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Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders 

use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and 

rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms 

of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information 

on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 

mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. 

Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is 

explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a 

high-slender body). (i) The filament-like structure is materially efficient geometry to produce (or harvest, in the 

case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (ii) Multiple nanoscale fibers 

are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not 

to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for 
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spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize 

their drag on the ballooning fibers using the same amount of silk dope. (iii) The mean thickness of fibers, 200 nm, 

is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a 

nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes 

thinner than 100 nm.

Keywords: spider, ballooning, ballooning flight, animal locomotion, fiber, spider silk, low Reynolds number flow, 

Knudsen number, rarefied gas dynamics 
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Introduction

It is well known that spiders can disperse aerially over hundreds of kilometers and as high as a few kilometers 

(Darwin 1845, Glick 1939, Cho et al. 2018, Morley and Robert 2018). Research attention has been drawn to this 

passive flight of spiders, which is known as “ballooning,” for several reasons: (i) the utilization of external energy 

for aerial dispersal, (ii) little understanding of the underpinning physical mechanisms, and (iii) the geometric 

uniqueness of the physical traits (silk: a filament-like structure) (Lee et al. 2015, Zhao et al. 2017, Cho et al. 2018, 

Morley and Robert 2018).

While most flying insects utilize membranous structures for their aerial locomotion (Dudley and Robert 2002, 

Sane 2003, Bomphrey 2017), the physical trait that enables spiders’ aerial dispersal is a filament-like structure. 

This interesting trait has been investigated historically from the viewpoint of fluid dynamics. Humphrey 

considered that spiders use a single dragline for their flight, assuming it to be a rigid, thin, circular cylinder. He 

constructed a possible flight envelope, defining fluid-dynamic and mechanical constraints. However, the research 

could not explain the flight of a spider which weighs more than 9 mg (Humphrey 1987). Later, the chaotic 

movement of air flows and turbulence in the atmosphere were suggested as the physical factor that serves to 

prolong its drafting duration in the air (Suter 1999). The importance of the unsteady air flow (turbulence) on a 

flexible spider silk is also raised by Zhao et al. (2017). However, because of the lack of knowledge about 

ballooning silks, quantitative analysis was not possible (Sheldon et al. 2015). Recently, Cho et al. identified the 

types of ballooning silks among seven various spider silks and the quantity of ballooning silks used during the 

initial spinning phase. Crab spiders 18 to 20 mg in weight spun two thick (an average of 722 nm, N=4) minor 

ampullate gland silks and 48 to 58 thin (an average of 211 nm, N=40) aciniform gland silks simultaneously for 

their flight (see Figure 1). The length of the ballooning fibers ranged from 1.2 to 6.1 m, the average being 3.22 m 

(N=22). The values of the physical properties of the ballooning silks enabled quantitative analysis, which showed 

that even 10–150 mg large spiders (small spiders: 0.5-10 mg) could be lifted off with the help of a light updraft, 

utilizing their tens of ballooning fibers. Besides fluid-dynamics, the role of Earth’s vertical electric field has been 

also investigated (Gorham 2013, Morley and Robert 2018).
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Figure 1 (A) A crab spider (Xysticus spp.) with ballooning fibers just before takeoff. (B) A picture of ballooning 
fibers by SEM ( ). Two thick silks are the silks spun from minor ampullate silk glands. Multiples thin silks × 10,000
are aciniform silks. (Photos from Cho et al. 2018) 

Most physical traits in animals and plants are believed to have been largely optimized during their long evolution 

but are still evolving with changes of the physical and ecological environments. Phenotypic similarities of wings 

and flippers among different species of animals could be representative examples (Hoelzel 2009, Alexander 2015). 

The geometry of the bird’s wing itself (Wang and Clarke 2015), the microstructure of a shark’s skin (Oeffner and 

Lauder 2012, Ferrón and Botella 2017) and the microscopic setae on gecko’s feet (Autumn and Peattie 2002, 

Autumn et al. 2002) could be also other examples relating with animal locomotion. However, the physical benefits 

why spiders use such a physical trait for their aerial dispersal have not yet been investigated. Hence, we pose three 

questions here. First, why do spiders use a filament-like structure for their aerial dispersal? Are there any 

aerodynamic and biological advantages in such a geometric trait? Second, why do spiders use multiple ballooning 

fibers? Third, is there any mechanical or fluid-dynamic significance in the mean thickness of 200 nm ballooning 

fiber? These questions will be explored mathematically using Burgers’ approximate solution.

Fluid-Dynamic Characteristics of a Ballooning Silk

Based on Cho’s observed data, a ballooning fiber experiences low Reynolds-number flow regimes at each 

microscopic segment because of its extreme thinness. The upper limit of the Reynolds number is approximately 

0.04 ( ; air density: 1.225 kg m-3; maximum possible velocity: 3 m s-1; thickness of spider silk: 211 𝑅𝑒 = 𝜌𝑈𝑑/𝜇

nm; dynamic viscosity of air: 1.837 x 10-5 kg m-1 s-1). Because of the high aspect ratio of a ballooning fiber,1.61 ×

, the fiber can be regarded as an extremely thin, circular cylinder.107

An available filament model for fluid dynamics is developed by Burgers’ solution, approximating the contour of 

an ellipsoid, which has the exact solution for external viscous fluid flow, to the more similar contour to a cylinder 

(Burgers 1938). Eqns. (1) and (2) shows the resistance forces of a slender cylindrical body in the normal direction 
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and tangential to the axis of the cylindrical body, respectively. These equations are frequently used for the 

investigation of the dynamics of an anisotropic particle or a fiber in low Reynolds-number flow (Childress 1981, 

Happel and Brenner 1986, Humphrey 1987, Fung 1990, Barth et al. 1991). 

𝐹𝑁 =
4𝜋𝜇𝑈𝐿

𝑙𝑛(2
𝐿
𝑑) + 0.5 (1)

𝐹𝑇 =
2𝜋𝜇𝑈𝐿

𝑙𝑛(2
𝐿
𝑑) ― 0.72 (2)

The drag force in the direction normal to the axis of the cylinder, , is about twice as large as that in the direction 𝐹𝑁

parallel to the axis,  (see Purcell 1977, Childress 1981, Happel and Brenner 1986). The plausibility of the 𝐹𝑇

equations can easily be checked by dropping straight and cylindrical steel wires of lengths 30–80 mm and 

thicknesses ranging from 0.3 to 0.8 mm into corn syrup with viscosities ranging from 2 to 3 kg/ms (a “drop test”). 

The drag forces of these steel wires are measured in both directions (transverse, in the direction perpendicular to 

the axis, and longitudinally, in the direction of the axis). Simulation results of the bead-spring model are 

additionally compared (Cho 2020). The non-dimensional resistance coefficients are defined for comparison (see 

Eqns. (3) and (4)). The theoretical values coincide very well with those of the experiments and the simulation 

values (see Figure 2).

𝑅𝑁 =
𝐹𝑁

𝜇𝑈𝐿
(3)

𝑅𝑇 =
𝐹𝑇

𝜇𝑈𝐿
(4)

Figure 2 (A) Dimensionless longitudinal (tangential) resistance coefficients of a thin cylinder as a function of the 
slenderness of the cylinder. (B) Dimensionless transverse (normal) resistance coefficients of a thin cylinder as a 
function of the slenderness of the cylinder. The red solid lines are theoretical values. The triangular markers are 
the calculated values from the simulation using the bead-spring model. The square markers are the values 
obtained from the drop test (Cho 2020).  
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The important fluid-dynamic characteristic of a high-aspect-ratio circular cylinder, a thin filament, is that the 

resistance (drag) force is proportional to its length but not to its diameter. The drag force on a fiber does not 

increase proportionally as the diameter increases. Conversely, the drag force on a fiber does not decrease 

proportionally as the diameter decreases. Even though the thickness of 1µm fiber reduces to 50% of its original 

size while maintaining its constant length, the drag force does not become 50% of its original drag but remains at 

90% of it. This nonlinear characteristic is the essential factor for understanding the advantages of this filament 

trait in its aerial and hydrodynamic locomotion. Figure 3 shows these linear and nonlinear variations of the drag 

force of a thin fiber according to its diameter and length. Suter’s empirical values (Eqns. (5)) are almost twice as 

large as the theoretical values (Eqn. (2)); however, the empirical values also show the linear and nonlinear 

variations of the drag force (Suter 1991, Cho et al. 2018). Suter’s empirical formula (Eqn. (5)) is established based 

on the measurements of resistance force of a drag line among different sizes of spiders. 

𝐹𝑇𝑆𝑢𝑡𝑒𝑟 = 11.5𝑈𝐿
𝜋(𝑑 × 106)2 + 0.184

0.0277

0.094

(5)

Figure 3 (A) The variation of resistance (drag) force on a thin fiber, which is 1 meter long, according to its 
diameter. The fluid medium is air. The flow velocity is 1 m/s. (B) The variation of resistance (drag) force on a thin 
fiber, the diameter of which is 1 µm, according to its length. The fluid medium is air. The flow velocity is 1 m/s. 
The red solid lines are theoretical values with respect to equations (1) and (2). The black dashed lines are 
empirical values that are calculated by Suter’s formula (see Eqn. (5); Suter 1991, Cho et al. 2018).   

Why do Spiders Utilize a Filament-Like Structure?

While other comparable insects usually use their membranous structures (wings) to achieve flight (Dudley and 

Robert 2002, Sane 2003, Bomphrey 2017), spiders use filament-like structures for aerial dispersal (Cho et al. 

2018). Such filament-like structures are usually found in micro-organisms (E. coli, paramecia, etc.) or cells (e.g., 

sperm) that actively locomote in a liquid medium. Because of the extreme thinness of their cilia and flagella, the 

flow condition around them is a Stokes regime ( ), in which the viscosity of the fluid medium is far more 𝑅𝑒 < 1

dominant than its inertia. However, some plants and animals also use filament-like structures for their aerial 
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journey. Plumed seeds, such as those of the dandelion and thistle, use a pappus as a parachute for their passive 

dispersal (Green and Johnson 1990, Minami et al. 2003, Casseau et al. 2015, Cummins et al. 2017, 2018). 

Why do all these micro-organisms, seeds, and cells utilize hairy structures for their locomotion or aerial dispersal? 

The characteristic of the low Reynolds-number flow gives us the answer. In a flow of this kind, where the viscosity 

of the fluid medium is dominant, the fluid-dynamic force is proportional to the size (length, neither area nor 

volume) of the object. Table 1 shows the fluid dynamic forces (resistance force) of various geometries, which 

represent one- to three-dimensional objects, respectively. The forces on those geometries in the low Reynolds-

number flow are proportional to either a diameter ( : radius) for a sphere and a circular disk or a length , ∝ 𝑎 𝐿

which is the dominant length in the case of a fiber. On the other hand, the fluid dynamic force is proportional to 

the area (  in cases of moderate and high Reynolds-number flows ( ). This is because the fluid ∝ 𝑎2) 𝑅𝑒 > 1000

dynamic force in a high Reynolds-number flow is proportional to the dynamic pressure of the fluid flow, which 

acts on the surface of an object. However, the weight of each geometry, which is proportional to its volume, 

increases in proportion to  for a sphere,  for a disk, and  for a thin, cylindrical rod, respectively. For 𝑎3 𝑎2 𝐿

living animals, the important point is how much protein they invest to construct a certain physical trait and how 

much they achieve the desired functionality. The ratio of a drag force to a weight represents the cost efficiency, 

which means how much fluid dynamic force is gained by investing a certain amount of physical material (see 

Eqn. (6)). While the cost efficiencies of a sphere and a disk decrease as the size increases, the cost efficiency of a 

thin rod stays constant, independently of its size. If we apply the same analysis to the objects in the moderate/high 

Reynolds-number flow, the cost efficiency of a disk shows independence of its size (see Table 1). This is why the 

micro-organisms that swim in a viscous environment use cilia and flagella and why macro-insects over a few 

milligrams in weight tend to use membranous structures for their flight, because they utilize the moderate and 

high Reynolds-number flows ( ). This is the same in the case of birds and airplanes, the Reynolds 𝑅𝑒 > 1000

numbers of which are in the range of  to  (Lissaman 1983). The filament-like structures are also found 103 107

in passive flyers as the morphological structures of pappus, stiff setae, and spider silks. In conclusion, the filament-

like structure is regarded as a materially efficient structure to produce fluid dynamic forces (mostly a viscous 

force) in the low Reynolds-number flow. The interesting point to note here is that a spider is the heaviest organism 

that uses fiber structures for its flight, some species exceeding tens of milligrams in weight. This is possible 

because spiders can spin extremely thin, strong fibers, meaning that they can accumulate the micro-scale resistance 

forces exerted on each tiny segment of silk along the long length of fibers. 
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Table 1 Comparison of fluid dynamic and geometric characteristics of various shapes of an object according to 
flow conditions (see Eqns. (1) and (2); Hoerner 1965, Happel and Brenner 1986). 3D: three-dimensional 
geometry, 2D: two-dimensional geometry, 1D: one-dimensional geometry. (Cho 2020) 

𝐶𝑜𝑠𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑙𝑢𝑖𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑓𝑜𝑟𝑐𝑒 (𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  (𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒)
(6)

The Significance of Multiple Ballooning Fibers

Here, it should be noted that the drag force of a fiber is less sensitive in respect to its diameter, while it is almost 

linearly proportional to its length. Because of this characteristic, it is more beneficial for spiders to spin thinner 

but longer or multiple ballooning fibers during their aerial locomotion. In order to prove this, two assumptions are 

considered: one is that a spider uses the limited (constant) amount of silk dope in order to spin ballooning fibers; 

the other is that the target drag force is constrained to be identical with a spider’s body weight, 1-g (gravitational 

force equivalent) flight condition. The effect of fiber thickness is investigated under these two different 

assumptions. 

In the case of material constraint, the question arises, what could be the best geometry to harvest fluid-dynamic 

forces of the air flow efficiently using certain amount of material? For spiders there are two alternatives, either 

spinning a single thick spider silk like a dragline or spinning multiple thin fibers. The total amount of silk dope, 

, used for the spinning of ballooning fibers can be described as in equation (7).𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒

𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒 =
𝜋
4𝑛𝑑2𝐿 (7)

The number of fibers varies according to the thickness of a fiber, the amount of silk dope being the same (see Eqn. 

(8)). As the thickness of a fiber decreases, the number of ballooning fibers is multiplied (see Eqn. (8)). This results 

in the increase of the drag force on the ballooning fibers (see Eqn. (11)). This relationship is shown in Figure 4A. 

Here, the drag force is expressed as a translational resistance coefficient, which is defined as  𝐾𝑇 = 𝐹𝑇 𝜇𝑈

Page 8 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

(Happel and Brenner 1986). The tangential drag force of a fiber is considered in our analysis, because it describes 

a free-fall case in updraft wind. Fluid-dynamic interaction between fibers is not considered in the calculation. 

It may be erroneously assumed that the drag of the ballooning fibers in low Reynolds-number flow is proportional 

to their wetted surface area, which is contact with the external airflow; however, as Figure 4B shows, the drag 

force of multiple ballooning fibers is more closely correlated with the number of fibers, not their wetted surface 

area of the ballooning fibers. The drag force on the ballooning fibers is proportional to  (see Eqn. (11)). The 1 𝑑2

total wetted surface area of the ballooning fibers is proportional to  (see Eqn. (10)). The number of ballooning 1 𝑑

fibers is proportional to  (see Eqn. (8)). Therefore, the number of fibers is a much more significant factor 1 𝑑2

than their total surface area. This happens because, in relation to the drag force on a thin fiber, the existence of a 

fiber is important, but its thickness is not important.

𝑛 =
4𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒

𝜋𝑑2𝐿
(8)

𝑆𝑤𝑒𝑡 = 𝑛(𝜋𝑑2

2 + 𝜋𝑑𝐿)≅𝜋𝑛𝑑𝐿 (9)

𝑆𝑤𝑒𝑡≅
4𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒

𝑑
(10)

𝐹𝑇𝑡𝑜𝑡𝑎𝑙 =
8𝜇𝑈𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒

𝑑2[𝑙𝑛(2
𝐿
𝑑) ― 0.72] (11)

Figure 4 (A) Translational resistance coefficient versus diameter of a ballooning fiber. The amount of silk dope is 
constrained as a constant value. The amount of silk dope is estimated using the average dimensions of observed 
ballooning fibers for a 20 mg crab spider (Cho et al. 2018). The length of ballooning fibers is kept at 3.22 m. (B) 
Triple y-axis chart for translational resistance coefficient, wetted surface area, and the number of ballooning 
fibers versus a reciprocal of a fiber diameter. 

As the diameter of a ballooning fiber decreases, spiders can spin a greater number of fibers. This multiplication 

enlarges the drag force on the ballooning fibers. However, this miniaturization of thickness will not happen 
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continually. The main constraint of the minimum thickness could be the ultimate tensile strength of a ballooning 

fiber. As the ballooning fiber becomes thinner, it can no longer endure the drag force on it. Considering this 

mechanical constraint, the material benefit of ballooning fibers according to their diameter is here investigated.

Factor of safety, , is defined as the ratio of ultimate stress to actual stress, , which is under 1-𝑆𝑓
4𝑊𝑏𝑜𝑑𝑦 (𝜋𝑛𝑑2)

g flight condition (see Eqn. (12)). The ultimate stress of a ballooning fiber, which is an aciniform gland silk, is 

687 MPa (Hayashi et al. 2004, Cho et al. 2018). The values of a 20 mg Xysticus spp. ( , , 𝑊𝑏𝑜𝑑𝑦 = 196 𝜇𝑁 𝑛 = 60

) are used for the calculation (Cho et al. 2018). In the case of the crab spider, the factor of safety is 𝑑 = 211 𝑛𝑚

calculated as 6.7.  

𝑆𝑓 =
𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑓 𝑎 𝑏𝑎𝑙𝑙𝑜𝑜𝑛𝑖𝑛𝑔 𝑓𝑖𝑏𝑒𝑟

𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑛 𝑏𝑎𝑙𝑙𝑜𝑜𝑛𝑖𝑛𝑔 𝑓𝑖𝑏𝑒𝑟𝑠 =
𝜋𝑛𝑑2𝜎𝑢

4𝑊𝑏𝑜𝑑𝑦
(12)

1-g flight can be described by equating the spider’s body weight and the fluid-dynamic force on its ballooning 

fibers (see Eqn. (13)). The length of a ballooning fiber in the air flow is constrained mechanically with respect to 

its diameter and flow velocity. By combining Eqns. (12) and (13), Eqn. (14) is derived, which permits the durable 

length of a ballooning fiber to be determined, considering the safety factor of 6.7. When the number of fibers is 

1, n=1, the length of fiber is constrained for fluid-dynamic reasons to sustain 20 mg mass in the air (see Eqns. 

(13)), because the thickness of a fiber is large enough to bear a 20 mg weight. However, once the thickness of a 

fiber decreases, it cannot endure the fluid dynamic loads from a certain thickness. It should be shortened and the 

number of fibers should be multiplied to decrease the aerodynamic load and share the load to multiple fibers. In 

this case, the length of fibers and the number of fibers are constrained mechanically (see Eqn. (14) and Figure 

5A). Eqn. (15) is derived by substituting Eqn. (8) into Eqn. (13). Figure 5B, which is drawn according to Eqn. 

(15), shows the silk dope required to sustain a 20 mg crab spider in the air according to fiber diameter. As spiders 

use thin and multiple ballooning fibers, spiders use the minimum amount of their silk dope for their aerial 

dispersal.

𝑊𝑏𝑜𝑑𝑦 = 𝑛
2𝜋𝜇𝑈𝐿

𝑙𝑛(2
𝐿
𝑑) ― 0.72 (13)
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𝜎𝑢

𝑆𝑓
=

8𝜇𝑈𝐿

𝑑2[𝑙𝑛(2
𝐿
𝑑) ― 0.72] (14)

𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒 =

𝑊𝑏𝑜𝑑𝑦[𝑙𝑛(2
𝐿
𝑑) ― 0.72]𝑑2

8𝜇𝑈
(15)

Figure 5 (A) Combination of length, thickness and the number of fibers to sustain the 20 mg weight of a crab 
spider. The blue dotted line indicates the average value of thicknesses of ballooning fibers in crab spiders. The 
red dash-dotted line is the average length of ballooning fibers of crab spiders (Cho et al. 2018). (B) The required 
amount of silk dope to sustain their bodies in the air (see Eqn. (15)). The blue dotted line indicates the average 
value of thicknesses of ballooning fibers in crab spiders. The red dash-dotted line presents the averaged total 
volume of silk dope used by crab spiders (Cho et al. 2018). The black dashed line shows the constant drag force 
on fibers because of the 1-g flight condition.

Nanoscale and the Rarefaction Effect of the Air

The nanoscale of ballooning silk raises the question of whether or not the continuity of the air is still valid on such 

a small-object scale. This is important, because it determines the validity of classical fluid dynamics applied to 

this problem. Air is different from liquid water, as it has more sparse molecules; this can be parameterized through 

a comparison to the mean free path of the molecules, which is defined as the average travel distance of a moving 

particle. While liquid water has a very small mean free path of 0.3 nm, the mean free path of the air is 65.44 nm 

(Jennings 1988, Marable et al. 2017). The ratio of the mean free path to the scale of an object is known as the 

Knudsen number ( ; the radius is the characteristic length in the case of fibrous structure; Brown 𝐾𝑛 = 𝜆/𝐷 = 2𝜆/𝑑

1993, Beskok et al. 2001, Zhao and Povitsky 2013, Zhao et al. 2016), determining whether or not the continuity 

of a medium is valid for their dynamics (Sun and Boyd 2004, Liu and Aono 2009, Santhanakrishnan et al. 2014; 

see Figure 6). 

Page 11 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 6 Comparative sketch of a ballooning fiber and the movement of air molecules. The thickness of a 
ballooning fiber is comparable to the mean free path of air molecules. The mean free path of air molecules, 65 
nm, is approximately 22 times of their mean intermolecular distance, 3nm, (mean distance between particles). 
Therefore, actual distribution of air molecules is much denser than the distribution of air molecules, which is 
shown in the sketch. (Jennings 1988, Merodio and Saccomandi 2011, Marable et al. 2017)    

The fluid states, both in micro-electro-mechanical systems (MEMS) and in the rarefied gas environment, can be 

categorized into four flows: (i) continuum; (ii) slip; (iii) transition; and (iv) free molecule flows (Karniadakis et 

al. 2005, Gad-el-Hak 2006, Pitakarnnop 2014). If , the flow is regarded as a continuum, such that the 𝐾𝑛 < 0.001

no-slip condition is validated on the surface of the object. For , it is still regarded as a 0.001 ≤ 𝐾𝑛 < 0.1

continuum, but the slip boundary condition should be applied. The regime of Knudsen numbers  0.1 ≤ 𝐾𝑛 < 10

is moderately rarefied. This regime is defined as the transition regime, in which the state changes from the 

continuum state to the highly rarefied state. Moreover, the regime of  is defined as the free molecule 10 ≤ 𝐾𝑛

regime, in which the molecules can move relatively freely with decreased frequency of collisions with the object 

(Gad-el-Hak 2006, Tian et al. 2017). While most micro-swimmers in liquid and plumed aerial seeds in the air 

remain in the continuum or the near-slip regimes of the flow (the Knudsen number ranges from  to ), 10 ―4 10 ―2

a ballooning silk in the air and a DNA molecule in a liquid solution are categorised as part of the transition regime, 

as the Knudsen numbers of both are large, at 0.65 and 0.25, respectively (see 

Table 2). Therefore, the rarefaction effect of the air should be investigated. 

Table 2 Reynolds numbers and Knudsen numbers of various filament structures in nature. The thickness 
(diameter) of a filament structure is used as the characteristic length in the calculation of the Reynolds 
number. The radius of a filament structure is used for the calculation of the Knudsen number. (Cho 2020)

The correction of the Stokes drag of a spherical particle for the rarefaction of a fluid medium was established by 

Cunningham (1910) and Millikan (1923b). Later, the modelling of the influence of the transition regime on a non-

spherical particle was developed by smoothing the resistance from the continuum to the free molecular regimes 

(Dahneke 1973b, Tian et al. 2017). The drag anisotropy is modeled by adjusting the diameter of the spherical 

particle, an “adjusted sphere” method. The Cunningham correction is applied to the drag of the non-spherical 

particle so as to introduce the effect of the slip condition (Dahneke 1973b, Tian et al. 2017). In this way, the 

anisotropic drag of the non-spherical particle in high Knudsen-number cases can be investigated. For the detailed 
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procedure, reference should be made to the correction procedure for the rarefied gas, established by Tian et al. 

(2017, see Appendix A in supplementary material). Figure 7A shows the variation of translational resistance 

coefficients of a 3.22 m-long circular cylinder as the thickness of the rod (fiber) varies. Figure 7B expresses the 

variation of the translational resistance coefficients according to Knudsen number. Both figures compare the 

theoretical and empirical values of drag coefficients of a fiber under the condition of low Reynolds-number flow 

with the theoretical values, which are corrected considering the rarefaction effect of air molecules as the thickness 

of a fiber decreases. The blue dotted line indicates the position of ballooning fibers that are observed in nature. 

The results are interesting: the drag coefficient, which considered the rarefaction effect of the air, begins to split 

at  from the values of the continuum-assumed drag coefficient and fall drastically after  𝐾𝑛 = 0.065 𝐾𝑛 = 0.65

(see Figure 7B). From this, it is suggested that the mean thickness of ballooning silk, 200 nm, may be the near 

region to lower boundary, where the continuum of the air is valid to its dynamics. Spider silks that were thinner 

( ; ) cannot produce drag forces efficiently, not likely as it produce drag forces at a low 𝑑 < 100 𝑛𝑚 𝐾𝑛 > 1.3

Knudsen number ( ; ). 𝐾𝑛 < 1.3 𝑑 > 100 𝑛𝑚

Figure 7 Rarefaction effect of air molecules on a fiber. (A) The translational resistance coefficient of a fiber 3.22 
m long according to its diameter. (B) The translational resistance coefficient of a fiber 3.22 m long according to 
Knudsen number. The empty squares indicate theoretical values without consideration of the rarefaction effect 
(Eqns. (2) and (4)). The empty circles indicate empirical values without consideration of the rarefaction effect 
(Suter 1991). The solid squares are the theoretical values, with consideration of the rarefaction effect of air 
molecules. The rarefaction effect dominant region is marked with light yellow color. Light blue colors indicate 
the distributed region of crab spiders’ ballooning fibers, 121–323 nm (Cho et al. 2018). The blue dotted line is 
the position of their averaged value, 211 nm.
 

It may be asked whether this proposition is plausible in the real world or not: the answer could come from studies 

in the air filter industry. Recently, an air filter consisting of fibrous structures was proposed and proven efficient 

experimentally by Zhao et al. (2016). A fiber diameter of 60–100 nm was determined to be the most effective for 

slip flow, which means that fiber diameters below 100 nm produce small drag force. This result strongly supports 

the proposition that a fiber diameter of approximately 200 nm is the minimum mean size for a fibrous structure 

that can effectively harvest aerodynamic force by producing drag.   

Figure 8 shows summary of the all above discussed points. The variation of total drag force on the ballooning 

fibers of a 20 mg crab spider is plotted with respect to diameter of the fibers according to different vertical wind 

speeds. The rarefaction effect of the air molecules on the ballooning fibers is considered. (The fluctuation effect 
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of the air current on flexible fibers and interaction between fibers are not considered.) The cost efficiency of the 

fibers is superposed on the plot. As we see, the cost efficiency, , increases according to decrease of fiber ∝ 1 𝑑2

thickness. However, mechanical constraint exists because of the thinness of fibers. This establishes the lower 

boundary of the ballooning fibers. As we discussed above, we also observe the rapid drop of drag forces at the 

thickness below 100 nm. We thus ascertain that the thickness scale of ballooning fibers is located very near edge 

of these proposed boundaries.

Figure 8 Variation of drag force versus diameter of a ballooning fiber. The length and the number of fibers are 
kept constant upon the values of 20 mg crab spider, Xysticus spp. ( , ; see Eqn. (16)). The 𝐿 = 3.22 𝑚 𝑛 = 60
mechanical constraint is constructed by Eqn. (17). The cost efficiency is defined by Eqn. (18). The elliptic gray 
region represents the region of a 20 mg crab spider with 60 number of ballooning fibers in nature. The 
rectangular gray region indicates slip condition on the ballooning fibers because of the rarefaction effect of air 
molecules.

𝐹𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑛
2𝜋𝜇𝑈𝐿

𝑙𝑛(2
𝐿
𝑑) ― 0.72 (16)

𝐹𝑢 =
𝜋𝑛𝑑2𝜎𝑢

4 (17)

𝜂𝑐𝑜𝑠𝑡 =
𝐾𝑇

𝑉𝑠𝑖𝑙𝑘
=

𝐹𝑇𝑡𝑜𝑡𝑎𝑙

𝜇𝑈𝑉𝑠𝑖𝑙𝑘
=

8

𝑑2[𝑙𝑛(2
𝐿
𝑑) ― 0.72] (18)

Conclusion

As spiders utilize a fiber structure for their passive flight, geometric and dimensional characteristics are explored 

from the viewpoint of fluid dynamics, using a mathematical fiber model. Dimensional investigation reveals that 

a filament structure is a materially efficient structure to produce fluid dynamic force in low Reynolds-number 

flows ( , viscous flow), while a membranous structure has advantages materially in moderate and high 𝑅𝑒 < 1

Reynolds-number flows ( ). Multiple thin fibers enable either maximizing their drag force under the 𝑅𝑒 > 1000
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use of constant amount of silk material or minimizing the use of material to suspend a spider’s body in the air. 

This is possible because of the interesting fluid-dynamic characteristics of a fiber in low Reynolds-number flow: 

the drag force of a fiber is less sensitive to variation of its diameter, while it is almost linearly proportional to its 

length. The thickness of a ballooning fiber, which ranges from 121 to 323 nm (average: 211 nm, N=40), allows 

for us to survey a rarefaction effect of air molecules, because these sizes are comparable to the mean free path of 

air molecules, 65.44 nm. The theoretical model proposes that 100 nm thickness is the lowest boundary of a fiber 

that can produce viscous drag force effectively. This is a reasonable result, because the most efficient (low drag) 

fibrous filter for slip flow (small drag) utilizes fibers of 60–100 nm thickness. It is recommended that future work 

should test the present hypothesis by investigating whether the thickness of ballooning fibers, which range from 

121 to 323 nm, also appear in other species of ballooning spiders. Additionally, as it is recently observed that 

electric field elicits spiders’ ballooning behavior, the study of geometric advantage of ballooning fibers in electric 

field would be also interesting future work.
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List of symbols and abbreviation

𝑎 radius of a sphere and a disk
𝐶𝑐 Cunningham correction factor
𝐶𝐷 drag coefficient
𝐷 characteristic length
𝑑 diameter of a fiber (the unit is meter in Suter’s formula)

𝑑𝑎𝑑𝑗 adjusted diameter of a non-spherical particle
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𝑑𝑎𝑑𝑗 ⊥ adjusted diameter of a non-spherical particle in the direction normal to the axis of 
the particle

𝑑𝑎𝑑𝑗 ∥ adjusted diameter of a non-spherical particle in the direction parallel to the axis 
of the particle

𝑑𝐿 characteristic length of the particle
𝐹 fluid-dynamic force

𝐹𝐷 fluid-dynamic force of a disk (normal to flow)
𝐹𝐷,𝑐𝑜𝑛 fluid-dynamic force in a continuum regime
𝐹𝐷,𝑡𝑟𝑎𝑛 fluid-dynamic force in a transition regime

𝐹𝑁 drag force in the direction normal to the axis of the cylinder (or a straight fiber)
𝐹𝑇 drag force in the direction parallel to the axis of the cylinder (or a straight fiber)

𝐹𝑇𝑆𝑢𝑡𝑒𝑟 drag force in the direction parallel to the axis of the cylinder (or a straight fiber) 
which is calculated from Suter’s empirical formula (the unit is )𝜇𝑁

𝐹𝑇𝑡𝑜𝑡𝑎𝑙 total drag force on ballooning fibers in the direction parallel to the axis of the 
fibers

𝐹𝑢
ultimate force 

𝐾 dynamic shape factor
𝐾𝑛 Knudsen number
𝐾𝑇 translational resistance coefficient, 𝐾𝑇 = 𝐹𝑇 𝜇𝑈

𝐿 length of a fiber (the unit is meter in Suter’s formula)

𝑁 the number of samples (or specimens)

𝑛 the number of fibers
𝑅𝑒 Reynolds number
𝑅𝑁 non-dimensional resistance coefficient in the direction normal to the axis of the 

cylinder (or a straight fiber)
𝑅𝑇 non-dimensional resistance coefficient in the direction parallel to the axis of the 

cylinder (or a straight fiber)
𝑆𝑓 factor of safety

𝑆𝑤𝑒𝑡 wetted surface area of ballooning fibers
𝑈 flow velocity (the unit is meter per second in Suter’s formula); characteristic 

flow velocity

𝑉𝑠𝑖𝑙𝑘
total volume of ballooning fibers

𝑉𝑠𝑖𝑙𝑘 𝑑𝑜𝑝𝑒 total volume of silk dope, that is used for spinning of ballooning fibers
𝑊𝑏𝑜𝑑𝑦 weight of a spider body

𝛼 tangential momentum accommodation coefficient
𝛽 slenderness of a non-spherical particle ( )𝐿 𝑑

𝜂𝑐𝑜𝑠𝑡
volumetric cost efficiency for translational resistance coefficient

𝜆 mean free path
𝜇 dynamic viscosity of fluid
𝜌 density of a fluid
𝜎𝑢 ultimate tensile stress of a material,  ( : cross sectional area) 𝜎𝑢 = 𝐹𝑢 𝐴 𝐴

Page 16 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

References

Acharya T, Falgoust J, Schoegl I, Martin MJ. 2019. Measurement of Variation of Momentum Accommodation 

Coefficients with Molecular Mass and Structure. Journal of Thermophysics and Heat Transfer 33:773–78.

Agrawal A, Prabhu SV. 2008. Survey on measurement of tangential momentum accommodation coefficient. 

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 26:634–45.

Alexander DE. 2015. On the wing New York: Oxford University Press.

Autumn K, Peattie AM. 2002. Mechanisms of adhesion in geckos. Integrative and comparative biology 42:1081–

90.

Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, 

Full RJ. 2002. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of 

Sciences of the United States of America 99:12252–56.

Barth FG, Komarek S, Humphrey JAC, Treidler B. 1991. Drop and swing dispersal behavior of a tropical 

wandering spider. J Comp Physiol A 169.

Beskok A. 2001. Validation of A New Velocity-Slip Model for Separated Gas Microflows. Numerical Heat 

Transfer, Part B: Fundamentals 40:451–71.

Blake J, Sleigh M (Eds.). 1975. Hydrodynamical Aspects of Ciliary Propulsion. Presented at the Proceedings of 

the symposium on swimming and flying in Nature, vol 2.

Bomphrey RJ, Nakata T, Phillips N, Walker SM. 2017. Smart wing rotation and trailing-edge vortices enable high 

frequency mosquito flight. Nature 544:92–95.

Brown RC. 1993. Air filtration. 1. ed. ed Oxford: Pergamon Press.

Burgers JM. 1938. In Second Report on Viscosity and Plasticity, Verhandelingen der Koninklijke Akademie van 

Wetenschappen, Afdeeling Natuurkunde: Wiskunde, natuurkunde, scheikunde, kristallenleer, sterrenkunde, 

weerkunde, en ingenieurswetenschappen Noord-Hollandsche Uitgevers-Maatschappij.

Page 17 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Burkman LJ. 2009. Characterization of Hyperactivated Motility by Human Spermatozoa During Capacitation. 

Archives of Andrology 13:153–65.

Casseau V, Croon G, Izzo D, Pandolfi C. 2015. Morphologic and Aerodynamic Considerations Regarding the 

Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal. PloS one 10:e0125040.

Childress S. 1981. Mechanics of swimming and flying, Cambridge studies in mathematical biology Cambridge: 

Cambridge University Press.

Cho M, Neubauer P, Fahrenson C, Rechenberg I. 2018. An observational study of ballooning in large spiders: 

Nanoscale multifibers enable large spiders’ soaring flight. PLoS biology 16:e2004405.

Cho M 2020. Suspension of a Point-Mass-Loaded Filament in Non-Uniform Flows: The Ballooning Flight of 

Spiders. Technical University of Berlin Repository

Cummins C, Seale M, Macente A, Certini D, Mastropaolo E, Viola IM, Nakayama N. 2018. A separated vortex 

ring underlies the flight of the dandelion. Nature 562:414–18.

Cunningham E. 1910. On the Velocity of Steady Fall of Spherical Particles through Fluid Medium. Proceedings 

of the Royal Society A: Mathematical, Physical and Engineering Sciences 83:357–65.

Dahneke BE. 1973a. Slip correction factors for nonspherical bodies—I Introduction and continuum flow. Journal 

of Aerosol Science 4:139–45.

Dahneke BE. 1973b. Slip correction factors for nonspherical bodies—II free molecule flow. Journal of Aerosol 

Science 4:147–61.

Darwin C. 1845. Journal of researches into the natural history and geology of the countries visited during the 

voyage of H.M.S. Beagle round the world, , under the Command of Capt. Fitz Roy, R.N. Second Edition. ed New 

York: John Murray, Albemarle Street.

Dudley R. 2002. The biomechanics of insect flight. 2. print., 1. paperback print. ed, Princeton paperbacks 

Princeton, NJ: Princeton Univ. Press.Ferrón HG, Botella H. 2017. Squamation and ecology of thelodonts. PloS 

one 12:e0172781.

Page 18 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fan F-G, Ahmadi G. 2000. Wall Deposition of Small Ellipsoids from Turbulent Air Flows—A Brownian 

Dynamics Simulation. Journal of Aerosol Science 31:1205–29.

Ferrón HG, Botella H. 2017. Squamation and ecology of thelodonts. PloS one 12:e0172781.

Fung YC. 1990. Biomechanics New York, NY: Springer.

Gad-el-Hak M. 2006. The MEMS handbook. 2nd ed. ed, Mechanical engineering series Boca Raton, Fla.; London: 

CRC Taylor & Francis.

Glick PA. 1939. The distribution of insects, spiders, and mites in the air. USDA Tech Bull 1–150.

Gorham PW. 2013. Ballooning Spiders: The Case for Electrostatic Flight. arXiv.

Greene DF, Johnson EA. 1990. The Aerodynamics of Plumed Seeds. Functional Ecology 4:117.

Happel J, Brenner H. 1991. Low Reynolds number hydrodynamics. 5. printing. ed, Mechanics of fluids and 

transport processes Dordrecht: Kluwer Acad. Publ.

Hayashi CY, Blackledge TA, Lewis RV. 2004. Molecular and mechanical characterization of aciniform silk: 

uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Molecular 

biology and evolution 21:1950–59.

Hemadri V, Agrawal A, Bhandarkar UV. 2018. Determination of tangential momentum accommodation 

coefficient and slip coefficients for rarefied gas flow in a microchannel. Sādhanā 43:5.

Hoelzel AR (Ed.). 2009. Marine mammal biology. [Repr.]. ed Malden, Mass.: Blackwell Science.

Hoerner SF. 1992a. Fluid-dynamic drag. 2nd ed. ed Bakersfield: Hoerner Fluid Dynamics.

Humphrey JAC. 1987. Fluid mechanic constraints on spider ballooning. Oecologia 73:469–77.

Jennings SG. 1988. The mean free path in air. Journal of Aerosol Science 19:159–66.

Karniadakis G, Aluru N, Antman SS, Beskok A, Marsden JE, Sirovich L. 2005. Microflows and Nanoflows, 

Interdisciplinary Applied Mathematics New York, NY: Springer Science+Business Media Inc.

Page 19 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Lee VMJ, Kuntner M, Li D. 2015. Ballooning behavior in the golden orbweb spider Nephila pilipes (Araneae. 

Front Ecol Evol 3:e86780.

Lissaman PBS. 1983. Low-Reynolds-Number Airfoils. Annu Rev Fluid Mech 15:223–39.

Liu H, Aono H. 2009. Size effects on insect hovering aerodynamics: an integrated computational study. 

Bioinspiration & biomimetics 4:015002.

Mandelkern M, Elias JG, Eden D, Crothers DM. 1981. The dimensions of DNA in solution. Journal of Molecular 

Biology 152:153–61.

Marable DC, Shin S, Yousefzadi NA. 2017a. Investigation into the microscopic mechanisms influencing 

convective heat transfer of water flow in graphene nanochannels. International Journal of Heat and Mass Transfer 

109:28–39.

Merodio J, Saccomandi G. 2011. Continuum mechanics, Encyclopedia of Life Support Systems Physical Sciences, 

Engineering and Technology Sources U.K.: EOLSS Publishers/UNESCO.

Millikan RA. 1923a. Coefficients of Slip in Gases and the Law of Reflection of Molecules from the Surfaces of 

Solids and Liquids. Phys Rev 21:217–38.

Millikan RA. 1923b. The General Law of Fall of a Small Spherical Body through a Gas, and its Bearing upon the 

Nature of Molecular Reflection from Surfaces. Phys Rev 22:1–23.

Minami S, Azuma A. 2003. Various flying modes of wind-dispersal seeds. Journal of Theoretical Biology 225:1–

14.

Morley EL, Robert D. 2018. Electric Fields Elicit Ballooning in Spiders. Current biology : CB 28:2324-2330.e2.

Oeffner J, Lauder GV. 2012. The hydrodynamic function of shark skin and two biomimetic applications. The 

Journal of experimental biology 215:785–95.

Perkins T, Smith D, Larson R, Chu S. 1995. Stretching of a single tethered polymer in a uniform flow. Science 

268:83–87.

Pitakarnnop J. 2014. Rarefied gas flow in pressure and vacuum measurements. ACTA IMEKO 3:60.

Page 20 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Purcell EM. 1977. Life at low Reynolds number. American Journal of Physics 45:3–11.

Sane SP. 2003. The aerodynamics of insect flight. Journal of Experimental Biology 206:4191–4208.

Santhanakrishnan A, Robinson AK, Jones S, Low AA, Gadi S, Hedrick TL, Miller LA. 2014. Clap and fling 

mechanism with interacting porous wings in tiny insect flight. The Journal of experimental biology 217:3898–

3909.

Sheldon KS, Zhao L, Chuang A, Panayotova IN, Miller LA and B Lydia. 2017. Revisiting the Physics of Spider 

Ballooning. In: Layton AT, Miller LA, editors. Women in Mathematical Biology. Association for Women in 

Mathematics Series Cham: Springer International Publishing. p. 163–78.

Smith DJ, Gaffney EA, Blake JR, Kirkman-Brown JC. 2009. Human sperm accumulation near surfaces. J Fluid 

Mech 621:289.

Sudo S, Matsui N, Tsuyuki K, Yano T (Eds.). 2008. Morphological Design of Dandelion. Presented at the The 

XIth International Congress and Exposition. Orlando, Florida USA.

Sun Q, Boyd ID. 1999. Flat-plate aerodynamics at very low Reynolds number. J Fluid Mech 502:199–206.

Suter RB. 1991. Ballooning in spiders. Ethology Ecology & Evolution 3:13–25.

Suter RB. 1999. An Aerial Lottery: The Physics of Ballooning in a Chaotic Atmosphere. 1:281–93.

Tian L, Ahmadi G, Tu J. 2017. Mobility of nanofiber, nanorod, and straight-chain nanoparticles in gases. Aerosol 

Science and Technology 51:587–601.

Wang X, Clarke JA. 2015. The evolution of avian wing shape and previously unrecognized trends in covert 

feathering. Proceedings Biological sciences 282:20151935.

Weis-Fogh T. 1973. Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for 

Lift Production. Journal of Experimental Biology 169–230.

Woolley DM. 2003. Motility of spermatozoa at surfaces. Reproduction 126:259–70.

Wu TY-T, Brokaw CJ, Brennen C. 1975. Swimming and Flying in Nature Boston, MA: Springer US.

Page 21 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Yamaguchi H, Hanawa T, Yamamoto O, Matsuda Y, Egami Y, Niimi T. 2011. Experimental measurement on 

tangential momentum accommodation coefficient in a single microtube. Microfluid Nanofluid 11:57–64.

Zhao L, Panayotova LN, Chuang A, Sheldon KS, Bourouiba L, Miller LA. 2017. Flying Spiders: Simulating and 

Modeling the Dynamics of Ballooning. In: Layton AT, Miller LA, editors. Women in Mathematical Biology. 

Association for Women in Mathematics Series Cham: Springer International Publishing. p. 179–210.

Zhao S, Povitsky A. 2013. Coupled continuum and molecular model of flow through fibrous filter. Physics of 

Fluids 25:112002.

Zhao X, Wang S, Yin X, Yu J, Ding B. 2016. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5. 

Scientific reports 6:35472.

Page 22 of 35

http://mc.manuscriptcentral.com/icbiol

Manuscripts submitted to Integrative and Comparative Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 1 (A) A crab spider (Xysticus spp.) with ballooning fibers just before takeoff. (B) A picture of 
ballooning fibers by SEM (×10,000). Two thick silks are the silks spun from minor ampullate silk glands. 

Multiples thin silks are aciniform silks. (Photos from Cho et al. 2018) 
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Figure 2 (A) Dimensionless longitudinal (tangential) resistance coefficients of a thin cylinder as a function of 
the slenderness of the cylinder. (B) Dimensionless transverse (normal) resistance coefficients of a thin 
cylinder as a function of the slenderness of the cylinder. The red solid lines are theoretical values. The 

triangular markers are the calculated values from the simulation using the bead-spring model. The square 
markers are the values obtained from the drop test (Cho 2020). 
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Figure 3 (A) The variation of resistance (drag) force on a thin fiber, which is 1 meter long, according to its 
diameter. The fluid medium is air. The flow velocity is 1 m/s. (B) The variation of resistance (drag) force on 
a thin fiber, the diameter of which is 1 µm, according to its length. The fluid medium is air. The flow velocity 
is 1 m/s. The red solid lines are theoretical values with respect to equations (1) and (2). The black dashed 

lines are empirical values that are calculated by Suter’s formula (see Eqn. (5); Suter 1991, Cho et al. 2018). 
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Figure 4 (A) Translational resistance coefficient versus diameter of a ballooning fiber. The amount of silk 
dope is constrained as a constant value. The amount of silk dope is estimated using the average dimensions 

of observed ballooning fibers for a 20 mg crab spider (Cho et al. 2018). The length of ballooning fibers is 
kept at 3.22 m. (B) Triple y-axis chart for translational resistance coefficient, wetted surface area, and the 

number of ballooning fibers versus a reciprocal of a fiber diameter. 
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Figure 5 (A) Combination of length, thickness and the number of fibers to sustain the 20 mg weight of a 
crab spider. The blue dotted line indicates the average value of thicknesses of ballooning fibers in crab 

spiders. The red dash-dotted line is the average length of ballooning fibers of crab spiders (Cho et al. 2018). 
(B) The required amount of silk dope to sustain their bodies in the air (see Eqn. (15)). The blue dotted line 

indicates the average value of thicknesses of ballooning fibers in crab spiders. The red dash-dotted line 
presents the averaged total volume of silk dope used by crab spiders (Cho et al. 2018). The black dashed 

line shows the constant drag force on fibers because of the 1-g flight condition. 
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Figure 6 Comparative sketch of a ballooning fiber and the movement of air molecules. The thickness of a 
ballooning fiber is comparable to the mean free path of air molecules. The mean free path of air molecules, 

65 nm, is approximately 22 times of their mean intermolecular distance, 3nm, (mean distance between 
particles). Therefore, actual distribution of air molecules is much denser than the distribution of air 

molecules, which is shown in the sketch. (Jennings 1988, Merodio and Saccomandi 2011, Marable et al. 
2017) 
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Figure 7 Rarefaction effect of air molecules on a fiber. (A) The translational resistance coefficient of a fiber 
3.22 m long according to its diameter. (B) The translational resistance coefficient of a fiber 3.22 m long 

according to Knudsen number. The empty squares indicate theoretical values without consideration of the 
rarefaction effect (Eqns. (2) and (4)). The empty circles indicate empirical values without consideration of 
the rarefaction effect (Suter 1991). The solid squares are the theoretical values, with consideration of the 
rarefaction effect of air molecules. The rarefaction effect dominant region is marked with light yellow color. 
Light blue colors indicate the distributed region of crab spiders’ ballooning fibers, 121–323 nm (Cho et al. 

2018). The blue dotted line is the position of their averaged value, 211 nm. 
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Figure 8 Variation of drag force versus diameter of a ballooning fiber. The length and the number of fibers 
are kept constant upon the values of 20 mg crab spider, Xysticus spp. (L=3.22 m, n=60; see Eqn. (16)). 
The mechanical constraint is constructed by Eqn. (17). The cost efficiency is defined by Eqn. (18). The 
elliptic gray region represents the region of a 20 mg crab spider with 60 number of ballooning fibers in 

nature. The rectangular gray region indicates slip condition on the ballooning fibers because of the 
rarefaction effect of air molecules. 
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Flow Geometry Drag Formula Drag Weight Cost Efficiency
(Drag/Weight)

𝑅𝑒 < 1 Sphere
(3D) 𝐹 = 6𝜋𝜇𝑎𝑈 ∝ 𝑎 ∝ 𝑎3 ∝

1

𝑎2

𝑅𝑒 < 1 Disk
(2D)

𝐹𝐷 = 16𝜇𝑎𝑈 ∝ 𝑎 ∝ 𝑎2 ∝
1
𝑎

𝑅𝑒 < 1 Rod
(1D)

𝐹𝑇 =
2𝜋𝜇𝑈𝐿

𝑙𝑛(2
𝐿
𝑑) ― 0.72 ∝ 𝐿 ∝ 𝐿 ∝ 1

𝑅𝑒 > 1000 Sphere
(3D) 𝐹 = 𝐶𝐷

1
2𝜌𝑈2(𝜋𝑎2) ∝ 𝑎2 ∝ 𝑎3 ∝

1
𝑎

𝑅𝑒 > 1000 Disk
(2D) 𝐹𝐷 = 𝐶𝐷

1
2𝜌𝑈2(𝜋𝑎2) ∝ 𝑎2 ∝ 𝑎2 ∝ 1
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Spp. Thickness Length Medium
Mean free 

path
Reynolds 
number

Knudsen 
number

Ref.

Ballooning 
silks

Xysticus 211 nm 3.22 m Air 65.44 nm 0.002 0.654 Cho et al. 2018

Pappus
Dandelion 

Seed
15 μm 7 mm Air 65.44 nm 0.258 8.7 × 10 ―3 Sudo et al. 2008

Stiff setae
Encarsia 
formosa

1.5 μm
(1-2 μm)

20 μm Air 65.44 nm 0.107 8.7 × 10 ―2 Weis-Fogh 1973

Flagella Sperm 1 μm 56 μm

Water

( Hydrated ≈

mucus)

 nm~0.3 0.00065 6 × 10 ―4
Woolley 2003

Smith et al. 2009
Burkman 2009

Cilia Paramecium 250 nm 12 μm Water  nm~0.3 0.00045 2.4 × 10 ―3 Blake and Sleigh 1975
Wu et al. 1975

DNA 
Molecule

2.4 nm
(2.2-2.6 

nm)

84 μm
(the largest: 

85 mm)

Concentrated 

polymer 

solution

 nm~0.3 6.6 × 10 ―8 0.25
Mandelkern et al. 1981

Perkins et al. 1995

 Mean free path: data source Jennings 1988, Marable et al. 2017. 
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Supplementary Material

Appendix A

Calculation of Anisotropic Particle Drag in the High Knudsen 
Number Flows

While the drag of a spherical particle is well understood in the wide range of the Knudsen number flow, the drag 

of an isotropic particle (non-spherical particle) is not well studied. Recently, Tian et al. showed systematic 

description of that (2017). The rarefaction effect of the air on the nanoscale filament is investigated based on the 

methodology for a long cylinder. Here, the methodologies are introduced.

i. Continuum Regime

Drag force of a non-spherical particle in the low-Reynolds number and low Knudsen number flows is described 

as (A. 1).  is characteristic length of the particle.  refers as a dynamic shape factor and represent the 𝑑𝐿 𝐾

characteristics of its geometry (Tian et al. 2017).

𝐹𝐷,𝑐𝑜𝑛 = 3𝜋𝜇𝑈𝑑𝐿𝐾 (A. 1)

The dynamic shape factor for a long cylinder is as follow (Burgers 1938):

𝐾 ∥ =
2𝛽

3[𝑙𝑛(2𝛽) ― 0.72]
(A. 2)

ii. Free Molecular Regime

The shape factor for a long cylinder in the free molecular regime is as follow (Dahneke 1973a, Tain et al. 2017):

𝐾′∥ =
1

𝐾𝑛[(2𝛽 +
𝜋
2 ― 2)𝛼 + 4] (A. 3)

iii. Transition Regime
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The formulation of the transition regime drag for a non-spherical particle is enabled by employing Cunningham 

correction which has been used for a sphere (Dahneke 1973b). This description well expresses the drag forces of 

a non-spherical particle in the continuum flow regime and the free molecular regime and also the smooth transition 

between both flow regimes. The anisotropic effect of a non-spherical particle in the transition regime is expressed 

by introducing “adjusted sphere” method and varying its diameter (Tian et al. 2017). The Eqns. (A. 4)-(A. 11) 

show the transition regime drag for a non-spherical particle (Fan and Ahmadi 2000).

𝐹𝐷,𝑡𝑟𝑎𝑛 =
𝐹𝐷,𝑐𝑜𝑛

𝐶𝑐(𝑑𝑎𝑑𝑗)
=

3𝜋𝜇𝑈𝑑𝐿𝐾
𝐶𝑐(𝑑𝑎𝑑𝑗)

(A. 4)

𝐶𝑐(𝑑𝑎𝑑𝑗) = 1 +
𝑑𝐿

𝑑𝑎𝑑𝑗
𝐾𝑛(1.257 + 0.4𝑒

―1.1𝑑𝑎𝑑𝑗

𝐾𝑛 𝑑𝐿 ) (A. 5)

𝑑𝑎𝑑𝑗 ⊥ =
1.657𝑑𝐿𝛽

16(𝛽2 ― 1)(𝐴 ∙ 𝐵) (A. 6)

𝑑𝑎𝑑𝑗 ∥ =
1.657𝑑𝐿𝛽

8(𝛽2 ― 1)(𝐶 ∙ 𝐷) (A. 7)

𝐴 =
2𝛽2 ― 3

𝛽2 ― 1
ln (𝛽 + 𝛽2 ― 1) + 𝛽 (A. 8)

𝐵 = 𝐸𝑝[4 + (𝜋
2 ― 1)𝛼] +

𝐺𝑃

𝐹2
𝑝
(2 +

4𝐹2
𝑝 + 𝜋 ― 6

4 )𝛼 (A. 9)

𝐶 =
2𝛽2 ― 1

𝛽2 ― 1
ln (𝛽 + 𝛽2 ― 1) ― 𝛽 (A. 10)

𝐷 = 2𝐸𝑝𝛼 +
𝐺𝑃

𝐹2
𝑝
[𝐹2

𝑝(4 ― 2𝛼) ― 4 + (3 ―
𝜋

2𝛽2 )𝛼] (A. 11)

Tangential momentum accommodation coefficient (TMAC) is used as a particle momentum accommodation 

coefficient. The TMAC of the air on flat surface differs according to materials of the surfaces. The value ranges 

from 0.71 to 0.9 (Acharya et al. 2019). It is regarded that the roughness of the material is related to this variation. 

The value of 0.8 is used in order to investigate the rarefaction effect of the air on the ballooning fibres among 

different estimated and measured values (Millikan 1923a, Dahneke 1973a, Karniadakis et al. 2005, Agrawal and 
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Prabhu 2008, Yamaguchi et al. 2011, Hemadri et al. 2018, Acharya et al. 2019).
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