
DMAZERUNNER: OPTIMIZING CONVOLUTIONS ON DATAFLOW ACCELERATORS

Shail Dave? Aviral Shrivastava? Youngbin Kim† Sasikanth Avancha ‡ Kyoungwoo Lee†

? Compiler Microarchitecture Lab, Arizona State University
† Department of Computer Science, Yonsei University

‡ Parallel Computing Lab, Intel Labs

ABSTRACT

Convolution neural networks (CNNs) can be efficiently ex-

ecuted on dataflow accelerators. However, the vast space of

executing convolutions on computational and memory re-

sources of accelerators makes difficult for programmers to

automatically and efficiently accelerate the convolutions and

for architects to achieve efficient accelerator designs. We

propose dMazeRunner framework, which allows users to op-

timize execution methods for accelerating convolution and

matrix multiplication on a given architecture and to explore

dataflow accelerator designs for efficiently executing CNN

models. dMazeRunner determines efficient dataflows tailored

for CNN layers and achieves efficient execution methods for

CNN models within several seconds.

Index Terms— Hardware accelerators, energy-efficiency,

mapping, deep learning, design space exploration

1. INTRODUCTION

CNNs are widely used in several important domains including

image recognition, object detection, media generation, and

video analysis [1, 2, 3, 4]. CNNs exhibit many convolution

and a few fully-connected (FC) layers; execution time is ma-

jorly spent in convolutions [5]. With advances in computing

systems, it has become feasible to deploy CNNs for quick and

accurate classification of even high-resolution images.

Many energy-efficient accelerators are being developed

to execute CNNs with high throughput. In particular, many

variations of dataflow accelerators, including systolic arrays,

coarse-grained reconfigurable arrays, and spatial architec-

tures have been shown as effective for accelerating CNNs

[3, 5, 6, 7]. As shown in Fig. 1(c), dataflow accelerators com-

prise of an array of processing elements (PEs) with private

register files (RFs) and a shared scratchpad memory (SPM).

Since PEs are much simple in design (function units with little

local control), and the scratchpad is non-coherent, these ac-

celerators are a few orders of magnitude power-efficient than

out-of-order CPU or GPU cores [3, 5]. Private and shared

memories of PEs enable very high reuse of data, and through

efficient data management, PEs can be engaged in continu-

ous computations while data is communicated via memories

(a)

for m=1:2 % filters

for oy=1:3 % output rows

for ox=1:3 % output columns

for fy=1:3 % kernel height

for fx=1:3 % kernel width

O[m][oy][ox]+=
I[oy+fy-1][ox+fx-1]
× W[m][fy][fx];

Oy=3

Ox=3

output
channel2

output
channel1

m=2

m=1

Fy×Fx
=3x3

(b)

Execution on PE(1,1): O[m_L3][1][1] +=

W [m_L3][fy_L2][fx_L1] × I [fy_L2][fx_L1]

% access DRAM
for m_L3=1:2
dma() % prefetch data in SPM

for fy_L2=1:3
access_SPM_and_comm_NoC();

for fx_L1=1:3

for oy_S=1:3
for ox_S=1:3

O[m_L3][oy_S][ox_S]+=
W[m_L3][fy_L2][fx_L1]×
I[oy_S+fy_L2-1]
[ox_S+fx_L2-1];

filter

image

5x5

data in RF – I: 1x3
W: 1x1x3, O: 1x1x1

DRAM (Off-Chip)

RF

PEs compute
different outputs

Scratch-Pad
Memory

(multi-bank,
double

buffered)

I
W

[1]

O

[1]

W

[2]

O

[2]

(d) (c)

*

*

PE Array

O(m_L3,
1, 1)

=

=

Fig. 1. (a)–(b) Convolution of a 5×5 image (single channel)

with 3×3 weights of 2 filters. (c) Dataflow accelerator with

3×3 PEs accessing 16B RFs and 256B shared SPM (8 banks).

(d) Spatiotemporal execution of loops on the accelerator.

[5, 6]. Thus, with minimized execution time, dataflow accel-

erators yield very high throughput and low latency.

The vast mapping space and accelerator design space

make it challenging for programmers to determine efficient

ways of executing various convolution layers on a single

accelerator and for hardware designers to explore efficient

architecture for accelerating multiple layers of different CNN

models. This is because, convolution layers feature 7-deep

nested loops, exhibiting many ways of the data reuse and

spatial execution. For example, PEs can process different

subsets of the computational graph (e.g., different outputs

in an output stationary dataflow [Oy|Ox] of Fig. 1(c)–(d),

with unrolling of Oy and Ox loops on PEs for spatial exe-

cution [6, 8]). Moreover, the accesses of data tensors from

the on-chip scratchpad (L2) and off-chip (L3) memory can

be scheduled in many ways, impacting the reuse of the data

available in the registers and SPM [6, 7, 8, 9]. Thus, it opens

up many implementation choices for architecture design in-

cluding varying sizes and configurations of PEs, RFs, SPM,

and for each design, many ways to execute the loops both

spatially and temporally onto the computational and memory

resources of the accelerator [5, 6, 8].

These different ways or ”execution methods” significantly

impact how PEs process different subset of the tensor data,

data accessed from memories, data communication via inter-

connect, etc. [5, 6, 8], and therefore, have a dramatic impact

on the energy consumption and execution time [7]. Due to

the lack of a tool for systematic and efficient exploration of

the vast design space, experts have considered only certain

ways like row-stationary or output-stationary dataflow mech-

anisms [5, 10, 11], or explored a tiny fraction of the space

during manual optimizations [9] or randomization-based ex-

plorations [12]. This may not always be very efficient for

accelerating convolution layers of different shapes and ten-

sors of different sizes. Moreover, tools [7, 11, 13] analyt-

ically evaluate dataflow acceleration, but they either do not

optimize the execution time of convolutions or lack a detailed

performance model which accounts for the miss penalty and

stall cycles for PEs due to data communication via memo-

ries and interconnect. Lastly, [14, 15, 16] employ software

pipelining and achieve instruction-level parallelism while ex-

ecuting loops on dataflow accelerators with a few PEs. How-

ever, without exploring abundant data- and thread-level par-

allelisms, they may not efficiently map loops on accelerators

with large PE-arrays accessing larger memories. So, it is cru-

cial to automatically optimize the execution method for effi-

cient acceleration of a convolution layer on a target dataflow

accelerator and to explore efficient accelerator design for dif-

ferent convolution layers of multiple CNN models [5, 6].

We propose dMazeRunner framework that automatically

and efficiently optimizes the execution of different convolu-

tion and FC layers on dataflow accelerators. In particular,

(i) Users can specify the targeted convolution or matrix multi-

plication operation and accelerator architecture specification

and the execution method of their choice, for which the frame-

work provides estimations of the execution metrics.

(ii) dMazeRunner automatically optimizes execution meth-

ods for a specific or all convolution and FC layers of DNN

models, such that even non-expert programmers can quickly

explore the execution space for an accelerator architecture.

Several optimizations to prune the search space and multi-

threaded implementation enables the explorations of opti-

mized execution methods within a few seconds.

(iii) dMazeRunner allows designers to explore efficient accel-

erator designs for various convolution layers of CNN models.

(iv) Leveraging the TVM environment [17], our framework

supports optimizations for CNN models from multiple ma-

chine learning libraries like MXNet and Keras. It is available

at https://github.com/cmlasu/dMazeRunner.

Our experiments on different convolution layers from the

widely used ResNe(X)t model demonstrate that dMazeRun-

ner can optimize execution of convolutions on a dataflow ac-

celerator with various dataflow mechanisms; achieved execu-

tion methods exhibit higher architectural resource utilization,

reuse of multiple data tensors in memories, low accesses to

off-chip memory, with almost entire execution time spent in

performing useful computations on PEs. Using dMazeRun-

ner, users can automatically optimize execution methods for

convolutions of CNN models within a few seconds and ex-

plore efficient designs of dataflow accelerators.

2. DMAZERUNNER

2.1. Analyzing Execution Methods for Convolutions

dMazeRunner allows programmers to define parameters of

their convolution or FC layer (tensor sizes, strides, batch

size), accelerator architecture, and the execution method of

their choice (tiling and ordering of loops) for managing spa-

tiotemporal execution. Then, it analyzes these inputs through

an analytical model (proposed in [8]) and provides the estima-

tion of execution metrics i.e., execution cycles, energy con-

sumption, and energy-delay product. Since domain-specific

dataflow accelerator designs are simpler, it is feasible to

achieve a near-actual estimate of the execution metrics by

considering the execution patterns throughout the accelera-

tor architecture. From the specified convolution parameters

and architecture, dMazeRunner determines the computation

and communication patterns, including reuse of the data in

memories and among PEs, accesses to off-chip memory, miss

penalty, data distribution via network-on-chip, and inter-PE

communication for reduction operations. Users can vary ar-

chitecture specification in terms of organization of the PEs,

sizes and configurations of the private and shared memo-

ries for PEs, interconnect, and direct memory access (DMA)

model. Thus, programmers and domain-experts can explore

the impact of different mappings of the various convolution

layers onto dataflow accelerators.

2.2. Optimizing Accelerations of CNN Models

With the vast space of execution methods, it is hard for non-

expert programmers to figure out optimized execution meth-

ods for efficient accelerations. Moreover, depending on the

model, its depth (total layers) and shape of each convolution

layer (number of channels, aka width, and height and width

of the image or filter data, aka resolution) vary significantly

[18, 19]. With continuous advances in DNN model devel-

opment, it becomes challenging for even domain experts to

quickly explore efficient execution methods or accelerator de-

signs for new models.

dMazeRunner facilitates optimizing execution methods

so that the programmers and architects can determine effi-

cient execution methods for specified convolution layers as

well as for the entire CNN models from machine learning

libraries like MXNet and Keras. Using analytical models,

it quickly determines the effectiveness of many execution

methods. dMazeRunner’s auto-optimizer employs a search

reduction heuristic [8], which focuses on highly efficient

methods that make high utilization of architectural resources

of the accelerator and require fewer accesses to off-chip

memory. Moreover, its multi-threaded implementation along

with caching of the commonly invoked routines yield quick

optimizations. For example, on an Intel i7-6700 quad-core

platform, dMazeRunner optimizes execution of different

convolution layers of ResNet [1] in a second or a few and

AlexNet and ResNet18 models in about 18 and 180 sec-

onds, respectively. It outputs the execution methods which

are optimized for minimizing execution time, energy, and

energy-delay-product (EDP), along with the corresponding

estimates of the execution metrics.

Furthermore, dMazeRunner does not preclude the expe-

rienced programmers from performing a directed exploration

of the search space, but rather enables a quick and systematic

search. It provides support for a few common in-built opti-

mization strategies for experts to flexibly explore the space.

2.3. Exploring Efficient Accelerator Designs

dMazeRunner framework allows fast design space explo-

ration (DSE) so that the accelerator designers can quickly

land upon better architectural design solutions, e.g., fine-

tuning the memory sizes. This is because, with analytical

models, dMazeRunner can quickly explore efficient exe-

cution methods for executing convolutions on a variety of

dataflow accelerator architectures. For example, for DSE,

users can specify variations in sizes of register files, scratch-

pad memory, and total PEs, and can explore the implications

of different designs. The framework processes each design

point and evaluates it by finding optimized execution methods

and provides estimates of the execution metrics for the de-

signs. Then, dMazeRunner outputs information about design

variations, EDP, total mappings evaluated for a design point,

and the time taken to evaluate each accelerator design.

3. EXPERIMENTAL METHODOLOGY

CNN models: For evaluating the execution methods opti-

mized by dMazeRunner, we consider various convolution lay-

ers from widely used CNN models ResNet [1] and ResNeXt

for classifying images from ImageNet dataset. We executed

models on dMazeRunner with a batch of 4 images.

Specification of target accelerator: Our dataflow acceler-

ator architecture features 16×16 PEs with 16-bit precision.

PEs access private 1024B double-buffered RFs and a 128 kB

shared double-buffered scratch-pad [20]. Each pipelined PE

features a 2-stage multiplier and an adder. The accelerator

exhibits four single-cycle multi-cast networks [5] for com-

municating the tensor data to PEs and one such interconnect

enables inter-PE communication to perform reduction opera-

tions. The global scratchpad memory houses 64 banks (2 kB

0E+00

1E+08

2E+08

3E+08

4E+08

5E+08

1E+15

1E+16

1E+17

1E+18

O
y

|
O

x

F
y

|
F

x

O
y

|
F

y

M
|

C

O
x

|
F

x

O
y

|
F

x

C
|

F
x

M
|

F
x

N
|

F
x

O
x

|
F

y

C
|

F
x

M
|

F
x

N
|

F
x

C
|

O
x

M
|

O
x

N
|

O
x

C
|

O
y

M
|

O
y

N
|

O
y

N
|

C

N
|

M

To
ta

l
E

xe
cu

ti
o

n
 C

y
cl

e
s

E
n

e
rg

y
-D

e
la

y
 P

ro
d

u
ct

 (
E

D
P

)

Dataflow Mechanisms

edp_conv5_2 edp_conv5_1 edp_conv4_2

edp_conv3_2 edp_conv2_2 edp_conv1

Total Execution Cyclesx

Fig. 2. For ResNet layers, dMazeRunner achieves efficient

execution methods with multiple dataflow mechanisms.

each) for storing the data of tensors. DMA controller commu-

nicates the data between DRAM and the scratchpad memory.

Our DMA latency model for data transfers is the same as Cell

processors that featured scratchpads [21]. We model the en-

ergy consumption of accelerator resources as per hardware

evaluations by Yang et al. [6] for a 28 nm technology.

4. RESULTS AND ANALYSIS

4.1. Validation

Using the same architecture specification, we obtained the op-

timized execution methods through DNN optimizer of [6] and

evaluated our model for accelerating ResNet conv5 2. For

different dataflow execution methods, our analytical model

achieved the same PE utilization as Yang et al. [6, 13], and

the energy consumption (in mJ) for estimated by dMazeRun-

ner closely matched the energy estimated by [13] with a dif-

ference of 4.19% on average. In fact, for highly optimized ex-

ecution methods, the energy estimation for register accesses

was the major component, while the energy estimation for

off-chip memory accesses was very low.

4.2. Optimized Dataflow Executions

Fig. 2 demonstrates the evaluation of optimized execution

methods for different dataflow mechanisms. The primary

axis shows the EDP of each convolution layer and the sec-

ondary axis shows the total execution cycles for these six

layers (lower the better). For better visualization, we plot

EDP results on a logarithmic scale.

dMazeRunner can optimize the execution of convolution

layers for multiple dataflow mechanisms, which can be visu-

alized in Fig. 2 (bars of nearly the same height). There are

two reasons: (i) Highly optimized execution methods exhibit

common characteristics [6] including high utilization of ar-

chitectural resources (PEs, registers, scratchpad), higher reuse

of different data tensors at different levels of memory hier-

archy, lower accesses to off-chip memory, efficiently inter-

5. REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[2] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer

Deng, Aravind Kalaiah, Daya Khudia, et al., “Deep

learning inference in facebook data centers: Character-

ization, performance optimizations and hardware impli-

cations,” arXiv preprint arXiv:1811.09886, 2018.

[3] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-

terson, Gaurav Agrawal, Raminder Bajwa, et al., “In-

datacenter performance analysis of a tensor processing

unit,” in 2017 ACM/IEEE 44th Annual International

Symposium on Computer Architecture (ISCA). IEEE,

2017, pp. 1–12.

[4] Yann LeCun, “1.1 deep learning hardware: Past,

present, and future,” in 2019 IEEE International Solid-

State Circuits Conference-(ISSCC). IEEE, 2019, pp. 12–

19.

[5] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivi-

enne Sze, “Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.

127–138, 2016.

[6] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak,

Qiaoyi Liu, Steven Emberton Bell, Jeff Ou Setter,

Kaidi Cao, Heonjae Ha, Christos Kozyrakis, et al.,

“Dnn dataflow choice is overrated,” arXiv preprint

arXiv:1809.04070, 2018.

[7] Angshuman Parashar, Priyanka Raina, Yakun Sophia

Shao, Yu-Hsin Chen, Victor A Ying, Anurag Mukkara,

Rangharajan Venkatesan, Brucek Khailany, Stephen W

Keckler, and Joel Emer, “Timeloop: A systematic ap-

proach to dnn accelerator evaluation,” in 2019 IEEE In-

ternational Symposium on Performance Analysis of Sys-

tems and Software (ISPASS). IEEE, 2019, pp. 304–315.

[8] Shail Dave, Youngbin Kim, Sasikanth Avancha, Ky-

oungwoo Lee, and Aviral Shrivastava, “Dmazerunner:

Executing perfectly nested loops on dataflow accelera-

tors,” ACM Transactions on Embedded Computing Sys-

tems (TECS), vol. 18, no. 5s, pp. 1–27, 2019.

[9] Hongbo Rong, “Programmatic control of a compiler for

generating high-performance spatial hardware,” arXiv

preprint arXiv:1711.07606, 2017.

[10] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,

and Pritish Narayanan, “Deep learning with limited nu-

merical precision,” in International Conference on Ma-

chine Learning, 2015, pp. 1737–1746.

[11] “Scale-sim,” https://github.com/

ARM-software/SCALE-Sim.

[12] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash

Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and

Yu Cao, “Throughput-optimized opencl-based fpga ac-

celerator for large-scale convolutional neural networks,”

in Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. ACM,

2016, pp. 16–25.

[13] Xuan Yang et al., “Dnn energy model and opti-

mizer,” https://github.com/xuanyoya/

CNN-blocking/tree/dev.

[14] Shail Dave, Mahesh Balasubramanian, and Aviral Shri-

vastava, “Ramp: resource-aware mapping for cgras,” in

2018 55th ACM/ESDA/IEEE Design Automation Con-

ference (DAC). IEEE, 2018, pp. 1–6.

[15] Dhananjaya Wijerathne, Zhaoying Li, Manupa

Karunarathne, Anuj Pathania, and Tulika Mitra, “Cas-

cade: High throughput data streaming via decoupled

access-execute cgra,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 18, no. 5s, pp. 50,

2019.

[16] Shail Dave, Mahesh Balasubramanian, and Aviral Shri-

vastava, “Ureca: Unified register file for cgras,” in 2018

Design, Automation & Test in Europe Conference & Ex-

hibition (DATE). IEEE, 2018, pp. 1081–1086.

[17] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen

Shen, Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy,

“Tvm: end-to-end optimization stack for deep learning,”

arXiv preprint arXiv:1802.04799, pp. 1–15, 2018.

[18] Mingxing Tan and Quoc Le, “Efficientnet: Rethinking

model scaling for convolutional neural networks,” in

International Conference on Machine Learning, 2019,

pp. 6105–6114.

[19] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne

Sze, “Eyeriss v2: A flexible accelerator for emerging

deep neural networks on mobile devices,” IEEE Journal

on Emerging and Selected Topics in Circuits and Sys-

tems, vol. 9, no. 2, pp. 292–308, 2019.

[20] Yongjoo Kim, Jongeun Lee, Aviral Shrivastava,

Jonghee W Yoon, Doosan Cho, and Yunheung Paek,

“High throughput data mapping for coarse-grained re-

configurable architectures,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 30, no. 11, pp. 1599–1609, 2011.

[21] Michael Kistler, Michael Perrone, and Fabrizio Petrini,

“Cell multiprocessor communication network: Built for

speed,” IEEE micro, vol. 26, no. 3, pp. 10–23, 2006.

	 Introduction
	 dMazeRunner
	 Analyzing Execution Methods for Convolutions
	 Optimizing Accelerations of CNN Models
	 Exploring Efficient Accelerator Designs

	 Experimental Methodology
	 Results and Analysis
	 Validation
	 Optimized Dataflow Executions
	 Efficient Exploration of Execution Methods
	 Design Space Exploration

	 References

