
3300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

CRIMSON: Compute-Intensive Loop Acceleration

by Randomized Iterative Modulo Scheduling

and Optimized Mapping on CGRAs
Mahesh Balasubramanian , Member, IEEE, and Aviral Shrivastava, Member, IEEE

Abstract—Coarse-grain reconfigurable arrays (CGRAs) are
emerging accelerators that promise low-power acceleration
of compute-intensive loops in applications. The acceleration
achieved by CGRA relies on the efficient mapping of the
compute-intensive loops by the CGRA compiler, onto the CGRA
architecture. The CGRA mapping problem, being NP-complete,
is performed in a two-step process, namely, scheduling and map-
ping. The scheduling algorithm allocates timeslots to the nodes
of the data flow graph, and the mapping algorithm maps the
scheduled nodes onto the processing elements of the CGRA. On
a mapping failure, the initiation interval (II) is increased and
a new schedule is obtained for the increased II. Most previous
mapping techniques use the iterative modulo scheduling (IMS)
algorithm to find a schedule for a given II. Since IMS generates a
resource-constrained as-soon-as-possible (ASAP) scheduling, even
with increased II, it tends to generate a similar schedule that is
not mappable. Therefore, IMS does not explore the schedule
space effectively. To address these issues, this article proposes
CRIMSON, compute-intensive loop acceleration by randomized
IMS and optimized mapping technique that generates random
modulo schedules by exploring the schedule space, thereby cre-
ating different modulo schedules at a given and increased II.
CRIMSON also employs a novel conservative test after schedul-
ing to prune valid schedules that are not mappable. From our
study conducted on the top 24 performance-critical loops (run
for more than 7% of application time) from MiBench, Rodinia,
and Parboil, we found that previous state-of-the-art approaches
that use IMS, such as RAMP and GraphMinor could not map
five and seven loops, respectively, on a 4 × 4 CGRA, whereas
CRIMSON was able to map them all. For loops mapped by the
previous approaches, CRIMSON achieved a comparable II.

Index Terms—Coarse-grained reconfigurable arrays (CGRAs),
compiler, modulo scheduling, randomized scheduling.

I. INTRODUCTION

C
OMPUTING demands in human society continue to

climb. Today there are numerous devices that collect,

process, and communicate data from multiple sources, such

Manuscript received August 6, 2020; accepted August 31, 2020. Date of
publication September 7, 2020; date of current version October 27, 2020. This
work was supported in part by the National Science Foundation under Grant
CSN 1525855 and Grant CCF 1723476 CAPA, and in part by the NSF/Intel
Joint Research Center for Computer Assisted Programming for Heterogeneous
Architectures. This article was recommended by Associate Editor P. Pande.
(Corresponding author: Mahesh Balasubramanian.)

Mahesh Balasubramanian is with the School of Computing Informatics
Decision and Systems Engineering, Arizona State University, Tempe, AZ
85287 USA (e-mail: mbalasu2@asu.edu).

Aviral Shrivastava is with the School of Computing Informatics, Decision
and Systems Engineering, Arizona State University, Tempe, AZ 85048 USA.

Digital Object Identifier 10.1109/TCAD.2020.3022015

as the Internet, cyber-physical and autonomous systems, sen-

sor networks, etc., [1]. Extracting intelligent and actionable

information from all these data—whether or not done by

machine learning—is extremely compute-intensive, and often

times limited by power, thermal, and other resource con-

straints [2]. Efficiency in the execution of these functionalities

can be achieved by using application-specific integrated cir-

cuits (ASICs). However, they suffer from high production

costs, and they quickly become obsolete as applications and

algorithms evolve. Another promising alternative is field pro-

grammable gate arrays or FPGAs, but they lose efficiency in

providing bit-level configurability, which is essential for their

primary purpose—prototyping [3]. Coarse-grained reconfig-

urable architectures or CGRAs provide a very good middle

ground with coarse-grain configurability (word and arithmetic

operator-level), without much loss in power-efficiency when

compared to ASICs [4]. As a result, there is a renewed surge

in the application of CGRAs for compute-intensive workloads,

including machine learning, embedded systems, and vision

functionalities [5]–[7].

As shown in Fig. 1, CGRAs are simply an array of pro-

cessing elements (PEs) arranged in a 2-D grid. The PEs are

just bare arithmetic logic units (ALUs) that can receive inputs

from the neighboring PEs, from the Data Memory, and its own

small set of registers. Every cycle, the PEs receive an instruc-

tion from the Instruction Memory, and write the results to

the output buffer, local register file, and/or the Data Memory.

CGRA-based execution is highly parallel (16 operations can

be executed simultaneously on a 4 × 4 CGRA) and power-

efficient because instructions are in the predecoded form.

There is no extensive pipeline for instructions to go-through

before and after execution, and the PEs can exchange operands

directly rather than going through the register files. Some of

the early works on CGRA architecture include ADRES [3],

PADDI [8], Kressarray [9], MATRIX [10], Morphosys [11],

and Remarc [12]. ADRES [3] which showed CGRAs to be

promising power-efficient accelerators with power efficiency

of 60 Giga Operations per Watt (GOps/W) using a 32 nm

technology.

The most common way to use CGRAs is to employ them

as co-processors to CPU cores or processors, to speed up and

power-efficiently execute compute-intensive applications—

similar to GPUs. The execution of compute-intensive loops

in the application can then be “offloaded” onto these CGRA

co-processors, while the rest of the application can still execute

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

BALASUBRAMANIAN AND SHRIVASTAVA: CRIMSON: COMPUTE-INTENSIVE LOOP ACCELERATION 3301

Fig. 1. Typical CGRA architecture consisting of 4 × 4 PEs connected in
a 2-D mesh. Every cycle, each PE gets an instruction from the Instruction
Memory, and can operate on the outputs of neighboring PEs and/or the Data
Memory.

on the CPU. This heterogeneous computing paradigm requires

compiler support to map compute-intensive loops of the appli-

cation onto the PEs of the CGRA. Since the execution of a

loop happens by software-pipelining on a CGRA, the objec-

tive of mapping is to layout the nodes of the data flow

graph (DFG) onto a graph of the CGRA extended in time,

so that the nodes can exchange the operands through the

interconnection among the PEs and achieve correct and effi-

cient execution. The repetition interval of the mapping (the

time at which the next iteration of the loop can start) is called

the initiation interval (II) and is the metric that determines

the quality of mapping. Many techniques have been proposed

to solve NP-complete [13] mapping problem of CGRAs effi-

ciently [13]–[20]. Most of the newer methods work in these

four steps: 1) create the DFG of the loop, and estimate the

minimal II; 2) create the CGRA graph unrolled II times;

3) schedule the nodes of the loop onto the CGRA graph; and

4) map the nodes onto the PEs at their scheduled timeslots

such that the dependencies among the nodes can be trans-

ferred through the connectivity among PEs. In case a valid

mapping is not found, the II is increased, and steps from

2) onward are executed again. This process is repeated until

a valid mapping is found. A mapping failure can occur in

the fourth step due to the limited connectivity among the PEs

of the CGRA, and because of the need to map new rout-

ing nodes. Routing nodes occur when dependent operations

are scheduled in noncontiguous timeslots. In this case, the

operands need to be routed from the PE on which the source

operand is mapped, to the PE on which the destination oper-

ation is mapped. This is commonly referred to as the routing

problem. One solution is to route the operands through the

PEs in the intermediate timeslots. Since routing and mapping

attempts often fail, existing CGRA mapping techniques have

heavily focused on solving the problem encountered in the

mapping and routing step. For example, [16], [17] route depen-

dencies via PEs, [19] routes dependencies through the registers

inside the PEs, [18] overlaps the routing paths carrying the

same value, and [13] uses recomputation as an alternative to

routing. MEMMap [21] routes dependent operations via Data

Memory by adding store and load nodes. RAMP [20] pro-

poses a heuristic to explore all the different routing options.

However, all the previous approaches use the same iterative

TABLE I
ON EVALUATING 24 APPLICATIONS OF THE TOP THREE BENCHMARK

SUITES ON A 4 × 4 CGRA, WE FIND THAT IMS-BASED RAMP WAS

UNABLE TO MAP 5 OF THE LOOPS AND IMS-BASED GRAPHMINOR WAS

UNABLE TO MAP 7 OF THE LOOPS. THE “X” IN THE TABLE DENOTES

AN II WAS NOT OBTAINED EVEN AT A MAXIMUM II OF 50. THE MII IN

THE TABLE DENOTES THE MINIMUM II, WHICH IS THE MAXIMUM OF

EITHER RESMII OR RECMII

modulo scheduling (IMS) [22] to find a valid schedule—and

therein lies the problem.

The problem with IMS is that it generates a resource-

constrained, as soon as possible (ASAP) schedule of nodes

onto the CGRA PEs. When a mapping is not found, the tra-

ditional mapping techniques increase the II, and return to

the scheduling step. The generated schedule does not change

much, even when more resources are added toward the bottom

of the CGRA graph. The resource-constrained ASAP sched-

ule will be almost identical to the one obtained before, and

the extra resources are not used! As a result, the mapping

algorithm keeps on exploring the schedule space with the

same schedule, and often no mapping can be found, even

after huge increases in the II. Table I shows the evaluation of

the 24 performance-critical loops from MiBench, Rodinia, and

Parboil on a 4 × 4 CGRA, while being executed on the state-

of-the-art IMS-based mapping algorithms, GraphMinor [18],

and RAMP [20]. We can see that state-of-the-art RAMP was

unable to find a valid mapping for five loops and GraphMinor

was unable to find a valid mapping for seven loops on evalu-

ation up to a maximum II = 50. One major observation was

that, when these previous algorithms find a mapping, they

achieve a very good II, but when the mapping fails, they are

unable to map the loops even with II increments up to 50.

For example, in loop jpeg1, while the minII was 3, both the

techniques were unable to map the loop, even when the II was

increased to 50.

Thus, the main problem in IMS is the absence of ran-

domness in the scheduling algorithm. As a result, even when

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

3302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

the II is increased, the same schedule is generated without

obtaining a valid mapping. Hence, this creates a need for

an enhanced scheduling algorithm that explores the sched-

ule space to increase the mappability of the compute-intensive

loops. A more detailed explanation with a motivating example

is given in Section IV. In this article, we propose compute-

intensive loop acceleration by randomized IMS and optimized

mapping on CGRA (CRIMSON). Instead of just using the

resource constrained ASAP (RC_ASAP) schedule, CRIMSON

generates both the RC_ASAP and resource constrained ASAP

(RC_ALAP) schedules for all the nodes of DFG, similar to the

concept of mobility used in high-level synthesis (HLS) [23].

CRIMSON then chooses a random time between RC_ASAP

and RC_ALAP as the scheduling time for each node. As a

result, every time a “new” schedule is obtained, CRIMSON

is able to effectively explore the schedule space. CRIMSON

also incorporates a novel conservative feasibility test after

the scheduling step to check the mappability of the obtained

schedule. This conservative test makes sure that the generated

schedule will be mappable even after the addition of the new

routing nodes, thereby rendering feasibility by quickly weed-

ing out some unmappable schedules, and saving time. Among

the 24 performance-critical (that account for more than 7%

of execution time of the application) loops from MiBench,

Rodinia, and Parboil, our approach CRIMSON was able to

map all the loops for various CGRA sizes ranging from 4 × 4

to 8 × 8. Our approach CRIMSON achieved a comparable II

for the loops which were mappable by RAMP.

II. BACKGROUND AND TERMINOLOGY

CGRA compilers in general first create the DFG D = (V, E)

of a compute-intensive loop, where V refers to the nodes of

the loop and E refers to the edges (data dependencies between

nodes) in the graph. The constructed DFG is then software

pipelined using IMS [22], where each node is assigned a

schedule-time at which it should be executed.

Fig. 2(a) shows the DFG of a loop, and Fig. 2(b) shows the

target CGRA architecture. The schedule of the DFG nodes

are shown in Fig. 2(c), considering the resource and the

recurrence cycle constraints. After scheduling, the nodes are

then mapped onto the PEs of CGRA such that the dependent

operands can be routed from the PE on which the source oper-

ation is mapped to the PE on which the destination operation

is mapped through either registers, memory, or paths in the

CGRA graph. A register can be used to route operands when

the dependent operation is mapped to the same PE as the

source operation. Memory can be used to route operands, but

that requires inserting additional load and store instructions.

A path is a sequence of edges and nodes in the CGRA graph

that connect two PEs. In the simplest case, a path is just a

single edge.

For simplicity, the mapping shown in Fig. 2(d) uses only

edges to route dependencies. In this mapping, node a of

iteration i (shown in dark color) is mapped to PE2 at time

T , nodes b, and c are mapped to PEs, PE1 and PE2, respec-

tively, at T+1. Similarly, nodes e, f of ith iteration are mapped

in PE1 and PE2, respectively, at T +2. Node g of ith iteration

(a) (c)

(b)

(d)

Fig. 2. (a) DFG of an application loop. (b) 1×2 CGRA target architec-
ture. (c) IMS schedule of nodes of DFG. The x-axis is the modulo time.
(d) Mapping of the scheduled nodes on the time-extended CGRA (TEC).

is mapped at PE1 at T +3. It can also be observed that a and g

are mapped at T and T +3 in PE1 and PE2. Modulo schedule

repeats itself every II cycles, in this case II = 3. The node g

at T (shown in gray) is from (i−1)th iterations. Likewise, the

node a mapped at T + 3 is from (i + 1)th iteration (shown in

green). Based on the schedule, which considers the recurrences

while scheduling, mapping a in PE2 satisfies the recurrence

constraint of f
1
−→ a. i.e., the value of f at ith iteration can be

routed to a at (i + 1)th iteration. In modulo scheduling, the

interval in which successive instructions can begin execution

is called the II [22]. II is considered as the performance metric

for DFG mapping onto CGRA, as the total number of cycles

required to execute a loop will be proportional to the II.

III. RELATED WORKS

CGRAs have been a luring accelerator option owing to their

high performance and high power-efficiency. The ADRES

CGRA [3] demonstrated to operate at 60 GOps/W. The high

power-efficiency of CGRA is due to instructions being in

predecoded format with no long pipelines before and after exe-

cution, and the fact that PEs can exchange operands directly

without going through a centralized register file. CGRAs rely

on the compiler to map loops onto the PEs. Some CGRA appli-

cation mapping techniques use generic algorithms [24]–[26]

like genetic algorithms or simulated annealing [14], [27], [28]

to explore the various possible mappings and come up with

a valid one. While these genetic algorithms and simulated

annealing come with inherent randomness, these methods take

exorbitantly long times to find a valid mapping, since they have

no conception of the DFG and CGRA graph structures.

Some of the older application-specific compilation tech-

niques like DRESC [14] attempt to solve the scheduling and

mapping problems together in one shot. However, this is

inefficient, since these algorithms may spend a lot of time

exploring a mapping, when even the schedule is infeasible. A

valid schedule is a prerequisite of a valid mapping, and since

scheduling is quite quick [22], it makes sense to first find a

valid schedule, and then explore mapping solutions only for

those schedules. As a result, most modern approaches sep-

arate the scheduling and mapping steps. When a mapping

attempt fails due to limited connectivity or additional rout-

ing requirements, the II is increased, and a new schedule for

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

BALASUBRAMANIAN AND SHRIVASTAVA: CRIMSON: COMPUTE-INTENSIVE LOOP ACCELERATION 3303

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) DFG of an application loop. (b) 2×2 CGRA target architecture. (c) Column 1 shows the nodes in the DFG and column 2 shows an IMS schedule
for the nodes at II = MII = 3. (d) Mapping algorithm tries to the map the nodes scheduled, but fails due to additional routing nodes “r” required to route
nodes f and i. Failure to find a valid mapping, the II is increased to 4 and IMS is called again to schedule the nodes based on the workflow given in Fig. 4.
(e) IMS schedule for an increased II (II = 4). (f) Even at an increased II, the mapping algorithm cannot find a valid mapping due to resource constraint at
Ti+1 which is not resolved at II = 4 and will not be resolved on any further increase in II.

this increased II is obtained followed by the another attempt

on mapping. This scheduling and mapping is repeated until a

valid mapping is obtained.

Since mapping is harder, previous works concentrate on

solving the mapping and routing issues. EPIMap [13] uses

recomputation of some nodes to solve the routing problem.

REGIMap [19] uses register file in the PEs to route the

dependent operations, where as MEMMap [21] uses the Data

Memory to route the dependencies. More recent techniques

like, RAMP [20] presents a heuristic to choose among a variety

of routing options to try for unmapped nodes, CASCADE [29],

on the other hand, increases data throughput by decoupling

the memory accesses and the execution. Even though all

these techniques have different mapping and routing strategies,

they use the same scheduling algorithm, namely—IMS [22]

proposed by Rau, for VLIW architectures, uses RC_ASAP

approach to schedule the nodes of DFG. The problem is that,

even when II is increased, IMS generates the same schedule,

and is unable to explore the newly created scheduling space

created by increased II.

Instead of taking a conventional ASAP/ALAP scheduling

approach, EMS [16] proposes an alternative approach, where

the nodes of the recurrent cycles are lifted or lowered on the

time axis by assigning stages. These stages can consist of

multiple schedule times. When an operation stage is reassigned

based on the placement of its predecessor, all the dependent

operation stages is also reassigned. However, while the EMS

schedule is not ASAP, but it is still not randomized. As a result,

the generated schedule for a higher II is very similar (if not

the same) to the generated schedule at lower IIs. HyCube [30]

proposes a mapping technique for a highly connected CGRA

that uses multihop multicast path system to communicate

data in a single-cycle. In addition, HyCube’s interconnect

crossbar switch is a part of the ISA, which makes it power-

efficient. Like DRESC [14] approach of integrated scheduling,

placement and routing (P&R), HyCube’s ScheduleAndRoute

schedules and performs P&R in one shot. This faces the

same issues as DRESC discussed above. Evidently, HyCube’s

single-cycle communication may provide better II, but at the

cost of scalability. Since, the interconnect crossbar selection

is a part of HyCube’s instruction set, for higher CGRA sizes

HyCube’s instruction becomes longer.

The main contribution of this article is a random IMS

algorithm to effectively search the scheduling space and an

enhanced application mapping workflow to efficiently find a

valid mapping of loops.

IV. MOTIVATING EXAMPLE

Let us consider the DFG of loop to be mapped on a 2 × 2

CGRA, shown in Fig. 3(a) and (b), respectively. Previous

state-of-the-art techniques like RAMP, get a schedule from

IMS [22] before mapping the nodes. IMS starts by computing

the resource constrained minimum II (ResMII) and recurrence

constrained minimum II (RecMII) from the DFG and the archi-

tecture description. For the given example in Fig. 3, total nodes

= 9 and total resources available = 4. The minimum II (MII)

is the maximum of RecMII and ResMII. Therefore for the

above example, MII = ResMII = �9/4� = 3. After comput-

ing the MII, IMS sets the priorities for each node. Priority

is a number assigned to each node, which is utilized during

scheduling. Based on the height of the node, from the given

DFG, the deepest node is given the least priority using depth-

first search strategy. For the loop DFG given in Fig. 3(a), node

e gets priority 0, nodes d, and i get priority 1, nodes b, c, g,

h get priority 2 and finally a and f get priority 3. The nodes

with higher priority number are scheduled first with earliest

start time. The modulo scheduling starts with II = MII for

scheduling the nodes. The CGRA is time-extended, II times

and a modulo resource table (MRT) is maintained to check for

resource overuse for each timeslot. While trying to schedule

each node, resource conflicts are checked. If there is a resource

conflict a higher schedule time is tried. For the example DFG,

the II = MII = 3. Nodes a and f are scheduled at modulo

time 0 (0%3). Nodes b, c, g, and h are scheduled at modulo

time 1 (1%3) without any resource constraint because there

are 4 resources (PEs) at each modulo time. Nodes d and i are

scheduled at modulo time 2 (2%3). Finally, e is scheduled at

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

3304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 4. Overview of scheduling and mapping workflow of previous
techniques.

modulo time 0 (3%3). The IMS schedule of nodes [shown in

column 1 Fig. 3(c)] at II = 3 is shown in Fig. 3(c) column 2.

With this prescribed schedule, mapping algorithms start to

map the nodes, but eventually find that a routing node needs to

be added to route operation f and i. Due to the unavailability

of PEs in that timeslot a routing node cannot be added, as

shown in Fig. 3(d). At this juncture, the mapping algorithm

increases the II in an effort to find a schedule that is mappable.

On increasing the II from 3 to 4, the IMS algorithm is invoked

again to get a schedule. Since the priority calculation of IMS

is DFG-based, all the nodes get the same priority. Now, IMS

algorithm starts to schedule nodes based on the priorities for

each node. Nodes a and f are scheduled at modulo time 0

(0%4). Nodes b, c, g, and h are scheduled at modulo time 1

(1%4). Nodes d and i are scheduled at modulo time 2 (2%4)

and e is scheduled at modulo time 3 (3%4). The IMS schedule

for II = 4 is shown in Fig. 3(e) column 2. Again, on failure

to map, the mapping algorithm increases the II to 5. IMS

repeats the process of assigning priorities to the nodes and as

seen in II = 4, the priorities do not change. Nodes a and f

are scheduled at modulo time 0 (0%5). Nodes b, c, g, and

h are schedule at modulo time 1 (1%5). Nodes d and i are

scheduled at modulo time 2 (2%5) and finally e is scheduled

at modulo time 3 (3%5). On comparing the schedules obtained

for II = 3, II = 4, and II = 5, it can be seen that only node

e has a different schedule time (from II = 3 to II = 4) and

rest of the nodes have the same schedule. Hence, with IMS,

it can be seen that an increase in the II does not correspond

to a change in modulo schedule time of the nodes.

The algorithm keeps trying to find a valid mapping at

higher II even when there is a mapping failure at a given mod-

ulo schedule. This process keeps on repeating endlessly. In the

workflow of the previous techniques, as shown in Fig. 4, after

finding the MinII and obtaining an IMS schedule, the mapping

of the nodes begin assuming that the schedule is mappable.

There are no mechanism to statically and systematically find

the feasibility of the obtained schedule, which results in an

infinite loop between the scheduling and the mapping stages.

V. CRIMSON: EFFICIENTLY ACCELERATE LOOPS BY

RANDOMIZED ITERATIVE MODULO SCHEDULING AND

OPTIMIZED MAPPING

A. Overview

To alleviate the challenges posed by IMS and the previous

mapping algorithms, CRIMSON randomizes the schedule time

Fig. 5. Overview of CRIMSON workflow, with addition of RC_ASAP and
RC_ALAP computation, randomized scheduling algorithm, and a feasibility
test (shaded blocks in the image are proposed by this article).

of each node of the DFG by choosing a time between

RC_ASAP and RC_ALAP. Additionally, CRIMSON proposes

a change to the previous mapping algorithm workflow Fig. 4

by performing a feasibility test before the actual mapping.

Fig. 5 shows the modification to the traditional IMS-based

workflow shown in Fig. 4. CRIMSON modifies the IMS-based

mapping workflow by adding RC_ASAP and RC_ALAP com-

putation steps before finding a random schedule. The “Create

Randomized Schedule” block uses Algorithms 1 and 2 to find

a random modulo schedule time. On a failure to find a sched-

ule, “Create Randomized IMS” block is invoked λ times before

increasing the II. When a random modulo schedule is obtained,

the feasibility test statically analyzes if the obtained random

schedule honors the resource constraints when routing nodes

are added. If a schedule is found to be infeasible due to possi-

ble resource overuse, a different modulo schedule is tried for

the same II. If the random schedule obtained is valid and feasi-

ble, then the mapping algorithm is called to add routing nodes

and map the scheduled DFG onto the CGRA architecture.

B. Computing Resource-Constrained ASAP and

Resource-Constrained ALAP

Algorithm 1 shows the CRIMSON’s randomized IMS.

Lines 1 and 2 finds the RC_ASAP from the strongly con-

nected components (SCCs)1 of the DFG. The RC_ASAP is

computed in line 3 of Algorithm 1 as a top-down, depth-

first search approach, from the nodes that do not have any

incoming edges in the current iteration. After computation of

RC_ASAP, RC_ALAP is computed, starting from the nodes

that do not have any outgoing edges in the current iteration and

in a bottom-up (reverse), depth-first search manner, in line 4

of Algorithm 1.

C. Randomized Scheduling Algorithm

After computing RC_ASAP and RC_ALAP, Algorithm 1

line 5 populates the unscheduled array whereas line 6 sets a

boolean scheduled operation to false for all the nodes, which

is used in Algorithm 2. For all the unscheduled sorted nodes

in the array, a random modulo timeslot is picked by honoring

the resource constraints maintained by MRT, in line 10 of

Algorithm 1.

1Getting the list of SCCs ensures that the nodes in recurrence-cycles are
scheduled first using Sort_SCC() function in line 5.

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

BALASUBRAMANIAN AND SHRIVASTAVA: CRIMSON: COMPUTE-INTENSIVE LOOP ACCELERATION 3305

Algorithm 1: Rand_Iterative_Mod_Schedule (Input DFG

D, CGRA CA, Input II)

1 D’ ← D;

2 SCCs ← Find_List_of _Sccs(D′);

3 Find_RC_ASAP(II, Sccs, CA);

4 Find_RC_ALAP(II, Sccs, CA);

5 unscheduled ← Sort_Sccs(Sccs);

6 Set_Scheduled_op_false(unscheduled);

7 iter ← 0;

8 while unscheduled_size > 0 & iter < threshold do

9 operation ← unscheduled[0];

10 TimeSlot ←

Find_Random_ModuloTime(operation, CA);

11 if (schedule(nodes, TimeSlot)) then

12 scheduled ← nodes;

13 else

14 return failure;

15 unscheduled ← Subtract(unscheduled, scheduled);

16 iter++;

17 if (iter == threshold & unscheduled_size > 0) then

18 return failure;

19 return success;

The schedule() function in line 11 of Algorithm 1, schedules

the node at chosen random timeslot. This schedule function

sets the schedule time of the current operation and con-

secutively displaces the nodes that have resource conflicts.

Previously scheduled nodes having a dependence conflicts

with the current operation are also displaced after updating

the RC_ASAP and RC_ALAP based on the current schedule

operation. The displaced nodes are added to queue of unsched-

uled nodes. Similar to the BudgetRatio in IMS [22], the iter

is a high value. On a failure to find a schedule, either due to

unscheduled nodes lines 13 and 14 or if the iter value is greater

than a threshold (lines 17 and 18), Algorithm 1 is invoked

again. This is repeated λ times before increasing the II, in an

attempt to find a valid schedule. This λ value is not reset for a

particular II and used to control the failure due to unmappable

schedule or a failure in the mapping step.

Algorithm 2 is called by CRIMSON’s randomized

iterative modulo schedule (Rand_Iterative_Mod_Schedule)

Algorithm 1 line 10, to find a random timeslot between

RC_ASAP and RC_ALAP. The RC_ASAP and RC_ALAP for

a given operation is retrieved in lines 1 and 2 of Algorithm 2.

Then, an array of timeslots is constructed using the op_ASAP

and op_ALAP, line 4 of Algorithm 2. The array holds all the

timeslots from op_ASAP with an increasing value of 1 until

op_ALAP. If op_ASAP is equal to op_ALAP then the array

size is one with either ASAP or the ALAP time. Each timeslot

from the randomized array is checked for the resource con-

straint using MRT. The first valid timeslot is returned as the

modulo schedule time for the operation. Due to the resource

conflict if a valid timeslot is not present, there are two things

to handle, 1) a timeslot for the operation should be cho-

sen and 2) an already scheduled operation from that timeslot

should be displaced. Concern 1) in handled in lines 13–17

Algorithm 2: Find_Random_ModuloTime (Operation op,

CGRA CA)

1 op_ASAP ← get_RC_ASAP(op);

2 op_ALAP ← get_RC_ALAP(op);

3 sched_slot ← ∅;

4 timeslots ← get_all_timslots(op_ASAP, op_ALAP);

5 Randomize(timeslots);

6 while (sched_slot == ∅ & timslots_size > 0) do

7 currTime ← timeslots[0];

8 if (ResourceConflict(op, currTime, CA)) then

9 timeslots ← Subtract(currTime, timeslots);

10 continue;

11 else

12 sched_time ← currTime ;

13 if (sched_slot == ∅) then

14 if (!Scheduled[op] ||

op_ASAP > Prev_Sched_Time[op]) then

15 sched_slot ← op_ASAP;

16 else

17 sched_slot ← Prev_Sched_Time[op] + 1;

18 return sched_slot;

of Algorithm 2 where if the nodes has not been sched-

uled previously, op_ASAP is chosen as the schedule, else the

previous schedule time of the operation is found and the mod-

ulo schedule time is computed using line 17. Concern 2) is

addressed in the schedule() function in Algorithm 1 line 11,

explained earlier. The methods addressing these concerns are

similar to IMS implementation.

D. Novel Feasibility Test

Given a valid schedule, it may not be possible to map it

because of two main reasons: 1) limited connectivity among

the PE nodes and 2) the need to map the extra routing nodes

that will be created as a result of scheduling. In a valid sched-

ule dependent operations may be scheduled in noncontiguous

timeslots. When this is the case, the operands need to be

routed from the PE on which the source operand is mapped,

to the PE on which the destination operation is mapped. The

operands can be routed using a string of consecutive CGRA

interconnections and PEs. These PEs are referred to as rout-

ing PEs, and the operation that is mapped on these PEs (just

forward the operand from input to output) is called a rout-

ing operation. Because of the addition of these routing nodes,

the generated schedule may not be mappable. Previous tech-

niques assume that the schedule is mappable and spend a lot

of time searching for a mapping when none is available. In

order to avoid wasting time in exploring unmappable sched-

ules, CRIMSON adds a conservative feasibility test to prune

schedules that can be proven to be unmappable.

The feasibility test examines the random schedule pro-

duced, and for each routing resource that will be added in

the future, it estimates the resource usage, considering path-

sharing [18]. The feasibility test checks if the total number

of unique nodes including the routing nodes per timeslot is

less than or equal to the number of PEs in that timeslot.

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

3306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

schedule_nodesi + routing_nodesi <= PEsi, where i is the

modulo timeslot. This feasibility check is performed for all

the II timeslots. The mapping algorithm is invoked only for

schedules that are feasible, unlike the previous approaches

such as RAMP [20], where the mapping algorithm is invoked

even for infeasible schedules. Since the time complexity of

such mapping algorithms is high [time complexity of RAMP

is O(N8), where N = n ∗ m, and “n” is the total nodes in the

loop DFG, and “m” is the size of the CGRA], invoking them

for infeasible schedules is counter productive. The feasibility

test reduces the overhead incurred by the mapping algorithm

by pruning the infeasible schedules.

E. Determining the λ Value

With every failure in the feasibility test a new schedule

is obtained for a given II. The number of times a schedule

is obtained for a given II is controlled by the λ value. The

scheduling space that can be explored for a given II is calcu-

lated by the product of the total nodes in the DFG, the size

of the CGRA, and the II, given in (1). A brute force explo-

ration of the schedule space is time consuming. Lower λ values

may increase the II prematurely, by superficial exploration of

schedule space, whereas higher λ values increase the compila-

tion time, due to elaborate exploration of the schedule space.

Due to the randomness in the scheduling algorithm, a feasible

schedule may be obtained faster by chance even for a higher

λ value. The λ value is computed using

λ = exploration_factor × n × m × II (1)

where, “n” is the total number of nodes in the loop DFG,

“m” is the size of the CGRA, and exploration_factor is the

percentage of the schedule space that is to be explored. The

exploration_factor is a user defined parameter. II is also one

of the parameters that determines the λ value in (1), which

means that a new λ is computed for each II. When the II is

increased, the scheduling space is also increased therefore the

scope of exploration gets broadened. A detailed discussion on

the effects of exploration_factor on the scheduling time and II

is given in Section VI-E.

F. Running Example

Fig. 6 shows the working of CRIMSON’s randomized

iterative modulo schedule algorithm for the DFG and CGRA

architecture shown in Fig. 6(a) and (b).2 Instead of assign-

ing a priority based on height like IMS, each node in DFG

is assigned two times namely, RC_ASAP and RC_ALAP,

which constitutes a good lower and upper bound for schedul-

ing [16]. Similar to IMS, CRIMSON maintains an MRT to

check for resource overuse during RC_ASAP and RC_ALAP

assignment. The RC_ASAP is calculated from the nodes that

does not have any incoming edges in the current iteration.

These nodes are allotted RC_ASAP time as 0, which means,

that the earliest start time of these nodes is at time 0. Based

on the outgoing nodes from these start nodes and the delay

of each operation, the RC_ASAP of consecutive nodes are

2The DFG and the architecture is the same as the motivation example
Fig. 3(a) and (b).

(b)

(a)

(c) (d)

Fig. 6. (a) DFG of the motivation example. (b) 2 × 2 CGRA architecture.
(c) For each node of the DFG, RC_ASAP (column 2) and resource con-
strained ALAP (column 3) is first calculated. Then a random schedule time
between RC_ASAP and RC_ALAP is chosen for each node. A valid random-
ized modulo schedule is shown in column 4. (d) With CRIMSON schedule a
valid mapping is achieved by the mapping algorithm at II = 3.

computed in a depth-first manner (similar to IMS priority

calculation). For the DFG in analysis, nodes a and f are

assigned the RC_ASAP time as 0. Nodes b, c, g, and h are

assigned RC_ASAP time as 1. Nodes d and i are assigned

RC_ASAP time 2 and node e is assigned RC_ASAP time 3.

The RC_ASAP times of each node is shown in Fig. 6(c) col-

umn 2. Next, starting from the last nodes of the DFG, i.e.,

nodes without any outgoing nodes in the current iteration,

the nodes are assigned RC_ALAP in a reverse depth-first

search manner, using RC_ALAP = RC_ASAP + II − 1. This

ensures that RC_ALAP >= RC_ASAP. For the given DFG, e

is assigned RC_ALAP time 5, node h is assigned 3. Nodes

d and i are assigned RC_ALAP time 4. Nodes b, c, and g

are assigned RC_ALAP time 3. Finally a and f are assigned

RC_ALAP time 2. The RC_ALAP times of each node is

shown in Fig. 6(c) column 3.

After computing the RC_ASAP and RC_ALAP, CRIMSON

chooses a random time between RC_ASAP and RC_ALAP, to

schedule the nodes. Like IMS, CRIMSON maintains an MRT

to check for resource overuse in each II modulo timeslot. After

checking for resource constraints the modulo schedule time is

chosen for each node. This randomization of modulo sched-

ule time creates flexibility of movement for the nodes, which

explores different modulo schedule spaces, thereby increasing

the chances of finding a valid mapping by the mapping algo-

rithm. A randomized modulo schedule for the example DFG

is shown in Fig. 6(c) column 4, and a valid mapping for the

scheduled nodes is shown in Fig. 6(d) at II = 3. The loop that

was previously unmappable due to the restrictive scheduling

of IMS Fig. 3, is now mappable at II = 3 due to randomization

in assigning modulo schedule time.

If we take a closer look at the RC_ASAP and RC_ALAP

times shown in Fig. 6(c) columns 2 and 3, we can observe

that there is a chance that the RC_ASAP may be the modulo

schedule chosen for all the nodes, since assigning a modulo

schedule time for the nodes from RC_ASAP and RC_ALAP

is randomized. As seen in Fig. 3(d) and (e), this schedule is

not mappable. Unless there is a change to the workflow, there

is a chance that finding a schedule that is unmappable and

increasing the II to get a schedule process is repeated. To take

care of this issue, CRIMSON proposes changes to the previous

IMS-based workflow by statistically computing the feasibility

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

BALASUBRAMANIAN AND SHRIVASTAVA: CRIMSON: COMPUTE-INTENSIVE LOOP ACCELERATION 3307

TABLE II
BENCHMARK CHARACTERISTICS

of the scheduled nodes, prior to the mapping of the nodes.

This makes sure that if a schedule is not mappable, a dif-

ferent random schedule is tried again for the same II. The

number of times the mapping is tried for a given II is con-

trolled by a threshold factor λ. With induced randomization in

mapping and changes to the workflow, CRIMSON is able to

achieve mapping of the application loops that were previously

unmappable by IMS-based mapping techniques.

VI. EXPERIMENTAL RESULTS

A. Setup

Benchmarks We profiled top three of the widely used

benchmark suites namely, MiBench [31], Rodinia [32], and

Parboil [33]. The top performance-critical, nonvectorizable

loops3 were chosen for the experiments. Loops that could

not be compiled or the loops that were memory bound were

not considered. Experiments were designed to consider only

innermost loops so that a direct comparison with IMS can be

made. These benchmarks depict a wide variety of applications

from security, telecomm, etc., to parallel, high-performance

computing (HPC) loops like sparse matrix-vector product

(spmv). These loops on average across all the benchmark

loops, corresponds to ≥50% of the total application execution

time.

Compilation: For selecting the loops from the application

and converting the loops to the corresponding DFG, we used

CCF [34]—CGRA compilation framework (LLVM 4.0 [35]-

based). On top of the existing framework, to effectively

compile the loops with control-dependencies (If-Then-Else

structures), we implemented partial predication [36] as an

LLVM pass, to convert the control-dependencies into data

dependencies. Partial predication [36] can efficiently handle

loops with nested if-else structures. The loop characteristics

are shown in Table II including the number of nodes in the

3Maximum up to 5 loops per benchmark, with each contributing >7% of
the execution time of the application when executed with standard inputs that
are shipped with the benchmark suites.

DFG (only computing nodes are included and constants that

can be passed in the immediate field of the ISA are excluded)

and number of memory (load/store) nodes. CCF frame-

work [34] produces DFG of the loop with separate address

generation and actual load/store functionality. Furthermore,

during the addition of routing resources after scheduling,

we have implemented path-sharing technique proposed in

GraphMinor [18]. Path-sharing can reduce the redundant rout-

ing nodes added. We implemented CRIMSON as a pass in the

CCF framework including the λ value computation and the

feasibility test. We also implemented the IMS-based state-of-

the-art RAMP [20] and GraphMinor [18] as a pass in CCF.

As observed in Table I, RAMP has demonstrated equal or

better results when compared to GraphMinor. Hence, we com-

pare CRIMSON against RAMP. We compiled the applications

of the benchmark suites using optimization level 3 to avoid

including loops that can be vectorized by compiler optimiza-

tions. We considered 2-D torus mesh CGRA of sizes 4 × 4,

5 × 5, 6 × 6, 7 × 7, and 8 × 8.

B. CRIMSON Is Able to Schedule and Map Loops

That Could Not Be Mapped Using RAMP

From Table III, we can infer that for loops, jpeg1, jpeg2,

hotspot3D, backprop, and stencil, IMS-based state-of-the-art

heuristic RAMP, was not able to find a valid mapping for

a 4 × 4 CGRA (denoted by “X” in Table III). From the

motivating example Fig. 3, IMS produces almost the same

modulo schedule time for most of the nodes for any increase

in II. CRIMSON, on the other hand, facilitates the exploration

of different modulo scheduling times for nodes of the DFG,

resulting in a valid mapping. It is observed that even at a lower

CGRA size 4 × 4, CRIMSON was able to map these particu-

lar loops. From Table III, when running on RAMP, loops that

were not mappable on a 4×4 CGRA, were eventually mapped

when allocated enough resources. For example, stencil which

was unmappable by RAMP on a 4 × 4 CGRA was mapped

on a 5 × 5 CGRA due to allocation of additional resources.

Therefore, it can be said that the motivating example can also

be mapped when allocated enough resources. From the moti-

vating example, if Fig. 3(b) CGRA architecture was a 3×3

CGRA, then the IMS-based mapping algorithm would have

used the extra resources provided to route the operation r.

But this conclusion was not applicable to all the loops, mean-

ing, loops, such as hotspot3D and jpeg2 were unable to find a

valid mapping even when additional resources were allocated.

RAMP was not able to achieve a mapping even at 8×8 CGRA

for hotspot3D whereas RAMP was not able to achieve a map-

ping till 6 × 6 for jpeg2. While RAMP is able to map most of

the loops at a higher CGRA size, CRIMSON with effective

randomized modulo scheduling was able to map all the loops

at size 4×4. Additionally, for sad1 and sad3 loops, for which

GraphMinor was not able to find a mapping, CRIMSON was

able to achieve a mapping at 4 × 4 CGRA size.

C. CRIMSON Has Nearly Identical II for Loops That Could

Be Mapped Using RAMP

From Table III, we can observe that for loops mapped using

RAMP, the II obtained from CRIMSON was comparable to

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

3308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE III
COMPREHENSIVE TABLE SHOWING THE MII AND II ACHIEVED BY RAMP, AN EVALUATED IMS-BASED HEURISTIC, AND CRIMSON (CRIM.)

FOR 24 BENCHMARK APPLICATION LOOPS FROM THREE MAJOR BENCHMARK SUITES AT 0.005 exploration_factor. THE “X” IN THE

TABLE DENOTES THAT THERE WAS NO MAPPING OBTAINED FROM RAMP FOR AN INCREASING II UP TO 50. MII IN THE

TABLE DENOTES THE MINIMUM II, WHICH IS THE MAXIMUM OF EITHER RESMII OR RECMII

Fig. 7. Scheduling time comparison of CRIMSON and IMS.

RAMP across five different CGRA sizes ranging from 4 × 4

to 8×8. We can see an occasional spike in the II in CRIMSON

for susan at 4 × 4 and stencil on 5 × 5, which is due to pre-

mature II increase by CRIMSON based on the λ value. To

emphasize, λ is the maximum number of randomized sched-

ules that are explored at the same II. A new schedule may be

requested: 1) on a failure to find a randomized schedule; 2) on

a failure of the feasibility test; or 3) a failure to map. The λ

value is not reset for a given II. After exhausting the λ limit,

the II is increased and a new RC_ASAP and RC_ALAP is

computed along with a new λ value. The λ value is computed

by 1 for each II. The λ value is determined by the user defined

exploration_factor, which is the percentage of schedule space

to that should be explored. If the exploration_factor is set too

low, less modulo schedules are explored per II, thereby mak-

ing it difficult to obtain a valid mapping and increasing the II

prematurely. If the exploration_factor is set too high the time

to obtained a valid schedule/mapping increases, which neg-

atively affects the compilation time of CRIMSON. Table III

comprehensively conveys that CRIMSON has a nearly identi-

cal performance compared to RAMP for all the loops across

different CGRA architectures that RAMP was able to map

and CRIMSON is better than RAMP by mapping the five

loops that were not mappable by RAMP and seven loops that

were not mappable by GraphMinor on a 4 × 4 CGRA. The II

obtained from CRIMSON is not always equal to or better than

state-of-the-art RAMP and is dependent on the λ value.

D. Scheduling Time Comparison Between CRIMSON and

IMS

The scheduling time for IMS [22] and CRIMSON are shown

in Fig. 7, which is reported based on the execution of both

the algorithms on Intel-i7 running at 2.8 GHz with 16 GB

memory. As shown in Fig. 7, the x-axis is the scheduling time,

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

BALASUBRAMANIAN AND SHRIVASTAVA: CRIMSON: COMPUTE-INTENSIVE LOOP ACCELERATION 3309

Fig. 8. Scheduling time versus II tradeoff trend for stencil.

Fig. 9. Scheduling time versus II tradeoff trend for hotspot3D.

i.e., time to obtain a valid schedule that is mappable, in µs

(microseconds) and the y-axis corresponds to the benchmark

loops. The 19 benchmarks shown in Fig. 7 are those in which a

mappable schedule was obtained by IMS. From Fig. 7, we can

see that the scheduling time of CRIMSON is slightly higher

than that of IMS. This is due to the additional computation

of RC_ASAP and RC_ALAP, and the feasibility test (Fig. 5).

For the loops shown, the exploration_factor was kept at 0.005.

E. Tradeoff Analysis Between Scheduling Time and II at

Different λ Values

From 1, we can see that the λ value depends on the explo-

ration_factor. This factor is defined as the percentage of

modulo schedule space to be explored when there is an infeasi-

ble schedule or a mapping failure. The exploration_factor was

changed from 0.5% (0.005) to 10% (0.1) and the correspond-

ing scheduling time and II were recorded. The scheduling time

numbers are recorded from executing CRIMSON on Intel-i7

running at 2.8 GHz and 16 GB memory and the compilation

was performed for a 4×4 CGRA. A 4×4 CGRA was chosen

because the II obtained by CRIMSON was much greater than

the MII and the effect of λ can be shown clearly. In Figs. 8

and 9, the left y-axis (primary axis) denotes the CRIMSON

scheduling time, in seconds, and the right y-axis (secondary

axis) denotes the II obtained. The x-axis denotes the differ-

ent exploration_factors. From (1) it is to be noted that as

the exploration_factor increases, the λ value increases. From

Figs. 8 and 9, it is evident that as exploration_factor increases

the CRIMSON scheduling time increases, due to elaborate

exploration of the schedule space at a given II. For lower

value of the exploration_factor, superficial exploration of mod-

ulo schedule space prematurely increases the II but at lower

scheduling time. We can also note from Fig. 9 at 0.1 that the

above statement is not always true. At 0.1 the II decreases

with the decrease in the scheduling time because a feasible

and a mappable schedule was obtained earlier in the modulo

schedule space exploration due to the innate randomness of

the CRIMSON scheduling algorithm.

VII. CONCLUSION

This article presented some of the major challenges encoun-

tered in the state-of-the-art mapping techniques with respect to

scheduling and mapping of compute-intensive loops onto the

CGRA. The previous mapping techniques use IMS schedul-

ing that rarely showed a change in the modulo schedules

for increased II, which obstructed the mapping algorithm

to map the application loops onto the CGRA architecture.

Additionally, previous mapping techniques assumed that the

obtained IMS schedule is mappable and started to map the

scheduled nodes. On a failure to map, due to the limited con-

nectivity of the PEs or addition of routing nodes, the mapping

algorithms increase the II and call IMS again to get a sched-

ule that almost never changes. To mitigate these challenges,

this article introduced CRIMSON, that comprehensively mod-

eled RC-ASAP and RC-ALAP, picking a random modulo

schedule time between these upper and lower boundaries.

CRIMSON generated different schedules, thereby exploring

different schedule spaces, on each invocation for a given or

increased II. CRIMSON also introduced a novel feasibility

test that pruned schedules that are unmappable. On evalu-

ating the top 24 performance-critical loops from MiBench,

Rodinia, and Parboil, CRIMSON was able to map 5 applica-

tion loops that were unmappable by RAMP and 7 application

loops that were unmappable by GraphMinor. The II achieved

by CRIMSON was comparable to the II achieved by RAMP

for the application loops that were mappable by RAMP.

REFERENCES

[1] L. Zheng et al., “Technologies, applications, and governance in the
Internet of Things,” Internet of Things-Global Technological and

Societal Trends (From Smart Environments and Spaces to Green ICT).
Aalborg, Denmark : River Publ., 2011.

[2] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and
S. B. Zdonik, “Tupleware: ‘Big’ data, big analytics, small clusters,” in
Proc. Conf. Innovat. Data Syst. Res. (CIDR), 2015.

[3] F. Bouwens, M. Berekovic, B. De Sutter, and G. Gaydadjiev,
“Architecture enhancements for the ADRES coarse-grained reconfig-
urable array,” in Proc. Int. Conf. High Perform. Embedded Archit.

Compilers, 2008, pp. 66–81.
[4] C. Nicol, “A coarse grain reconfigurable array (CGRA) for statically

scheduled data flow computing,” Wave Comput., Santa Clara, CA, USA,
White Paper, 2017.

[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[6] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM

SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367–379, 2016.
[7] X. Fan, H. Li, W. Cao, and L. Wang, “DT-CGRA: Dual-track coarse-

grained reconfigurable architecture for stream applications,” in Proc.

IEEE 26th Int. Conf. Field Program. Logic Appl. (FPL), Lausanne,
Switzerland, 2016, pp. 1–9.

[8] D. C. Chen, “Programmable arithmetic devices for high speed digital
signal processing,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Unov. California, Berkeley, Ca, USA, 1992.

[9] R. W. Hartenstein and R. Kress, “A datapath synthesis system
for the reconfigurable datapath architecture,” in Proc. ASP-

DAC’95/CHDL’95/VLSI’95 With EDA Technofair, Chiba, Japan,
1995, pp. 479–484.

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

3310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

[10] E. Mirsky and A. DeHon, “MATRIX: A reconfigurable computing
architecture with configurable instruction distribution and deployable
resources,” in Proc. IEEE Symp. FPGAs Custom Comput. Mach.

(FCCM), vol. 96. Napa Valley, CA, USA, 1996, pp. 17–19.

[11] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, “MorphoSys: An integrated reconfigurable system
for data-parallel and computation-intensive applications,” IEEE Trans.

Comput., vol. 49, no. 5, pp. 465–481, May 2000.

[12] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia
array coprocessor,” IEICE Trans. Inf. Syst., vol. 82, no. 2, pp. 389–397,
1999.

[13] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “EPIMap: Using epimor-
phism to map applications on CGRAs,” in Proc. 49th Annu. Design

Autom. Conf., San Francisco, CA, USA, 2012, pp. 1284–1291.

[14] B. Mei, M. Berekovic, and J. Y. Mignolet, “ADRES & DRESC:
Architecture and compiler for coarse-grain reconfigurable processors,”
in Fine-and Coarse-Grain Reconfigurable Computing. Dordrecht, The
Netherlands: Springer, 2007, pp. 255–297.

[15] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph embedding:
Mapping applications onto coarse-grained reconfigurable architectures,”
in Proc. Int. Conf. Compilers Archit. Synth. Embedded Syst., 2006,
pp. 136–146.

[16] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proc. 17th Int. Conf. Parallel Archit. Compilation Techn.,
Toronto, ON, Canada, 2008, pp. 166–176.

[17] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware mod-
ulo scheduling for coarse-grained reconfigurable architectures,” ACM

SIGPLAN Notices, vol. 44, pp. 21–30, Jun. 2009.

[18] L. Chen and T. Mitra, “Graph minor approach for application mapping
on CGRAs,” ACM Trans. Reconfig. Technol. Syst., vol. 7, no. 3, p. 21,
2014.

[19] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “REGIMap: Register-
aware application mapping on coarse-grained reconfigurable architec-
tures (CGRAs),” in Proc. 50th Annu. Design Autom. Conf., Austin, TX,
USA, 2013, p. 18.

[20] S. Dave, M. Balasubramanian, and A. Shrivastava, “RAMP: Resource-
aware mapping for CGRAs,” in Proc. 55th Annu. Design Autom. Conf.

(DAC), San Francisco, CA, USA, 2018, pp. 1–6.

[21] S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei, “Memory-aware loop
mapping on coarse-grained reconfigurable architectures,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1895–1908,
May 2016.

[22] B. R. Rau, “Iterative modulo scheduling,” Int. J. Parallel Program.,
vol. 24, no. 1, pp. 3–64. 1996.

[23] B. Cheng, H. Wang, S. Yang, D. Niu, and Y. Jin, “A novel testability-
oriented data path scheduling scheme in high-level synthesis,” Tsinghua

Sci. Technol., vol. 12, pp. 134–138, Jul. 2007.

[24] L. Zhou, D. Liu, M. Tang, and H. Liu, “Mapping loops onto coarse-
grained reconfigurable array using genetic algorithm,” in Proc. 8th Int.

Conf. Bio-Inspired Comput. Theor. Appl. (BIC-TA), 2013, pp. 801–808.

[25] D. Liu, S. Yin, L. Liu, and S. Wei, “Polyhedral model based mapping
optimization of loop nests for CGRAs,” in Proc. 50th ACM/EDAC/IEEE

Design Autom. Conf. (DAC), Austin, TX, USA, 2013, pp. 1–8.

[26] G. Lee, K. Choi, and N. D. Dutt, “Mapping multi-domain applica-
tions onto coarse-grained reconfigurable architectures,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 5, pp. 637–650,
May 2011.

[27] A. Hatanaka and N. Bagherzadeh, “A modulo scheduling algorithm for a
coarse-grain reconfigurable array template,” in Proc. IEEE Int. Parallel

Distrib. Process. Symp. (IPDPS), Rome, Italy, 2007, pp. 1–8.

[28] G. Ansaloni, K. Tanimura, L. Pozzi, and N. Dutt, “Integrated kernel
partitioning and scheduling for coarse-grained reconfigurable arrays,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 12,
pp. 1803–1816, Dec. 2012.

[29] D. Wijerathne, Z. Li, M. Karunarathne, A. Pathania, and T. Mitra,
“CASCADE: High throughput data streaming via decoupled access-
execute CGRA,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 5s,
pp. 1–26, 2019.

[30] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Proc. 54th Annu. Design Autom. Conf., Austin, TX, USA, 2017, pp. 1–6.

[31] M. Guthaus, L. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
B. R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. Workload Characterization Int. World Wide

Web Workshop (WWC), 2001, pp. 3–14.

[32] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization

(IISWC), Austin, TX, USA, 2009, pp. 44–54.
[33] J. A. Stratton et al., “Parboil: A revised benchmark suite for scien-

tific and commercial throughput computing,” Center Rel. High Perform.

Comput., vol. 127, pp. 1–11, Mar. 2012.
[34] S. Dave and A. Shrivastava, “CCF: A CGRA compilation framework,”

2018.
[35] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” in Proc. Int. Symp. Code Gener.

Optim. (CGO), San Jose, CA, USA, 2004, pp. 75–86.
[36] K. Han, J. Ahn, and K. Choi, “Power-efficient predication techniques for

acceleration of control flow execution on CGRA,” ACM Trans. Archit.

Code Optim., vol. 10, no. 2, p. 8, 2013.

Mahesh Balasubramanian (Member, IEEE)
received the bachelor’s degree from Anna
University, Chennai, India, in 2011, and the
master’s degree in electrical engineering from the
University of Texas at San Antonio, San Antonio,
TX, USA, in 2013. He is currently pursuing the
Ph.D. degree with Arizona State University, Tempe,
AZ, USA.

His research interests lie in area of parallel
computing and co-processor accelerators like
CGRAs particularly for general purpose and HPC

applications.
Mr. Balasubramanian is a recipient of the CIDSE Doctoral Fellowship,

the Engineering Grad Fellowship, and the Ferdinand A. Stanchi Fellowship
at Arizona State University.

Aviral Shrivastava (Member, IEEE) received the
bachelor’s degree in computer science and engi-
neering from the Indian Institute of Technology,
New Delhi, India, in 1999, and the master’s and
Ph.D. degrees in computer science and engineer-
ing from the University of California at Irvine,
Irvine, CA, USA, in 2002 and 2006, respec-
tively.

He is a Professor with the School of Computing
Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ, USA, where

he has established and heads the “Make Programming Simple” Lab. His
research is funded by NSF, DOE, NIST, and several industries, including
Microsoft, Raytheon Missile Systems, Intel, and Nvidia. His research lies in
the broad area of “Software for Embedded and Cyber-Physical Systems.” More
specifically, his interested in topics around: 1) compilers and microarchitec-
tures for heterogeneous and many-core computing; 2) protecting computation
from soft errors; and 3) precise timing for cyber-physical systems.

Prof. Shrivastava was a recipient the NSF CAREER Award in 2011 and
the Outstanding Junior Researcher in CSE at ASU in 2012. His works have
received several best paper nominations, including at DAC 2017, and a Best
Student Paper Award at VLSI 2016. His students have received outstanding
Ph.D. student award in CSE at ASU in 2017 and the Outstanding M.S. Student
Award in CSE at ASU in 2012 and 2010. He is currently serving as the Deputy
Editor-in-Chief of IEEE EMBEDDED SYSTEMS LETTERS, and an Associate
Editor for ACM TRANSACTIONS EMBEDDED COMPUTING SYSTEMS, IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN, International Journal on

Parallel Processing (Springer), and Design Automation for Embedded Systems

(Springer). He has served as the Program Chair of CODES+ISSS 2017 and
2018, and LCTES 2019. He is currently the Virtual Conference Chair of
ESWEEK 2020 and the Track Chair for RTSS 2020. He serves on the organiz-
ing and program committees of several premier embedded system conferences,
including DAC, ICCAD, ISLPED, ESWEEK, and LCTES.

Authorized licensed use limited to: ASU Library. Downloaded on December 20,2020 at 18:55:08 UTC from IEEE Xplore. Restrictions apply.

