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Abstract—The development of advanced recording and mea-
surement devices in scientific fields is producing high-dimensional
time series data. Vector autoregressive (VAR) models are well
suited for inferring Granger-causal networks from high dimen-
sional time series data sets, but accurate inference at scale
remains a central challenge. We have recently introduced a
flexible and scalable statistical machine learning framework,
Union of Intersections (UoI), which enables low false-positive
and low false-negative feature selection along with low bias and
low variance estimation, enhancing interpretation and predictive
accuracy. In this paper, we scale the UoI framework for VAR
models (algorithm UoIV AR) to infer network connectivity from
large time series data sets (TBs). To achieve this, we optimize
distributed convex optimization and introduce novel strategies
for improved data read and data distribution times. We study
the strong and weak scaling of the algorithm on a Xeon-phi
based supercomputer (100,000 cores). These advances enable
us to estimate the largest VAR model as known (1000 nodes,
corresponding to 1M parameters) and apply it to large time
series data from neurophysiology (192 neurons) and finance (470
companies).

I. INTRODUCTION

The growth of the Internet and social media applications

has paved the way for the development of highly sophisticated

machine learning and statistical data analysis tools. Further sci-

entific data collection strategies have grown exponentially over

the years by innovation in the field of sensors and advanced

data collection methods. Many fields such as genetics, mass

spectrometry, and neuroscience [1]–[4] now have the means

of collecting big data through various devices and sensors [5].

In particular, advanced recording devices created as part of

the BRAIN Initiative enable recording neural activities from

hundreds to thousands of neurons for days at a time, generating

TeraBytes and in some cases, PetaBytes of time series data [6],

[7]. A challenge in such data sets is to infer the causal network

that generated the time series data, and thus gain insight into

scientific mechanisms of complex phenomena [3], [4], [6], [7].

Similarly, one may wish to understand the causal influences

among companies from stock price time series [8].

Vector autoregressive (VAR) models are well suited for

inference of Granger causal networks from such high-

dimensional, multi-variate observational time series data. In-

troduced for the analysis of econometric time series, Granger

causality is the amount of variance in one time series ac-

counted for by the past of another time series [8]. Thus,

from a statistical-machine learning perspective, the challenge

of Granger causality is to accurately infer the existence (or not)

and weight of directed edges between nodes in the network

from noisy time series observations of the nodes. Although

VAR models provide a flexible framework and are probabilis-

tically tractable [9], scaling VAR inference to massive data sets

is a major challenge due to unfavorable scaling of the problem

size with the number of nodes or features in the network.

The Union of Intersections (UoI) framework developed

in [10] is a powerful statistical-machine learning framework

which has natural algorithmic parallelism. Methods based on

UoI improve the selection of features (model selection) and

estimation of the contribution of the selected features (model

estimation). The main mathematical innovations of UoI are

1) creating a family of potential model supports through an

intersection operation for a range of regularization parameters

in model selection, and 2) combining the above-computed

supports with a union operation so as to increase prediction

accuracy on held out data in model estimation. Theoretical and

extensive numerical evaluation of a sparse linear regression

algorithm based on UoI (UoILASSO) presented in [10] shows

state of the art feature selection (low false positives and low

false negatives) and feature estimation (low-bias, low-variance)

compared with many regression algorithms (e.g., LASSO,

SCAD and Ridge). This is done without formulating a non-

convex optimization problem. Similarly, the statistical perfor-

mance evaluation for the UoI implementation for VAR models,

UoIV AR, presented in [11], shows less bias and superior

selection accuracy when compared to LASSO and non-convex

optimization method such as the minimax convex penalty

(MCP). Note that non-convex optimizations (as utilized in

e.g., SCAD and MCP) are extremely challenging for imple-

mentation in the multi-nodal distributed computing paradigm

[12]. In contrast, methods relying on convex optimization

(e.g., UoILASSO and UoIV AR) can utilize the Alternating

Direction Methods of Multipliers (ADMM) [13] for solving

the constrained convex optimization in a distributed manner

in a multi-nodal computing environment. Thus, while our

prior works establish the state-of-the-art statistical properties

of UoILASSO and UoIV AR, several challenges remain in the

application of these methods to large data sets.

In this paper, we develop a scalable implementation of

UoIV AR to infer Granger causal networks from high dimen-



sional time series data sets. UoIV AR builds upon UoILASSO:

thus, in order to better understand the scalability of UoIV AR,

we start by studying the scalability of LASSO-ADMM in

UoILASSO, and then proceed to UoIV AR. We reveal the

computation, communication, input/output bottlenecks for

UoILASSO and UoIV AR, and develop solutions to mitigate

them. To accommodate the randomness required for bootstrap

sampling used in UoI methods, we introduce a Random

Data Distribution strategy to efficiently manage data read

and distribution time from large data sets. We introduce

distributed Kronecker product and vectorization strategies for

UoIV AR. Above and beyond parallelization of optimization

through ADMM, we analyze both algorithms for natural

parallelism and evaluate our multi-node implementation. With

high-dimensional synthetic data sets (1000 nodes or features)

we demonstrate the weak and strong scaling of each algorithm.

Due to the unfavorable scaling of the problem size with the

number of nodes in the network (≈ p3 for p nodes), it is

rare to encounter VAR models with more than 50 nodes

or features. In the statistical literature on high-dimensional

VAR modeling, numerical experiments considered adequate

to represent typical data applications are around 30 nodes,

and larger-scale data applications are on the order of a few

hundred nodes: [14] used simulated data of 30 nodes and [15]

used monthly home-price appreciation (HPA) data set with

352 nodes. Finally, we analyze a real world neurophysiology

data set of 192 neurons and a stock market data set (S&P

500 index in 2013-2014) with 470 companies. Our scaling to

1000 nodes (1M parameters) reflects an ≈ 3-fold increase in

network scale (≈ 9 fold more parameters), while doing so in

the context of a superior inference algorithm.

II. METHODS

A. Formal Statistical Description

Let us consider n samples of input data ((Y1, X1),
...,(Yn, Xn)) with univariate response variable Y and p-

dimensional predictor variable X . The linear regression model

for this input data is generated as:

Y = Xβ + ε (1)

where Y = (Y1, ..., Yn), X is a n × p design matrix; ε =
(ε1, ..., εn) are random noise terms with ε ∼ N(0, σ2In). Let

S = {i : βi 6= 0} be the non-zero coefficient set of β.

The LASSO regression algorithm with penalization pa-

rameter λ > 0 minimizes the following constrained convex

optimization problem with respect to β:

β̂ = argminβ ||Y −Xβ||2 + λ||β||1 (2)

Here, the first term on the right-hand side penalizes the error

of the predictions, while the second term penalizes the L1

norm of the parameter vector β, setting some values of β to

zero.

B. Model Selection and Model Estimation

For every bootstrap sample T k the LASSO estimates (j β̂k)

are computed (here, using the Alternating Direction Method

of Multipliers (ADMM)), see equation 6) across different

regularization parameter values, λj . For each bootstrap sample,

the support (Sk
j ) are the non-zero values of the estimates

calculated by LASSO-ADMM. It is known [10] that the

LASSO estimator is prone to false positives for a decrease in

penalizing parameter (λ): i.e., it includes more parameters than

are in the model. To mitigate this, in UoILASSO the support

associated with a given λ, Sj is taken as the intersection of

the supports across bootstrap samples:

Sj =

B1
⋂

k=1

Sk
j (3)

This is done for each value of (λ), creating a family of

potential model supports S = [S1, S2, ..., Sq].
A number B2 of bootstrap samples are used to compute

the model estimates. For each potential support from the

model selection step (Algorithm 1 line 18), the unbiased

Ordinary Least Squares (OLS) estimator is used to estimate the

associated model from each of the B2 bootstrap samples. The

algorithm then computes a Union of supports by averaging

the OLS estimates that optimize predictions, which reduces

variance and performs a union operation on the supports

optimizing predictions. The variable set post-union (averaging)

can be represented as (approximately):

SUoI =

B2
⋃

l=1

Sjl =

B2
⋃

l=1

B1
⋂

k=1

Sk
jl (4)

C. Distributed Constrained Convex Optimization by Alternat-

ing Direction Method of Multiplier

The core calculations in both UoILASSO and UoIV AR in-

volve solving a constrained convex optimization problem (L1

regularized linear regression). Here, we use the Alternating

Direction Method Multiplier (ADMM) [13] to minimize the

loss function (Equation 2). LASSO-ADMM solves the dual

problem in form of equation 5:

minimize f(x) + g(z)

subject to x− z = 0

where, f(x) = (1/2)||Y −Xβ||22;

g(z) = λ||β||1

(5)

where x ∈ IRn , z ∈ IRm, and f and g are convex.

The LASSO-ADMM algorithm consists of an x minimization,

z minimization followed by a dual variable update. The

separation of minimization over x and z allows for the separate

decomposition of f and g. Here, x and z can be updated in

sequential or alternating computations which gives the name

alternating direction. In the distributed ADMM algorithm,

each compute core is responsible for computation of its own

objective (x) and constraint (z) variables and its quadratic term



Algorithm 1 UoILASSO (InputData(X, y) ∈
IRn×(p+1), λ ∈ IRq , B1, B2)

1: Model Selection

2: for k = 1 to B1 do

3: Generate bootstrap sample T k = (Xk
T , Y

k
T )

4: for λj ∈ λ do

5: Compute LASSO estimate j β̂k from T k

6: Compute support Sk
j = {i} s.t j β̂k

i 6= 0

7: end for

8: end for

9: for j = 1 to q do

10: Compute Bootstrap-LASSO support

for λj : Sj =
B1
⋂

k=1

Sk
j (as in equation 3)

11: end for

12: Model Estimation

13: for k = 1 to B2 do

14: Generate bootstrap samples for training and evaluation:

15: training T k = (Xk
T , Y

k
T )

16: evaluation Ek = (Xk
E , Y

k
E )

17: for j = 1 to q do

18: Compute OLS estimate ˆβk
Sj

from T k

19: Compute loss on Ek : L( ˆβk
Sj
, Ek)

20: end for

21: Compute best model for each bootstrap sample:

22: β̂k
S = ˆβk

Sj

L( ˆβk
Sj
, Ek)

23: end for

24: Compute averaged model estimates β̂∗ = 1
B2

B2
∑

k=1

β̂k
S (as

in equation 4)

25: Return: β̂∗

(f(x)) is updated so that all the cores converge to a common

value of estimates. To ensure a good scalability, the ordinary

least squares (OLS) is implemented using LASSO-ADMM

algorithm for model estimation by setting regularization pa-

rameter λ to 0, thereby making g in equation 5 equal to 0.

D. UoILASSO Algorithm

A high-level overview of the UoILASSO algorithm, shown

in Algorithm 1, consists of two Map-Solve-Reduce steps

(Figure 1). The algorithm takes multiple random bootstrap

subsamples of the input data (Map) and distributes it across

different computing cores. Next, LASSO and OLS (Solve)

use the distributed data and solve the convex optimization.

The resultant estimates are then combined by intersection and

union operations (Reduce). The Reduce step in model selec-

tion performs a feature compression by intersection operation

of supports across bootstraps. The Reduce step in model

estimation performs a feature expansion by averaging (union

operation) the OLS estimates across different model supports.

E. UoIV AR Algorithm

The UoILASSO implementation can be adapted to sparse

estimation of vector autoregressive model parameters from

Algorithm 2 UoIV AR (InputData(X1, . . . , XN )T ∈
IRN×p), λ ∈ IRq , B1, B2)

1: Model Selection

2: for k = 1 to B1 do

3: Generate bootstrap sample T k = (Xk
T1, . . . , X

k
TN )

4: Construct (Yk
T ,X

k
T ) (as in equations 7 - 8)

5: Construct Y k
T = vecYk

T and Xk
T = (I⊗X

k
T )

6: for λj ∈ λ do

7: Compute LASSO estimate j β̂k from (Xk
T , Y

k
T )

8: Compute support Sk
j = {i} s.t j β̂k

j 6= 0

9: end for

10: end for

11: for j = 1 to q do

12: Compute Bootstrap-LASSO support

for λj : Sj =
B1
⋂

k=1

Sk
j (as in equation 3)

13: end for

14: Model Estimation

15: for k = 1 to B2 do

16: Generate bootstrap samples for training and evaluation:

17: training T k = (Xk
T1, . . . , X

k
TN )

18: evaluation Ek = (Xk
E1, . . . , X

k
EN )

19: Construct (Yk
T ,X

k
T ) (as in equations 7 - 8)

20: Construct (Yk
E ,X

k
E) (as in equations 7 - 8)

21: Construct Y k
T = vecYk

T and Xk
T = (I⊗X

k
T )

22: Construct Y k
E = vecYk

E and Xk
E = (I⊗X

k
E)

23: for j = 1 to q do

24: Compute OLS estimate ˆβk
Sj

from T k

25: Compute loss on Ek : L( ˆβk
Sj
, Ek)

26: end for

27: Compute best model for each bootstrap sample:

28: β̂k
S = ˆβk

Sj

L( ˆβk
Sj
, Ek)

29: end for

30: Compute averaged model estimates

β̂∗ = 1
B2

B2
∑

k=1

β̂k
S (as in equation 4)

31: Partition β̂∗ and rearrange into (Â1, . . . , Âd) and µ̂
32: Return: (Â1, . . . , Âd) and µ̂

high-dimensional time series data. In this case the input

data is a vector time series {Xt}
N
t=1 generated by a vector

autoregressive process of order d, V AR(d):

Xt =

d
∑

j=1

AjXt−j + Ut (6)

where Xt ∈ R
p, the process has p-dimensional Gaussian

disturbances Ut
iid
∼ Np(0,Σ). The stability of the process is ex-

pressed by the constraint det(I−
∑d

j=1 Ajz
j) 6= 0 ∀ |z| ≤ 1.

Equation 6 provides a model for the data which can be

written as a multivariate least squares problem with correlated

errors of the form Y = XB + E. In particular, the response

is the (N − d)× p matrix

Y = (XN , XN−1, . . . , Xd+1)
T (7)



and the regressors are lagged values represented in the (N −
d)× (dp) matrix

X =











X ′

N−1 X ′

N−2 . . . X ′

N−d

X ′

N−2 X ′

N−3 . . . X ′

N−(d+1)

...
...

. . .
...

X ′

d X ′

d−1 . . . X ′

1











(8)

and the coefficient matrix is B
′ = (A1A2 . . . Ad). One

estimation strategy is to vectorize the problem as shown in

equation 9 and apply ordinary least squares to estimate the

entries of the Aj matrices.

vecY = (I⊗X) vecB+ vecE (9)

Equation 9 then has the same form as equation 1. Noting this

correspondence, estimation with sparsity in high-dimensional

time series can be accomplished by first rearranging the mul-

tivariate least squares problem and then solving the LASSO

problem (equation 2) for the resulting rearrangement.

The UoI implementation, shown as Algorithm 2, is conse-

quently similar to UoILASSO, but with a bootstrap method

appropriate for capturing temporal dependence in the input

data (here, using a block bootstrap) and large matrix operations

required to obtain a problem of the form shown in equation 2.

Aside from these modifications, the Algorithm 2 is the same

as UoILASSO Algorithm 1.

III. SCALING UoILASSO AND UoIV AR

UoILASSO and UoIV AR exhibit a high degree of algorith-

mic parallelism. In each of the model selection and model

estimation steps, the bootstrap subsamples (B1 and B2) can

be parallelized, referred to as PB parallelization. Additionally,

parallelization over regularization parameters (λj) can be used

(referred to as Pλ parallelization). An important point to

consider is that the model selection and model estimation must

occur in sequential order and cannot be parallelized.

A. Challenges in achieving parallelism

To achieve accuracy in selection and estimation, UoI-based

methods utilize the notion of stability to perturbations, in this

case multiple random resampling of the data. UoILASSO,

in particular, requires random sub-samples generated from

the data set in selection and estimation Map steps (Figure

1). In our initial experiments we have seen that repeated

access to the data file in the file system takes a lot of data

access time, and dividing the data set into chunks for faster

access reduces selection and estimation accuracy [10]. Due

to the smaller sized data set in UoIV AR (recall that VAR

problem scales ≈p3), the centralized distribution strategy was

adopted to distribute the data to compute cores. We found

that the main challenge for UoIV AR ‘Map‘ is computing the

Kronecker product and vectorization steps in a distributed

method. As far as we are aware of, there has been no prior

methods to distribute the Kronecker product computation and

vectorization for VAR models.

B. Randomized Data Distribution Design using HDF5

1) UoILASSO: We introduce randomized data distribution

strategy for UoILASSO to improve the data read time from the

file system and reduce the data distribution time to the compute

cores. The synthetic data set matrices used in this evaluation

have the “Samples” in rows and “Features” in columns. The

data set size is the problem size for UoILASSO. We use HDF5

application program interface for data input/output. HDF5

offers parallel reading of the input file, albeit in contiguous

chunks. The library does not provide a random reading of input

data without reading the file multiple times in a loop. To par-

allelize this operation, we introduce a novel randomized data

distribution technique. First, the data is read in parallel from

the input file into the computing cores in contiguous blocks.

As shown in Figure 1, T0 or Tier0 is the source HDF5 file. The

contiguous reading by all the processes is done in T1, Tier1,

using HDF5 hyperslabs [16]. Tier0 and Tier1 data distribution

use an underlying HDF5-parallel library for parallel accesses

and hyperslab creation. By creating hyperslabs, the application

can read the data file and load them into the memory space

created on each compute core. After loading the data from

the input file, we employ MPI one-Sided communication to

randomly distribute the subsamples (T2, Tier2). The input

data is distributed via row-wise block-striping to distribute

the samples. If N is the number of samples, p is the feature

size, and B is the number of cores, each core receives N
B

rows and p columns. Each core then solves the constrained

convex optimization problem using LASSO-ADMM (equation

5) and is responsible for computing its own objective (x) and

constraint (z), and the quadratic term is updated to converge

to a common value of estimates.

2) UoIV AR: Since UoIV AR is a time series model, the

input data for this algorithm exhibit temporal dependence. To

maintain this dependence, a block bootstrap approach was

adopted by randomly selecting time series blocks for every

bootstrap subsample. The Algorithm 2 lines 5 and 21-22,

requires a column stacking vectorization step to construct

Y k
T and an identity Kronecker product step to construct Xk

T .

In the serial version of the algorithm a simple vectorization

and Kronecker product functions can be invoked, but in a

distributed-memory parallel paradigm, this is not possible.

Unlike UoILASSO, the synthetic data sets for UoIV AR are

relatively small (in order of MegaBytes) and the problem

is created in the Kronecker product and vectorization (lines

5) of Algorithm 2. The actual problem size increases in the

order ≈ p3, where p is the number of features. Due to the

small size of the data, the T1 parallel reading layer cannot

be deployed. To overcome this issue, we have developed a

distributed Kronecker product and vectorization strategy using

MPI one-sided communication with the windows created by

the n reader processes: a small number of processes (usually

equal to the number of samples based on the availability of

resources) read the data file in parallel and creates windows

for MPI-One sided communication for distributed Kronecker

product and vectorization.



Fig. 1: (a) A Three-Tier (T0, T1 and T2) distribution strategy for randomized distribution of data set across the number of

sample from the HDF5 data file to the cores of KNL. (b) Model Selection – LASSO ADMM is used to ‘Solve’ and Intersection

operation is used as ‘Reduce’ to select family of support Sj . (c) Data randomization for cross validation where Tier2 random

distribution is employed to randomly reshuffle the data. (d) Model Estimation – OLS is used to ‘Solve’ and Union operation

is used to ‘Reduce’ to get an optimally predictive model.

The Kronecker product (Algorithm 2 line 5, 19, 20) Xk
T =

(I ⊗ X
k
T ), is an identity block diagonal matrix of X

k
T from

equation 8. Similarly, vectorization of Y (Algorithm 2 line

5, 19, 20), Y k
T = vecYk

T is from equation 7. Since X
k
T

and Y
k
T are computed a priori , the cores holding these data

structures create the MPI one-sided communication windows

for building (I⊗X
k
T ) and vecYk

T . Since the LHS of equation

7 and 8 are the actual problem sizes (order of GBs and

TBs), the communication strategy does not require explicit

computation of the equation 7 and 8 on the computing cores.

The main challenge is the increased communication time to

create such large matrices as there are few cores (10s to 100s)

holding the actual matrices to be distributed to hundreds of

thousands of cores. This problem is quantitatively explained

in the Weak Scaling sub-section of UoIV AR, Section IV.

Note that a conventional method, like computing the Knocker

product and vectorization in a single core and distributing

it to the other computing cores, is not possible due to the

increased space to store the data and limited availability of

space per node. Like UoILASSO, post Kronecker product and

vectorization step, each core solves the convex optimization

problem in equation 5 in a distributed manner.

IV. RESULTS

The single node and multi-node runs for this paper were

conducted on Cori Knights Landing (KNL) supercomputer at

NERSC. Cori KNL is a Cray XC40 supercomputer consisting

of 9,688 nodes of 1.4 GHz Intel Xeon Phi processors with a

single socket 68 cores per node. The aggregated memory for

a single node in KNL is 16GB MCDRAM and a 96GB DDR.

The UoILASSO and UoIV AR algorithms were implemented

in C++ using Eigen3 library [17] for linear algebra compu-

tations and Intel-MKL library [18] for BLAS operations for

UoILASSO to utilize the inbuilt Single Instruction Multiple

Data (SIMD) directives. The MPI framework was used for

parallelization and communication between the processes sup-

ported by OpenMP multithreading with OMP_NUM_THREADS

as four, which showed better performance. The performance

analysis setup for UoILASSO and UoIV AR is shown in

Table I. Related to this, recently, the optimal configuration

for executing neural networks (AlexNet) was calculated in

[19]. Although the model shown in [19] could potentially

be applied in our context by including the structure of the

design matrix (e.g., columns X rows, as well as sparse vs.

dense) to find a theoretically better configuration, the practical

configuration depends on the realities of the hardware.

For all the evaluations in this paper, synthetic data sets

ranging from 16GB to 8TB were generated for UoILASSO,

and data sets that generate problem sizes of 16GB to 8TB were

generated for UoIV AR. The experiments were carried out in

two phases, Single Node performance and optimizations, and

Multi-Node scaling. The feature size for UoILASSO is kept

a constant at 20,101 features across data sets to study the

effect of communication. For UoIV AR, the data set features

range from 356 for a 128GB problem size to 1000 features

for 8TB problem size and the number of samples are twice

the size of the features. We evaluate the algorithms for

single node performance, exploiting algorithmic parallelism

and multi-node scaling experiments. Due to limited resource

availability of computing resource the multi-node scaling runs

were performed with no PB and Pλ parallelism and dedicating

all the cores to distributed LASSO-ADMM computation.

A. Performance and Scaling of UoILASSO

1) Single Node Performance: The focus of single node

performance analysis is to identify the potential bottlenecks

in the program and optimize them. Post optimization, the

performance improvement is calculated using a performance

roofline model for both the program and the architecture

(Xeon Phi) on which the program is executed. A ≈ 16GB
data set with five selection and estimation bootstrap samples

(B1 = B2 = 5) and eight regularization parameters(q) were

chosen for single node optimization of the implementation.

Our initial analyses showed that the Matrix multiplication

and Matrix-Vector product in LASSO-ADMM function were

the bottlenecks. Execution of these operations showed very



Performance
Analysis

Data Size
(GB)

No. of cores
(UoILASSO)

No. of cores
(UoIV AR)

Single Node 16 68 68

Weak
Scaling

128 4,352 2,176
256 8,704 4,352
512 17,408 8,704
1024 34,816 17,408
2048 69,632 34,816
4096 139,264 69,632
8192 278,528 139,264

Strong
Scaling 1024

17,408 4,352
34,816 8,704
69,632 17,408
139,264 34,816

TABLE I: Performance Analysis setup for UoILASSO and

UoIV AR.

poor performance with native Eigen3 library on Cori KNL.

To alleviate the poor performance we implemented the BLAS

operations for matrix multiply and matrix-vector product using

the Intel-MKL library. Figure 2 shows the runtime for single

node run. Almost 90% of the runtime is dominated by com-

putation and less than 10% by communication. All the MPI

calls like MPI_Bcast, MPI_Allreduce etc., constitute the

communication bar as shown in the Figure 2. More than 99%

of the communication time comes from MPI_Allreduce

call used to communicate the estimates by the distributed

LASSO-ADMM function. MPI one-sided calls for distribution

of the data is shown as ‘Distribution’, while parallel-HDF5

data loading and output saving is shown as ‘Data I/O’. We

analyzed the program in detail with Intel Advisor [20] tool

for the performance of various sections of the code. The

performance of matrix multiplication with Intel-MKL was

30.83 GFLOPS (Giga-Floating Point operations per second)

with an arithmetic intensity (Floating point operations per byte

of data moved from memory) of 3.59 FLOPs/Byte and the per-

formance of matrix-vector multiplication was 1.12 GFLOPS

with an arithmetic intensity of 0.32 FLOPs/Byte. Both the

BLAS operations were found to be DRAM memory bound.

The performance of the triangular solve function used by

LASSO-ADMM function for matrix decomposition was 0.011

GFLOPS with an arithmetic intensity of 0.075 FLOPs/Byte.

2) Exploiting Algorithmic Parallelism: The innate algorith-

mic parallelism exhibited by the UoILASSO was exploited

UoILASSO Single Node performance

Data I/O
Computation Total
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Fig. 2: UoILASSO runtime number using Intel-MKL linear

algebra library with B1 = B2 = 5 and q = 8.
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Fig. 3: Exploiting PB and Pλ parallelism by increasing the

data set and ADMMcores by a factor of 2.

by having bootstrap level (PB), regularization parameter level

(Pλ) and ADMM computation level parallelism. These runs

were performed on lower end of data set spectrum, 16GB,

32GB, 64GB and 128GB with 2176, 4352, 8704 and 17,408

cores, respectively. The PB × Pλ configuration used were

16×2, 8×4, 4×8 and 2×16 with B1 = B2 = q = 48 for

all the runs. The data set size and the ADMMcores were

doubled maintaining the parallelization configurations. The

runtime of the different configurations are shown in Figure 3.

Across various configurations the 2×16 has a better runtime.

Also across the data set runs we can see a slight increase

in the communication time for ADMMcores = 272 and

ADMMcores = 544. This increase in the communication time

was accounted by the MPI_Allreduce call from LASSO-

ADMM implementation to collectively converge at an estimate

value.

3) Comparison of Randomized Data Distribution Design

with Conventional Distribution strategy: Conventional data

distribution strategy involves reading from the data file by a

single core using serial HDF5 by creating hyperslabs. The

traditional methodology has three issues, namely: 1) it can

read only a small chunk of data at a time, 2) it would

repeatedly open the data file to read the data completely,

and 3) it cannot store the loaded data due to limited space

availability (aggregated memory of single KNL node is 96GB,

but the data set size is in order of 100s of GBs and TBs).

We implemented the conventional data distribution in C++

with serial HDF5 implementation. It should be noted that

for UoI algorithms, different random bootstraps of data are

required for model selection and model estimation steps (lines

3, and 14 of Algorithm 1). The comparison of data read and

distribution time between our Randomized Data Distribution

Design (contribution of this paper) and the conventional design

is shown in Table II. The number of cores used for runs in

Table II is based on Table I. From Table II, it is quantitatively

evident that the data read time and distribution time for the



Data Size (GB)
Conventional Method Randomized Data Distr.

Read time
(s)

Distr. time
(s)

Read time
(s)

Distr. time
(s)

16 204.71 1.276 11.3191 0.33

128 1200.81 17.596 0.52 5.718

256 2204.52 36.46 1.46 2.62

512 5323.486 74.274 8.043 3.64

1024 11,732.48 158.016 8.781 3.774

TABLE II: Randomized Data Distribution design improves

the Data Read and Distribution time compared to Conven-

tional Distribution method. Beyond 1TB data set size the

conventional method’s data read time crossed beyond 5 hours

whereas Randomized Data Distribution read time was below

100 seconds.

conventional method is a bottleneck because of the issues

discussed above. From Table II, it should be noted that the

read time for the 16GB is higher than the larger data sets

because it was not striped into OSTs.

4) Multi-node Scaling: The multi-node scaling analysis is

carried out for weak scaling and strong scaling of UoILASSO

implementation. Parallel reading of the input file becomes an

issue for multi-node scaling runs as 1000s of cores try to read

the data in parallel. In an unoptimized run, the read time takes

10s of minutes which can worsen with an increase in the data

size and the number of nodes. For large data sets, the HDF5

input files are stripped into different Object Storage Targets

(OSTs), explained in detail; in [21]. The files are stripped for

160 OSTs to achieve a faster reading time, making the data

read time of very large data sets to a few seconds.

Weak Scaling: In weak scaling, the problem size associ-

ated with each compute core stays constant and additional

computing cores are added when the size of the input data set

increases. We maintain a factor of 2 for our weak scaling runs,

meaning as the data set size is doubled the number of cores

were also doubled (refer Table I). Figure 4 shows the weak

scaling of UoILASSO. Since matrix multiplication contributes

the most to the computation time, and since the problem

size per compute core is almost the same across different

configurations, we find that computation exhibits nearly ideal

weak scaling with slight increase for 8TB. It is seen that the

communication time scales proportional to the increase in the
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Fig. 4: Weak Scaling plot of UoILASSO. The problem size

per node was kept fixed.
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core count. On further analysis of the communication time,

we find that the MPI_Allreduce calls contributes almost

99% of the communication time. The error modeling of one

MPI Allreduce call for all the data points used for weak

scaling as shown in Figure 5. The feature size of all the data

sets is kept a constant at 20,101 features, so the array size for

MPI Allreduce communication is uniform across all the cores.

The difference in Tmax and Tmin for the MPI Allreduce in-

dicates performance variability of communications. However,

despite this we observe good scalability. As future work we

are evaluating non-blocking MPI and asynchronous execution

models to enable further scaling.

Strong Scaling: In strong scaling, the problem size to be

analyzed is kept as 1TB and the number of computing cores

is increased from 17,408 to 139,264 (refer Table I). Figure 6

shows the results of the strong scaling run. The computation

time shows a decreasing trend across different configurations

due to the increase in the number of cores for the same

data set size. At 139,264 cores the computation goes below

expected computation strong scaling trend, the reason being

that the total size of the problem per core becomes small,

which Intel-MKL library takes advantage of the AVX512

extensions making the matrix multiplication computed per

core faster. The superlinear computation time can also be

attributed to the reduced DRAM accesses due to a smaller

chunk of data distributed per core. As seen in the weak scaling

runs communication time increase with increasing number of
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Fig. 6: Strong Scaling plot of UoILASSO. The problem size

was kept fixed at 1TB.



Fig. 7: UoIV AR single node with B1 = B2 = 5 and q = 8.

cores, but beyond 69,632 cores the LASSO-ADMM converges

faster making the communication time almost equal to the

ideal strong scaling.

B. Performance and Scaling of UoIV AR

1) Single Node Performance: The Algorithm 2 creates

a high dimensional matrix by Kronecker product for each

bootstrap subsample. The resultant matrix has a block diagonal

structure with high sparsity. From Algorithm 2, if the input

data is dense the sparsity of the problem can be calculated as

1− 1
p

, where p is the number of features of the input data set.

A problem size of ≈16GB with B1 = B2 = 5 and q = 8 and

number of lambda parameters q = 8 were chosen for single

node optimization. For example, if a data set has 95 features,

the resultant matrix post Kronecker product has a sparsity of

98.94%. So it is intuitive to exploit this sparsity by utilizing

sparse linear algebra libraries. Figure 7 shows the single node

run of the UoIV AR implementation with Eigen3 Sparse C++

LASSO-ADMM.

Figure 7 shows the runtime analysis for UoIV AR. Computa-

tion contributes 88% of the total runtime. Due to the problem

size explosion, communication time for MPI AllReduce can

be seen to increase. The distributed Kronecker product and

vectorization MPI calls are included in the distribution time

constitutes more than 98% of the distribution time. UoIV AR

implementation was also analyzed with the Intel Advisor

software for performance metrics. The performance of sparse

matrix multiplication was 1.08 GFLOPS with 0.15 arithmetic
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Fig. 8: Exploiting algorithmic parallelism of UoIV AR.
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The problem size per node was kept fixed

intensity and the performance of matrix-vector multiplication

was 2.08 GFLOPS/sec with 0.33 arithmetic intensity.

2) Exploiting Algorithmic Parallelism: The runs were car-

ried out for problem set sizes of 16GB, 32GB, 64GB and

128GB. The number of ADMMcores were doubled with

doubling the problem size. The runs were performed for

B1 = B2 = 32 and q = 16. The computation dominates the

execution time, which decreases with increases in parallelism

of Pλ as shown in the Figure 8. It can also be noted that as the

Pλ parallelism increases the Kronecker product and vectoriza-

tion time increases. From Algorithm 2 (lines 5, 21 and 22)

the distributed Kronecker product and vectorization is done

for each bootstrap, and thus by reducing PB parallelization

increases the distribution time across different problem sets.

3) Multi-node Scaling: The data set size is very small for

UoIV AR compared to the problem size that is created during

runtime. Unlike UoILASSO distribution strategy, only a few

processes read the actual data set in parallel and the distributed

Kronecker product routine builds the problem via MPI one-

sided communication.

Weak Scaling: The weak scaling plot for UoIV AR is shown

in the Figure 9 for B1 = 30, B2 = 20, q = 20, with no PB or

Pλ parallelization. The Y-Axis in Figure 9 is given in a log-

scale to show logarithmic increase in the distribution time. It

can be seen that computation has almost ideal weak scaling,

and the communication time also increases with increase in

core count as seen in UoILASSO. The distributed Kronecker

product and vectorization is proportional to the increase in the

cores and problem size. One of the main reasons for this trend

is the cubical increase of the problem size to the features of

the input data set. Since only a few cores are responsible to

read and distribute the data to thousands of computing cores

during analysis, there is a communication bottleneck between

the reader cores and the computing cores.

Strong Scaling: The strong scaling plot for UoIV AR is

shown in the Figure 10. Across increasing core sizes, com-

putation time has an almost ideal strong scaling. The reason

for an ideal computation time and as discussed earlier, Sparse

Eigen C++ is used to compute the matrix-vector and matrix
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Fig. 10: Strong Scaling plot of UoIV AR. The problem size

was kept fixed at 1TB.

multiplication. Even though the communication does not have

an ideal scaling it minimally affects the total runtime of the

program. The distributed Kronecker product and vectorization

scales exponentially to the increase in the number of cores

like the weak scaling.

V. DISCUSSION

We found a trade-off between computation and communi-

cation in UoILASSO, shown in Figure 4. When the data size

per core increases the computation time increases because the

computation bottlenecks are BLAS gemm and gemv opera-

tions. On the other hand for large data sets, the runtime of the

code is determined by communication via MPI Allreduce call,

whereas the computation has a near ideal scaling. Almost 98%

of the communication time seen in weak and strong scaling

is from model selection module of the algorithm. This is due

to the fact that the size of the problem solved in the model

estimation module is greatly reduced relative to the model

selection module. To reduce the communication runtime, PB

and Pλ parallelism can be adopted as shown in Figure 3 based

on availability of resources.

In contrast to UoILASSO, we found a trade-off between

computation and distribution in UoIV AR, as shown in Fig-

ure 9. For smaller problem sizes computation dominates the

program runtime and for larger problem sizes (especially

for problem sizes 2TB and above) distribution dominates

the total program runtime. The reason for this being the

problem size explosion, where for a small input data size

the distributed Kronecker product and vectorization creates a

large matrix. One of the ways to avoid the problem is by

utilizing PB parallelism. Another way to alleviate this issue is

by using communication avoiding algorithms and using local

computation modules to create the matrix and then have a

one-time communication to create the large matrix. With our

UoIV AR scaling analyses, we have implemented computations

for the largest-scale VAR estimation problem (1,000 nodes,

which corresponds to 1,000,000 parameters) we are aware of.

Fig. 11: Parameter estimates of V AR(1) model for first

differences of weekly closes of 50 randomly chosen companies

on the S& P 500 Index during 2013 and 2014.

VI. APPLICATION OF UoIV AR TO REAL DATA SETS

We use a financial time series data set to illustrate a data

analysis using UoIV AR and to illustrate computing runtime

for UoIV AR in a real application: the data are daily closes

on the S& P Index for the years 2013 - 2018. Two different

subsets are used to illustrate (i) Granger causality analysis

using UoIV AR and (ii) computing runtime with real data: a

smaller subset was chosen for the Granger causality analysis

to allow easier interpretation of the results; and a larger subset

for the runtime analysis was chosen to represent compute times

representative of larger-scale applications.

For the Granger causality analysis, we randomly chose 50

companies on the index in the years 2013 and 2014, aggregated

the data to weekly closes, and took first differences to obtain

a plausibly stationary vector time series. A first-order V AR
model was then fit to the first differences using the UoIV AR

algorithm with hyperparameters B1 = 40, B2 = 5, selected

to create a strong pressure toward sparse parameter estimates.

The matrix of parameter estimates is represented in Figure

11 as a directed graph with nodes for each vector component

(company), plotted with node sizes proportional to node degree

and labeled according to company ticker, and with directed

edges from node j to node i shown when the estimate of

aij is nonzero, with line thickness proportional to estimate

magnitude. The result is quite sparse, with fewer than 40

edges, and suggests a complex structure of dependence of

Google on a variety of other companies spanning several

industry sectors. Thus, the UoIV AR algorithm produces a

highly interpretable output.

For the runtime analysis, we retained all 470 companies that

were on the index from January 2013 through December 2016,

and performed the same aggregation and differencing as in the

example analysis for 195 samples. The problem size for this

data set is ≈80GB, and scaling it on 2,176 cores yielded a

computation time of 376.87s, and a total communication time



of 4.74s. The Kronecker product and vectorization time was

found to be 16.409s. In Figure 11 the nodes in graph are vector

components and edges are nonzero parameter estimates. Our

method identified very few edges thereby showing the effective

dependence of Google’s share price on other companies.

In addition to the financial data set, a single session non-

human primate reaching task data set [22] was analyzed using

UoIV AR to illustrate computing runtime for a neuroscience

application. Monkey reaching behavioral tasks were recorded

in [22] with two monkey subjects. Some of the recorded data

sets consist of spikes for both the motor cortex (M1) and, the

somatosensory cortex (S1) recordings for 192 electrodes as

features. The recorded spikes had 51111 samples recorded for

one session. In the VAR model, the data set created a problem

size ≈ 1.3TB. The problem was executed on 81,600 cores on

Cori KNL. The computation and communication times were

found to be 96.9s and 1598.72s, respectively. The distribution

time recorded was 3034.4s.

VII. CONCLUSION

In this paper, we developed scalable implementations of

UoILASSO and UoIV AR. To achieve this, we created a

randomized data distribution strategy for HDF5 to aid par-

allel bootstrap subsampling for UoILASSO and distributed

Kronecker product and vectorization for UoIV AR. The single-

node performance evaluation and multi-node scaling evaluatios

used a wide range of sizes of synthetic data sets. Our weak

and strong scaling analyses show that UoILASSO is commu-

nication bound and UoIV AR is distribution bound for large

data sets and problem sizes, respectively. Finally, we have

presented the data analysis of S&P Index and neuroscience

real data set with UoIV AR. Focusing on the S&P data, we

illustrated the analysis with (i) a smaller subset for better

visualization of the results and (ii) a larger subset closer to

80GB for runtime representation. The VAR-model has a sparse

selection for the S&P data set, selecting fewer than 40 edges

out of 2500 possible.
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