dMazeRunner: Executing Perfectly Nested Loops on
Dataflow Accelerators

SHAIL DAVE, Arizona State University, US

YOUNGBIN KIM, Yonsei University, South Korea

SASIKANTH AVANCHA, Parallel Computing Lab, Intel Labs, India
KYOUNGWOO LEE, Yonsei University, South Korea

AVIRAL SHRIVASTAVA, Arizona State University, US

Dataflow accelerators feature simplicity, programmability, and energy-efficiency and are visualized as a
promising architecture for accelerating perfectly nested loops that dominate several important applications,
including image and media processing and deep learning. Although numerous accelerator designs are being
proposed, how to discover the most efficient way to execute the perfectly nested loop of an application onto
computational and memory resources of a given dataflow accelerator (execution method) remains an essential
and yet unsolved challenge. In this paper, we propose dMazeRunner — to efficiently and accurately explore the
vast space of the different ways to spatiotemporally execute a perfectly nested loop on dataflow accelerators
(execution methods). The novelty of dMazeRunner framework is in: i) a holistic representation of the loop
nests, that can succinctly capture the various execution methods, ii) accurate energy and performance models
that explicitly capture the computation and communication patterns, data movement, and data buffering of the
different execution methods, and iii) drastic pruning of the vast search space by discarding invalid solutions
and the solutions that lead to the same cost. Our experiments on various convolution layers (perfectly nested
loops) of popular deep learning applications demonstrate that the solutions discovered by dMazeRunner are
on average 9.16X better in Energy-Delay-Product (EDP) and 5.83x better in execution time, as compared to
prior approaches. With additional pruning heuristics, dMazeRunner reduces the search time from days to
seconds with a mere 2.56% increase in EDP, as compared to the optimal solution.

CCS Concepts: » Hardware — Hardware accelerators; Hardware-software codesign; - Computer sys-
tems organization — Reconfigurable computing; « Software and its engineering — Compilers;

Additional Key Words and Phrases: Coarse-grained reconfigurable array, Dataflow, Deep neural networks,
Loop optimization, Energy-efficiency, Systolic arrays, Mapping, Analytical model, Design space exploration

ACM Reference Format:

Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shrivastava. 2019. dMazeRunner:
Executing Perfectly Nested Loops on Dataflow Accelerators. ACM Trans. Embedd. Comput. Syst. 18, 5s, Article 70
(October 2019), 24 pages. https://doi.org/10.1145/3358198

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019.

Authors’ addresses: Shail Dave, Compiler Microarchitecture Lab, School of Computing, Informatics, and Decision Sys-
tems Engineering, Arizona State University, Tempe, AZ, US, Shail.Dave@asu.edu; Youngbin Kim, Yonsei University,
Seoul, South Korea, ybkim@yonsei.ac.kr; Sasikanth Avancha, Parallel Computing Lab, Intel Labs, Bangalore, India,
sasikanth.avancha@intel.com; Kyoungwoo Lee, Yonsei University, Seoul, South Korea, kyoungwoo.lee@yonsei.ac.kr;
Aviral Shrivastava, Compiler Microarchitecture Lab, School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ, US, aviral.shrivastava@asu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/10-ART70 $15.00

https://doi.org/10.1145/3358198

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:2 S. Dave et al.

for i=1:T Each PE of the array
fOJE J=}1(_iK processes a certain subset of
or K= the computation graph in a

specific sequence.

for 1=1:L {
| ...
\)

Flattened Computation Graph

comm_data(&SPM, &RF, #bytes)

| Scratch-Pad Memory |
f dma_load(&DRAM, &SPM,

| DRAM (Off-Chip) | #burst_size)

Fig. 1. Programming the dataflow accelerators requires explicit management of computational, memory, and
communication resources.

1 INTRODUCTION

At the heart of several important-to-accelerate applications, e.g., multimedia, imaging, and deep
learning are perfectly nested loops, which are often compute- and memory-intensive. A perfectly
nested loop is a nested loop, where all the assignment instructions are inside the innermost loop.
For example, the convolution kernel (that executes for the majority of execution time in ResNeXt
[1]) is a 7-deep perfectly nested loop. Variations of dataflow accelerators, like systolic arrays (e.g.,
Tensor Processing Unit), coarse-grained reconfigurable arrays (CGRAs), and spatial architectures are
repeatedly being demonstrated as a promising accelerator for these power and performance-critical
loops [2-10]. As shown in Fig. 1, dataflow accelerators, in general, comprise an array of processing
elements aka PEs (where PEs are function-units with little local control) and non-coherent scratchpad
memories (SPM) that allow concurrent execution and explicit data management. While the simpler
design makes the dataflow accelerator power-efficient, with adequate data prefetching and high
data reuse at scratchpad and register file levels, PE array can be engaged continuously in useful
computations, which results in high throughput and energy efficiency [3, 5].

However, how to discover the most efficient way to execute a perfectly nested loop of an
application onto the computational and memory resources of a given dataflow accelerator (execution
method) remains an essential and yet unsolved challenge. This is because, the joint search space of
hardware design of the accelerator, combined with the ways to execute the loops both spatially
and temporally on it, is vast. In other words, not only the architecture can be configured in many
different ways, but for each of those configurations, the number of ways to answer questions like -
how to divide the loop execution among PEs, which PEs processes what subset of the data and in
which sequence, when to schedule the data movement between memory-levels of the accelerator
(for data prefetching), and how much buffering to do in SPM - are numerous.

We refer to the different ways in which a perfectly nested loop can be executed on the dataflow
accelerator as execution methods. When a programmer chooses a way of spatiotemporal execution of
the loop-nest, that leads to a particular execution method. — Execution methods significantly impact
the computation and communication patterns within the accelerator and therefore, the power and
performance of the execution. — If they are not optimized/chosen well, acceleration benefits may
even be negative!. In the absence of a systematic and explicit way to capture and explore vast
design space, prior techniques have considered only certain execution methods (like row-stationary
[11], output-stationary [12, 13] mechanisms for convolutions). Hence, they end up exploring only
a tiny fraction of the space, during manual tuning [6] or randomization-based search [14, 15].
Furthermore, to meaningfully search the vast design space, an accurate analytical model (which
can determine the goodness of an execution method) is required. Although [16-18] developed
analytical models, they either lack estimation of the execution time or energy consumption and are
specific to DNNs.

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:3

In this paper, we propose dMazeRunner (pronounced as the maze runner) — a framework to
efficiently and accurately explore vast design space of different execution methods to execute
perfectly nested loops on dataflow accelerators. dMazeRunner includes:

Holistic representation that captures the vast space of execution methods: The dataflow
execution on the accelerator takes place by executing loop iterations spatially onto PEs and by
managing the data accesses from RF, SPM, and DRAM. So, dMazeRunner uses a representation
which features an explicit tiling of the loop-nest at these four levels. For example, explicit tiling of
a 7-deep nested loop into a 28-deep nest ensures that all variations of spatial execution and the
data reuse in RFs and SPM are succinctly captured. With the loop iteration counts (tiling factors)
and ordering of the loops as configuration parameters, the proposed representation captures the
vast space of execution methods.

Drastic pruning of the vast search space: The explicit representation of the vast space enables
dMazeRunner to systematically explore and prune the search space. dMazeRunner analyzes the
loop-nest and constructs a list of only those loop-orderings that feature unique reuse factors of
the data operands (prunes to 15 schedules from 7!=5040 orderings for a seven-deep loop-nest of
convolution kernels). Additionally, dMazeRunner considers only valid loop tiling and PE array
partitioning options. To cut down the exploration time, dMazeRunner caches the commonly invoked
routines and explores the search space with multi-threading. To reduce the search space further,
dMazeRunner can employ pruning heuristics (sub-optimal) to attain an efficient solution promptly.
For example, pruning heuristics only consider execution methods that: i) achieve high utilization
of architectural resources, ii) do not access non-contiguous data from DRAM, iii) do not require
inter-PE communication, and iv) maximize the reuse of data operands. dMazeRunner does not
preclude experienced programmers from performing directed exploration of the search and design
space, but rather enable a rapid and systematic search (within succinctly captured vast search space)
such that even domain non-experts can achieve highly efficient execution on dataflow accelerators.
Analytical modeling of execution methods: dMazeRunner analyzes any given execution method
for a perfectly nested loop and estimates the energy consumption and execution time. dMazeRunner
explicitly models the computation and communication patterns of execution, including determining
the various data reuse factors, DMA invocations and burst size for managing non-contiguous data
in SPM, data buffering options, miss penalty, data distribution through network-on-chip (NoC), and
inter/intra-PE-group communication (for reduction operations). dMazeRunner takes architecture
specification of the dataflow accelerator as an input, which can be varied in terms of a number and
organization of PEs, the memory sizes and configurations, NoC configuration, and DMA model.

Note that we use convolution layers from deep neural network (DNN) models to explain the
background and examples and for demonstrating the search space and design space exploration
capabilities of dMazeRunner. This is because, convolution layers in DNN models feature 7-deep
loop-nest (dense than matrix multiplication or other applications), exhibiting various ways of
data reuse and spatial execution. They are widely used in deep learning and media processing
applications [1, 2, 19-23]. However, our approach is more general and can optimize the execution
of any perfectly nested loop (featuring direct memory accesses and statically known loop bounds)
on a dataflow accelerator.

We validate the dataflow execution model of dMazeRunner against evaluations of [3, 18, 24]
for the same execution methods. The energy consumption and PE utilization achieved by our
model closely matches the model [24] (energy differs by 4.19%). Moreover, when validated against
Eyeriss architecture [3], estimation of the execution time differs by 11%. Owing to exhaustive
and superior search space exploration capabilities, for various convolution layers from popular
ResNet and ResNeXt [1, 20] applications, dMazeRunner finds execution methods that outperform
the prior techniques and reduces total EDP by 9.16X on average and total execution cycles by 5.83%.

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:4 S. Dave et al.

for m=1:2 % access DRAM once (no L3 loops)
for oy=1:3 dma () % prefetch data in 256B SPM
for ox=1:3 for m L2=1:2
for fy=1:3 <: for fy L2=1:3
fog [f}]iz[l: ?[- ‘ access SPM and comm NoC () ;
m] [oy] [ox] += —
I[oy+fy-1] [ox+fx-1] T datain RFis I: 1x3
x Wm] [fy] [£x]; for oy S=1:3 W: 1x1x3, O: 1x1x1
for ox S=1:3
Oyx0x=3x3 =
ifma FyxFx ofmap Ofmaps O[m_L2] [oy_S] [ox_S]+=
P =3x3 channell Execute Wim L2] [fy L2][fx L1]x

«—— Ox_Spatial=3 —

Spatially I[oy S+fy L2-1]
* = Oy=3 [ox_S+fx L2-1];

. mMm=1 Ox=3

5x5
m=2 ofmap
filter channel2
(a)

Fig. 2. (a) Convolution of 55 ifmap with 3x3 weights of 2 filters. (b) An execution method, which executes
3x3 ofmap on different PEs of the dataflow accelerator.

Furthermore, after employing pruning heuristics, dMazeRunner cuts down the exploration space
by over 9000X (reducing the optimization search time from days to few seconds), with only 2.56%
increase in EDP, as compared to the optimal solution.

2 SPATIOTEMPORAL EXECUTION OF LOOPS ON DATAFLOW ACCELERATORS

The efficiency of executing a perfectly nested loop onto a dataflow accelerator depends on the
execution method which defines the spatiotemporal organization of loop iterations. If all loop
iterations are processed simultaneously on different PEs, then execution would finish in one shot.
However, due to a limited number of PEs, only some loops are (partially) executed in space, and
remaining loops iterate temporally on each PE. For example, consider the loop-nest of Fig. 2(a),
which is a simplified convolution kernel. It shows that a convolution of a 5X5 input feature map
(ifmap) with 3x3 weights of two filters yields two output channels of 3X3 output feature map
(ofmap). All data elements are of 16 bits. Now, Fig. 2(b) shows one execution method to map the nest
of Fig. 2(a) onto a sample dataflow accelerator consisting 3X3 PEs, where each PE accesses own 16B
RF and a 256B shared SPM. For example, executing the loop with an index variable (IV) ox in space
requires a row of 3 PEs in the accelerator. Similarly, spatially executing both the loops with IVs ox
and oy requires 3x3 PEs. Here, each PE computes a unique ofmap value O(m_L2,0y_S, 0x_S) while
temporally executing loops with IVs m, fx, and fy. PE(1,1) corresponds to oy_S=1 and ox_S=1.
So, PE(1,1) processes O(m_L2,1, 1) and requires ifmaps I(1,1)-1(3,3) and all the weights W(1,1,1)—
W(2,3,3). In contrast, if some other execution method corresponds to executing loops with IVs fx
and fy in space, then each PE will maintain different weights and will generate a partial outcome.
Thus, selecting which loops are (completely or in part) executed in the space determines
what subset of the data gets processed by each PE.

The organization of the loops that execute temporally on each PE determines the ex-
act sequence of processing the data and thus, significantly impacts the data reuse and data
management of RFs and SPM. For example, for the execution method of Fig. 2(b), loops with IVs m,
fy, and fx execute temporally. The loop corresponding to the columns of the filters (fx) executes at
level 1. This implies that the data corresponding to the loop with IV fx_L1 is buffered into RFs (L1
memory) of PEs. The execution method allocated data into RFs at maximum capacity (3 elements

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:5

for I and W, 1 element for O i.e., 7 elements or 14 bytes in 16-byte RFs). Thus, each PE executes 3
times (fx_L1=1:3) and processes data from the registers. Now, when the remaining loops execute
(a total of 6 iterations of L2 loops with IVs fy_L2 and m_L2), new data is accessed from the SPM (L2
memory) and communicated to PEs via NoC. Since the operand 0 is invariant of fy_L2, it gets used
thrice from RFs of PEs. Thus, both the ifmaps and weights are loaded from SPM 2x3 = 6 times, while
ofmap is reused and written to SPM just twice. Now, after interchanging both the L2 loops, the
loop with IV m_L2 becomes innermost. Hence, with I being invariant of m_L2, ifmap gets reused.

Note that the execution method of Fig. 2(b) shows just one way of spatiotemporal execution and
many such variations are possible. However, when execution methods are not explicitly modeled
(e.g., in the code of Fig. 2a), a specific execution sequence is implicit, and it is impracticable to capture
and explore the variations in both the spatial execution and data reuse in memory hierarchy.

3 RELATED WORK

Dataflow accelerator architectures: Several dataflow accelerator designs are proposed recently
[2, 3,5, 25]. Google TPU [2] is a systolic-array accelerator for DNNs and LSTMs (long short-term
memory). Chen et al. [3, 11] proposed Eyeriss architecture that efficiently executes their novel row
stationary dataflow mechanism. Cong et al. [26] used a polyhedral based analysis to generate high-
performance systolic array architectures for executing loops on FPGAs. HyPar architecture [27] is an
array of hybrid memory cube based accelerators for training DNNs. Lu et al. [5] considered various
dataflow mechanisms to execute convolutions and proposed a dataflow accelerator architecture
which can execute either of them.

Compilation techniques for loop optimizations: Although techniques of loop tiling and per-
mutation are well studied over the past few decades, they are either agnostic to hardware features or
primarily researched for off-the-shelf processors [28-31]. Moreover, their cost functions are often
limited to the memory subsystem of a processor with an objective to optimize the data allocation
in the on-chip memory. However, minimizing DRAM accesses is not sufficient to achieve efficient
mappings for dataflow accelerators, since other factors like efficient interleaving of computation
with communication, efficient reuse of different operands, and higher resource utilization signifi-
cantly contribute to the net acceleration. In fact, due to diverse architectural features (pipelined PEs,
data buffering options, NoC configurations, memory sizes, and memory configurations), complete
modeling and optimization for the entire accelerator system are required. Furthermore, these loop
optimization techniques may require drastic pruning for exploring the optimal execution method.
For example, loop optimization techniques of [29, 32] suffer from the vast space of loop-orderings,
since up to 7!=5040 orderings (per tiling configuration) need to be explored for a 7-deep loop-nest.
Besides, an alternative to MIMD-style dataflow execution is software pipelining the loops; loop
operations of the same or consecutive iterations concurrently execute on PEs of a CGRA [33, 34].
Such an approach is beneficial to accelerating non-vectorizable loops through instruction-level par-
allelism. However, these mapping techniques were primarily evaluated for kernels with relatively
small computational or memory requirements and on considerably smaller PE arrays (16-64 PEs)
[33, 35, 36]. In contrast, high-performance demanding kernels of gemm, convolutions, logistic re-
gressions, etc. exhibit abundant data- and thread-level parallelism and can be efficiently accelerated
on the designs with larger arrays of PEs (e.g., from 256 to 65,536) featuring larger RFs.

Explicit modeling of all execution methods: For compute- and memory-intensive loop-nests,
numerous execution methods exist for configuring tiling and ordering of the loops for their spatial
execution and for accessing the data from RFs, SPM, and DRAM. In the absence of a system to ex-
plicitly and succinctly capture the vast space of execution methods, the programmers and architects
considered specific execution methods. For example, [17, 37] tiled loop-nest once (transformed a
7-deep nest to 14-deep), which specified how accelerator accesses DRAM and buffer the data in

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:6 S. Dave et al.

Table 1. Analytical Models for Design Space Exploration of Dataflow Execution

Features Ssl(rjnA[Lllz-] MA[IiSl';‘RO Zimé:]t dMazeRunner
Programmer intervention is not required X
Availability of an auto-optimizer X X
Availability of the energy model X
Availability of the execution time estimation X
Models miss penalty (for data communication latency) X X
Models stall cycles for reduction operation X X
Model is applicable to applications other than DNNs X X X
Integrated support for common ML application libraries X X X

SPM. However, they lacked tiling the loops further to explicitly model the spatial execution and
RF accesses. This scenario is similar to the code of Fig. 2a, which implicitly assumed a sequence
and offered no insight about variations in the data loaded from SPM to RF and how differently PEs
can process data. Similarly, [12, 38] executed loops corresponding to ofmaps in the space, missing
out exploring many execution methods. [12, 38] maximized the psum reuse, and [3] maximized
weight reuse in RF and psum reuse in SPM and did not explore other execution methods. Likewise,
[15, 37, 39, 40] considered a batch size of N=1 images, missing the opportunities for weight reuse.
Thus, prior techniques organized the loops in certain ways and without explicit modeling of the
complete spatiotemporal execution, they lacked information about different execution methods. We
demonstrate later that without a systematic approach (like the representation used by dMazeRun-
ner) that captures vast space of the execution methods, information available about the entire space
is not comprehensive. Hence, the programmer/optimizer ends up with an inferior solution.
Pruning the search space: The space of execution methods is vast because, total options for
multi-level tiling of the loop-nest range from several hundred to thousands [39] and for each tiling
configuration, loops are reordered in numerous ways. For example, we can organize a 7-deep
loop-nest of convolution into 7! = 5040 ways [37]. Collectively, this requires a vast space to explore
(billions of execution methods!), and it has been infeasible to perform a brute-force search for
the optimal execution method. Therefore, prior techniques heuristically reduced the search. For
example, [3, 12] offered specific ways of spatiotemporal execution of convolutions, which are not
always very efficient. In exploring various tiling configurations, [37] fixed the order of specific loops,
to cut down the orderings of 6 loops from 6! = 720 to 180. Likewise, [18, 39] heuristically reduced the
space by limiting the options of tiling the loops. During FPGA design space exploration (DSE), [40]
fixed the order of innermost loops (impacts data reuse) to simplify HLS code generation, and [15, 40]
fixed a choice about which loops are spatially executed (impacts PE utilization). Chen et al. [14]
developed a machine learning algorithm, which uses simulated annealing to predict an execution
method based on the prior execution traces. Similarly, [15] employed a genetic algorithm based
optimizer. However, for these techniques, without effective pruning, the search space remained
vast. Therefore, when prior heuristics targeted only a tiny fraction of different execution methods,
the obtained solution is not necessarily optimal or even close-to-optimal.

Analytical modeling of dataflow execution: For mapping perfectly nested loops onto dataflow
accelerators and for DSE, it is necessary to determine the effectiveness of an execution method
statically. Since dataflow accelerators exhibit simple design and are explicitly managed, few works
recently developed analytical models to either estimate energy consumption or execution time
[16-18] for DNNSs. Table 1 lists the various features of such tools and their limitations. For example,
MAESTRO [41] provides an analytical model for DNNs and estimates the efficiency of an execution

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:7

Application Architecture Specification
Front-End Formulate Holistic Drastic Pruning Dataflow
rontEn Representation of Search Space Execution
- Model
section 4.2

_ ion 4.1
TVM-based section section 4.3

| Search Space Exploration dMazeRunner

Optimal Execution Method

Fig. 3. Overview of dMazeRunner framework for application mapping onto dataflow accelerators.

method. However, the user needs to understand the proposed directives and write them in MAE-
STRO DSL, where chosen parameters for the directives can significantly impact the spatiotemporal
execution. Yang et al. [18] proposed an energy model [24] for dataflow execution of DNNs and
LSTMs, but it lacks estimation of the execution time. Likewise, [7, 17] proposed performance models
with an assumption that PEs are always engaged in performing operations and never stall. Thus,
prior analytical models either lack estimation of energy consumption or execution time, or do not
accurately model data reuse or miss penalty, or lack auto-optimizer. Moreover, these models are
specific to DNNs (i.e., may not be capable of analyzing nested loops from various applications).
Furthermore, they require the user to specify DNN layer parameters as inputs and do not provide
integrated support for common ML/AI application libraries like TensorFlow, MXNet, or PyTorch.

4 dMazeRunner

To efficiently map perfectly nested loops onto programmable dataflow accelerators, we propose
dMazeRunner as a comprehensive solution. Fig. 3 shows dMazeRunner framework. Its front-end
parses the application and extracts target loop-nest. After analyzing the loop-nest, dMazeRunner
formulates a holistic representation which features explicitly tiled loops for spatial execution as
well as for accessing data from RFs, SPM, and DRAM. Various configurations of this representation
capture the vast space of execution methods.

To formulate the space of execution methods, dMazeRunner analyzes data access patterns of the
loop-nest and constructs a list of only those loop orderings that correspond to unique reuse factors of
data operands. It considers only those tiling factors which are valid when subjected to constraints
for loop functionality and capacity of architectural resources. Thus, by discarding invalid and
redundant solutions, dMazeRunner prunes the search space so drastically that enables a brute-
force exploration of the optimal solution. Furthermore, to achieve close-to-optimal solutions in
second(s), dMazeRunner reduces the space further with heuristics. For example, it considers only
those methods that maximize data reuse, do not require inter-PE communication, minimize DRAM
accesses for non-contiguous data, and highly utilize architectural resources.

To determine the goodness of an execution method statically, dMazeRunner explicitly mod-
els computation and communication costs for various architectural features and estimates the
execution time and energy consumption. From an input loop-nest, the model analyzes indexing
expressions and data dependencies of operands. Then, the model determines various data reuse
factors, DMA invocations and burst sizes for managing non-contiguous data in SPM, miss penalty,
data communication through NoC, and any stall cycles inter/intra-PE-group communication (for
reduction operations).

Framework implementation: dMazeRunner framework features analysis, transformations, and
optimizations for dataflow execution of loops. Front-end of the framework leverages TVM en-
vironment [14] to support various applications and multiple ML libraries such as MXNet, keras,

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:8 S. Dave et al.

for n_L3 = 15N_DRAM for n=1:N %> batch size
for m L3 = 1:M DRAM _ for m=1:M % filters
for ¢ L3 = 1:C_DRAM for c=1:C % channels
for oy L3 = 1:0y_ DRAM for oy=1:0y

WS

for ox L3 = 1:0;_DRAM for ox=1:0x
for fy L3 = 1:Fy DRAM for fy=1:Fy
for fx L3 = 1:Fx DRAM for fx=1:Fx % filter w
{ - - O[n] [m] [oy] [ox] +=
dma(); I[n][c][oyt+tfy-1] [ox+fx-1]
for n L2 = 1:N SBEM ¥ Wimlfc) [fy] [Fx];
for m L2 = I:IZ_SPM (a)
for ¢ L2 = 1:C_SPM
for oy L2 = 1:0y SPM . -
for ox L2 = 1:0% SPM e |teration counts (tiling factors) and
for fy L2 = 1:Fy SPM orderings for L3 loops determine data
for fx L2 = 1:Fx SPM communicated to (reused in) SPM.

{

access SPM and comm NoC () ; .
for n L1 = 1:N_RF e [terations of L2 loops affect SPM

for m L1 = 1:M RF accesses and the cost of data

for ¢_Ll1 = 1:C_RF communication to RF via NOC.
for oy L1 = 1:0y_RF
for ox L1 = 1:0x_RF e [terations of L1 loops indicate

for fy L1 = 1:Fy RF
for fx L1 = l:Fx_RF
{

data accessed by a PE from RF.

for n_S = 1:N_SPATIAL ® Inner loops are unrolled in

for m S = 1:M SPATIAL space; Spatial execution
for ¢ S = 1:C SPATIAL .
for 6y S = 1:0y SPATIAL determines the subset of the
for ox S = 1:0x SPATIAL data processed by each PE.
for fy S = 1:Fy SPATIAL
for fx S = 1:Fx_ SPATIAL
(101101 +=
TLI010] x
101011007

or]
I[
W[

y (b)

Fig. 4. Explicitly tiled representation that models the vast space of different execution methods.

and TensorFlow. Using the TVM environment, dMazeRunner achieved execution method can be
transformed into LLVM IR [42] for code generation. Moreover, for a rapid design space exploration
on modern multi-core platforms, our framework implementation leverages the hardware features
like caching of the commonly invoked analysis routines and multi-threading. The framework is
available at https://github.com/cmlasu/dMazeRunner.

4.1 Holistic Representation to Capture Vast Space of Execution Methods

Execution on the dataflow accelerators takes place by means of executing the loop iterations onto
the PE array both spatially and temporally. To determine spatial execution onto PEs and the data
accessed from RFs, SPM, and DRAM, we explicitly tile each loop of the loop-nest at these four levels.
Fig. 4(b) shows the proposed representation, which is obtained after transforming the algorithm
of Fig. 4(a). Thus, dMazeRunner transforms a 7-deep nested loop into a 28-deep nested loop. In
this explicitly tiled form, the configurable parameters are—loop iteration counts (tiling factors like
N_SPATIAL, N_RF) and ordering of the loops at any of 4 levels.

This representation can be configured to represent various execution methods. For example, to
achieve the method of Fig. 2(b), we first configure the 7 innermost loops that correspond to spatial

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:9

% access DRAM once % loops for temporal execution at L1,L2,L3
dma () % prefetch in SPM {
for fy L2=1:3 for n. S = 1:N_SPATIAL=1
access SPM comm NoC () ; for c_S = 1:C_SPATIAL=1 Configuring tiling for
for fx L1=1:3 fgr fo/_S = 121FY_SPATIAL:11 spatially executing
— or fx S = :Fx SPATIAL=
for m_s=1:2 for m S = 1:M SPATIAL=2 three loops.
for oy_S=1:3 ‘ for oy S = 1:0y_SPATIAL=3
for ox S=1:3 for ox_S = 1:0x_SPATIAL=3

O[m_S] [oy S][ox_S]+=
W[m S][fy L2][fx L1]x
Ifloy S+fy L2-1] }

[ox S+fx L1-1];

|(1z1) Huzz) Huzs) EJH(Z“) H (zzz) |»—+ (zza) |
| (1,3,1) H(IBZ) H(lss) H(zsu H (232) |>—+(233) |

Fig. 5. Configuring the representation of Fig. 4(b) for spatial execution of three loops, which results in two

PE-groups in the accelerator.

execution. The innermost two loops (ox and oy) that have tiling factors greater than 1 (Ox_SPATIAL
= 3, 0y_SPATIAL=3) determine how PEs are grouped in a 2D array. For example, Fig. 5 shows tiling
for spatial execution of three loops. Here, unrolling the third tiled loop (M_SPATIAL=2) for spatial
execution results in two groups of 3x3 PEs. In fact, if the hardware features interconnections for
3D array (e.g., cubic or vertically-stacked 2D array), then such tiling for spatially executing more
than two loops can be translated into mapping onto a 3D array.

The seven loops at levels L1, L2, and L3 execute temporally on each PE and are configured to
specify the accesses to RF, SPM, and DRAM. Here, tiling factors (e.g., N_SPM=2) impact the size of
the data accessed from L1/L2/L3 memory (section 4.3.1 provides the exact calculation), and ordering
of the loop determines the schedule of data movement i.e., data reuse/eviction. In the proposed
representation, since each loop of the input nest is explicitly modeled for spatial execution and for
accessing data from L1/L2/L3 memory, it allows capturing the vast space of execution methods.

4.2 Drastically Pruning the Vast Search Space

4.2.1 Determining Loop Orderings for Unique Data Movement Costs. While tiling factors for L1, L2,
and L3 loops determine the size of the data accessed from RF, SPM, and DRAM, the orderings of
these loops determine the data reuse and scheduling of the data movement. In a loop nest, data
operands (tensors) are often invariant of specific loops and can be reused [29]. Therefore, for a given
loop-nest, it is possible to create a list of all those loop-orderings (schedules) that feature unique reuse
of operands, and the optimizer needs to target just those orderings. For example, we demonstrate
that out of 7!=5040 orderings to organize 7-deep loop-nest of convolution, loop-orderings featuring
unique reuse factors are just up to 15. Such reduction stems from the fact that for execution of
tiled L2/L3 loops, memory management ensures the availability of the data blocks prior to the
execution, and reuse factors of operands (data blocks) get limited, as compared to numerous hit/miss
occurrences possible (at cache-line granularity) in a cache-based memory hierarchy.

Fig. 6 depicts a 4-deep loop-nest along with information about each operand being invariant
of certain loops. To explain the impact of orderings, in this example, we assume that the current
memory level (e.g., RF) can accommodate 3 data elements. Thus, during each loop iteration (total
192), the data corresponding to each operand can be accessed from lower memory (e.g., SPM) and
brought to the current memory level. In other words, for a given ordering, for each operand, the

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:10 S. Dave et al.

for n = 1:N=2
for m = 1:M=8

for ¢ = 1:C=4 Unique Reuse Factors for Data Operands
for fy = 1:Fy=3 {
comm_data () ; Loop Order 1 w o]
O[n] [m]+= (., n} _ N=-2 —
I[n][c]l[fylx
Wim] [c] [fy] {..., m} M =8 - -
R {..,m, ¢} - - C=4
invariant of loops —
with index variables {.., m, fy} - Fy=3
O ——— ¢, fy
| —m8 > m {-ey fy, c} - - CxFy =4x3

Fig. 6. Determining all orderings of loops that feature unique data reuse factors. Achieved orderings are five
among a total of 4! = 24 orderings. Dash symbol indicates a use factor of 1 for an operand (i.e., no reuse).

function comm_data() may (not) execute in every loop iteration. Fig. 6 also tabulates different
orderings that feature unique reuse factors. Loop IVs are in lower-case, and trip-counts (TCs) are in
upper-case. For each schedule, a listing of loop IVs from the right- to left-hand-side indicate the
order of innermost to outermost loops. For example, the first ordering indicates that loop with IV
n is the innermost, and "..." indicates that the ordering of outer 3 loops does not matter for this
schedule. So, selecting any one ordering among 3! combinations yields the same reuse.

To generate the schedules (algorithm 2), dMazeRunner iterates over each operand and constructs
the loop-orderings for which the operand is invariant of inner loops. For example, W is invariant
of n, and the first loop-ordering is the only schedule where W is reused for N=2 iterations. Thus,
out of 192 iterations, W is accessed from memory only 192/2 = 96 times. However, since I and 0
are indexed through n, they are communicated from lower memory during all 192 iterations (for a
given ordering, algorithm 1 determines such reuse factors for operands). Similarly, I gets reused
only in the second ordering. Now, O is invariant of two IVs c and fy (total_independent_IVs=2).
So, more than one orderings feature unique reuse of O (generated by lines 5-15 of algo. 2). Two
possible orderings (3"¢ and 4‘") are where 0 is reused only in the innermost loop with IV as either
c or fy. Similarly, O is reused in both the inner loops when IVs for inner loops are permutations of
c and fy. Here, both the permutations (’c’, ’fy’) or (fy’, ’c’) yield the same reuse factors (1 for I
and W and 12 for 0). So, we consider any 1 permutation (line 16 in Algo. 2 prunes another), which

Algorithm 1: Determine_Data_Reuse(Input loop_ordering, Input level, Input operand_list,
Output reuse_vector)

1 foreach operand op in operand_list do

2 operand_reuse_factor = 1;

3 list_op_dependent_IVs = get_op_dependencies(op);
4 foreach iv in reversed(list(loop_ordering)) do

5 tc = get_TripCounts(iv, level);

6 if (tc == 1) then

7 | continue;

8 else if (iv is not in list_op_dependent_IVs) then
9 | operand_reuse_factor *= tc;

10 else

11 | break;

12 reuse_vector[op] = operand_reuse_factor

13 return reuse_vector

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:11

Algorithm 2: Generate_Loop_Orderings(Input operand_list, Output pruned_orderings)

1 foreach operand op in operand_list do

2 list_op_independent_IV = get_op_dependencies(op);

3 total_independent_IVs = len(list_op_independent_IV);

4 list_orderings = null; iter = 1;

5 while iter < total_independent_IVs do

6 list_IVs = null; temp_list = get_combinations_IVs(list_op_independent_IV, iter);
7 foreach item in temp_list) do

8 list_permutations = get_all_permutations(item);

9 list_IVs.append(list_permutations);

10 list_IVs.remove_duplicate_items();

11 foreach item in list_IVs) do

12 temp_ordering = prepend_dependent_IVs(item, list_op_dependent_IV);
13 order = prepend_missing_IVs_in_random_order (temp_ordering,

list_op_independent_IVs);

14 list_orderings.append(order);
15 iter++;
16 pruned_orderings= prune_orderings_same_reuse(list_orderings);

17 return pruned_orderings

is 5! ordering. Thus, dMazeRunner prunes 4! = 24 orderings to just 5. Similarly, for convolution
of Fig. 4(a), dMazeRunner prunes 7!=5040 orderings to 15 orderings that feature unique reuse,
which are listed in Table 2. For given tiling factors of an execution method, collective orderings
(of L2 and L3 loops) to reuse the data while accessing SPM and DRAM are up to 15x15 instead
of 5040x5040. Note that the list of orderings (e.g., ones in Table 2) are determined statically once,
before the exploration and evaluation of execution methods begin. Furthermore, during exploration
of execution methods, for a given set of tiling factors, it is possible that one or more loops iterate(s)
just once (e.g., M_SPM=1). In such a scenario, among these 15 orderings, several orderings feature
the same reuse factors. In other words, unique reuse factors reduce from 15 orderings. Thus, during
exploration, for each set of tiling factors, dMazeRunner dynamically prunes the list of 15 orderings
(of Table 2) further.

dMazeRunner constructs the list of orderings depending on the operand being invariant of
the loops, which is determined by analyzing the indexing expressions of the operand (e.g., I is
invariant of IV m). Therefore, the proposed pruning technique is applicable to direct memory access
patterns (including affine accesses), which are commonly found in many applications. Note that in
determining orderings, a loop interchange is considered only when it is a legal transformation. The
legality can be determined by analyzing distance- and dependence-vectors for the loops [28].

4.2.2 Determining Valid Tiling Options. After multi-level tiling of a loop, TCs of the tiled loops can
be of any integer value. For example, consider a loop that iterates N=8 times. After tiling it into
4-levels, TCs of the tiled loops are N_SPATIAL, N_RF, N_SPM, and N_DRAM, which are optimization
parameters. When off-the-shelf optimizers (constraint-solvers for non-linear programming that use
simulated-annealing, newton’s method, etc.) are employed [15, 43], in each step, they randomly
select the parameter values from all possible combinations (8*). For large-scale optimization prob-
lems, since the valid methods are very few (e.g., 20 out of 4096 in this example), their majority of
the search time is often spent on discarding invalid solutions. However, dMazeRunner employs a
constraint-driven pruning of the space before beginning the exploration and analytical evaluation
of execution methods, by considering only valid tiling options (e.g., 20 instead of 8*). For example,
it ensures that for tiling of a loop into four loops, the total iterations executed by the tiled loops

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:12 S. Dave et al.

Table 2. Unique Data Reuse Factors for Accessing Lower Memory

Schedule Ifmap Weights Ofmap
{..., m} M 1 1
{..., m, ox} 1 Ox 1
{..., m, oy} 1 Oy 1
{..., m n} 1 N 1
{..., m, oy, ox} 1 Oy x Ox 1
{..., m, n, ox} 1 N x Ox 1
{..., m, n, oy} 1 N x Oy 1
{..., n, oy, ox} 1 N X Oy x Ox 1
{..., m fx3} 1 1 Fx
{..., m, fy} 1 1 Fy
{..., m c} 1 1 C
{..., m fy, fx} 1 1 Fy x Fx
{..., m ¢c, fx} 1 1 C x Fx
{..., m c, fy} 1 1 C x Fy
{..., c, fy, fx} 1 1 C x Fy X Fx

match the functionality of the loop-nest, i.e.,
cons : N_SPATIAL - N_RF - N_SPM - N_DRAM =N
In general, for any loop index-variable iv,
TC[base][iv] = TC[SPATIAL][iv] - TC[RF][iv] - TC[SPM][iv] - TC[DRAM][iv]

dMazeRunner also ensures that the pruning is subjected to constraints from architecture resources
(PEs, RF, and SPM). For example, data to be allocated by an execution method (section 4.3.1) must
fit into RF of a PE and in multi-buffer SPM, i.e.,

f}gtzall‘Opemnds data_alloc[RF][op] < RF _size
total_Operands data_alloc[SPM][op] < SPM_size
cons : [1:14-1VS TC[SPATIAL|[IVi] < Total PEs

cons : Y,
cons : Zap:l
i=1
For example, when RF tiling factors <N_RF, M_RF, C_RF, Oy_RF, Ox_RF, Fy_RF, Fx_RF>are selected as
<1,1,1,1,1,1,3>, allocated registers for weights are data_alloc[RFI[W] = M_RFxC_RFxFy_RFxFx_RF
= 3. Total allocated registers are 3+3+1 = 7 (for I, W, and O), and this is a valid method for an
8-element RF (example of Fig. 2). However, a solution with RF tiling factors <2,1,1,1,1,1,3> is invalid
and not considered for the exploration, since it allocates 6+3+2 = 11 elements. Thus, the constraints
discard invalid tiling options and with eliminating numerous orderings that feature the same costs,

dMazeRunner drastically prunes the space. Hence, it enables a brute-force exploration of execution
methods, achieving the optimal solution.

4.2.3 Pruning the Space with Heuristics to Rapidly Achieve Close-to-Optimal Solution. Depending
on the depth and iteration counts of the loops in the application, the exhaustive exploration may
take even several hours. One strategy can be to pre-compile the application for common target
architectures, where the optimal execution method is explored just once. However, to allow re-
compiling applications by users and rapid design space explorations, the optimizer should be able
to generate a highly efficient solution promptly. So, dMazeRunner embeds a pruning heuristic that
achieves close-to-optimal solutions in second(s) through the following strategies:

OPT 1) Targeting execution methods featuring high resource utilization: dMazeRunner
explores only those tiling factors that highly utilize (e.g., 60%) RFs, SPM, and PEs. High utilization
improves data reuse and reduces DRAM accesses. Note that very high utilization does not guarantee
an optimal solution, as it may not effectively interleave computation and communication cycles.
OPT 2) Discard execution methods requiring several memory accesses of non-contiguous
data: Some IVs of loops correspond to a minor dimension of tensors (fy and fx for W[m][c][fy][fx]).
For such IVs, when tiling factors of L3 loops (i.e., Fy_DRAM) are greater than 1, it requires many DMA

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:13

invocations with small burst-sizes. Thus, it results in higher DMA cycles and may introduce the
miss penalty for SPM management. So, dMazeRunner discards such execution methods which are
susceptible to higher execution time.

OPT 3) Discard execution methods that require inter-PE communication: Often a read +
write (r+w) operand (O) is an invariant of few IVs (c, fy, and fx). If loops corresponding to these
IVs execute spatially, it requires inter-PE communication (for reduction), which may introduce stall
cycles and often costs higher energy. Therefore, to avoid inter-PE communication, dMazeRunner
decides not to execute such loops in space. This strategy discards several dataflow mechanisms
(e.g., weight-stationary, row-stationary).

OPT 4) Targeting execution methods that maximize the reuse of operands: Although dMaze-
Runner determines all loop-orderings featuring unique reuse factors, space can be pruned to few
orderings that maximize the data reuse. For example, in Table 2, only schedules #8 and #15 maximize
the reuse of weights and ofmap respectively. Thus, schedules #2-#7 and #9—#14 are discarded.
OPT 5) Leveraging hardware features of compilation platform: Implementation of dMazeRun-
ner framework integrates - (i) caching of the frequently used analysis routines and commonly
referenced hash tables (e.g., loop orderings), and (ii) concurrently exploring various execution
methods and evaluating their efficacy with multi-threading. Thus, on modern multi-core processors,
the exploration time is significantly reduced. Note that OPT4 and OPT5 do not impact optimality
and can be used for an exhaustive search.

4.3 Dataflow Execution Model

4.3.1 Determining Data Allocation: For the given tiling factors of an execution method, the data to
be allocated in RF of a PE, in SPM, and the data communicated to the PE array is determined as:

data_alloc[option][op] = evaluate_index_expr(op, ef fective_TC)
where, for each iv in the list IV,
TC[RF][iv] ; option = RF
ef fective_TCliv] = { TC[Spatial][iv] X TC[RF][iv] ; option = PE_Array
TC[Spatial][iv] x TC[RF][iv] x TC[SPM][iv] ; option = SPM

For example, to determine the data allocated in RFs of PEs, we need
ef fective_TC[iv] = TC[RF][iv] ie.,
ef fective_TC[n] = TC[RF][n] = N_RF,ef fective_TC[fy] = TC[RF][fy] = Fy_RF, and so forth.
Then, data_alloc[RF][W] is calculated by evaluating the indexing expression for operand W where,

the value for index iv is used as ef fective_TC[iv]. Thus, after analyzing index expressions of
WImILcILfyl[fx], we get

data_alloc[RF|[W] = ef fective_TC[m] X ef fective_TC|c] X ef fective_TC|[fy] X ef fective_TC[fx]
= M_RF X C_RF X Fy_RF X Fx_RF
When the RF tiling factors are <1,1,1,1,1,1,3>, registers allocated in a PE for W are determined

as 1x1x1x3 = 3. Similarly, after analyzing indexing expressions of W, the model determines the
weights communicated to PE array as

data_alloc[PE_Array][W] = [M_SPATIAL x M_RF] x [C_SPATIAL x C_RF]x
[Fy_SPATIAL x Fy_RF] x [Fx_SPATIAL x Fx_RF]

4.3.2 Estimating Energy Consumption: Total energy for executing the nested loop consists of the
energy consumed in RF accesses, in performing useful operations on PEs, in communicating data
via interconnect, and in accessing the data from SPM and DRAM, i.e.,

Total_Energy = e_Ops + e_RF + (comm_energy_1_SPM_pass X total_SPM_pass) + e_DRAM

In our execution model of the dataflow accelerator, during each loop iteration, an operand is
read/written from/to RF of a PE for the execution of an operation, i.e.,
total_loop_iterations =]—Ifﬁalva TClbase][IV;]

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:14 S. Dave et al.

Table 3. Notation for Analytical Modeling of Dataflow Execution

Term Interpretation
Iv=[’n’,.., fx’] List of loop index variables (from outermost to innermost loop).
total_IVs Length of list IV (same as depth of the loop-nest).
level Either of {Spatial, RF, SPM, DRAM, base}.

2D array of loop iteration counts.

For example, TC[RF]['n’] refers to N_RF = 4.

Vector of effective loop Trip-Counts per iv.

Calculated to find the data allocation.

data_alloc[option][op] | option = {RF, PE_Array, SPM}; op is a data operand.
Data_Reuse[level][op] level = {SPM, DRAM}; op is a data operand.

option = {RF, Operation_Type, NoC, SPM, DRAM}. Operation_Type
corresponds to operations supported by PEs (e.g., MAC, ADD).

TC[levelll[iv]

effective_TC[iv]

Energy[option]

e_RF = total_loop_iterations X Zzzt:all‘o[)emnds Energy[RF]

In the example of Fig. 2(b), there are 2 read operands and 1 read+write (r+w) operand. So, the cost

for RF accesses during each loop iteration is approximated as 4xEnergy[RF]. Energy (p]) of various
operations and for accessing data elements from memory are obtained from the literature [11, 18]
and provided as an input to the model. Moreover, energy for operations performed by PEs is:

fotal_Operations Energy[Operation_Type[opr]]

e_Ops = total_loop_iterations X Zopr:l

In the example of Fig. 4(b), just 1 Multiply-and-ACcumulate (MAC) operation is performed on a

PE in executing a loop iteration. Our model currently does not support loops with conditional
statements. However, since each loop iteration sequentially executes on a PE, we plan to extend
the model by taking the maximum latency and energy consumption of the true and false paths.

Based on tiling factors for L1 loops, each PE executes a certain number of loop iterations to
process the data from allocated registers. We refer it as one RF pass. During an RF pass, while PEs
process data from RFs, new data for the next RF pass can be accessed from SPM and communicated
to PEs via an interconnect network.

energy_access_SPM_1_RF_pass[op] = data_alloc[PE_array][op] X Energy[SPM]

energy_NOC_1_RF_pass|op] = data_alloc|RF][op] X plop] X Energy[NOC]

energy_1_RF_pass[op] = energqy_NOC_1_RF_pass|[op] + energy_access_SPM_1_RF_pass[op]
Although total data communicated to PE array is determined by data_alloc[PE_array], many
PEs may process the same data. We model such spatial reuse by finding the total PEs that read/write

the same operand. If an operand op belongs to a write operation, we consider only those PEs that
produce the outcome. Thus,

H:Zi“ljvs TC[Spatial][IV;] ; op belongs to read operation
plop] = len(list_dependent_IV|op)

iz

Based on the ordering of the L2 loops (that correspond to SPM accesses), we determine the reuse
of data operands for the consecutive RF passes and find communication energy for 1 SPM pass.

) TC[Spatial][list_dependent_IV[op][i]] ; op belongs to write operation

total_operands

op=1 energy_1_RF_pass[op] X (total_RF_pass + Data_Reuse[SPM][op])

comm_energy_1_SPM_pass =},
After determining the data allocated in SPM (processed in 1 SPM pass) and the reuse of the data in
SPM, we determine the energy consumption for communicating data from DRAM as follows:

total_operands

e_DRAM=Zop=l

data_alloc[SPM][op] X Energy[DRAM] X (total _SPM_pass + Data_Reuse[DRAM][op])

4.3.3 Estimating Execution Time: During processing the data in a RF pass, PEs execute certain
number of iterations and perform all operations within each loop iteration. So, estimated cycles are

cycles_Use fulOps = loop_iterations_RF_pass X latency_1_loop_iteration

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:15

loop_iterations_RF_pass = Hfiial*ws TC|[RF][IVi]

. . 1 i
latency_1_loop_iteration = Ztom —operations |

opr=1
1 ; if PE is pipelined
B latency[operationopy] ; PE is nonpipelined

During an RF pass, while PEs process data from RFs, new data for the next RF pass can be accessed
from SPM and communicated to PEs via interconnect. This interleaving of the communication
latency with the computation being performed by PEs can be either achieved by double-buffering
the RFs or through software scheduling scheme. If no such support is available, the PE array
completely stalls to obtain the necessary data from SPM for the next RF pass. Total cycles required
to communicate operands during a RF pass is:

comm_cycles_operand[op]| = data_alloc[PE_array][op]/B

where B is the width of the data bus for interconnect. Depending on the ordering of L2 loops (that
correspond to accessing the data from SPM), some operands are not reused after an RF pass and
communicated between SPM and the PE array at every RF pass. However, some operand(s) can be
reused and are communicated at every x*" RF pass. For example, for an ordering where the loop
with index variable c_L 2 is innermost, the ofmap O (or the psum) is reused for C_SPM=4 consecutive
RF passes. Taking that into account, we determine the communication latency as:

comm_cycles[RF_pass#]|[network#] = map_operands_to_NOC(comm_cycles_operand, Data_Reuse[SPM])

In our default setup, we support popular single-cycle multi-cast interconnect. The networks to
communicate read and write operands between SPM and PE array are three and one, respectively
[3, 18]. There is one network to communicate r+w operands among PEs (used for reduction
operations). Often the total operands in the loop-nest are few and are simultaneously communicated
to/from the PEs via interconnect (including executing common kernels like matrix multiplication,
convolution, regression, and sequence models). If not, they need to be sequentially broadcast to
PEs via available interconnect. For example, when the total data operands are more than available
networks, the communication can be scheduled onto networks via a round-robin mechanism. In
fact, for performing design space exploration through dMazeRunner, architects can extend the
model to accommodate various interconnect topologies. Total cycles required to process the data
of SPM (1 SPM pass) are:
total_RF_pass
cycles_SPM_pass = Z max(cycles_Use fulOps, max comm_cycles[i][j])

= 1<j<total_networks

Usually, the execution requires several SPM passes. During each SPM pass, the PE array processes
the data from one buffer of SPM, and DMA controller accesses DRAM for the data of another buffer.
After calculating the size of the data allocated in SPM, we determine total DMA invocations required
and the burst size (of contiguous data) per invocation. To calculate DMA cycles, we consider a
latency model of Cell processors [44] which featured SPMs, i.e.,

DMA_Model(u) = 291 (initiation latency) + 0.24 X u; u: burst width (bytes)

cont_data_alloc_spm[op], DMA_initiations[op] < data_alloc[SPM][op]

DMA_cycles[op] = DMA_Model(cont_data_alloc_spm|op]) X DMA_initiations[op] X (accel_freq + dma_freq)
Based on the data being reused in consecutive SPM passes, we calculate the cycles required for
accessing the DRAM during each SPM pass as follows:

DRAM_access_cycles[SPM_pass #] = ZZ;t:all*oP erands DMA_cycles[op]

if (SPM_pass# mod Data_Reuse[DRAM][op] == 0)
total SPM_pass
total_cycles = Z max(DRAM_access_cyclesi], cycles_SPM_pass)
i=1
Note: Implementation of our execution model deals with the various complex scenarios including:

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:16 S. Dave et al.

4E+09 Yang etal. dMazeRunner EDRAM mNoC SPM EMAC ®RF

3E+09 \ “

1E+09

Energy (pJ)

0
R A PR
((*\\0'\'\0*\ (J\Q\ é\o‘\‘\o*\ (J\

ARARSIROIRSIR IR IR IR ININGIAY
N FF PP PP P AL

Dataflow Mechanisms

Fig. 7. Validation results for ResNet conv5_2. The energy consumption estimated by dMazeRunner is close to
the energy model of [18, 24].

® Modeling stall cycles and energy consumption for inter-PE communication: When a r+w operand
(e.g., O) is invariant of a loop (c, fy, fx) that executes spatially (e.g., C_SPATIAL > 1), computing the
output requires inter-PE communication. Depending on the data buffering mechanism of the RF, PE
array may not start processing new data from RF or cannot get new data from interconnect while
PEs perform the reduction operations onto previously computed data. Therefore, depending on the
spatial execution of loops and data reuse factors, stall cycles and energy consumed are accounted.
o Accurate modeling of continuous data reuse through several RF+SPM passes: Depending on the
ordering of the loops, some operand gets reused continuously throughout all RF passes of an SPM
pass and through several such SPM passes. For example, for an ordering of L2 loops with IVs
{n_L2,m_L2,0y_L2,0x_12,c_L2,fy_L2,fx_L2} (outermost to innermost) with TCs <1,1,1,1,4,3,3>, total
RF passes in an SPM pass are 4X3%3 = 36. In each RF pass, operands I and W are communicated
from SPM to RFs via NoC while O is reused in RFs. Now, for an ordering of L3 loops with IVs
{oy_L3,0x_13,fy_L3,fx_L3, n_L3,m_L3,c_L3} with TCs <1,1,1,1,2,32,16>, O gets reused in consecu-
tive 16 SPM passes. Thus, write-back of O occurs just once after every 16 SPM passes; each SPM
pass consists of 36 RF passes. We refer to such reuse of data at consecutive memory levels as a
continuous reuse and accurately model it for various operands.

o Detailed model of data reuse and communication for r+w operands: Processing of a r+w operand
on PE array may require to read previously computed value (e.g., input psum) from SPM and
interconnect. Furthermore, such read operation can be skipped some times, if the operand is zero-
initialized. Thus, we offset the calculation of the miss penalty and energy consumption accordingly.

5 VALIDATION EXPERIMENTS

Specification of the target platform: We considered a similar dataflow accelerator architecture
as recent works [3, 5, 18]. The accelerator consists of 16x16 PEs with 16-bit precision. Each PE
accesses 512B RF and a 128 kB scratch-pad. Like Eyeriss architecture [11], each pipelined PE consists
of a 2-stage multiplier and an adder. The accelerator features 4 single-cycle multi-cast networks [3]
to communicate the operands to PEs and 1 such network for reduction. The SPM consists of 64
banks (2 kB each) that can be allocated to any data. Data is accessed from DRAM via DMA and
managed in SPM with double-buffering [41, 45]. Our latency model for data transfers via DMA
is same as Cell processors that featured SPMs [44]. Energy costs for accelerator resources were
obtained from hardware evaluations by Yang et al. [18] for a 28 nm technology.
Validation against Yang et al. [24]: To determine the accuracy of our dataflow execution model,
we validate it against evaluations of a recent work [18, 24]. Validating the execution model is often
challenging since it requires (i) the same architecture specification, (ii) the information about the
adopted execution method, and (iii) the absolute values of execution time and energy consumed by
the platforms. Therefore, we used the execution methods obtained by the tool [24] and evaluated
the same methods through the analytical model of dMazeRunner.

This validation experiment covers various dataflow mechanisms which represent how different
loops are executed spatially. For example, Fy | Fx represents a weight stationary mechanism where
PEs are grouped based on unrolling Fy and Fx loops for spatial execution [18]. Note that these

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:17

1.0E+07

7.5E406
5.0E406
2.5E+06 '] ']
0.0E+00

Convl Conv2 Conv3 Conv4 Conv5

Execution Cycles

Convolution Layers from AlexNet
Hldeal [JEyeriss[3] M dMazeRunner

Fig. 8. Performance validation against Eyeriss architecture.

dataflow mechanisms also incorporate the variations in temporal execution (different data reuse
patterns) and the spatial execution of more than two loops.

We find that dMazeRunner achieves the same PE utilization as Yang et al. [18, 24]. Moreover,
Fig. 7 shows that for various dataflow mechanisms, the energy consumption (in pJ) estimated by
dMazeRunner closely matches to the energy estimation tool [24] (the difference is 4.19%). In fact,
for commonly used dataflow mechanisms like output-stationary (Oy | Ox), the difference is 0.3%. We
observe a higher difference (about 14%) for M|Fx mechanism. A possible reason is that the model
of [24] is more accurate for the interconnect organization (e.g., per-hop communication cost) while
dMazeRunner considers the same cost for multicast communication.

Furthermore, Fig. 7 shows the breakdown of the energy for system resources where, each bar

on the left-hand side represents the evaluation from Yang et al. [24], and the second bar for each
mechanism represents the estimation from dMazeRunner. We find that energy estimated for system
resources is similar to that obtained by [24]. In fact, for optimized execution methods, the estimated
energy for DRAM accesses is very low, and most of the energy consumption is attributed to
accessing data from RFs.
Validation against Eyeriss architecture: We extended our dataflow execution model for model-
ing Eyeriss accelerator [3] which executed AlexNet for ImageNet classification [19]. We evaluated
execution methods reported in [3]. We considered following Eyeriss-specific enhancements for
the model: (i) separate and larger bit-widths of different input, output, and reduction networks, (ii)
a dedicated mesh-style network for reduction, and (iii) in communicating the data (e.g., a row of
1x3 ifmap), reusing the neighborhood data (1x2 ifmap) from RFs in the sliding-window execution.
Fig. 8 shows the execution cycles considering (a) ideal acceleration (i.e., total MAC operations +
total PEs), (b) processing time reported for Eyeriss architecture [3], and (c) estimation of execution
cycles. We find that our estimations closely matched execution cycles of the architecture [3], with
a difference of 11% in the total execution cycles.

6 EXPERIMENT RESULTS AND ANALYSIS

Benchmarks: For evaluating different execution methods (featuring diverse data reuse patterns
and various ways of spatial execution), we consider different convolution layers from widely used
DNN s ResNet and ResNext [1, 20] for ImageNet classification (with batch size of 4 images). We use
the same target architecture as energy validation experiments.

Techniques evaluated: To evaluate the effectiveness of the optimal solutions achieved by dMaze-
Runner, we determine various execution methods for dataflow mechanisms described by previous
techniques: (i) For output stationary mechanism (Oy | 0x), (i.a) SOC [11, 12] in which, entire PE
array processes single output channel, and (i.b) simultaneous processing of multiple output channels
(MOC) [11, 38] on different PE-groups for ifmap reuse. For both SOC and MOC, the data movement
schedule iterates over channels for minimizing psum accumulation cost, (ii) WS1 for weight
stationary mechanism (Fy | Fx) [5, 11], (iii) RS [3] for row stationary (Oy | Fy) mechanism, which
maximizes weight reuse in RF, psum accumulation in RFs/PE-array, psum reuse in SPM, and (iv)
coarse weight stationary (WS2) for M| C mechanism, which is like matrix-multiplication on systolic
arrays [2]. We are not aware of any previous technique that optimizes EDP through other dataflow

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:18 S. Dave et al.

1E+18 ¢ 5.0E+08 H
L 7 "] P
o 17 el g 1y 7 7] S
a8 i g 7 - A ? { 2.5£+08 §
n % ’ A 7 7 4 1 g
1E+16 P 7 | e 17 % 7% 7 T x
El| A - P 7 i 7 &b v v [}
i 4 Z 7 7 1K A1 =
Fl ZVh 7 7 7 7 7 7 % 5
H 7 7 7 7 7 148 7 v § -
1E+15 H1Z % ZiA Z Z Z Zk Z 2 0.0E+00 ©
SOoC MOC |dMzRnr| WS1 |dMzRnr RS dMzRnr | WS2 | dMzRnr
Oy|Ox Fy|Fx Oy|Fy M]|C
Dataflow Mechanisms
Oedp_Convl edp_Conv2_2 Oedp_Conv3_2 W edp_Conv4_2
Oedp_Conv5_1 W edp_Conv5_2 A Total Execution Cycles
(a)
1E+18 SE+08 @
1 ©
1 4E+08 &
1E+17 1 H
o L] 4 3e+08 8
& %] g
w o
1E+16 u 1 2E+08 g
4 1E+08 E
... . - °
1E+15 s OE+00
& & ¢ & * o* N
0*.\ c\\ (,\ @\ e\ @\ e\ @ e\ Q\ \
Dataflow Mechanisms
I edp_conv5_2 [—Jedp_conv5_1 N edp_conv4_2
E—Jedp_conv3_2 edp_conv2_2 [—edp_convl
-+9¢--- Total Execution Cycles (b)

Fig. 9. (a) For popular mechanisms, dMazeRunner achieved execution methods reduce the total EDP by 9.16x
on average. (b) dMazeRunner also achieves the optimal execution methods for other dataflow mechanisms.

mechanisms. However, we evaluate all mechanisms to demonstrate effectiveness of achieved
execution methods.

6.1 dMazeRunner Outperforms Prior Execution Schemes and Reduces EDP by 9.16%

Fig. 9(a) shows the evaluation of various execution methods for popular dataflow mechanisms. The
evaluations depict EDP of each convolution layer on the primary axis and total execution cycles
for these six layers on the secondary axis (lower the better). For better visualization, we plot EDP
results on a logarithmic scale.

Observation (i) For each dataflow mechanism, dMazeRunner significantly reduced the EDP and total
cycles, when compared to execution methods achieved by prior approaches. For example, for conv5_2,
dMazeRunner reduced EDP by 44.47x and execution cycles by 18.72X%, as compared to SOC. On
average, dMazeRunner reduced the total EDP of convolution layers by 9.16x over other techniques
and execution cycles by 5.83%. The primary reason for such a significant scope of improvement
is that prior techniques target certain ways of spatial execution and data reuse, which are often, not
very efficient. For example, when 14x14 PEs executed ofmaps or the output channel(s) spatially,
the PE utilization achieved on a 16X16 array was just 76%. Similarly, SOC and MOC maximized
psum accumulation in RF, which did not always yield high RF utilization (e.g., 436B utilized for
512B RF). Moreover, with a fixed optimization strategy to reuse certain data operand(s), no single
heuristic efficiently leveraged the maximum data reuse possible. For example, for convolution layers
at beginning of ResNe(x)t (convI), ifmaps are significantly larger and weight reuse is desired. In
contrast, for later layers (conv4_2), weights dominate the data movement, and ifmap reuse yields

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:19

better execution. The execution methods obtained by prior approaches were not able to adapt to
such dynamics of loop characteristics. Thus, prior techniques neither ensured very high resource
utilization, nor efficient reuse of all data operands. So, even if they somehow obtained a reasonable
solution, a scope for further reduction in both execution time and energy remained. With holistic
representation, dMazeRunner captured the vast space of execution methods and after drastically
pruning the search, dMazeRunner made the brute-force exploration feasible. Consequently, it
achieved the optimal execution methods that outperformed prior techniques.

Observation (ii) dMazeRunner generated execution methods achieved various data reuses at different
accelerator resources and minimized DRAM accesses for various operands: With a certain optimization
strategy, prior heuristics leveraged reuse of specific operands. For example, SOC and MOC maxi-
mized psum reuse at RF and SPM levels, while RS maximized weight reuse in RFs and psum reuse
in SPM. For executing conv5_1 layer with Oy |0x mechanism, SOC allocated 28kB ifmaps, 18kB
weights, and 1.5kB psum in SPM, which were accessed from DRAM 512, 512, and 128 times, respec-
tively. This resulted in DRAM access of 14.74MB, 9.44MB, and 0.2MB, respectively. However, the
execution method of dMazeRunner allocated 14.06kB of ifmaps, 18kB weights, and 12.25kB psum in
SPM, which were accessed from DRAM 256, 256, and 16 times. So, dMazeRunner accessed DRAM for
3.68MB ifmaps, 4.7MB weights, and 0.2MB psum. Thus, dMazeRunner obtained solution exhibited
a better choice of tiling factors and minimized total DRAM accesses for ifmaps by 4x and 2x for
weights. In fact, it maximized ifmap and filter reuse spatially, convolution reuse in RF, and psum reuse
at RF and SPM levels. Similarly, for executing conv5_2 layer with M| C mechanism, it reduced DRAM
accesses by 16X for ofmap, as compared to WS2. By significantly reusing all operands, execution
methods of dMazeRunner minimized DRAM accesses, reducing both the energy and execution
cycles. Thus, although the acceleration gains during chip execution can differ from estimations,
through better data reuse, reduced DRAM accesses, and efficient interleaving of computation with
communication, dMazeRunner achieved solutions can outperform prior heuristics.

Observation (iii) With holistic exploration, dMazeRunner achieved the optimal solutions which yield
similar EDP and execution time for various dataflow mechanisms: Fig. 9(a) shows that for various
mechanisms, the achieved solutions result in a very similar EDP and execution time (note the dotted
line). This is because: (i) for efficient acceleration, often more than two loops are spatially executed
(e.g., M and C along with Oy and Ox) and hence, two mechanisms may attain the same solution,
and (ii) highly efficient solutions share common characteristics like high utilization of resources,
maximized reuse of various operands, efficient interleaving of computation with communication
(i.e., minimum to no miss penalty). Therefore, for individual mechanisms, the achieved optimal
solutions yield similar results. Moreover, Fig. 9(b) depicts the EDP and execution cycles for 17 more
mechanisms and demonstrates similar results. However, when reduction operations are performed
through inter-PE communication, it results in higher cycles in our model. This is because, we
targeted one single-cycle multi-cast network for r+w operands instead of a mesh-style interconnect.
This is reflected in a relatively high execution time and EDP for mechanisms like Fy | Fx, C|Fx, and
0x | Fy. We can observe such difference at least for conv1 layer, which consisted of larger feature
maps. Note that none of the prior heuristics pruned the space such drastically that a brute-force
algorithm is applied to achieve the optimal solutions. Furthermore, no prior technique achieved
the optimal solutions that minimize EDP while using a variety of dataflow mechanisms. Therefore,
Fig. 9(b) does not feature any evaluations of prior works.

6.2 dMazeRunner Reduces Energy consumed for Dataflow Execution up to 30.84%

Recently [18] proposed an auto-optimizer [24] to reduce the energy consumption of DNN dataflow
execution. We executed the various convolution layers of ResNet with [24] and obtained optimized
execution methods. We evaluate them with the solutions achieved by dMazeRunner and demonstrate
the impact of holistic exploration.

Observation (iv) Drastic pruning enabled exhaustive exploration for achieving the optimal execution
methods: Fig. 10 shows the energy consumption of optimized methods obtained by [24] and that of
dMazeRunner. Here, the energy of a convolution layer is obtained from the best outcome among
all execution methods explored. Execution methods achieved by dMazeRunner outperformed [24]

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:20 S. Dave et al.

4E+09

3E+09

- UH L.l

convl conv2_2 conv3_2 conv4_ 2 conv5_1 conv5_2

Energy (pJ)

MYangetal. EdMazeRunner
Fig. 10. dMazeRunner reduces energy consumption up to 30.84% as compared to auto-optimizer of [24].

by reducing the energy up to 30.84% and by 15.55% on average. Even for individual dataflow
mechanisms (like output- or row-stationary (3, 18]), dMazeRunner reduced the energy significantly
over [24]. For example, dMazeRunner reduced the energy of executing conv4_2 with N|Ox by
36% and conv5_2 with Oy |Ox by 14%. For previous techniques like [18, 24, 37], it is infeasible to
explore the space exhaustively. For example, for a configuration of tiling factors, when optimizer
of [24] determines loop orderings, it considers 4! combinations when iteration counts of four
loops are greater than unity. Therefore, to make the exploration feasible, [18, 24] heuristically
considered a tiny fraction of the space. For example, for conv5_2 and conv4_2, [24] explored 1976
and 4608 methods (with different tiling factors) and multiple orderings per method. Similarly,
for conv2_2, [24] explored 6448 methods in 8.8 hours. On the other hand, since dMazeRunner
drastically pruned the orderings, it required to evaluate up to 3x3 orderings per method (Table 2 +
OPT4), as compared to up to 7!x7! (25 million) orderings. For example, for conv5_2 and conv4_2,
dMazeRunner exhaustively explored 1.75E+07 and 1.8E+08 execution methods (with varying tiling
factors) and determined the optimal execution methods.

Note that heuristically exploring a small fraction of all execution methods may not yield efficient
EDP or reasonable execution time. In fact, heuristically obtained solution may fail to efficiently
interleave the computation with communication latency (high miss penalty). Since [18, 24] lacked
performance model, we are unable to compare the EDP or execution time of our methods with it.

6.3 dMazeRunner Achieves Close-to-Optimal Solutions in Seconds

Fig. 11 shows the total execution methods evaluated for the convolution layers and the total EDP.
For achieving the optimal solutions, dMazeRunner pruned the space and exhaustively evaluated a
total of 2.12E+09 methods. For example, when executed on an Intel i7-6700 quad-core platform,
dMazeRunner evaluated 1.75E+07 methods for conv5_2 in several tens of minutes and required
several hours to achieve the optimal execution method for conv4_2.

Observation (v) Pruning heuristic can achieve the solutions in second(s) with a negligible increase in
the minimum EDP: After incrementally applying our pruning heuristics (OPT1, OPT2 and OPT3,
which were described in section 4.2.3), we observe that dMazeRunner drastically reduced total
methods evaluated and consistently achieved close-to-optimal solutions. For example, Fig. 11 shows
that OPT1 reduced total methods to 2.57E+06, at the cost of a mere 2% increase in the total EDP
of the optimal solution. For OPT1, we set utilization factors as 80% for PEs, 80% for RF, and 50%
for SPM, which ensured that the majority of solutions discarded are inefficient ones. Then, OPT2
discarded the solutions that resulted in non-contiguous data accesses (potential candidates for
incurring high miss penalty). Finally, OPT3 discarded the execution methods that required inter-PE
communication, from a total of 1.28E+06 (for OPT1+OPT2) to 2.35E+05. Thus, with OPT[1-3],
dMazeRunner reduced the search by 9020x at the cost of a 2.56% increase in the minimum EDP.
The same is true for individual layers. For example, for conv5_2, dMazeRunner reduced the total
methods from 1.75E+07 to 753 (with the same EDP as the optimal solution) and from 1.42E+07 to
877 for conv5_1 (with a 5% increase in the minimum EDP). Thus, while exhaustively exploring
the optimal solution for the application can require processing over several days (or hours for
individual layers), dMazeRunner achieved close-to-optimal solutions in just a few seconds (1 second
for conv5_2 and a maximum of 122 seconds for optimizing conv2_2).

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:21

c 1E+16
2 ~day(s) J
=]
39 16409 | A 5 56% { oE+15
¢ 5 S P, [I— N (e
w = optimal — “>s_ 4 8E+15 o
k]] T 1 a
§§ 1E+06 F Ao A 1 7E15
g% ~second(s) -1 6E+15
z2 F _
& 1E+03 SE+15
L Effective Space OPT1 OPT[1-2] OPT[1-3]

After Pruning ‘ Y !

(Optimal Method) Search Reduction Heuristics

EDP (Optimal) EEEM Increase in minimum EDP --k--Execution Methods Explored

Fig. 11. dMazeRunner reduces execution methods explored by 9020x and achieves highly efficient execution
methods (2.56% increase in the minimum EDP) in seconds.

Note that OPT4 (considering only those methods that maximize data reuse) and OPT5 (leveraging
multi-threading and caching) are also applicable to an exhaustive search. So, we enabled them for
all evaluations of dMazeRunner. Since there is no one-size-fits-all solution, heuristics employing a
specific execution method or randomly exploring the tiny space do not always yield very efficient
solutions. However, well-crafted pruning heuristics promptly obtain a set of methods that exhibit
EDP close to the minimum.

6.4 Design Space Exploration

dMazeRunner can be leveraged to invoke a rapid DSE for landing upon better architectural design
solutions. Table 4 lists the results of a DSE experiment which optimizes the on-chip memory sizes
for the targeted 256-PE accelerator. The second-left column lists the best memory configuration for
each layer and the third-left column lists corresponding EDP. The columns on the right-hand side
show the two best designs that achieved the best EDP (normalized) for some layers and in total, a
lower EDP as compared to other configurations. Both the designs #1 and #2 (in fact, the top four
designs) featured 256B RFs per PE. Fig. 12 depicts the EDP (a total of all the six convolution kernels)
for the variations in the RF sizes (primary horizontal axis) and SPM sizes (series in the legend).
Fig. 12 shows that EDP is notably lower when the RF size is 128B or larger. This is because,
the convolution kernels exhibit the significant reuse of different operands, which can be better
sustained with larger RFs, avoiding costly accesses to SPM and DRAM. However, increasing the RF
size beyond 512B increases the EDP again, since it is hard to efficiently utilize RF (i.e., finding a
schedule that balances communication latency with computation from the RF) while the energy
cost to access RF increases. The RF size of 256B demonstrates a balance in the trade-off and yield
significantly lower EDPs. Similarly, an SPM size of 512kB demonstrates lower EPDs. If an SPM size
is relatively small (e.g., 64kB or smaller) then, after reusing the data at the RF level, the accesses
mostly go to DRAM since there is little-to-no reuse at SPM level. On the other hand, accessing a

Table 4. Layer (kernel) specific and overall best memory sizes for a 256-PE accelerator.

ResNet Layer Layer-Spe'ciﬁc EDP Overall .Top EDP. Overall 'Top EDP.
Best Design #1Design | (normalized) | #2 Design | (normalized)

Convl <256,512k> 1.59E+16 1x 1.16x

Conv2_2 <256,512k> 4.52E+15 1x 1.03x
Conv3_2 <256,1024k> 3.56E+15 1.10x 1x
Conv4_2 <256,1024k> 3.57E+15 <256, 512k> 1.11x <256, 1024k> 1x
Conv5_1 <256,1024k> 2.83E+15 1.08x 1x

Conv5_2 <256,128k> 6.14E+15 1.05x 1.03x

Total (6 layers) <256,512k> 3.78E+16 1x 1.04x

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:22 S. Dave et al.

3.5E+17
-
S 3E+17 !\
o LAY
O 2.5E+17 AN
[AN
F 28417 NN
8 158417 =
> NN
8 1E+17 S
[
& 5E+16 \l\'\.__—c/‘
0
16 32 64 128 256 512 1024
Register File Size (in Bytes)
SPM Size 64k 128k —a— 256k --¢---512k ---@-- 1024k

Fig. 12. DSE of memory sizes for a 256-PE accelerator. Designs featuring 256B RFs and 512 kB SPMs yield
lower EDP.

larger SPM significantly costs more energy and can yield a large increase in the EDP, if RF size is
smaller (e.g., consider a 512kB or 1024kB SPM and a 16B RF). Thus, dMazeRunner can be leveraged
for exploring the optimized designs.

7 FUTURE WORK

Future work targets exploring the efficient designs and optimized mappings for various important
machine learning, imaging and media kernels, including employing application specific optimiza-
tions like exploiting sparsity, model-level optimizations, and inter-layer data reuse in DNNs.

8 CONCLUSIONS

For efficient spatiotemporal execution of perfectly nested loops on dataflow accelerators, it is crucial
to determine highly efficient execution method that minimizes EDP by achieving high utilization
of resources, maximized reuse of various operands, and efficient interleaving of computation with
communication latency. Due to the vast space of execution methods, there is a lack of a compre-
hensive solution that can accurately explore all the execution methods and efficiently map loops
on dataflow accelerators. We proposed dMazeRunner, which formulates a holistic representation
to inform the optimizer about the vast space of various execution methods. Then, dMazeRunner
drastically prunes the space by constructing valid methods that feature unique data reuses and
exhaustively explores the optimal solution. Furthermore, dMazeRunner employs pruning heuristics
to achieve close-to-optimal solutions in a few seconds. Finally, the analytical model of dMazeRunner
enables static estimation of the efficacy of an execution method, which helps the exploration of
loop optimizations and the design space. Compared to prior approaches, dMazeRunner achieved
solutions reduced the total EDP by 9.16% and the total execution cycles by 5.83X. Moreover, search-
space reduction heuristics of dMazeRunner reduced the exploration of execution methods by over
9000 with a mere 2.56% increase in EDP, as compared to the optimal mapping. With a systematic,
succinct, and automated exploration, dMazeRunner alleviates the burden of the programmers and
architects to manually fine-tune the mapping among the vast space and can be leveraged to explore
the optimized designs of dataflow accelerators.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback and suggestions and Mr. Sagar
Parekh at Compiler Mircoarchitecture Lab, ASU for assisting in automation of some evaluations.
This research was partially supported by funding from National Science Foundation under grant CCF
1723476 - NSF/Intel joint research center for Computer Assisted Programming for Heterogeneous
Architectures (CAPA), and from the grants NRF-2015M3C4A7065522 (Next-generation Information
Computing Development Program, funded by National Research Foundation of Korea, MSIT) and

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators 70:23

2014-3-00035 (Research on High Performance and Scalable Manycore Operating System, funded by
IITP, MSIT). Any opinions, findings, and conclusions presented in this material are those of the
authors and do not necessarily reflect the views of their employers or the sponsoring agencies.

REFERENCES

(1]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492-1500,
2017.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pages 1-12. IEEE, 2017.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1):127-138, 2016.

HT Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 821-834. ACM, 2019.
Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li. Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 553-564. IEEE, 2017.

Hongbo Rong. Programmatic control of a compiler for generating high-performance spatial hardware. arXiv preprint
arXiv:1711.07606, 2017.

Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. Scale-sim: Systolic cnn
accelerator. arXiv preprint arXiv:1811.02883, 2018.

Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon, Neal Crago, Kermin Fleming,
Mohit Gambhir, Aamer Jaleel, Tushar Krishna, et al. Efficient control and communication paradigms for coarse-grained
spatial architectures. ACM Transactions on Computer Systems (TOCS), 33(3):10, 2015.

Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankaralingam, Cristian Estan, and Behnam
Robatmili. A general constraint-centric scheduling framework for spatial architectures. In ACM SIGPLAN Notices,
volume 48, pages 495-506. ACM, 2013.

Yang You, Zhao Zhang, Cho-Jui Hsieh, Jim Demmel, and Kurt Keutzer. Fast deep neural network training on distributed
systems and cloud tpus. IEEE Transactions on Parallel and Distributed Systems, 2019.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for con-
volutional neural networks. In ACM SIGARCH Computer Architecture News, volume 44, pages 367-379. IEEE Press,
2016.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier
Temam. Shidiannao: Shifting vision processing closer to the sensor. In ACM SIGARCH Computer Architecture News,
volume 43, pages 92-104. ACM, 2015.

Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Shixuan Zheng, Tianyi Lu, Jiangyuan Gu, Leibo
Liu, and Shaojun Wei. A high energy efficient reconfigurable hybrid neural network processor for deep learning
applications. IEEE Journal of Solid-State Circuits, 53(4):968-982, 2017.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q Yan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: end-to-end optimization stack for deep learning. arXiv preprint
arXiv:1802.04799, pages 1-15, 2018.

Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao.
Throughput-optimized opencl-based fpga accelerator for large-scale convolutional neural networks. In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 16-25. ACM, 2016.
Scale-sim. https://github.com/ARM-software/SCALE-Sim. Accessed: November 5, 2018.

Ye Yu, Yingmin Li, Shuai Che, Niraj K Jha, and Weifeng Zhang. Software-defined design space exploration for an
efficient ai accelerator architecture. arXiv preprint arXiv:1903.07676, 2019.

Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak, Qiaoyi Liu, Steven Emberton Bell, Jeff Ou Setter, Kaidi Cao, Heonjae
Ha, Christos Kozyrakis, et al. Dnn dataflow choice is overrated. arXiv preprint arXiv:1809.04070, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth
Malani, Andrey Malevich, Satish Nadathur, et al. Deep learning inference in facebook data centers: Characterization,
performance optimizations and hardware implications. arXiv preprint arXiv:1811.09886, 2018.

Yann LeCun. 1.1 deep learning hardware: Past, present, and future. In 2019 IEEE International Solid-State Circuits
Conference-(ISSCC), pages 12-19. IEEE, 2019.

Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W Fletcher. Morph: Flexible acceleration for 3d cnn-based
video understanding. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

70:24 S. Dave et al.

[24]

[25]

[26]

[27]

[28
[29

—_

[30]

[31

—

[32]

[33]

[34]

[35

[

[36

—

[37]
[38]

[39]

[40]

[41]

[42

—

[43
[44

[l Yt

[45]

933-946. IEEE, 2018.

Xuan Yang et al. Dnn energy model and optimizer. https://github.com/xuanyoya/CNN-blocking/tree/dev. Accessed:
November 5, 2018.

Bruce Fleischer, Sunil Shukla, Matthew Ziegler, Joel Silberman, Jinwook Oh, Vijavalakshmi Srinivasan, Jungwook
Choi, Silvia Mueller, Ankur Agrawal, Tina Babinsky, et al. A scalable multi-teraops deep learning processor core for ai
trainina and inference. In 2018 IEEE Symposium on VLSI Circuits, pages 35-36. IEEE, 2018.

Jason Cong and Jie Wang. Polysa: polyhedral-based systolic array auto-compilation. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1-8. IEEE, 2018.

Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Hypar: Towards hybrid parallelism
for deep learning accelerator array. In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 56—68. IEEE, 2019.

Alfred V Aho et al. Compilers: principles, techniques and tools. 2007.

Steve Carr, Kathryn S McKinley, and Chau-Wen Tseng. Compiler optimizations for improving data locality, volume 29.
ACM, 1994.

Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. Drdu: A data reuse analysis technique for efficient
scratch-pad memory management. ACM Transactions on Design Automation of Electronic Systems (TODAES), 12(2):15,
2007.

Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In Acm Sigplan Notices, volume 43, pages 101-113. ACM, 2008.

Florin Balasa, Per Gunnar Kjeldsberg, Arnout Vandecappelle, Martin Palkovic, Qubo Hu, Hongwei Zhu, and Francky
Catthoor. Storage estimation and design space exploration methodologies for the memory management of signal
processing applications. Journal of Signal Processing Systems, 53(1-2):51, 2008.

Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh. Hycube: A cgra with reconfigurable
single-cycle multi-hop interconnect. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6.
IEEE, 2017.

Bernhard Egger, Hochan Lee, Duseok Kang, Mansureh S Moghaddam, Youngchul Cho, Yeonbok Lee, Sukjin Kim,
Soonhoi Ha, and Kiyoung Choi. A space-and energy-efficient code compression/decompression technique for coarse-
grained reconfigurable architectures. In Proceedings of the 2017 International Symposium on Code Generation and
Optimization, pages 197-209. IEEE Press, 2017.

Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. Ramp: Resource-aware mapping for cgras. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1-6. IEEE, 2018.

Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. Ureca: A compiler solution to manage unified register
file for cgras. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1081-1086. IEEE,
2018.

Arthur Stoutchinin, Francesco Conti, and Luca Benini. Optimally scheduling cnn convolutions for efficient memory
access. arXiv preprint arXiv:1902.01492, 2019.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited numerical
precision. In International Conference on Machine Learning, pages 1737-1746, 2015.

Zhongyuan Zhao, Hyoukjun Kwon, Sachit Kuhar, Weiguang Sheng, Zhigang Mao, and Tushar Krishna. mrna: Enabling
efficient mapping space exploration for a reconfiguration neural accelerator. In 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 282-292. IEEE, 2019.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based accelerator
design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 161-170. ACM, 2015.

Hyoukjun Kwon, Michael Pellauer, and Tushar Krishna. MAESTRO: an open-source infrastructure for modeling
dataflows within deep learning accelerators. CoRR, abs/1805.02566, 2018.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis & transformation.
In Proceedings of the international symposium on Code generation and optimization: feedback-directed and runtime
optimization, page 75. IEEE Computer Society, 2004.

fmincon. https://www.mathworks.com/help/optim/ug/fmincon.html. Accessed: November 5, 2018.

Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor communication network: Built for speed.
IEEE micro, 26(3):10-23, 2006.

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee W Yoon, Doosan Cho, and Yunheung Paek. High throughput
data mapping for coarse-grained reconfigurable architectures. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(11):1599-1609, 2011.

Received April 2019; revised June 2019; accepted July 2019

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 5s, Article 70. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Spatiotemporal Execution of Loops on Dataflow Accelerators
	3 Related Work
	4 dMazeRunner
	4.1 Holistic Representation to Capture Vast Space of Execution Methods
	4.2 Drastically Pruning the Vast Search Space
	4.3 Dataflow Execution Model

	5 Validation Experiments
	6 Experiment Results and Analysis
	6.1 dMazeRunner Outperforms Prior Execution Schemes and Reduces EDP by 9.16x
	6.2 dMazeRunner Reduces Energy consumed for Dataflow Execution up to 30.84%
	6.3 dMazeRunner Achieves Close-to-Optimal Solutions in Seconds
	6.4 Design Space Exploration

	7 Future Work
	8 Conclusions
	Acknowledgments
	References

