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Dataflow accelerators feature simplicity, programmability, and energy-efficiency and are visualized as a

promising architecture for accelerating perfectly nested loops that dominate several important applications,

including image and media processing and deep learning. Although numerous accelerator designs are being

proposed, how to discover the most efficient way to execute the perfectly nested loop of an application onto

computational and memory resources of a given dataflow accelerator (execution method) remains an essential

and yet unsolved challenge. In this paper, we propose dMazeRunner ś to efficiently and accurately explore the

vast space of the different ways to spatiotemporally execute a perfectly nested loop on dataflow accelerators

(execution methods). The novelty of dMazeRunner framework is in: i) a holistic representation of the loop

nests, that can succinctly capture the various execution methods, ii) accurate energy and performance models

that explicitly capture the computation and communication patterns, data movement, and data buffering of the

different execution methods, and iii) drastic pruning of the vast search space by discarding invalid solutions

and the solutions that lead to the same cost. Our experiments on various convolution layers (perfectly nested

loops) of popular deep learning applications demonstrate that the solutions discovered by dMazeRunner are

on average 9.16× better in Energy-Delay-Product (EDP) and 5.83× better in execution time, as compared to

prior approaches. With additional pruning heuristics, dMazeRunner reduces the search time from days to

seconds with a mere 2.56% increase in EDP, as compared to the optimal solution.
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In this paper, we propose dMazeRunner (pronounced as the maze runner) ś a framework to

efficiently and accurately explore vast design space of different execution methods to execute

perfectly nested loops on dataflow accelerators. dMazeRunner includes:

Holistic representation that captures the vast space of execution methods: The dataflow

execution on the accelerator takes place by executing loop iterations spatially onto PEs and by

managing the data accesses from RF, SPM, and DRAM. So, dMazeRunner uses a representation

which features an explicit tiling of the loop-nest at these four levels. For example, explicit tiling of

a 7-deep nested loop into a 28-deep nest ensures that all variations of spatial execution and the

data reuse in RFs and SPM are succinctly captured. With the loop iteration counts (tiling factors)

and ordering of the loops as configuration parameters, the proposed representation captures the

vast space of execution methods.

Drastic pruning of the vast search space: The explicit representation of the vast space enables

dMazeRunner to systematically explore and prune the search space. dMazeRunner analyzes the

loop-nest and constructs a list of only those loop-orderings that feature unique reuse factors of

the data operands (prunes to 15 schedules from 7!=5040 orderings for a seven-deep loop-nest of

convolution kernels). Additionally, dMazeRunner considers only valid loop tiling and PE array

partitioning options. To cut down the exploration time, dMazeRunner caches the commonly invoked

routines and explores the search space with multi-threading. To reduce the search space further,

dMazeRunner can employ pruning heuristics (sub-optimal) to attain an efficient solution promptly.

For example, pruning heuristics only consider execution methods that: i) achieve high utilization

of architectural resources, ii) do not access non-contiguous data from DRAM, iii) do not require

inter-PE communication, and iv) maximize the reuse of data operands. dMazeRunner does not

preclude experienced programmers from performing directed exploration of the search and design

space, but rather enable a rapid and systematic search (within succinctly captured vast search space)

such that even domain non-experts can achieve highly efficient execution on dataflow accelerators.

Analyticalmodeling of executionmethods: dMazeRunner analyzes any given executionmethod

for a perfectly nested loop and estimates the energy consumption and execution time. dMazeRunner

explicitly models the computation and communication patterns of execution, including determining

the various data reuse factors, DMA invocations and burst size for managing non-contiguous data

in SPM, data buffering options, miss penalty, data distribution through network-on-chip (NoC), and

inter/intra-PE-group communication (for reduction operations). dMazeRunner takes architecture

specification of the dataflow accelerator as an input, which can be varied in terms of a number and

organization of PEs, the memory sizes and configurations, NoC configuration, and DMA model.

Note that we use convolution layers from deep neural network (DNN) models to explain the

background and examples and for demonstrating the search space and design space exploration

capabilities of dMazeRunner. This is because, convolution layers in DNN models feature 7-deep

loop-nest (dense than matrix multiplication or other applications), exhibiting various ways of

data reuse and spatial execution. They are widely used in deep learning and media processing

applications [1, 2, 19ś23]. However, our approach is more general and can optimize the execution

of any perfectly nested loop (featuring direct memory accesses and statically known loop bounds)

on a dataflow accelerator.

We validate the dataflow execution model of dMazeRunner against evaluations of [3, 18, 24]

for the same execution methods. The energy consumption and PE utilization achieved by our

model closely matches the model [24] (energy differs by 4.19%). Moreover, when validated against

Eyeriss architecture [3], estimation of the execution time differs by 11%. Owing to exhaustive

and superior search space exploration capabilities, for various convolution layers from popular

ResNet and ResNeXt [1, 20] applications, dMazeRunner finds execution methods that outperform

the prior techniques and reduces total EDP by 9.16× on average and total execution cycles by 5.83×.
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for I and W, 1 element for O i.e., 7 elements or 14 bytes in 16-byte RFs). Thus, each PE executes 3

times (fx_L1=1:3) and processes data from the registers. Now, when the remaining loops execute

(a total of 6 iterations of L2 loops with IVs fy_L2 and m_L2), new data is accessed from the SPM (L2

memory) and communicated to PEs via NoC. Since the operand O is invariant of fy_L2, it gets used

thrice from RFs of PEs. Thus, both the ifmaps and weights are loaded from SPM 2×3 = 6 times, while

ofmap is reused and written to SPM just twice. Now, after interchanging both the L2 loops, the

loop with IV m_L2 becomes innermost. Hence, with I being invariant of m_L2, ifmap gets reused.

Note that the execution method of Fig. 2(b) shows just one way of spatiotemporal execution and

many such variations are possible. However, when execution methods are not explicitly modeled

(e.g., in the code of Fig. 2a), a specific execution sequence is implicit, and it is impracticable to capture

and explore the variations in both the spatial execution and data reuse in memory hierarchy.

3 RELATED WORK

Dataflow accelerator architectures: Several dataflow accelerator designs are proposed recently

[2, 3, 5, 25]. Google TPU [2] is a systolic-array accelerator for DNNs and LSTMs (long short-term

memory). Chen et al. [3, 11] proposed Eyeriss architecture that efficiently executes their novel row

stationary dataflow mechanism. Cong et al. [26] used a polyhedral based analysis to generate high-

performance systolic array architectures for executing loops on FPGAs. HyPar architecture [27] is an

array of hybrid memory cube based accelerators for training DNNs. Lu et al. [5] considered various

dataflow mechanisms to execute convolutions and proposed a dataflow accelerator architecture

which can execute either of them.

Compilation techniques for loop optimizations: Although techniques of loop tiling and per-

mutation are well studied over the past few decades, they are either agnostic to hardware features or

primarily researched for off-the-shelf processors [28ś31]. Moreover, their cost functions are often

limited to the memory subsystem of a processor with an objective to optimize the data allocation

in the on-chip memory. However, minimizing DRAM accesses is not sufficient to achieve efficient

mappings for dataflow accelerators, since other factors like efficient interleaving of computation

with communication, efficient reuse of different operands, and higher resource utilization signifi-

cantly contribute to the net acceleration. In fact, due to diverse architectural features (pipelined PEs,

data buffering options, NoC configurations, memory sizes, and memory configurations), complete

modeling and optimization for the entire accelerator system are required. Furthermore, these loop

optimization techniques may require drastic pruning for exploring the optimal execution method.

For example, loop optimization techniques of [29, 32] suffer from the vast space of loop-orderings,

since up to 7!=5040 orderings (per tiling configuration) need to be explored for a 7-deep loop-nest.

Besides, an alternative to MIMD-style dataflow execution is software pipelining the loops; loop

operations of the same or consecutive iterations concurrently execute on PEs of a CGRA [33, 34].

Such an approach is beneficial to accelerating non-vectorizable loops through instruction-level par-

allelism. However, these mapping techniques were primarily evaluated for kernels with relatively

small computational or memory requirements and on considerably smaller PE arrays (16ś64 PEs)

[33, 35, 36]. In contrast, high-performance demanding kernels of gemm, convolutions, logistic re-

gressions, etc. exhibit abundant data- and thread-level parallelism and can be efficiently accelerated

on the designs with larger arrays of PEs (e.g., from 256 to 65,536) featuring larger RFs.

Explicit modeling of all execution methods: For compute- and memory-intensive loop-nests,

numerous execution methods exist for configuring tiling and ordering of the loops for their spatial

execution and for accessing the data from RFs, SPM, and DRAM. In the absence of a system to ex-

plicitly and succinctly capture the vast space of execution methods, the programmers and architects

considered specific execution methods. For example, [17, 37] tiled loop-nest once (transformed a

7-deep nest to 14-deep), which specified how accelerator accesses DRAM and buffer the data in
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Table 1. Analytical Models for Design Space Exploration of Dataflow Execution

Features
SCALE-

Sim [16]

MAESTRO

[41]

Yang et

al. [24]
dMazeRunner

Programmer intervention is not required ✓ ✗ ✓ ✓

Availability of an auto-optimizer ✗ ✗ ✓ ✓

Availability of the energy model ✗ ✓ ✓ ✓

Availability of the execution time estimation ✓ ✓ ✗ ✓

Models miss penalty (for data communication latency) ✗ ✓ ✗ ✓

Models stall cycles for reduction operation ✗ ✓ ✗ ✓

Model is applicable to applications other than DNNs ✗ ✗ ✗ ✓

Integrated support for common ML application libraries ✗ ✗ ✗ ✓

SPM. However, they lacked tiling the loops further to explicitly model the spatial execution and

RF accesses. This scenario is similar to the code of Fig. 2a, which implicitly assumed a sequence

and offered no insight about variations in the data loaded from SPM to RF and how differently PEs

can process data. Similarly, [12, 38] executed loops corresponding to ofmaps in the space, missing

out exploring many execution methods. [12, 38] maximized the psum reuse, and [3] maximized

weight reuse in RF and psum reuse in SPM and did not explore other execution methods. Likewise,

[15, 37, 39, 40] considered a batch size of N=1 images, missing the opportunities for weight reuse.

Thus, prior techniques organized the loops in certain ways and without explicit modeling of the

complete spatiotemporal execution, they lacked information about different execution methods. We

demonstrate later that without a systematic approach (like the representation used by dMazeRun-

ner) that captures vast space of the execution methods, information available about the entire space

is not comprehensive. Hence, the programmer/optimizer ends up with an inferior solution.

Pruning the search space: The space of execution methods is vast because, total options for

multi-level tiling of the loop-nest range from several hundred to thousands [39] and for each tiling

configuration, loops are reordered in numerous ways. For example, we can organize a 7-deep

loop-nest of convolution into 7! = 5040 ways [37]. Collectively, this requires a vast space to explore

(billions of execution methods!), and it has been infeasible to perform a brute-force search for

the optimal execution method. Therefore, prior techniques heuristically reduced the search. For

example, [3, 12] offered specific ways of spatiotemporal execution of convolutions, which are not

always very efficient. In exploring various tiling configurations, [37] fixed the order of specific loops,

to cut down the orderings of 6 loops from 6! = 720 to 180. Likewise, [18, 39] heuristically reduced the

space by limiting the options of tiling the loops. During FPGA design space exploration (DSE), [40]

fixed the order of innermost loops (impacts data reuse) to simplify HLS code generation, and [15, 40]

fixed a choice about which loops are spatially executed (impacts PE utilization). Chen et al. [14]

developed a machine learning algorithm, which uses simulated annealing to predict an execution

method based on the prior execution traces. Similarly, [15] employed a genetic algorithm based

optimizer. However, for these techniques, without effective pruning, the search space remained

vast. Therefore, when prior heuristics targeted only a tiny fraction of different execution methods,

the obtained solution is not necessarily optimal or even close-to-optimal.

Analytical modeling of dataflow execution: For mapping perfectly nested loops onto dataflow

accelerators and for DSE, it is necessary to determine the effectiveness of an execution method

statically. Since dataflow accelerators exhibit simple design and are explicitly managed, few works

recently developed analytical models to either estimate energy consumption or execution time

[16ś18] for DNNs. Table 1 lists the various features of such tools and their limitations. For example,

MAESTRO [41] provides an analytical model for DNNs and estimates the efficiency of an execution
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Algorithm 2: Generate_Loop_Orderinдs(Input operand_list , Output pruned_orderinдs)

1 foreach operand op in operand_list do

2 list_op_independent_IV = get_op_dependencies(op);

3 total_independent_IVs = len(list_op_independent_IV);

4 list_orderings = null; iter = 1;

5 while iter ≤ total_independent_IVs do

6 list_IVs = null; temp_list = get_combinations_IVs(list_op_independent_IV, iter );

7 foreach item in temp_list) do

8 list_permutations = get_all_permutations(item);

9 list_IVs.append(list_permutations);

10 list_IVs.remove_duplicate_items();

11 foreach item in list_IVs) do

12 temp_orderinд = prepend_dependent_IVs(item, list_op_dependent_IV);

13 order = prepend_missing_IVs_in_random_order (temp_orderinд,

list_op_independent_IVs);

14 list_orderings.append(order );

15 iter++;

16 pruned_orderings= prune_orderings_same_reuse(list_orderings);

17 return pruned_orderinдs

is 5th ordering. Thus, dMazeRunner prunes 4! = 24 orderings to just 5. Similarly, for convolution
of Fig. 4(a), dMazeRunner prunes 7!=5040 orderings to 15 orderings that feature unique reuse,
which are listed in Table 2. For given tiling factors of an execution method, collective orderings
(of L2 and L3 loops) to reuse the data while accessing SPM and DRAM are up to 15×15 instead
of 5040×5040. Note that the list of orderings (e.g., ones in Table 2) are determined statically once,
before the exploration and evaluation of execution methods begin. Furthermore, during exploration
of execution methods, for a given set of tiling factors, it is possible that one or more loops iterate(s)
just once (e.g., M_SPM=1). In such a scenario, among these 15 orderings, several orderings feature
the same reuse factors. In other words, unique reuse factors reduce from 15 orderings. Thus, during
exploration, for each set of tiling factors, dMazeRunner dynamically prunes the list of 15 orderings
(of Table 2) further.

dMazeRunner constructs the list of orderings depending on the operand being invariant of
the loops, which is determined by analyzing the indexing expressions of the operand (e.g., I is
invariant of IV m). Therefore, the proposed pruning technique is applicable to direct memory access
patterns (including affine accesses), which are commonly found in many applications. Note that in
determining orderings, a loop interchange is considered only when it is a legal transformation. The
legality can be determined by analyzing distance- and dependence-vectors for the loops [28].

4.2.2 Determining Valid Tiling Options. After multi-level tiling of a loop, TCs of the tiled loops can
be of any integer value. For example, consider a loop that iterates N=8 times. After tiling it into
4-levels, TCs of the tiled loops are N_SPATIAL, N_RF , N_SPM , and N_DRAM , which are optimization
parameters. When off-the-shelf optimizers (constraint-solvers for non-linear programming that use
simulated-annealing, newton’s method, etc.) are employed [15, 43], in each step, they randomly
select the parameter values from all possible combinations (84). For large-scale optimization prob-
lems, since the valid methods are very few (e.g., 20 out of 4096 in this example), their majority of
the search time is often spent on discarding invalid solutions. However, dMazeRunner employs a
constraint-driven pruning of the space before beginning the exploration and analytical evaluation
of execution methods, by considering only valid tiling options (e.g., 20 instead of 84). For example,
it ensures that for tiling of a loop into four loops, the total iterations executed by the tiled loops
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Table 2. Unique Data Reuse Factors for Accessing Lower Memory

Schedule Ifmap Weights Ofmap

{..., m} M 1 1

{..., m, ox} 1 Ox 1

{..., m, oy} 1 Oy 1

{..., m, n} 1 N 1

{..., m, oy, ox} 1 Oy × Ox 1

{..., m, n, ox} 1 N × Ox 1

{..., m, n, oy} 1 N × Oy 1

{..., n, oy, ox} 1 N × Oy × Ox 1

{..., m, fx} 1 1 Fx

{..., m, fy} 1 1 Fy

{..., m, c} 1 1 C

{..., m, fy, fx} 1 1 Fy × Fx

{..., m, c, fx} 1 1 C × Fx

{..., m, c, fy} 1 1 C × Fy

{..., c, fy, fx} 1 1 C × Fy × Fx

match the functionality of the loop-nest, i.e.,

cons : N_SPATIAL · N_RF · N_SPM · N_DRAM = N

In general, for any loop index-variable iv,

TC[base][iv] = TC[SPATIAL][iv] ·TC[RF ][iv] ·TC[SPM][iv] ·TC[DRAM][iv]

dMazeRunner also ensures that the pruning is subjected to constraints from architecture resources
(PEs, RF, and SPM). For example, data to be allocated by an execution method (section 4.3.1) must
fit into RF of a PE and in multi-buffer SPM, i.e.,

cons :
∑total_Operands
op=1 data_alloc[RF ][op] ≤ RF_size

cons :
∑total_Operands
op=1 data_alloc[SPM][op] ≤ SPM_size

cons :
∏total_IV s

i=1 TC[SPATIAL][IV i] ≤ Total_PEs

For example, when RF tiling factors <N_RF, M_RF, C_RF, Oy_RF, Ox_RF, Fy_RF, Fx_RF>are selected as
<1,1,1,1,1,1,3>, allocated registers for weights are data_alloc[RF][W] = M_RF×C_RF×Fy_RF×Fx_RF

= 3. Total allocated registers are 3+3+1 = 7 (for I, W, and O), and this is a valid method for an
8-element RF (example of Fig. 2). However, a solution with RF tiling factors <2,1,1,1,1,1,3> is invalid
and not considered for the exploration, since it allocates 6+3+2 = 11 elements. Thus, the constraints
discard invalid tiling options and with eliminating numerous orderings that feature the same costs,
dMazeRunner drastically prunes the space. Hence, it enables a brute-force exploration of execution
methods, achieving the optimal solution.

4.2.3 Pruning the Space with Heuristics to Rapidly Achieve Close-to-Optimal Solution. Depending
on the depth and iteration counts of the loops in the application, the exhaustive exploration may
take even several hours. One strategy can be to pre-compile the application for common target
architectures, where the optimal execution method is explored just once. However, to allow re-
compiling applications by users and rapid design space explorations, the optimizer should be able
to generate a highly efficient solution promptly. So, dMazeRunner embeds a pruning heuristic that
achieves close-to-optimal solutions in second(s) through the following strategies:
OPT 1) Targeting execution methods featuring high resource utilization: dMazeRunner
explores only those tiling factors that highly utilize (e.g., 60%) RFs, SPM, and PEs. High utilization
improves data reuse and reduces DRAM accesses. Note that very high utilization does not guarantee
an optimal solution, as it may not effectively interleave computation and communication cycles.
OPT 2) Discard executionmethods requiring severalmemory accesses of non-contiguous
data: Some IVs of loops correspond to a minor dimension of tensors (fy and fx forW [m][c][fy][fx]).
For such IVs, when tiling factors of L3 loops (i.e., Fy_DRAM) are greater than 1, it requires many DMA

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.



dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:13

invocations with small burst-sizes. Thus, it results in higher DMA cycles and may introduce the
miss penalty for SPM management. So, dMazeRunner discards such execution methods which are
susceptible to higher execution time.
OPT 3) Discard execution methods that require inter-PE communication: Often a read +
write (r+w) operand (O) is an invariant of few IVs (c, fy, and fx). If loops corresponding to these
IVs execute spatially, it requires inter-PE communication (for reduction), which may introduce stall
cycles and often costs higher energy. Therefore, to avoid inter-PE communication, dMazeRunner
decides not to execute such loops in space. This strategy discards several dataflow mechanisms
(e.g., weight-stationary, row-stationary).
OPT4) Targeting executionmethods thatmaximize the reuse of operands:Although dMaze-
Runner determines all loop-orderings featuring unique reuse factors, space can be pruned to few
orderings that maximize the data reuse. For example, in Table 2, only schedules #8 and #15 maximize
the reuse of weights and ofmap respectively. Thus, schedules #2ś#7 and #9ś#14 are discarded.
OPT5) Leveraginghardware features of compilationplatform: Implementation of dMazeRun-
ner framework integrates - (i) caching of the frequently used analysis routines and commonly
referenced hash tables (e.g., loop orderings), and (ii) concurrently exploring various execution
methods and evaluating their efficacy with multi-threading. Thus, on modern multi-core processors,
the exploration time is significantly reduced. Note that OPT4 and OPT5 do not impact optimality
and can be used for an exhaustive search.

4.3 Dataflow Execution Model

4.3.1 Determining Data Allocation: For the given tiling factors of an execution method, the data to
be allocated in RF of a PE, in SPM, and the data communicated to the PE array is determined as:

data_alloc[option][op] = evaluate_index_expr (op, e f f ective_TC)

where, for each iv in the list IV,

e f f ective_TC[iv] =




TC[RF ][iv] ; option = RF

TC[Spatial][iv] ×TC[RF ][iv] ; option = PE_Array

TC[Spatial][iv] ×TC[RF ][iv] ×TC[SPM][iv] ; option = SPM

For example, to determine the data allocated in RFs of PEs, we need

e f f ective_TC[iv] = TC[RF ][iv] i.e.,

e f f ective_TC[n] = TC[RF ][n] = N_RF , e f f ective_TC[f y] = TC[RF ][f y] = Fy_RF , and so forth.

Then, data_alloc[RF ][W ] is calculated by evaluating the indexing expression for operandW where,
the value for index iv is used as e f f ective_TC[iv]. Thus, after analyzing index expressions of
W[m][c][fy][fx], we get

data_alloc[RF ][W ] = e f f ective_TC[m] × e f f ective_TC[c] × e f f ective_TC[f y] × e f f ective_TC[f x]

= M_RF ×C_RF × Fy_RF × Fx_RF

When the RF tiling factors are <1,1,1,1,1,1,3>, registers allocated in a PE for W are determined
as 1×1×1×3 = 3. Similarly, after analyzing indexing expressions ofW , the model determines the
weights communicated to PE array as

data_alloc[PE_Array][W ] = [M_SPATIAL ×M_RF ] × [C_SPATIAL ×C_RF ]×

[Fy_SPATIAL × Fy_RF ] × [Fx_SPATIAL × Fx_RF ]

4.3.2 Estimating Energy Consumption: Total energy for executing the nested loop consists of the
energy consumed in RF accesses, in performing useful operations on PEs, in communicating data
via interconnect, and in accessing the data from SPM and DRAM, i.e.,

Total_Enerдy = e_Ops + e_RF + (comm_enerдy_1_SPM_pass × total_SPM_pass) + e_DRAM

In our execution model of the dataflow accelerator, during each loop iteration, an operand is
read/written from/to RF of a PE for the execution of an operation, i.e.,

total_loop_iterations =
∏total_IV s

i=1 TC[base][IVi ]
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Table 3. Notation for Analytical Modeling of Dataflow Execution

Term Interpretation

IV=[’n’,..,’fx’] List of loop index variables (from outermost to innermost loop).

total_IVs Length of list IV (same as depth of the loop-nest).

level Either of {Spatial, RF, SPM, DRAM, base}.

TC[level][iv]
2D array of loop iteration counts.

For example, TC[RF][’n’] refers to N_RF = 4.

effective_TC[iv]
Vector of effective loop Trip-Counts per iv .

Calculated to find the data allocation.
data_alloc[option][op] option = {RF, PE_Array, SPM}; op is a data operand.

Data_Reuse[level][op] level = {SPM, DRAM}; op is a data operand.

Energy[option]
option = {RF, Operation_Type, NoC, SPM, DRAM}. Operation_Type

corresponds to operations supported by PEs (e.g., MAC, ADD).

e_RF = total_loop_iterations ×
∑total_Operands
op=1 Enerдy[RF ]

In the example of Fig. 2(b), there are 2 read operands and 1 read+write (r+w) operand. So, the cost

for RF accesses during each loop iteration is approximated as 4×Enerдy[RF ]. Energy (pJ) of various
operations and for accessing data elements from memory are obtained from the literature [11, 18]
and provided as an input to the model. Moreover, energy for operations performed by PEs is:

e_Ops = total_loop_iterations ×
∑total_Operations
opr=1 Enerдy[Operation_Type[opr ]]

In the example of Fig. 4(b), just 1 Multiply-and-ACcumulate (MAC) operation is performed on a

PE in executing a loop iteration. Our model currently does not support loops with conditional
statements. However, since each loop iteration sequentially executes on a PE, we plan to extend
the model by taking the maximum latency and energy consumption of the true and false paths.
Based on tiling factors for L1 loops, each PE executes a certain number of loop iterations to

process the data from allocated registers. We refer it as one RF pass. During an RF pass, while PEs
process data from RFs, new data for the next RF pass can be accessed from SPM and communicated
to PEs via an interconnect network.

enerдy_access_SPM_1_RF_pass[op] = data_alloc[PE_array][op] × Enerдy[SPM]

enerдy_NOC_1_RF_pass[op] = data_alloc[RF ][op] × p[op] × Enerдy[NOC]

enerдy_1_RF_pass[op] = enerдy_NOC_1_RF_pass[op] + enerдy_access_SPM_1_RF_pass[op]

Although total data communicated to PE array is determined by data_alloc[PE_array], many
PEs may process the same data. We model such spatial reuse by finding the total PEs that read/write
the same operand. If an operand op belongs to a write operation, we consider only those PEs that
produce the outcome. Thus,

p[op] =

{∏total_IV s
i=1 TC[Spatial][IVi ] ; op belongs to read operation

∏len(l ist_dependent_IV [op])
i=1 TC[Spatial][list_dependent_IV [op][i]] ; op belongs to write operation

Based on the ordering of the L2 loops (that correspond to SPM accesses), we determine the reuse
of data operands for the consecutive RF passes and find communication energy for 1 SPM pass.

comm_energy_1_SPM_pass =
∑total_operands
op=1 energy_1_RF_pass[op] × (total_RF_pass ÷Data_Reuse[SPM][op])

After determining the data allocated in SPM (processed in 1 SPM pass) and the reuse of the data in
SPM, we determine the energy consumption for communicating data from DRAM as follows:

e_DRAM=
∑total_operands
op=1 data_alloc[SPM][op]× Energy[DRAM]× (total_SPM_pass÷Data_Reuse[DRAM][op])

4.3.3 Estimating Execution Time: During processing the data in a RF pass, PEs execute certain
number of iterations and perform all operations within each loop iteration. So, estimated cycles are

cycles_Use f ulOps = loop_iterations_RF_pass × latency_1_loop_iteration
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loop_iterations_RF_pass =
∏total_IV s

i=1 TC[RF ][IV i]

latency_1_loop_iteration =
∑total_operations
opr=1 l

l =

{
1 ; if PE is pipelined

latency[operationopr ] ; PE is nonpipelined

During an RF pass, while PEs process data from RFs, new data for the next RF pass can be accessed
from SPM and communicated to PEs via interconnect. This interleaving of the communication
latency with the computation being performed by PEs can be either achieved by double-buffering
the RFs or through software scheduling scheme. If no such support is available, the PE array
completely stalls to obtain the necessary data from SPM for the next RF pass. Total cycles required
to communicate operands during a RF pass is:

comm_cycles_operand[op] = data_alloc[PE_array][op]/B

where B is the width of the data bus for interconnect. Depending on the ordering of L2 loops (that
correspond to accessing the data from SPM), some operands are not reused after an RF pass and
communicated between SPM and the PE array at every RF pass. However, some operand(s) can be

reused and are communicated at every xth RF pass. For example, for an ordering where the loop
with index variable c_L2 is innermost, the ofmapO (or the psum) is reused for C_SPM=4 consecutive
RF passes. Taking that into account, we determine the communication latency as:

comm_cycles[RF_pass#][network#] =map_operands_to_NOC(comm_cycles_operand,Data_Reuse[SPM])

In our default setup, we support popular single-cycle multi-cast interconnect. The networks to
communicate read and write operands between SPM and PE array are three and one, respectively
[3, 18]. There is one network to communicate r+w operands among PEs (used for reduction
operations). Often the total operands in the loop-nest are few and are simultaneously communicated
to/from the PEs via interconnect (including executing common kernels like matrix multiplication,
convolution, regression, and sequence models). If not, they need to be sequentially broadcast to
PEs via available interconnect. For example, when the total data operands are more than available
networks, the communication can be scheduled onto networks via a round-robin mechanism. In
fact, for performing design space exploration through dMazeRunner, architects can extend the
model to accommodate various interconnect topologies. Total cycles required to process the data
of SPM (1 SPM pass) are:

cycles_SPM_pass =

total_RF_pass∑

i=1

max(cycles_Use f ulOps, max
1≤j≤total_networks

comm_cycles[i][j])

Usually, the execution requires several SPM passes. During each SPM pass, the PE array processes
the data from one buffer of SPM, and DMA controller accesses DRAM for the data of another buffer.
After calculating the size of the data allocated in SPM, we determine total DMA invocations required
and the burst size (of contiguous data) per invocation. To calculate DMA cycles, we consider a
latency model of Cell processors [44] which featured SPMs, i.e.,

DMA_Model(u) = 291 (initiation latency) + 0.24 × u; u: burst width (bytes)

cont_data_alloc_spm[op],DMA_initiations[op] ← data_alloc[SPM][op]

DMA_cycles[op] = DMA_Model(cont_data_alloc_spm[op]) × DMA_initiations[op] × (accel_f req ÷ dma_f req)

Based on the data being reused in consecutive SPM passes, we calculate the cycles required for
accessing the DRAM during each SPM pass as follows:

DRAM_access_cycles[SPM_pass #] =
∑total_operands
op=1 DMA_cycles[op]

i f (SPM_pass# mod Data_Reuse[DRAM][op] == 0)

total_cycles =

total_SPM_pass∑

i=1

max(DRAM_access_cycles[i], cycles_SPM_pass)

Note: Implementation of our execution model deals with the various complex scenarios including:
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better execution. The execution methods obtained by prior approaches were not able to adapt to
such dynamics of loop characteristics. Thus, prior techniques neither ensured very high resource
utilization, nor efficient reuse of all data operands. So, even if they somehow obtained a reasonable
solution, a scope for further reduction in both execution time and energy remained. With holistic
representation, dMazeRunner captured the vast space of execution methods and after drastically
pruning the search, dMazeRunner made the brute-force exploration feasible. Consequently, it
achieved the optimal execution methods that outperformed prior techniques.
Observation (ii) dMazeRunner generated execution methods achieved various data reuses at different
accelerator resources and minimized DRAM accesses for various operands:With a certain optimization
strategy, prior heuristics leveraged reuse of specific operands. For example, SOC andMOC maxi-
mized psum reuse at RF and SPM levels, while RS maximized weight reuse in RFs and psum reuse
in SPM. For executing conv5_1 layer with Oy|Ox mechanism, SOC allocated 28kB ifmaps, 18kB
weights, and 1.5kB psum in SPM, which were accessed from DRAM 512, 512, and 128 times, respec-
tively. This resulted in DRAM access of 14.74MB, 9.44MB, and 0.2MB, respectively. However, the
execution method of dMazeRunner allocated 14.06kB of ifmaps, 18kB weights, and 12.25kB psum in
SPM, which were accessed from DRAM 256, 256, and 16 times. So, dMazeRunner accessed DRAM for
3.68MB ifmaps, 4.7MB weights, and 0.2MB psum. Thus, dMazeRunner obtained solution exhibited
a better choice of tiling factors and minimized total DRAM accesses for ifmaps by 4× and 2× for
weights. In fact, it maximized ifmap and filter reuse spatially, convolution reuse in RF, and psum reuse
at RF and SPM levels. Similarly, for executing conv5_2 layer with M|Cmechanism, it reduced DRAM
accesses by 16× for ofmap, as compared to WS2. By significantly reusing all operands, execution
methods of dMazeRunner minimized DRAM accesses, reducing both the energy and execution
cycles. Thus, although the acceleration gains during chip execution can differ from estimations,
through better data reuse, reduced DRAM accesses, and efficient interleaving of computation with
communication, dMazeRunner achieved solutions can outperform prior heuristics.
Observation (iii)With holistic exploration, dMazeRunner achieved the optimal solutions which yield
similar EDP and execution time for various dataflow mechanisms: Fig. 9(a) shows that for various
mechanisms, the achieved solutions result in a very similar EDP and execution time (note the dotted
line). This is because: (i) for efficient acceleration, often more than two loops are spatially executed
(e.g.,M and C along with Oy and Ox) and hence, two mechanisms may attain the same solution,
and (ii) highly efficient solutions share common characteristics like high utilization of resources,
maximized reuse of various operands, efficient interleaving of computation with communication
(i.e., minimum to no miss penalty). Therefore, for individual mechanisms, the achieved optimal
solutions yield similar results. Moreover, Fig. 9(b) depicts the EDP and execution cycles for 17 more
mechanisms and demonstrates similar results. However, when reduction operations are performed
through inter-PE communication, it results in higher cycles in our model. This is because, we
targeted one single-cycle multi-cast network for r+w operands instead of a mesh-style interconnect.
This is reflected in a relatively high execution time and EDP for mechanisms like Fy|Fx, C|Fx, and
Ox|Fy. We can observe such difference at least for conv1 layer, which consisted of larger feature
maps. Note that none of the prior heuristics pruned the space such drastically that a brute-force
algorithm is applied to achieve the optimal solutions. Furthermore, no prior technique achieved
the optimal solutions that minimize EDP while using a variety of dataflow mechanisms. Therefore,
Fig. 9(b) does not feature any evaluations of prior works.

6.2 dMazeRunner Reduces Energy consumed for Dataflow Execution up to 30.84%

Recently [18] proposed an auto-optimizer [24] to reduce the energy consumption of DNN dataflow
execution. We executed the various convolution layers of ResNet with [24] and obtained optimized
executionmethods.We evaluate themwith the solutions achieved by dMazeRunner and demonstrate
the impact of holistic exploration.
Observation (iv) Drastic pruning enabled exhaustive exploration for achieving the optimal execution
methods: Fig. 10 shows the energy consumption of optimized methods obtained by [24] and that of
dMazeRunner. Here, the energy of a convolution layer is obtained from the best outcome among
all execution methods explored. Execution methods achieved by dMazeRunner outperformed [24]
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