

427

428 **Figure 2.** Normal adhesion (A), shear adhesion (B), and running speed (C) of *Cephalotes atratus*
429 ant workers on sandpaper substrates that vary in asperity size (i.e., grit size) and plate glass
430 (reference substrate). Treatment groups denoted with the same letter are not significantly
431 different. Boxes in A and B represent the 25th and 75th percentiles, the line marks the median,
432 bars are the 90th and 10th percentiles. Filled circles in C are means and error bars are \pm s.e.m.

433

434 **Figure 3.** Normal adhesion (A) and shear adhesion (B) of *Cephalotes atratus* ant workers on
435 leaves. Substrates are abbreviated by genus name (ANA: *Anacardium*; CAV: *Cavanillesia*; DIP:

1
2
3 436 *Dipteryx*; OCH: *Ochroma*; PSE: *Pseudobombax*). Treatment groups denoted with the same letter
4
5 437 are not significantly different. Plotted values are described in Figure 2A and B.
6
7 438
8
9

10 439 **Figure 4.** Average running speed of *Cephalotes atratus* ant workers on natural substrates (A,
11
12 440 leaves and vine stems; B, tree bark). Substrates in A are abbreviated by genus name (ANA:
13
14 441 *Anacardium*; BAU: *Bauhinia* (vine); CAV: *Cavanillesia*; DIP: *Dipteryx*; OCH: *Ochroma*; PSE:
15
16 442 *Pseudobombax*; TON: *Tontelea* (vine)). Treatment groups denoted with the same letter are not
17
18 443 significantly different. Error bars are \pm s.e.m.
19
20 444
21
22

23
24 445 **Figure 5.** Running speed of *Cephalotes atratus* ant workers on horizontal glass rods that vary in
25
26 446 diameter. Error bars are \pm s.e.m.
27
28 447
29

30
31 448 **Figure 6.** Running speed of *Cephalotes atratus* ant workers on a glass rod (1 cm) positioned at
32
33 449 various angles relative to horizontal (0, 30, 60, and 90°). Ants were positioned on the rod and
34
35 450 induced to either run up or down. Means that differ are indicated with an asterisk. Error bars are
36
37 451 \pm s.e.m.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

452 **References**

- 453 Alexander RM. 2003. Principles of animal locomotion. Princeton University Press.
- 454 Arnold SJ. 1983. Morphology, performance and fitness. American Zoologist 23: 347-361.
- 455 Barthlott W, Mail M, Bhushan B, Koch K. 2017. Plant surfaces: structures and functions for
456 biomimetic innovations. Nano-Micro Letters 9: 23.
- 457 Bennett AF, Huey R. 1990. Studying the evolution of physiological performance. Oxford
458 Surveys in Evolutionary Biology 7: 251-284.
- 459 Bernadou A, Espadaler X, Dos-Reis V, Fourcassié V. 2011. Effect of substrate roughness on
460 load selection in the seed-harvester ant *Messor barbarus* L. (Hymenoptera, Formicidae).
- 461 Behavioral Ecology and Sociobiology 65: 1763.
- 462 Biewener A, Patek S. 2018. Animal locomotion. Oxford University Press.
- 463 Birn-Jeffery AV, Higham TE. 2014. The scaling of uphill and downhill locomotion in legged
464 animals. Integrative and Comparative Biology 54: 1159-1172.
- 465 Carroll CR, Janzen DH. 1973. Ecology of foraging by ants. Annual Review of Ecology and
466 Systematics 4: 231-257.
- 467 Cartmill M. 1985. Climbing. Functional vertebrate morphology. Harvard University Press.
- 468 Clay NA, Bauer M, Solis M, Yanoviak SP. 2010. Arboreal substrates influence foraging in
469 tropical ants. Ecological Entomology 35: 417-423.
- 470 Corn M. 1980. Polymorphism and polyethism in the neotropical ant *Cephalotes atratus* (L.).
- 471 Insectes Sociaux 27: 29-42.
- 472 Croat TB. 1978. Flora of Barro Colorado Island. Stanford University Press.
- 473 Dagg AI. 1974. The locomotion of the camel (*Camelus dromedarius*). Journal of Zoology 174:
474 67-78.

- 1
2
3 475 Dai Z, Gorb SN, Schwarz U. 2002. Roughness-dependent friction force of the tarsal claw system
4
5 476 in the beetle *Pachnoda marginata* (Coleoptera, Scarabaeidae). *Journal of Experimental*
6
7 477 *Biology* 205: 2479-2488.
8
9
10 478 Davidson DW, Snelling RR, Longino JT. 1989. Competition among ants for myrmecophytes and
11
12 479 the significance of plant trichomes. *Biotropica* 21: 64-73.
13
14
15 480 Denny AJ, Wright J, Grief B. 2001. Foraging efficiency in the wood ant, *Formica rufa*: is time of
16
17 481 the essence in trail following? *Animal Behaviour* 62: 139-146.
18
19 482 Devigne C, Detrain C. 2006. How does food distance influence foraging in the ant *Lasius niger*:
20
21 483 the importance of home-range marking. *Insectes Sociaux* 53: 46-55.
22
23
24 484 Endlein T, Federle W. 2008. Walking on smooth or rough ground: passive control of pretarsal
25
26 485 attachment in ants. *Journal of Comparative Physiology A* 194: 49-60.
27
28
29 486 Farji-Brener AG, Dalton MC, Balza U, Courtis A, Lemus-Domínguez I, Fernández-Hilario R,
30
31 487 Cáceres-Levi D. 2018. Working in the rain? Why leaf-cutting ants stop foraging when
32
33 488 it's raining. *Insectes Sociaux* 65: 233-239.
34
35
36 489 Farji-Brener AG, Barrantes G, Laverde O, Fierro-Calderón K, Bascopé F, López A. 2007. Fallen
37
38 490 branches as part of leaf-cutting ant trails: their role in resource discovery and leaf
39
40 491 transport rates in *Atta cephalotes*. *Biotropica* 39: 211-215.
41
42
43 492 Federle W, Baumgartner W, Hölldobler B. 2004. Biomechanics of ant adhesive pads: frictional
44
45 493 forces are rate-and temperature-dependent. *Journal of Experimental Biology* 207: 67-74.
46
47
48 494 Federle W, Endlein T. 2004. Locomotion and adhesion: dynamic control of adhesive surface
49
50 495 contact in ants. *Arthropod Structure & Development* 33: 67-75.
51
52
53
54
55
56
57
58
59
60

- 1
2
3 496 Federle W, Riehle M, Curtis AS, Full RJ. 2002. An integrative study of insect adhesion:
4
5 497 mechanics and wet adhesion of pretarsal pads in ants. *Integrative and Comparative*
6
7 498 *Biology* 42: 1100-1106.
8
9
10 499 Federle W, Rohrseitz K, Holldobler B. 2000. Attachment forces of ants measured with a
11
12 500 centrifuge: better 'wax-runners' have a poorer attachment to a smooth surface. *Journal of*
13
14 501 *Experimental Biology* 203: 505-512.
15
16
17 502 Fewell JH. 1988. Energetic and time costs of foraging in harvester ants, *Pogonomyrmex*
18
19 503 *occidentalis*. *Behavioral Ecology and Sociobiology* 22: 401-408.
20
21
22 504 Fewell JH, Harrison JF, Lighton JR, Breed MD. 1996. Foraging energetics of the ant,
23
24 505 *Paraponera clavata*. *Oecologia* 105: 419-427.
25
26
27 506 Frantsevich LI, Cruse H. 2005. Leg coordination during turning on an extremely narrow
28
29 507 substrate in a bug, *Mesocerus marginatus* (Heteroptera, Coreidae). *Journal of Insect*
30
31 508 *Physiology* 511092-1104.
32
33
34 509 Fuller K, Tabor D. 1975. The effect of surface roughness on the adhesion of elastic solids.
35
36 510 *Proceedings of the Royal Society of London A Mathematical and Physical Sciences* 345:
37
38 511 327-342.
39
40
41 512 Garland Jr T, Losos JB. 1994. Ecological morphology of locomotor performance in squamate
42
43 513 *reptiles*. *Ecological Morphology: Integrative Organismal Biology*. p. 240-302.
44
45
46 514 Gillies AG, Henry A, Lin H, Ren A, Shiuan K, Fearing RS, Full RJ. 2014. Gecko toe and
47
48 515 lamellar shear adhesion on macroscopic, engineered rough surfaces. *Journal of*
49
50 516 *Experimental Biology* 217: 283-289.
51
52
53 517 Gissel Nielsen M. 2001. Energetic cost of foraging in the ant *Rhytidoponera aurata* in tropical
54
55 518 Australia. *Physiological Entomology* 26: 248-253.
56
57
58
59
60

- 1
2
3 519 Gorb E, Gorb S. 2009. Effects of surface topography and chemistry of *Rumex obtusifolius* leaves
4
5 520 on the attachment of the beetle *Gastrophysa viridula*. *Entomologia Experimentalis et*
6
7 521 *Applicata* 130: 222-228.
8
9 522 Gorb E, Gorb S. 2011. How a lack of choice can force ants to climb up waxy plant stems.
10
11 523 *Arthropod-Plant Interactions* 5: 297-306.
12
13 524 Grevé ME, Bláha S, Teuber J, Rothmaier M, Feldhaar H. 2019. The effect of ground surface
14
15 rugosity on ant running speed is species-specific rather than size dependent. *Insectes*
16
17 525 *Sociaux* 66: 355-364.
18
19 526
20
21 527 Holt NC, Askew GN. 2012. Locomotion on a slope in leaf-cutter ants: metabolic energy use,
22
23 behavioural adaptations and the implications for route selection on hilly terrain. *Journal*
24
25 528 *of Experimental Biology* 215: 2545-2550.
26
27
28 530 Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E. 2007. Influence of surface roughness on
29
30 gecko adhesion. *Acta Biomaterialia* 3: 607-610.
31
32 532 Hurlbert AH, Ballantyne F, Powell S. 2008. Shaking a leg and hot to trot: the effects of body size
33
34 and temperature on running speed in ants. *Ecological Entomology* 33: 144-154.
35
36
37 534 Irschick DJ, Higham TE. 2016. Animal athletes: An ecological and evolutionary approach.
38
39 535 Oxford University Press.
40
41 536 Irschick DJ, Losos JB. 1999. Do lizards avoid habitats in which performance is submaximal?
42
43
44 537 The relationship between sprinting capabilities and structural habitat use in Caribbean
45
46 538 anoles. *American Naturalist* 154: 293-305.
47
48
49 539 Jacobs TD, Junge T, Pastewka L. 2017. Quantitative characterization of surface topography
50
51 540 using spectral analysis. *Surface Topography: Metrology and Properties* 5: 013001.
52
53
54
55
56
57
58
59
60

- 1
2
3 541 Jayne BC, Byrnes G. 2015. The effects of slope and branch structure on the locomotion of a
4
5 542 specialized arboreal colubrid snake (*Boiga irregularis*). *Journal of Experimental Zoology*
6
7 543 Part A: Ecological Genetics and Physiology
- 8 323: 309-321.
- 9
10 544 Jones ZM, Jayne BC. 2012. Perch diameter and branching patterns have interactive effects on the
11
12 545 locomotion and path choice of anole lizards. *Journal of Experimental Biology* 215: 2096-
13
14 546 2107.
- 15
16
17 547 Kaspari M, Weiser M. 1999. The size-grain hypothesis and interspecific scaling in ants.
18
19 548 *Functional Ecology* 13: 530-538.
- 20
21
22 549 Khuong A, Lecheval V, Fournier R, Blanco S, Weitz S, Bezian J-J, Gautrais J. 2013. How do
23
24 550 ants make sense of gravity? A Boltzmann Walker analysis of *Lasius niger* trajectories on
25
26 551 various inclines. *PLOS One* 8: e76531.
- 27
28
29 552 Koch K, Bhushan B, Barthlott W. 2008. Diversity of structure, morphology and wetting of plant
30
31 553 surfaces. *Soft Matter* 4: 1943-1963.
- 32
33
34 554 Lammers AR, Biknevicius AR. 2004. The biodynamics of arboreal locomotion: the effects of
35
36 555 substrate diameter on locomotor kinetics in the gray short-tailed opossum (*Monodelphis*
37
38 556 *domestica*). *Journal of Experimental Biology* 207: 4325-4336.
- 39
40
41 557 Leigh EG Jr, Rand AS, Windsor DM. 1996. The ecology of a tropical forest, second ed.
42
43 558 Smithsonian Institution, Washington, DC.
- 44
45
46 559 Lewinson RT, Stefanyshyn DJ. 2016. A descriptive analysis of the climbing mechanics of a
47
48 560 mountain goat (*Oreamnos americanus*). *Zoology* 119: 541-546.
- 49
50
51 561 Mattingly WB, Jayne BC. 2004. Resource use in arboreal habitats: structure affects locomotion
52
53 562 of four ecomorphs of *Anolis* lizards. *Ecology* 85: 1111-1124.
- 54
55
56
57
58
59
60

- 1
2
3 563 Norton V, Stevens-Wood B, Harris WE. 2014. Flexibility of individual load-mass selection in
4
5 564 relation to foraging trail gradient in the leaf-cutter ant *Acromyrmex octospinosus*. Journal
6
7 565 of Insect Behavior 27: 370-384.
8
9
10 566 Pillai R, Nordberg E, Riedel J, Schwarzkopf L. 2020. Nonlinear variation in clinging
11
12 567 performance with surface roughness in geckos. Ecology and Evolution 10: 2597-2607.
13
14
15 568 Pounds JA. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical
16
17 569 mainland *Anolis* community. Ecological Monographs 58: 299-320.
18
19
20 570 Radnan GN, Gibb H, Eldridge DJ. 2018. Soil surface complexity has a larger effect on food
21
22 571 exploitation by ants than a change from grassland to shrubland. Ecological Entomology
23
24 572 43: 379-388.
25
26
27 573 Ravindra P. 2014. Ant runners: an analysis of running speed of *Leptogenys processionalis*
28
29 574 (Hymenoptera: Formicidae: Ponerinae). Current Science 106: 1187-1189.
30
31
32 575 Reinhardt L, Weihmann T, Blickhan R. 2009. Dynamics and kinematics of ant locomotion: do
33
34 576 wood ants climb on level surfaces? Journal of Experimental Biology 212: 2426-2435.
35
36
37 577 Ricklefs RE, Miles DB. 1994. Ecological and evolutionary inferences from morphology: an
38
39 578 ecological perspective. Ecological Morphology: Integrative Organismal Biology. p. 13-
40
41 579 41.
42
43
44 580 Salerno G, Rebora M, Gorb E, Kovalev A, Gorb S. 2017. Attachment ability of the southern
45
46 581 green stink bug *Nezara viridula* (Heteroptera: Pentatomidae). Journal of Comparative
47
48 582 Physiology A 203: 601-611.
49
50
51 583 Sarty M, Abbott KL, Lester PJ. 2006. Habitat complexity facilitates coexistence in a tropical ant
52
53
54
55
56
57
58
59
59 584 community. Oecologia 149: 465-473.
60

- 1
2
3 585 Schoener TW. 1968. The *Anolis* lizards of Bimini: resource partitioning in a complex fauna.
4
5 586 Ecology 49: 704-726.
6
7 587 Schoener TW. 1979. Generality of the size-distance relation in models of optimal feeding.
8
9 588 American Naturalist 114: 902-914.
10
11 589 Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen F, Mayer J, Hoffmann S,
12
13 590 Riederer M, Riedel M. 2010. Slippery surfaces of pitcher plants: *Nepenthes* wax crystals
14
15 minimize insect attachment via microscopic surface roughness. Journal of Experimental
16
17 591 Biology 213: 1115-1125.
18
19 592
20
21 593 Seidl T, Wehner R. 2008. Walking on inclines: how do desert ants monitor slope and step length.
22
23 594 Frontiers in Zoology 5: 8.
24
25
26 595 Song Y, Dai Z, Wang Z, Ji A, Gorb SN. 2016. The synergy between the insect-inspired claws
27
28 596 and adhesive pads increases the attachment ability on various rough surfaces. Scientific
29
30 597 Reports 6: 26219.
31
32
33 598 Stark AY, Arstingstall K, Yanoviak SP. 2018. Adhesive performance of tropical arboreal ants
34
35 599 varies with substrate temperature. Journal of Experimental Biology 221: jeb171843.
36
37
38 600 Stark AY, Davis HR, Harrison WK. 2019. Shear adhesive performance of leaf-cutting ant
39
40 601 workers (*Atta cephalotes*). Biotropica 51: 572-580.
41
42
43 602 Stark AY, Ohlemacher J, Knight A, Niewiarowski PH. 2015. Run don't walk: locomotor
44
45 603 performance of geckos on wet substrates. Journal of Experimental Biology 218: 2435-
46
47 604 2441.
48
49
50 605 Stark AY, Yanoviak SP. 2018. Adhesion and running speed of a tropical arboreal ant
51
52 606 (*Cephalotes atratus*) on wet substrates. Journal of the Royal Society Open Science 5:
53
54 607 181540.
55
56
57
58
59
60

- 1
2
3 608 Stephens DW, Krebs JR. 1986. Foraging theory. Princeton University Press.
4
5 609 Torres-Contreras H, Vasquez R. 2004. A field experiment on the influence of load transportation
6
7 610 and patch distance on the locomotion velocity of *Dorymyrmex goetschi* (Hymenoptera,
8
9 Formicidae). *Insectes Sociaux* 51: 265-270.
10
11 611
12 612 Vincent J. 2012. Structural biomaterials. Princeton University Press.
13
14 613 Vogel S. 1988. Life's devices: The physical world of animals and plants. Princeton University
15
16
17 614 Press.
18
19 615 Weihmann T, Blickhan R. 2009. Comparing inclined locomotion in a ground-living and a
20
21 616 climbing ant species: sagittal plane kinematics. *Journal of Comparative Physiology A*
22
23 617 195: 1011.
24
25
26 618 Wilson EO. 1968. The ergonomics of caste in the social insects. *American Naturalist* 102: 41-66.
27
28 619 Wöhrl T, Reinhardt L, Blickhan R. 2017. Propulsion in hexapod locomotion: how do desert ants
29
30 620 traverse slopes? *Journal of Experimental Biology* 220: 1618-1625.
31
32 621 Wolff JO, Gorb SN. 2012. Surface roughness effects on attachment ability of the spider
33
34 622 *Philodromus dispar* (Araneae, Philodromidae). *Journal of Experimental Biology* 215:
35
36 623 179-184.
37
38
39 624 Yanoviak S, Frederick D. 2014. Water surface locomotion in tropical canopy ants. *Journal of*
40
41
42 625 *Experimental Biology* 217: 2163-2170.
43
44
45 626 Yanoviak S, Kaspari M. 2000. Community structure and the habitat templet: ants in the tropical
46
47 627 forest canopy and litter. *Oikos* 89: 259-266.
48
49
50 628 Yanoviak SP, Dudley R, Kaspari M. 2005. Directed aerial descent in canopy ants. *Nature* 433:
51
52 629 624-626.
53
54
55
56
57
58
59
60

- 1
2
3 630 Yanoviak SP, Kaspari M, Dudley R. 2009. Gliding hexapods and the origins of insect aerial
4 behaviour. *Biology Letters* 5: 510-512.
5
6 631
7
8 632 Yanoviak SP, Munk Y, Dudley R. 2015. Arachnid aloft: directed aerial descent in neotropical
9 canopy spiders. *Journal of the Royal Society Interface* 12: 20150534.
10
11 633
12 634 Yanoviak SP, Silveri C, Hamm CA, Solis M. 2012. Stem characteristics and ant body size in a
13 Costa Rican rain forest. *Journal of Tropical Ecology* 28: 199-204.
14
15 635
16
17 636 Yanoviak SP, Silveri C, Stark AY, Van Stan JT, Levia DF. 2017. Surface roughness affects the
18 running speed of tropical canopy ants. *Biotropica* 49: 92-100.
19
20 637
21
22 638 Ydenberg RC, Welham CVJ, Schmid-Hempel R, Schmid-Hempel P, Beauchamp G. 1994. Time
23 and energy constraints and the relationships between currencies in foraging theory.
24
25 639
26 640 Behavioral Ecology 5: 28-34.
27
28
29 641 Yunger JA, Meserve PL, Gutiérrez JR. 2002. Small-mammal foraging behavior: mechanisms for
30 coexistence and implication for population dynamics. *Ecological Monographs* 72: 561-
31
32 642
33 643 577.
34
35
36 644 Zhou Y, Robinson A, Steiner U, Federle W. 2014. Insect adhesion on rough surfaces: analysis of
37 adhesive contact of smooth and hairy pads on transparent microstructured substrates.
38
39 645
40 646 Journal of the Royal Society Interface 11: 20140499.
41
42
43 647
44
45 648
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

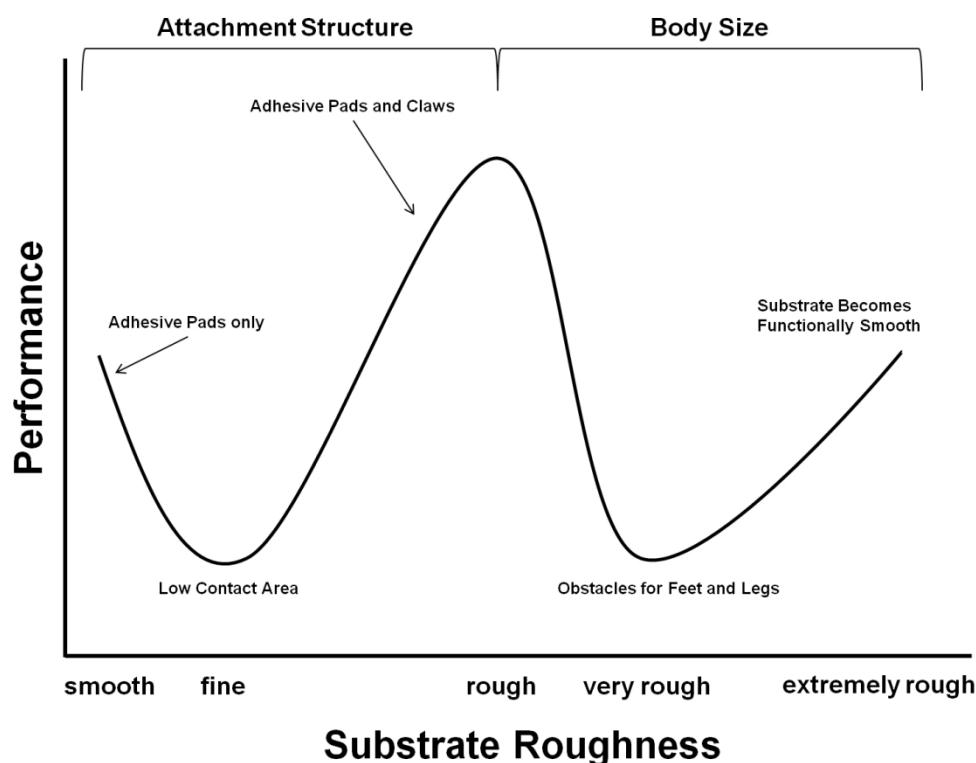


Figure 1. Predicted performance (adhesion and running speed) of adhesive animals on rough substrates. On smooth to rough substrates performance is expected to be lower on fine-scale rough substrates that match the asperity size of the attachment structures (pads, claws) due to low contact area. Within this regime the attachment structure size dominates performance. On very rough substrates, body size effects dominate and performance is lowest on very rough substrates that match the size scale of feet and legs. Under this circumstance, surface asperities become significant obstacles. As substrate roughness increases, performance increases because the asperities essentially become hills at the scale of the whole animal while being relatively smooth at the adhesive interface. Ultimately, larger and larger hills increasingly have their own surface asperities (i.e., at the micrometer scale), which interact with adhesive structures at the smooth to rough end of the scale while also resisting the gravitational forces of inclination. This latter complex interaction is not illustrated here, but was partially explored experimentally.

63x48mm (600 x 600 DPI)

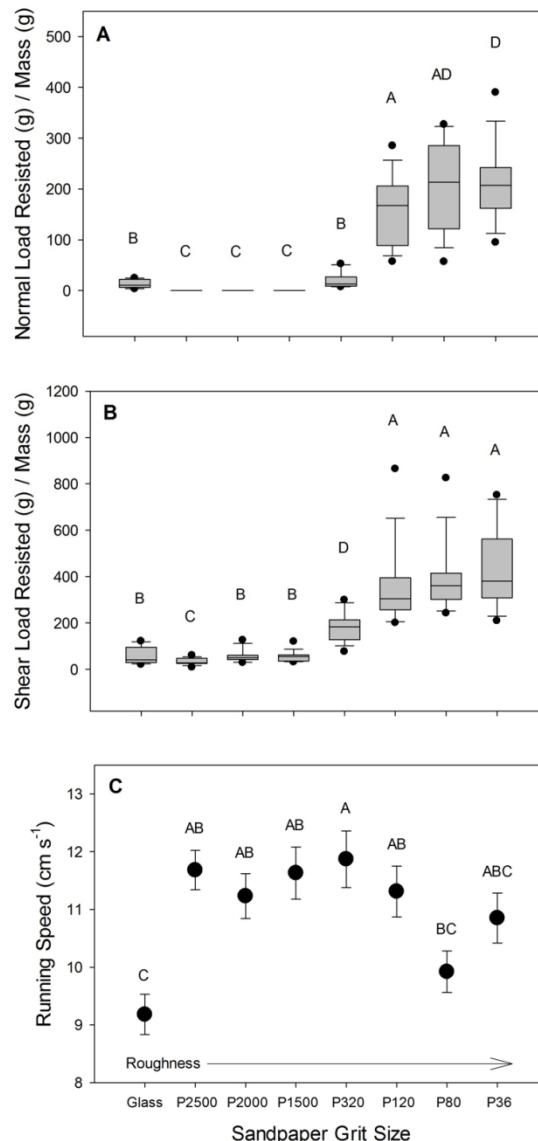


Figure 2. Normal adhesion (A), shear adhesion (B), and running speed (C) of *Cephalotes atratus* ant workers on sandpaper substrates that vary in asperity size (i.e., grit size) and plate glass (reference substrate). Treatment groups denoted with the same letter are not significantly different. Boxes in A and B represent the 25th and 75th percentiles, the line marks the median, bars are the 90th and 10th percentiles. Filled circles in C are means and error bars are \pm s.e.m.

34x71mm (600 x 600 DPI)

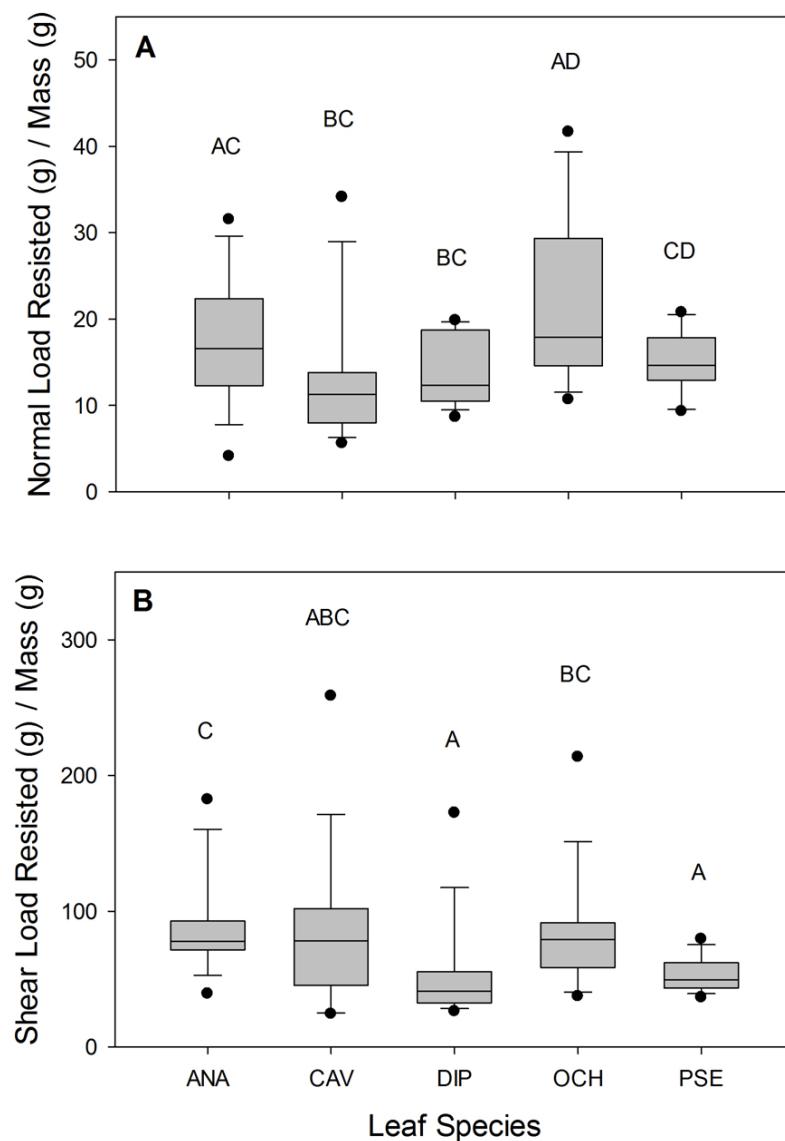


Figure 3. Normal adhesion (A) and shear adhesion (B) of *Cephalotes atratus* ant workers on leaves. Substrates in are abbreviated by genus name (ANA: *Anacardium*; CAV: *Cavanillesia*; DIP: *Dipteryx*; OCH: *Ochroma*; PSE: *Pseudobombax*). Treatment groups denoted with the same letter are not significantly different. Plotted values are described in Figure 2A and B.

40x56mm (600 x 600 DPI)

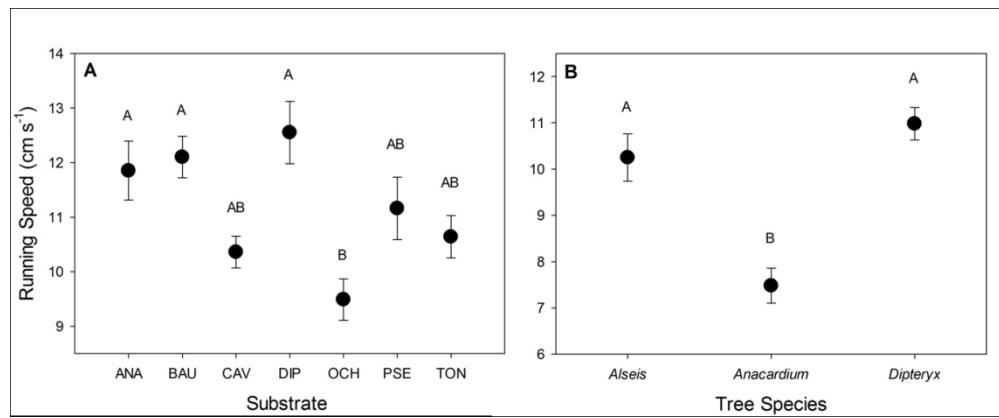


Figure 4. Average running speed of *Cephalotes atratus* ant workers on natural substrates (A, leaves and vine stems; B, tree bark). Substrates in A are abbreviated by genus name (ANA: *Anacardium*; BAU: *Bauhinia* (vine); CAV: *Cavanillesia*; DIP: *Dipteryx*; OCH: *Ochroma*; PSE: *Pseudobombax*; TON: *Tontelea* (vine)). Treatment groups denoted with the same letter are not significantly different. Error bars are \pm s.e.m.

59x24mm (600 x 600 DPI)

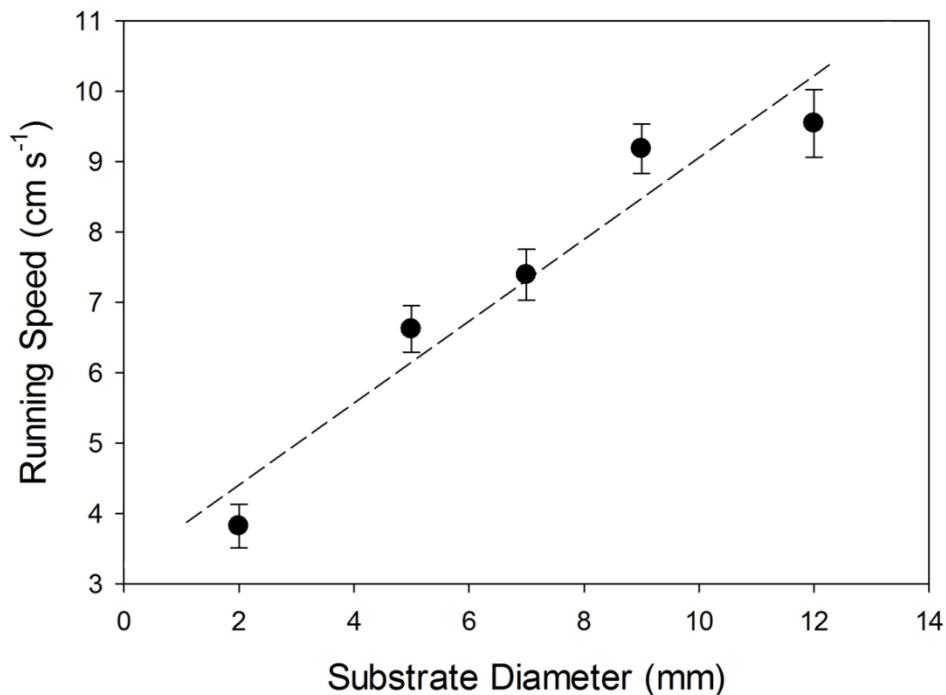


Figure 5. Running speed of *Cephalotes atratus* ant workers on horizontal glass rods that vary in diameter.
Error bars are \pm s.e.m.

53x40mm (600 x 600 DPI)

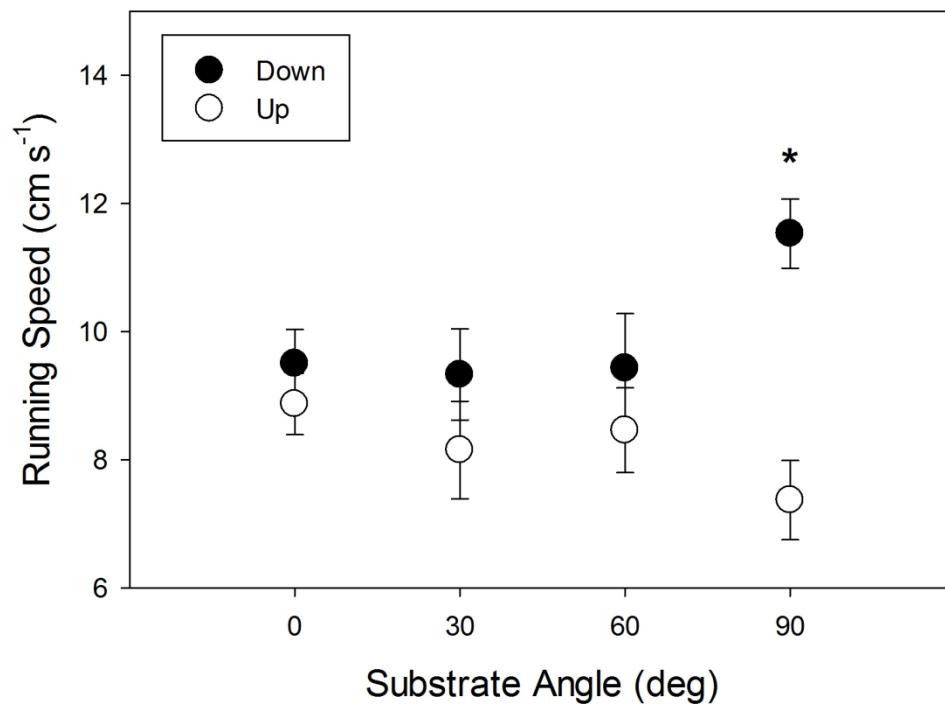


Figure 6. Running speed of *Cephalotes atratus* ant workers on a glass rod (1 cm) positioned at various angles relative to horizontal (0, 30, 60, and 90°). Ants were positioned on the rod and induced to either run up or down. Means that differ are indicated with an asterisk. Error bars are \pm s.e.m.

76x60mm (600 x 600 DPI)

1
2
3 **Table 1.** Average maximum asperity size (measured as particle length) of sandpaper substrates
4 characterized by commercially available grit size. Federation of European Producers of
5 Abrasives (FEPA) asperity size values for the same grit size sandpaper substrates are provided as
6 reference. Means are reported \pm s.e.m.
7
8
9
10
11
12
13
14

Sandpaper Grit Size (FEPA)	Average Maximum Asperity Size (mm)	FEPA Asperity Size Reference Values (mm)
P36	1.186 \pm 0.0891	0.538
P80	0.521 \pm 0.0232	0.201
P120	0.354 \pm 0.0190	0.125
P320	0.130 \pm 0.0066	0.0462
P1500	0.035 \pm 0.0008	0.0126
P2000	0.031 \pm 0.0012	0.0103
P2500	0.022 \pm 0.0008	0.0084

1
2
3 **Table 2.** Average asperity size of natural leaf substrates. Vine and bark substrate asperity sizes
4 are reported elsewhere (Yanoviak et al. 2017). Surface asperity size is measured as root mean
5 square (RMS) height deviation. Means are reported \pm s.e.m.
6
7
8
9
10
11
12

Species	Surface Asperity Size (mm)
<i>Anacardium excelsum</i>	0.016 \pm 0.0023
<i>Cavanillesia platanifolia</i>	0.018 \pm 0.0009
<i>Dipteryx oleifera</i>	0.010 \pm 0.0009
<i>Ochroma pyramidalis</i>	0.012 \pm 0.0018
<i>Pseudobombax septenatum</i>	0.016 \pm 0.0031