Manuscripts submitted to Integrative and Comparative Biology

OXFORD Integrative and Comparative Biology

UNIVERSITY PRESS

Adhesion and Running Speed of a Tropical Arboreal Ant
(Cephalotes atratus) on Rough, Narrow, and Inclined
Substrates

Journal: | Integrative and Comparative Biology

Manuscript ID | ICB-2020-0055.R1

Manuscript Type: | Symposium article

Date Submitted by the

Author: 03-Jun-2020

Complete List of Authors: | Stark, Alyssa; Villanova University, Biology
Yanoviak, Stephen; University of Louisville, Department of Biology

Keywords: | performance, Formicidae, Panama, locomotion, behavior

SCHOLA

RONE™
Manuscripts

http://mc.manuscriptcentral.com/icbiol



Page 1 of 38 Manuscripts submitted to Integrative and Comparative Biology

1

2

i 1 Adhesion and Running Speed of a Tropical Arboreal Ant (Cephalotes atratus) on Rough,
5

6 2 Narrow, and Inclined Substrates

7

8

9 3 Alyssa Y. Stark!-* and Stephen P. Yanoviak>?
10

11

12 4

13

14 5

15

1? 6  !'Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085
18

19 7 USA

20

21 3

22

;i 9  ?Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY
25

26 10 40292 USA

27

28 11

29

2(1) 12 3 Smithsonian Tropical Research Institute, Balboa, Republic of Panama
32

33 13

34

35 14

36

37 15  *Author for correspondence: alyssa.stark@villanova.edu; (610) 519-4838
16

42 17

44 18  Keywords: performance, Formicidae, Panama, locomotion, behavior

19  Running Title: Arboreal Ant Adhesion and Locomotion

20 Word Count: 4,765

60 http://mc.manuscriptcentral.com/icbiol



oNOYTULT D WN =

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Manuscripts submitted to Integrative and Comparative Biology Page 2 of 38

Abstract

Arboreal ants must navigate variably sized and inclined linear structures across a range of
substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal
ants use specialized adhesive pads and claws to maintain effective attachment to canopy
substrates. Here, we explored the effect of substrate structure, including small and large-scale
substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and
running speed of workers of one common, intermediately-sized, arboreal ant species. Normal
(orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf
substrates, particularly at small size scales, but running speed on these substrates remained
relatively constant. Running speed also varied minimally when running up and down inclined
substrates, except when the substrate was positioned completely vertical. On vertical surfaces,
ants ran significantly faster down than up. Ant running speed was slower on relatively narrow
substrates. The results of this study show that variation in the physical properties of tree surfaces
differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor
performance was much more robust to surface roughness than was adhesive performance. The
results provide a basis for understanding how performance correlates of functional morphology
contribute to determining local ant distributions and foraging decisions in the tropical rainforest

canopy.
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1

2

z 40  Introduction

Z 41 An animal's ability to locomote over the range of conditions that occur within its local
273 42 environment ultimately affects its survival (Arnold 1983; Vogel 1988; Bennett and Huey 1990;
9

1(1) 43  Garland Jr and Losos 1994; Ricklefs and Miles 1994; Alexander 2003; Irschick and Higham

:g 44  2016; Biewener and Patek 2018). For cursorial animals, substrate characteristics are strong

12 45  selective pressures; camels and mountain goats have limb and biomechanical modifications that
1

12 46  promote efficient locomotion on sand and rock faces (respectively), but not vice versa (Dagg
;g 47  1974; Lewinson and Stefanyshyn 2016). Such traits facilitate foraging and escape from

;; 48  predation, but are only effective across a range of substrate characteristics. Thus, selection

gz 49  should favor biased use of pathways that minimize costs relative to benefits (e.g., Schoener

26 50 1979; Stephens and Krebs 1986; Ydenberg et al. 1994; Yunger et al. 2002). Potentially important
29 51  costs include metabolic energy expenditure, frequency of injury, and duration of exposure to

31 52  hazards (Stephens and Krebs 1986).

33 53 The biased use of pathways to minimize costs is particularly relevant for small organisms
54 like ants, where local habitat complexity rapidly increases as body size decreases (Kaspari and
38 55  Weiser 1999; Yanoviak and Kaspari 2000; Grevé et al. 2019). The duration of foraging trips and
40 56 the frequency of worker loss are likely to increase in more complex habitats (Fewell et al. 1996).
57  Longer foraging trips result in reduced food intake rate (Carroll and Janzen 1973; Fewell 1988)
45 58 and lost workers are costly to ant colonies as lost biomass (Wilson 1968). Thus, ants and other
47 59  small foragers commonly choose paths of least resistance (i.e., shorter, less complex routes;

49 60  Fewell 1988; Torres-Contreras and Vasquez 2004; Devigne and Detrain 2006; Farji-Brener et al.

52 61  2007; Clay et al. 2010).
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Worker ants that forage primarily in tree crowns must maintain contact with three-
dimensional substrates to avoid falling. Indeed, unique behaviors among small wingless arboreal
organisms such as gliding and swimming suggest that falling is costly and climbing should be
optimized (Cartmill 1985; Yanoviak et al. 2005; Yanoviak et al. 2009; Yanoviak and Frederick
2014; Yanoviak et al. 2015). Arboreal ants generally use compliant tarsal pads coated with an
adhesion-mediating fluid and curved claws to adhere to, and mechanically interlock with canopy
substrates, respectively (Federle et al. 2002; Endlein and Federle 2008). Although adhesion and
locomotion are functionally linked (Federle and Endlein 2004; Endlein and Federle 2008), direct
comparisons between adhesive performance and locomotor performance are few, particularly
under variable environmental conditions (but see Federle et al. 2000; Stark and Yanoviak 2018).

Given that the energetic costs of locomotion in ants are relatively low (e.g., Fewell 1988),
and endurance constraints (e.g., oxygen debt during bursts of activity; Bennett and Huey 1990)
are trivial at this small scale, the maintenance of secure attachment and consistent motion during
foraging bouts in a variety of environmental conditions presumably are key limiting factors.
Locomotor speed likely is constrained by the robustness and versatility of the adhesive system in
complex environments, especially for broad-ranging foragers. Thus, when attachment is
compromised, we expect a compensatory reduction in locomotor performance (measured as
running speed); however, this expectation is not always supported, suggesting that the functional
morphology of locomotion in ants is very robust to environmental variation (Federle et al. 2000;
Clay et al. 2010; Yanoviak et al. 2012; Stark and Yanoviak 2018).

Although the forest canopy is a linear network of stems from the perspective of small
cursorial organisms like ants, rough, narrow, and steeply inclined surfaces are difficult to avoid

in this setting (Schoener 1968; Mattingly and Jayne 2004). Stem roughness is likely to be

http://mc.manuscriptcentral.com/icbiol

Page 4 of 38



Page 5 of 38 Manuscripts submitted to Integrative and Comparative Biology

1

2

2 85  especially problematic for ants because adhesive performance is dependent on the relationship
6 86  between surface asperity size and adhesive unit size (e.g., tarsal pad, claw tip). In instances

7

8 87  where the asperity size and adhesive unit size match, adhesion and mechanical interlocking can
9

10 88  fail due to a decrease in contact area (Figure 1; Scholz et al. 2010; Zhou et al. 2014; Song et al.
89  2016). Conversely, as surface asperity size increases, adhesive performance should increase,

15 90 although this is dependent on body size (Figure 1; Yanoviak et al. 2017). In addition to surface
17 91 roughness, natural vegetative substrates have diverse features that potentially impact ant

92  performance (Federle et al. 2000; Koch et al. 2008; Barthlott et al. 2017). Finally, arboreal ants
22 93  commonly locomote on the stems of climbing plants (e.g., vines) that vary in inclination and

24 94  diameter, and these factors potentially influence ant foraging behavior (Clay et al. 2010;

26 95  Yanoviak et al. 2012).

29 96 The primary goal of this study was to measure the effect of local substrate characteristics
31 97  (roughness, diameter, and inclination) on arboreal ant adhesive and locomotor performance. We
33 98  hypothesized that adhesive performance and running speed vary according to the match between
99  substrate asperity size and attachment structure size. Specifically, we predicted lower adhesive
38 100 performance on substrates with fine asperity size and higher adhesive performance on substrates
40 101  with large asperities, relative to smooth surfaces (Figure 1). We expected locomotor

102  performance, measured as running speed, to slow as a consequence of reduced adhesion on fine
45 103 rough substrates and on very rough, structurally complex substrates like tree bark. Secondarily,
47 104  we predicted that ant running speed would also slow with declining stem diameter and increasing
4% 105  angle of stem inclination, due to the biomechanical limitations of appendages and adhesive

5o 106  anatomy. We explored these predictions with laboratory and field experiments on artificial and

54 107 natural substrates with one common tropical arboreal ant species.
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Materials and Methods

Data were collected on Barro Colorado Island (BCI), Panama (9.15°N, 79.85°W) during
the 2015 wet season (May - July) and in June 2019. More information about this site is available
elsewhere (Croat 1978; Leigh 1996). We measured adhesive and locomotor performance of
workers of a common arboreal ant species (Cephalotes atratus L., Hymenoptera, Formicidae,
Myrmicinae). Workers were hand collected from at least two colonies daily, and housed (alive)
with their nestmates in small plastic containers until needed (generally < 12 hr). Only intact
individuals that could articulate all legs were used in experiments. Prior to experimental testing
in the laboratory or the field, focal ants were acclimated to the appropriate conditions
(laboratory: ca. 22°C and 80% RH; field: ca. 30°C and 80% RH) for at least 1 hr. All ants were

weighed to the nearest 0.1 mg following experiments.

Ant Adhesive Morphology

We used tarsal pad area and tarsal claw diameter as basic measures of ant adhesive
morphology. Tarsal pad area values were obtained from prior studies (Stark et al. 2018) in which
digital images of tarsal pads engaged with a glass surface were measured using NIH ImageJ
(versionl.46r; see Stark et al. 2018 for details). Tarsal claw diameter was measured using
scanning electron microscopy (SEM; Zeiss Supra 35 SEM, Jena, Germany). Ant tarsi were
separated from three frozen individuals and mounted so that the claw tips were in clear view
(i.e., facing up or laterally). We used NIH ImageJ to measure the diameter of the claw tips on

digital SEM images. Specifically, we used the oval measurement tool (locking it into a circle) to

http://mc.manuscriptcentral.com/icbiol



Page 7 of 38 Manuscripts submitted to Integrative and Comparative Biology

1

2

2 130  outline the perimeter of the tarsal claw tip, then converted the area of the circular overlay to
5 .

6 131  diameter.

7

8 132

9

10 133 Surface Characterization

134 We used plate glass and seven different grades of sandpaper (grit size = P2500, P2000,
15 135  PI1500, P320, P120, P80, and P36; Table 1) to test ant adhesion and locomotor performance on
17 136  smooth and variably rough substrates. For the purposes of this project, we assumed glass

137  roughness is effectively zero. The surface asperities of plate glass exist at the nanometer scale,
52 138  thus they are at least three orders of magnitude smaller than the micrometer-scale size of the

24 139  attachment structures of ants.

26 140 We quantified the asperity size of each sandpaper grit size as the average maximum

29 141  length of 5 particles chosen in three different locations on a sandpaper sample (i.e., 15 particles
31 142 per sandpaper type). Specifically, a digital grid was overlaid on images of each of the three

33 143 sample locations on a sheet of sandpaper. Due to the broad range in asperity size, grid areas were
144  setat 10 mm? for P36 grit sandpaper, 2 mm? for P80 grit sandpaper, 0.75 mm? for P120 grit

38 145  sandpaper, and 0.05 mm? for the remaining grit sizes (P2500, P2000, P1500, P320). These grid
40 146  sizes provided six complete squares per sample area; we selected the largest exposed particle
147  within each of the 5 clearest grid squares for measurement. Digital images of the sample areas
45 148  were taken with a Zeiss Axio Zoom V16 microscope fitted with an Axiocam 305 color camera
47 149  (Jena, Germany). We used the grid plug-in and line tool in NIH ImageJ to draw grid lines and
4% 150  measure the largest dimension of selected particles, respectively.

5o 151 We measured ant adhesion on leaves from five different tree species: Anacardium

54 152 excelsum, Cavanillesia platanifolia, Dipteryx oleifera, Ochroma pyramidale, and Pseudobombax

60 http://mc.manuscriptcentral.com/icbiol
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septenatum. We chose these species because they are common trees near the BCI lab clearing,
and superficially appear to span a broad range of surface roughness. In each case, we harvested
mature leaves from portions of the trees receiving full sun exposure. Only leaves free of
conspicuous epiphylls and damage were used for experiments. We quantified the surface
characteristics of each leaf species by first making sodium alginate impressions of the leaf
surface, and then making plaster casts of the impressions. The roughness profiles of these casts
were obtained with a Veeco contact profilometer (Plainview, NY, USA). On each cast, three
linear 6.102 mm passes using 5 mg of force were made with a 12.5 pum stylus tip. These passes
did not include leaf veins. Profilometry data were uploaded to TopoBank (version 0.7.5;
https://contact.engineering/) to calculate root-mean-square (RMS) height deviation, following the
conventions of Jacobs et al. (2017). RMS height deviation is the average of the profile height
deviations from the mean height. Curvature was removed from the profile plots. The RMS height
deviation of each pass was used to calculate the mean RMS height deviation for each leaf
species. All leaves were measured and used in experiments within 24 h of collection. To prevent
dehydration and decay between trials, leaves were stored in a plastic bag with a wet paper towel
in the laboratory.

We used stems of two liana (woody vine) taxa (7Tontelea ovalifolia and Bauhinia sp.) and
bark from the trunks of three tree species (Anacardium excelsum, Alseis blackiana and Dipteryx
oleifera) to characterize ant locomotor performance on non-foliar natural plant substrates.
Similar to the leaf substrates, we chose these focal species because they differed conspicuously
in surface roughness, which was quantified in a separate study (Yanoviak et al. 2017).
Specifically, field-based laser scanning was used to measure the mean amplitude of the bark

surface asperities, and a laser scanning confocal microscope was used to image surface

http://mc.manuscriptcentral.com/icbiol
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1

2

2 176  topography of liana stem samples (Yanoviak et al. 2017). Hereafter, all natural substrates used in
5 .

6 177  experiments are referred to by genus only.

7

8 178

9

10179 Adhesive Performance Experiments

180 The adhesive performance of ants was measured on sandpaper and tree leaves mounted to
15 181  aflat surface. Adhesion to plate glass was used as a reference. In each case, tarsal adhesion was
17182  measured by clamping a thin nylon thread (Aurlfil, Milano, Italy) to a hand-held 10 or 20 g

183  analog spring gauge (0.1g and 0.2g resolution respectively; Pesola, Schindellegi, Switzerland),
5> 184  and tying the free end around the ant petiole (Stark et al. 2018; Stark and Yanoviak 2018; Stark
24 185 etal. 2019). We measured the adhesion of live ants clinging to experimental substrates in two

26 186  orientations. First, ants were pulled approximately orthogonal to the horizontally positioned

29 187  substrate surface (i.e., normal adhesion), then the substrate was mounted vertically using a stage
31 188  with a clamp and ants were slid approximately parallel to the vertical substrate surface (i.e., shear
33 189  adhesion; see Stark and Yanoviak 2018 for a schematic of the experimental set-up). In both

190 orientations, each ant was induced to securely attach its adhesive pads by applying slight

38 191  pressure to the gaster. Normal adhesion was defined as the maximum load (g) an ant could

40 192  maintain before detaching from the experimental substrate (i.e., losing grip and springing free of
193  the horizontal surface). Shear adhesion was defined as the maximum load (g) an ant resisted

45 194  during an approximately 3 cm slide along the vertically positioned substrate. Ants were oriented
47 195 head down for these experiments, so that their tarsal pads were fully engaged during vertical

4% 196  sliding. Each ant was tested in both orientations three times, but only the maximum of the three
5o 197  measurements in each orientation was used for statistical analysis. We tested normal and shear

54 198 adhesion of fifteen ants per substrate.

60 http://mc.manuscriptcentral.com/icbiol
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Locomotor Performance Experiments

Locomotor performance (running speed, cm s™') was measured on 1 cm diameter wooden
dowels wrapped with sandpaper, leaves attached to a flat substrate, or ca. I cm diameter vines.
Running speed on bark was measured in the field by releasing ants on tree trunks at
approximately 1.5m above the ground (Yanoviak et al. 2017). A 1 cm glass rod was used as a
baseline reference for running speed on a smooth, hard substrate. We tested the effect of
substrate diameter on locomotor performance by measuring ant running speed on glass rods of
varying diameter (2, 5, 7, 9, 12 mm). Similarly, we tested the effects of substrate inclination on
locomotor performance by measuring ant running speed on a 1 cm glass rod secured at different
angles relative to horizontal (0, 30, 60, and 90°). In all experiments, running speed was measured
as the time required for an ant to traverse a 10 cm section of the test substrate. Only
uninterrupted, straight runs were used. Each ant was tested three times (n = 30 ants per
treatment), and only the maximum speed observed for a given ant was used for statistical

analysis.

Statistical Analysis

Normal and shear adhesion data did not fit the assumptions of a linear model, so we used
nonparametric Kruskal-Wallis tests with post hoc Wilcoxon comparisons when significant
differences occurred among treatment groups. Normal and shear adhesion where analyzed
separately as a function of either sandpaper grit size or leaf species. Load resisted divided by

body mass was used as the response variable to account for differences in body size. Body mass

10
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and body size measures (e.g., head width) are highly correlated in C. atratus and other ants (Corn
1980; Kaspari and Weiser 1999; Yanoviak et al. 2005).

Running speed data fit the assumptions of a linear model, therefore we used three
separate analysis of covariance (ANCOVA) tests to investigate differences in running speed on
sandpaper substrates and natural substrates (leaves, vines) in the laboratory, and tree trunks in the
field. Running speed on tree trunks in the field was analyzed separately from leaves and vines
because ambient temperature differences affect running speed (Hurlbert et al. 2008; Yanoviak et
al. 2017). We used multiple regression to test for differences in running speed on dowels of
different diameter, where mass and diameter were the independent variables. Finally, we used an
ANCOVA to test for differences in running speed on 1 cm dowels secured at different angles of
inclination. Ant mass was used as the covariate in all ANCOVA models. Differences among
means in ANCOVA tests were determined with post hoc Tukey HSD tests. Data were
transformed when necessary to meet normality and homogeneity of variance assumptions.
Analyses were conducted with JMP 10.0.0 software (SAS Institute, Inc. 2012) and all means are

reported £ s.e.m.

Results
Ant Morphology

The average mass of individual C. atratus workers used in this study was 40.3 = 0.32 mg.
The range of worker mass (12.4 - 79.0 mg) used in this study matches the range of worker sizes
commonly encountered in the field (Corn 1980; Yanoviak et al. 2005). Their average tarsal pad
area was 0.0140 + 0.00078 mm? (Stark et al. 2018) and average tarsal claw diameter was 0.014 +

0.0005 mm.

11
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Surface Characterization

Sandpaper asperity sizes ranged from 0.02-1.19 mm in average maximum length (Table
1). These values are higher than reported by Federation of European Producers of Abrasives
(FEPA) because we used the largest linear dimension of maximum particle size, not average
particle size. The RMS height deviation of fresh leaves ranged ca. 0.01-0.02 mm (Table 2). Vine
and tree bark asperity height was reported elsewhere (Yanoviak et al. 2017), and ranged ca. 0.09-

2.15 mm (Table 2).

Adhesive and Locomotor Performance on Artificially Rough Substrates

Normal and shear adhesion of C. atratus ant workers on sandpaper substrates varied as a
function of the asperity size (i.e., sandpaper grit size; Normal Adhesion: y>=111.32,df=7,P <
0.0001; Shear Adhesion: y* =98.67, df =7, P <0.0001; Figure 2A and 2B). In general, shear
adhesion was higher than normal adhesion, and substrates with larger asperity size produced
higher forces. Specifically, normal adhesion was significantly different among asperity sizes
except the largest sandpaper grits (P120, P80, P36). Normal adhesion to smooth glass produced
the same load resistance as adhesion to sandpaper grit P320, but not smaller asperity sizes (grit >
P320). Indeed, adhesion was lower (effectively zero) on these substrates than on smooth glass
(0.5 £0.07 g load resisted). Likewise, shear adhesion differed among asperity sizes except the
roughest sandpaper grits (P120, P80, P36). Adhesion consistently was higher on these rough
substrates than on substrates with small asperity sizes. Shear adhesion loads did not differ for

ants tested on smooth glass and on fine-grit sandpaper (P2000, P1500).

12
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1

2

2 266 The running speed of C. atratus ant workers varied as a function of substrate asperity size
5 . . . .

6 267  (Fys204=3.45,P <0.0001; Figure 2C). Specifically, running speed was consistently slower on
7

8 268  smooth glass than on sandpaper, and tended to be marginally slower on the roughest sandpaper
9

1(1) 269  grits (P80 and P36).

12

13 270

14

15 271  Adhesive and Locomotor Performance on Natural Substrates

16

17 272 Normal and shear adhesive performance of C. atratus workers differed among natural
18

;g 273  substrate types (i.e., leaves; Normal Adhesion: > = 12.84, df =4, P =0.0121; Shear Adhesion:
21

5 274  ¥?>=20.74, df =4, P =0.0004; Figure 3). Similar to adhesion results on sandpaper, normal

24 275  adhesion was much lower than shear adhesion on leaves. Normal adhesion was higher on

26 276  Ochroma leaves than on the Cavanillesia and Dipteryx leaves, but was similar among all other
29 277 leaf comparisons. Shear adhesion was higher on Ochroma and Anacardium leaves than on

31 278  Dipteryx and Pseudobombax leaves. All other paired comparisons were statistically similar.

gi 279 The running speed of C. atratus ant workers differed as a function of leaf and vine type in
> 280 the laboratory (F3,196 = 2.82, P = 0.0010) and bark type in the field (Fsgs = 8.05, P < 0.0001).
37

38 281  Specifically, ant running speed was faster on Dipteryx and Anacardium leaves and Bauhinia vine
40 282  stems than on Ochroma leaves in the laboratory (Figure 4). In the field, ant running speed was
283  lower on Anacardium bark than on Dipteryx and Alseis bark (Figure 4).

45 284

47 285  Locomotion on Narrow and Inclined Substrates

2 286 The average running speed of C. atratus ant workers increased as substrate diameter

55 287  increased (Fy 147 = 69.90, P <0.0001, R? = 0.49; Figure 5). Running speed also differed as a

54 288 function of running orientation (running up or down an incline; F;s 9= 2.35, P = 0.0065; Figure

58 13
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6) and substrate angle had a significant effect on running speed (interaction: F =3.69, df =3, P =
0.0146). The significant interaction was driven by orientation (single effect: F =12.55,df=1, P
= 0.0006), such that ants running upward on a vertical dowel ran slower than those running

downward.

Discussion

The relatively linear, reticulate substrates that characterize the tropical rainforest canopy
present a variety of physical challenges for wingless arboreal ants. Reduction in worker ant
adhesion and running speed on highly variable substrates may increase the likelihood of falling,
extend the time needed to discover food, elevate energy requirements, and prolong exposure to
dangerous abiotic and biotic factors (i.e., temperature, rain, wind, predators, competitors; Denny
et al. 2001; Gissel Nielsen 2001; Sarty et al. 2006; Farji-Brener et al. 2018; Radnan et al. 2018;
Stark et al. 2018). The results of this study show that the adhesive performance and locomotor
performance of workers of one common arboreal ant species are resilient to variation in substrate
roughness, diameter, and orientation. However, in some conditions the adhesive mechanism
completely failed or running speed significantly declined. Thus, it is likely that C. atratus
workers establish foraging routes that minimize the inclusion of substrates effecting reduced
adhesion and running speed, as observed in other cursorial animals (Pounds 1988; Irschick and
Losos 1999; Jones and Jayne 2012).

Surface roughness is a ubiquitous and unpredictable environmental variable that can
impact the adhesive performance of many organisms, especially when asperity size matches
adhesive unit size (Huber et al. 2007; Gorb and Gorb 2009; Scholz et al. 2010; Wolff and Gorb

2012; Gillies et al. 2014; Salerno et al. 2017; Pillai et al. 2020). The results of this study show

14
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1

2

2 312 that when comparing asperity size, tarsal pad area, and claw tip size of C. atratus workers, the
6 313  finest polishing paper is similarly scaled (i.e., asperity size of P2500 is ca. 0.02 mm and tarsal
7

8 314  pad area and claw tip diameter are ca. 0.01 mm? and ca. 0.01 mm wide, respectively). This

9

10 315  similarity likely explains the low adhesive performance of C. atratus workers on P2500
316  sandpaper, even in shear sliding. Presumably this outcome is due to additional friction between

15 317  the tarsal pads and claws when sliding (Dai et al. 2002; Federle et al. 2004).

17 318 By contrast, the increase in adhesive performance with asperity size is counter to

18

;g 319 theoretical predictions and other experimental results (Fuller and Tabor 1975). However, these
21

52 320 models do not take into account mechanical interlocking and friction from claws, which only

24 321  occurs at high surface asperity sizes (Dai et al. 2002). The results of this study suggest that

26 322  significant mechanical interlocking and friction from claws of C. atratus workers begins to occur
20 323 when surface asperities are ca. 0.13 mm wide (P320 sandpaper grit substrate) and dominate when
31 324  surface asperities are ca. 0.4 mm wide (P120 sandpaper grit substrate). The lack of difference in
33 325 adhesive and locomotor performance on grits at the larger end of our experimental range of

326  asperity (> 0.5 mm grain size) suggests that such asperities are the equivalent of boulders for

38 327 ants. Consequently, it appears that differences in size among grains averaging 0.5-1.2 mm in

40 328 maximum dimension are irrelevant to locomotion in C. atratus workers. The results also suggest
329 that shear sliding helps claws interlock at smaller surface asperity sizes better than when pulled
45 330  orthogonally from a substrate (i.e., asperity size > 0.3 mm vs. asperity size > 0.4 mm,

47 331 respectively). Evaluating these possibilities was beyond the scope of this study, but could be

4% 332 accomplished via microscopic examination of tarsal-substrate interactions on diverse surfaces

5o 333 (e.g, Stark et al. 2018).
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Surface roughness is just one parameter that potentially influences ant performance on
natural substrates; variables like wettability, trichrome density, and the presence of wax crystals
are also important (Davidson et al. 1989; Federle et al. 2000; Gorb and Gorb 2011; Stark and
Yanoviak 2018). The plaster casting process used in this study generates a structurally imperfect
replica of leaf surface properties, which likely contributed to the lack of strong RMS height
deviation differences among leaf species that were otherwise superficially distinct. Indeed, the
range of RMS height deviation observed among leaf casts was small, and matched the
attachment structure size of ants (tarsal pads and claws). Regardless, when qualitatively
comparing adhesion to glass and rough sandpaper with leaf adhesion, adhesion of C. atratus
workers to natural leaf substrates was much lower overall. However, the normal and shear loads
ants resisted on leaves were much higher than their body mass, suggesting that the risk of falling
from a leaf surface is low under most natural circumstances. While the surface roughness of
sandpaper and natural substrates (leaves, bark) used in this study are not easily comparable due
to differences in characterization (i.e., asperity length vs. RMS height deviation vs. peak-valley
asperity height), it was clear that surface roughness is significantly smaller on leaves than
sandpaper and bark surfaces. Improving surface roughness measurement and quantification of
substrates in the field would be a potentially useful future direction for this work.

The results of this study highlight the robustness of running speed across a variety of
natural and artificial surface asperity sizes. Specifically, the running speed of C. atratus workers
is very consistent across a range of leaf, vine, bark, and sandpaper substrates, as observed in
related studies (Yanoviak et al. 2017). However, the slower running speeds on Anacardium bark
(and our observations in the field) suggest that roughness amplitudes matching larger anatomical

structures of worker ants, such as tarsi and legs, impose significant obstacles to locomotion
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(Figure 1; Yanoviak et al. 2017). Very rough or unstable substrates like bark or gravel potentially
reduce foraging efficiency (e.g., causing dropping of heavy loads when returning to the nest;
Bernadou et al. 2011), making navigation on rough substrates even more costly. Thus, we would
expect C. atratus workers to avoid foraging on very rough bark and very smooth substrates (at
the roughness scale of glass), which also reduced running speed.

A key result of this work is the comparison of adhesive performance and running speed.
In particular, while running speed across artificial and natural substrates did not show strong
differences, adhesion varied significantly. This countered our prediction that adhesive
performance dictates running speed (Figure 1). The mechanism responsible for this discontinuity
has not been resolved (Stark et al. 2015; Stark and Yanoviak 2018). Many biological materials
like ant adhesive pads are viscoelastic, and thus dependent on the rate of material extension
(Federle et al. 2004; Vincent 2012). Therefore, it is possible that speed is maintained on poorly
adhesive substrates by increasing shear sliding rate (i.e., strain rate; Stark et al. 2015). It is also
possible that ants do not need their adhesive structures while running. For example, ants running
horizontally and vertically can make contact mainly with their proximal tarsal segments (i.e.,
running on their "heels"), and use tarsal hairs for additional friction as needed (Reinhardt et al.
2009; Wohrl et al. 2017).

Running up or down inclined substrates often reduces running speed (Birn-Jeffery and
Higham 2014), and running on narrow substrates likely makes correct tarsal placement more
difficult, thereby slowing forward progress (Lammers and Biknevicius 2004; Frantsevich and
Cruse 2005). Given the prevalence of narrow and inclined substrates in arboreal habitats, (e.g.,
50% of the surfaces were < 0.8 cm in diameter and angled at ca. 60° in a Bahamian forest;

Mattingly and Jayne 2004), arboreal organisms likely routinely encounter physical challenges
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that impact running speed. The results of this work show that substrate inclination and diameter
affect running speed of C. atratus workers, although such effects are limited to extreme
circumstances (i.e., narrow or vertical substrates). Similar inclination-related results were
reported in the field and laboratory for ants running up and down slopes (Seidl and Wehner
2008; Ravindra 2014), but other studies found limited effects of substrate inclination (Seidl and
Wehner 2008; Weihmann and Blickhan 2009; Holt and Askew 2012; Khuong et al. 2013; Norton
et al. 2014). Inclination generally slows ascent in cursorial animals (Jayne and Byrnes 2015), and
different experimental outcomes likely reflect differences among species (Grevé et al. 2019) and
slope (i.e., most studies were not conducted on vertical substrates). Likewise, only very narrow
vine substrates seem to constrain foraging substrate choice in arboreal ants (Clay et al. 2010).
This pattern supports the habitat constraint hypothesis - i.e., that foraging worker ants should

avoid substrates and conditions that negatively impact performance (Irschick and Losos 1999).

Conclusion

The results of this study show that canopy substrates can affect adhesive performance of
foraging worker ants, but that locomotor performance is maintained in most contexts. Given this
outcome, we would expect ants like C. atratus (with relatively larger workers) to avoid foraging
in locations of the canopy where adhesion is compromised (i.e., smooth substrates). Conversely,
we do not expect foraging paths to be influenced by substrate structure except where substrates
are vertical or narrow. Indeed, running down a vertical substrate (verses a lower angle of
inclination) may maximize time and energy benefits. Future work should focus on field
observations of foraging arboreal ants in the canopy and more detailed analyses of the kinematics

of adhesion and locomotion on variable substrates.
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Figure Captions

Figure 1. Predicted performance (adhesion and running speed) of adhesive animals on rough
substrates. On smooth to rough substrates performance is expected to be lower on fine-scale
rough substrates that match the asperity size of the attachment structures (pads, claws) due to low
contact area. Within this regime the attachment structure size dominates performance. On very
rough substrates, body size effects dominate and performance is lowest on very rough substrates
that match the size scale of feet and legs. Under this circumstance, surface asperities become
significant obstacles. As substrate roughness increases, performance increases because the
asperities essentially become hills at the scale of the whole animal while being relatively smooth
at the adhesive interface. Ultimately, larger and larger hills increasingly have their own surface
asperities (i.e., at the micrometer scale), which interact with adhesive structures at the smooth to
rough end of the scale while also resisting the gravitational forces of inclination. This latter

complex interaction is not illustrated here, but was partially explored experimentally.

Figure 2. Normal adhesion (A), shear adhesion (B), and running speed (C) of Cephalotes atratus
ant workers on sandpaper substrates that vary in asperity size (i.e., grit size) and plate glass
(reference substrate). Treatment groups denoted with the same letter are not significantly
different. Boxes in A and B represent the 25th and 75th percentiles, the line marks the median,

bars are the 90th and 10th percentiles. Filled circles in C are means and error bars are + s.e.m.

Figure 3. Normal adhesion (A) and shear adhesion (B) of Cephalotes atratus ant workers on

leaves. Substrates are abbreviated by genus name (ANA: Anacardium; CAV: Cavanillesia; DIP:
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Dipteryx; OCH: Ochroma; PSE: Pseudobombax). Treatment groups denoted with the same letter

are not significantly different. Plotted values are described in Figure 2A and B.

Figure 4. Average running speed of Cephalotes atratus ant workers on natural substrates (A,
leaves and vine stems; B, tree bark). Substrates in A are abbreviated by genus name (ANA:
Anacardium; BAU: Bauhinia (vine); CAV: Cavanillesia; DIP: Dipteryx; OCH: Ochroma; PSE:
Pseudobombax; TON: Tontelea (vine)). Treatment groups denoted with the same letter are not

significantly different. Error bars are + s.e.m.

Figure 5. Running speed of Cephalotes atratus ant workers on horizontal glass rods that vary in

diameter. Error bars are + s.e.m.

Figure 6. Running speed of Cephalotes atratus ant workers on a glass rod (1 cm) positioned at
various angles relative to horizontal (0, 30, 60, and 90°). Ants were positioned on the rod and
induced to either run up or down. Means that differ are indicated with an asterisk. Error bars are

+s.e.m.
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Figure 1. Predicted performance (adhesion and running speed) of adhesive animals on rough substrates. On
smooth to rough substrates performance is expected to be lower on fine-scale rough substrates that match

the asperity size of the attachment structures (pads, claws) due to low contact area. Within this regime the
attachment structure size dominates performance. On very rough substrates, body size effects dominate
and performance is lowest on very rough substrates that match the size scale of feet and legs. Under this

circumstance, surface asperities become significant obstacles. As substrate roughness increases,

performance increases because the asperities essentially become hills at the scale of the whole animal while
being relatively smooth at the adhesive interface. Ultimately, larger and larger hills increasingly have their

own surface asperities (i.e., at the micrometer scale), which interact with adhesive structures at the smooth

to rough end of the scale while also resisting the gravitational forces of inclination. This latter complex
interaction is not illustrated here, but was partially explored experimentally.
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Figure 2. Normal adhesion (A), shear adhesion (B), and running speed (C) of Cephalotes atratus ant workers
on sandpaper substrates that vary in asperity size (i.e., grit size) and plate glass (reference substrate).
Treatment groups denoted with the same letter are not significantly different. Boxes in A and B represent
the 25th and 75th percentiles, the line marks the median, bars are the 90th and 10th percentiles. Filled

circles in C are means and error bars are £ s.e.m.
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45 Figure 3. Normal adhesion (A) and shear adhesion (B) of Cephalotes atratus ant workers on leaves.
46 Substrates in are abbreviated by genus name (ANA: Anacardium; CAV: Cavanillesia; DIP: Dipteryx; OCH:
47 Ochroma; PSE: Pseudobombax). Treatment groups denoted with the same letter are not significantly
different. Plotted values are described in Figure 2A and B.

49 40x56mm (600 x 600 DPI)

60 http://mc.manuscriptcentral.com/icbiol



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology

Running Speed (cm's™)

>

-

A
"
AB
10

ANA

BAU

CAV

Substrate

DP OCH PSE TON Alseis

Anacardium

Tree Species

Dipteryx

Figure 4. Average running speed of Cephalotes atratus ant workers on natural substrates (A, leaves and vine
stems; B, tree bark). Substrates in A are abbreviated by genus name (ANA: Anacardium; BAU: Bauhinia
(vine); CAV: Cavanillesia; DIP: Dipteryx; OCH: Ochroma; PSE: Pseudobombax; TON: Tontelea (vine)).

Treatment groups denoted with the same letter are not significantly different. Error bars are + s.e.m.
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Figure 5. Running speed of Cephalotes atratus ant workers on horizontal glass rods that vary in diameter.
32 Error bars are + s.e.m.

34 53x40mm (600 x 600 DPI)

60 http://mc.manuscriptcentral.com/icbiol



oNOYTULT D WN =

Manuscripts submitted to Integrative and Comparative Biology Page 36 of 38

@® Down
O Up

—
s
1

H@H

Running Speed (cm s™)

—O—

6 T T T T
0 30 60 90

Substrate Angle (deq)

Figure 6. Running speed of Cephalotes atratus ant workers on a glass rod (1 cm) positioned at various
angles relative to horizontal (0, 30, 60, and 90°). Ants were positioned on the rod and induced to either run
up or down. Means that differ are indicated with an asterisk. Error bars are £ s.e.m.
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Table 1. Average maximum asperity size (measured as particle length) of sandpaper substrates

characterized by commercially available grit size. Federation of European Producers of

oNOYTULT D WN =

Abrasives (FEPA) asperity size values for the same grit size sandpaper substrates are provided as

10 reference. Means are reported + s.e.m.

16 Sandpaper Grit Size Average FEPA Asperity Size
18 (FEPA) Maximum Reference Values
Asperity Size (mm)

23 (mm)

25 P36 1.186 £0.0891 0.538

27 P80 0.521 £0.0232 0.201

30 P120 0.354+£0.0190 0.125

32 P320 0.130 = 0.0066 0.0462

34 P1500 0.035 £ 0.0008 0.0126

37 P2000 0.031 +£0.0012 0.0103

39 P2500 0.022 = 0.0008 0.0084
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Table 2. Average asperity size of natural leaf substrates. Vine and bark substrate asperity sizes

are reported elsewhere (Yanoviak et al. 2017). Surface asperity size is measured as root mean

oNOYTULT D WN =

square (RMS) height deviation. Means are reported + s.e.m.

Species

Surface Asperity Size (mm)

Anacardium excelsum 0.016 £ 0.0023
Cavanillesia platanifolia 0.018 = 0.0009
Dipteryx oleifera 0.010 £ 0.0009
Ochroma pyramidale 0.012 +£0.0018
Pseudobombax septenatum 0.016 £0.0031
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