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Abstract
This paper suggests a framework for the learning of discretizations of expensive
forward models in Bayesian inverse problems. The main idea is to incorporate
the parameters governing the discretization as part of the unknown to be esti-
mated within the Bayesian machinery.We numerically show that in a variety of
inverse problems arising in mechanical engineering, signal processing and the
geosciences, the observations contain useful information to guide the choice of
discretization.

Keywords: Bayesian inverse problems, data-driven discretizations, hierarchical
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1. Introduction

Models used in science and engineering are often described by problem-specific input param-
eters that are estimated from indirect and noisy observations. The inverse problem of input
reconstruction is defined in terms of a forward model from inputs to observable quantities,
which in many applications needs to be approximated by discretization. A broad class of exam-
ples motivating this paper is the reconstruction of input parameters of differential equations.
The choice of forward model discretization is particularly important in Bayesian formulations
of inverse problems: discretizations need to be cheap since statistical recovery may involve
millions of evaluations of the discretized forward model; they also need to be accurate enough
to enable input reconstruction. The goal of this paper is to suggest a simple data-driven frame-
work to build forward model discretizations to be used in Bayesian inverse problems. The
resulting discretizations are data-driven in that they finely resolve regions of the input space
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where the data are most informative, while keeping the cost moderate by coarsely resolving
regions that are not informed by the data.

To be concrete and explain the idea, let us consider the inverse problem of recovering an
unknown u from data y related by

y = G(u)+ η, (1.1)

where G denotes the forward model from inputs to observables, η ∼ N(0,Γ) represents model
error and observation noise, and Γ denotes a positive definite noise covariance matrix. We will
follow a Bayesian approach, viewing u as a randomvariable [23, 37, 39] with prior distribution
pu(u). The Bayesian solution to the inverse problem is the posterior distribution pu|y(u) of u
given the data y, which by an informal application of Bayes theorem is characterized by

pu|y(u) ∝ exp (−Φ(u; y)) pu(u), Φ(u; y) :=
1
2
‖y− G(u)‖2Γ (1.2)

with ‖ · ‖Γ := ‖Γ−1/2 · ‖. A common computational bottleneck arises when the forward model
G and hence the likelihood are intractable, meaning that it is impossible or too costly to eval-
uate. This paper introduces a framework to tackle this computational challenge by employing
data-drivendiscretizations of the forwardmodel. Themain idea is to include the parameters that
govern the discretization as part of the unknown to be estimated within the Bayesian machin-
ery. More precisely, we consider a family {Ga}a∈A of approximate forward models and put
a prior qu,a(u, a) over both unknown inputs u and forward discretization parameters a ∈ A to
define a joint posterior

qu,a|y(u, a) ∝ exp (−Ψ(u, a))qu,a(u, a), Ψ(u, a; y) :=
1
2
‖y− Ga(u)‖2Γ. (1.3)

While this structure underlies many hierarchical formulations of Bayesian inverse problems
[23], in this paper the hyper-parameter a determines the choice of discretization of the forward
model G.

Including the learning of the numerical discretizations of the forward map as part of the
inference agrees with the Bayesian philosophy of treating unknown quantities as random
variables, and is also in the spirit of recent probabilistic numerical methods [7]; rather than
implicitly assuming that a true hidden numerical discretization of the forward model generates
the data, a Bayesian would acknowledge the uncertainty in the choice of a suitable discretiza-
tion and let the observed data inform such a choice. Moreover, the Bayesian viewpoint has
two main practical advantages. First, data-informed grids will typically be coarse in regions
of the input space that are not informed by the data, allowing successful input reconstruction
at a reduced computational cost. Second, the posterior qu,a|y(u, a) contains useful uncertainty
quantification on the discretizations. This additional uncertainty information may be exploited
to build a high-fidelity forward model to be employed within existing inverse problem solvers,
either in Bayesian or classical settings.

1.1. Related work

The Bayesian formulation of inverse problems provides a flexible and principled way to com-
bine data with prior knowledge. However, in practice it is rarely possible to perform posterior
inferencewith the model of interest (1.2) due to various computational challenges. In this paper
we investigate the construction of computable data-driven forward discretizations of intractable
likelihoods arising in the inversion of differential equations. Other intertwined obstacles for
posterior inference are:
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• Sampling cost. While exact posterior inference is often intractable, approximate poste-
rior inference can be performed by employing sampling algorithms. Markov chain Monte
Carlo and particle-based methods are popular, but implementations of these algorithms
require repeated evaluation of the forward model G, which may be costly.

• Large input dimension. The unknown parameter u may be high, or even infinite dimen-
sional. While the convergence rate of certain sampling schemesmay be independent of the
input dimension [1, 8, 15], the computational and memory cost per sample may increase
prohibitively with dimension.

• Model error.The forwardmodel is only an approximationof the real relationship between
input and observable output variables. Model discrepancy can damage input recovery.

• Complex geometry. The unknown may be a function defined on a complex, perhaps
unknown domain that needs to be approximated.

All these challenges have long been identified [23–25, 36], giving rise to a host of meth-
ods for sampling, parameter reduction, model reduction, enhanced model error techniques
and geometric methods for inverse problems. We focus on the model-reduction problem of
building forward discretizations, but the methodology proposed in this paper can be naturally
combined with existing techniques that address complementary challenges. For instance, our
forward model discretizations may be used within multilevel MCMC methods [18] or within
two-stage samplingmethods [6, 10, 13, 20, 41], and thus help to reduce the sampling cost. Also,
forward model discretizations may be combined with parameter reduction and model adapta-
tion techniques, as in [26, 28]. It is important, however, to distinguish between the parameter
and model reduction problems. While the former aims to find suitable small-dimensional rep-
resentations of the input u, the latter is concerned with effectively reducing the number of
degrees of freedomused to compute the forwardmodelG. In regards to model error, our frame-
work may be thought of as incorporating Bayesian model choice to the Bayesian solution of
inverse problems by viewing each forward model discretization as a potential model. Follow-
ing this interpretation, the a posteriori choice of forward discretization may in principle be
determined using Bayes factors. Lastly, learning appropriate discretizations of forward models
is particularly important for inverse problems set in complex, possibly uncertain geometries
[15, 17, 22].

Many approaches to computing forward map surrogates and reduced-order models have
been proposed; we refer to [14] for an extended survey, and to [32] for a broader discussion of
multi-fidelity models in other outer-loop applications. Most methods fall naturally into one of
three categories:

(a) Projection-based methods: the forward model equations are described in a reduced basis
that is constructed using few high-fidelity forward solves (called snapshots). Two popular
ways to construct the reduced basis are proper orthogonal decomposition and reduced
order basis. In the inverse problem context, data-informed construction of snapshots [10]
allows to approximate the posterior support with fewer high-fidelity forward runs. To our
knowledge, there is little theory to guide the required number or location of snapshots to
meet a given error tolerance.

(b) Spectral methods: polynomial chaos [42] is a popular method for forward propagation
of uncertainty, that has more recently been used to produce surrogates for intractable
likelihoods [29]. The paper [30] translates error in the likelihood approximation to Kull-
back–Leibler posterior error. A drawback of these methods is that they are only practical
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when the random inputs can be represented by a small number of randomvariables. Recent
interest lies in adapting the spectral approximations to observed data [27].

(c) Gaussian processes and neural networks: some of the earliest efforts to allow for Bayesian
inferencewith complex models suggested to use Gaussian processes [33] to construct sur-
rogate likelihood models [25, 36]. The accuracy of the resulting approximations has been
studied in [40], which again requires a suitable representation of the input space. Finally,
representation of the likelihood using neural networks in combination with generalized
polynomial chaos expansions has been investigated in [38].

This paper focuses on grid-based discretizations and density-based discretizations of static
inverse problems arising in mechanical engineering, signal processing and the geophysical
sciences. However, the proposed framework may be used in conjunction with other reduced-
order models, in dynamic data assimilation problems, and in other applications. Finally, we
mention that for classical formulations of certain specific inverse problems, optimal forward
discretization choices have been proposed [2, 5].

1.2. Outline and contributions

Section 2 reviews the Bayesian formulation of inverse problems. Section 3 describes the
main framework for the Bayesian learning of forward map discretizations. We will consider
two ways to parametrize discretizations: in the first, the grid points locations are learned
directly, and in the second we learn a probability density from which to obtain the grid.
In section 4 we discuss a general approach to sampling the joint posterior over unknown
input and discretization parameters, which consists of a Metropolis-within-Gibbs that alter-
nates between a reversible jump Markov chain Monte Carlo (MCMC) algorithm to update
the discretization parameters and a standard MCMC to update the unknown input. Section 5
demonstrates the applicability, benefits, and limitations of our approach in a variety of inverse
problems arising in mechanical engineering, signal processing and source detection, con-
sidering Euler discretization of ODEs, Euler–Maruyama discretization of SDEs, and finite
element methods for PDEs. We conclude in section 6 with some open questions for further
research.

2. Background: Bayesian formulation of inverse problems

Consider the inverse problem of recovering an unknown u ∈ U from data y ∈ R
m related by

y = G(u)+ η, (2.1)

where U is a space of admissible unknowns and η is a random variable whose distribution is
known to us, but not its realization. In many applications, the forward model G : U → R

m can
be written as the composition of forward and observation maps, G = O ◦ F . The forward map
F : U →Z represents a complexmathematical model that assigns outputs z ∈ Z to inputs u ∈
U . For instance, u may be the parameters of a differential equation, and z may be its analytical
solution. The observation map O :Z →Y establishes a link between outputs and observable
quantities, e.g. by point-wise evaluation of the solution.

In the Bayesian formulation of the inverse problem (2.1), one specifies a prior distribution
on u and seeks to characterize the posterior distribution of u given y. If the input spaceU is finite
dimensional, U ⊂ R

d, then the prior distribution, denoted as pu(u), can be defined through its
Lebesgue density. The noise distribution of η in Rm gives the likelihood py|u(y|u). In this work
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we assume, for concreteness, that η is a zero-mean Gaussian with covariance Γ ∈ R
m×m, so

that

py|u(y|u) ∝ exp (−Φ(u; y)) , Φ(u; y) :=
1
2
‖y− G(u)‖2Γ, (2.2)

where ‖ · ‖Γ := ‖Γ−1/2 · ‖. Using Bayes’ formula, the posterior density is given by

pu|y(u) =
1
Z
py|u(y|u)pu(u), Z =

∫
U
py|u(y|u)pu(u)du (2.3)

with multiplicative constant Z depending on y.
For many inverse problems of interest, the unknown u is a function and the input space U is

an infinite-dimensional Banach space. In such a case, the prior cannot be specified in terms of
its Lebesgue density, but rather as a measure μu supported on U . Provided that G : U → R

m is
measurable and that μu(U) = 1, the posterior measure μu|y is still defined, in analogy to (2.3),
as a change of measure with respect to the prior

dμu|y
dμu

(u) ∝ exp (−Φ(u; y)) . (2.4)

We refer to [16, 39] for further details. The posteriorμu|y contains, in a precise sense [43], all the
information on u available in the data y and the prior μu. This paper is concerned with inverse
problems where G = O ◦ F arises from a complex model F that cannot be evaluated point-
wise; we then seek to approximate the idealized posterior μu|y finding a compromise between
accuracy and computational cost.

A simple but important observation is that approximating F accurately is not necessary in
order to approximate μu|y accurately. It is only necessary to approximate G = O ◦ F , since F
appears in the posterior only throughG. While producing discretizations to complexmodelsF
has been widely studied in numerical analysis, here we investigate how to approximateF with
the specific goal of approximating the posterior μu|y, incorporating prior and data knowledge
into the discretizations. For some inverse problems the observation operator O also needs to
be discretized, leading to similar considerations.

3. Bayesian discretization of the forward model

Suppose that F is the solution map to a differential equation that cannot be solved in closed
form, and O is point-wise evaluation of the solution. Standard practice in computing the
Bayesian solution to the inverse problem involves using an a priori fixed discretization, e.g.,
by discretizing the domain of the differential equation into a fine grid. Provided that the grid
is fine enough, the posterior defined with the discretized forward map can approximate well
the one in (2.4). However, the discretizations are usually performed on a fine uniform grid
which may lead to unnecessary waste of computational resources. Indeed, it is expected that
the choice of discretization should be problem dependent, and should be informed both by the
observation locations (which are often not uniform in space) and by the value of the unknown
input parameter that we seek to reconstruct. Thus we seek to learn jointly the unknown input
u and the discretization of the forward map.

We will consider a parametric family of discretizations. Precisely, we let

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . .}, θ ∈ D(k) ⊂ R

d(k)
}
, (3.1)
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and each pair a = (k, θ) ∈ A will parameterize a discretized forward model Ga. For
given k ∈ K, d(k) represents the degrees of freedom in the discretization, and θ ∈ D(k) is the
d(k)-dimensional model parameter of the discretization, where D(k) is the region containing
all parameters of interest. In analogy with Bayesian model selection frameworks [19, 34],
k ∈ K may be interpreted as indexing the discretization model. We focus on the model
reduction rather than the parameter reduction problem, and assume that all approximation
maps share the same input and output spaces U and Z . We will illustrate the flexibility of this
framework using grid-based approximations and density-based discretizations.

Example 3.1 (Grid-based discretizations). Here the first component of each element
a = (k, θ) ∈ A represents the number of points in a grid. The set K contains all allowed grid
sizes. If we denoteD ⊂ R

d as the temporal or spatial domain of the equation being discretized,
we define D(k) = Dk and d(k) = d × k, where Dk :=D× · · · × D denotes the k-fold Carte-
sian product of D. Then the second component θ = [x1, . . . xk] encodes the locations of k grid
points.

Example 3.2 (Density-based discretizations). Here the first component of each ele-
ment a = (k, θ) ∈ A represents again the number of points in a grid, and the second component
parametrizes a probability density ρ = ρ(x; θ) on the temporal or spatial domain of interest,
by a parameter θ of fixed dimension, independent of k. Given a ∈ A we may for instance
employ MacQueen’s method [12] to formulate a centroidal Voronoi tessellation, which out-
puts k generators {x1, . . . , xk}, and then use them as grid points to generate a finite element
grid by Delaunay triangulation. Intuitively θ controls the spatial density of the non-uniform
grid points {x1, . . . , xk}. The space K represents, as before, all the allowed number of grid
points.

Example 3.3 (Other discretizations). As mentioned in the introduction, other dis-
cretizations and model reduction techniques could be considered within the above
framework, including projection-based approximations, Gaussian processes, and graph-based
methods. However, in our numerical experiments we will focus on grid-based and density-
based discretizations.

We consider a product prior on (u, a) ∈ U ×A, given by

qu,a(u, a) = qu(u)qa(a), (3.2)

where qu(u) = pu(u) is as in the original, idealized inverse problem (2.1). In general, condi-
tioning on umay or may not provide useful information about how to approximateG(u). When
it does, this can be infused into the prior by letting the conditional distribution of a given u
depend on u. For simplicity we restrict ourselves to the product structure (3.2).

The examples above and the structure of the space A defined in equation (3.1) suggest to
define hierarchically a prior over a ∈ A

qa(a) = qk,θ(k, θ) = qk(k)qθ|k(θ|k), (3.3)

where qk(k) is a probability mass function that penalizes expensive discretizations that employ
large number d(k) of degrees of freedom, and qθ|k(θ|k) denotes the conditional distribution of
θ given k in D(k).

6
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We define the likelihood of observing data y given (u, a) by

qy|u,a(y|u, a) ∝ exp (−Ψ(u, a; y)) , Ψ(u, a; y) :=
1
2
‖y− Ga(u)‖2Γ, (3.4)

where Ga = O ◦ Fa. The discretized forward maps Fa will be chosen so that evaluating Ψ is
possible.

We first consider the case where K = {k} is a singleton, and A := {a = (k, θ) :
θ ∈ D(k) ⊂ R

d(k)} has a Euclidean space structure. Then, by Bayes’ formula,

qu,a|y(u, a) =
1

Z̃
qy|u,a(y|u, a)qu(u)qa(a),

Z̃ =

∫
U×A

qy|u,a(y|u, a)qu(u)qa(a)du da,
(3.5)

where Z̃ = Z̃(y) is a normalizing constant. The first marginal of qu,a|y(u, a), which we denote
as qu|y(u), constitutes a data-informed approximation of the posterior pu|y(u) from the full,
idealized inverse problem (2.3). We have the following result:

Proposition 3.4. Let pu|y(u) be defined as in (2.3) and qu|y(u) be defined as above. If G is
bounded and, for qu,a-almost any (u, a), ‖Ga(u)− G(u)‖ < ε, then

dTV
(
qu|y(u), pu|y(u)

)
< Cε (3.6)

for some constant C independent of ε.

Proof. Integrating both sides of the first equation in (3.5) with respect to a:

qu|y(u) =
1

Z̃

(∫
A
qy|u,a(y|u, a)qa(a)da

)
qu(u) = :

1

Z̃
g̃y(u)qu(u).

Compare this to equation (2.3) and write gy(u) = py|u(y|u), we have

‖g̃y(u)− gy(u)‖ �
∫
A
exp

(
−1
2
‖y− Ga(u)‖2Γ

)

− exp

(
−1
2
‖y− G(u)‖2Γ

)
da � C‖Ga(u)− G(u)‖,

where the last inequality follows from the Lipschitz continuity of e−w for w � 0, bounded-
ness of G, and equivalence of norm in R

m. This implies that |g̃y(u)− gy(u)| � Cε and hence
|Z̃ − Z| � Cε. Then the statement follows from a slight modification of theorem 1.14 in [37]
and the definition of TV distance.

Now we are ready to extend the above results to infinite-dimensional input space
U . We define a prior measure on U ×A given by νu,a(du, da) = νu(du)× νa(da), where
νu(du) = μu(du) is as in the idealized inverse problem. The posterior measure on U ×A
conditioning on y will still be denoted by νu,a|y.
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Proposition 3.5. Suppose that U is a separable Banach space with νu(U) = 1, Ψ :
U ×A→ R is continuous. Then the posterior measure νu,a|y of (u, a) given y is absolutely
continuous with respect to the prior νu,a on U ×A and has Radon–Nikodym derivative

dνu,a|y
dνu,a

(u, a) ∝ exp (−Ψ(u, a; y)) . (3.7)

Proof. By the disintegration theorem (which holds for arbitrary Radon measures on sepa-
rable metric spaces—see [11] chapter 3, page 70) for all measurable subsets U′ ⊆ U , A′ ⊆ A
and Y ′ ⊆ Y , we can write νu,a,y(U′ × A′ × Y ′) in two different ways:

∫
Y ′
νu,a|y(U

′ × A′|y)dνy(y) = νu,a,y(U
′,A′, Y ′)

=

∫
U′×A′

νy|u,a(Y
′|u, a)dνu,a(u, a).

In particular,

νy(Y
′) =

∫
U×A

νy|u,a(Y
′|u, a)dνu,a(u, a)

=

∫
U×A

∫
Y ′
Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

)
dydνu,a(u, a),

given our assumptions on the noise model, where ZΓ is a constant depending on the noise
covariance Γ. We can then use Tonelli’s theorem to swap the order of the integrals and obtain

νy(Y ′) =
∫
Y ′

(∫
U×A

Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

)
dνu,a(u, a)

)
dy.

Given that Y ′ is arbitrary, we conclude that νy is absolutely continuous with respect to the
Lebesgue measure with density:

dνy(y)
dy

=

∫
U×A

Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

)
dνu,a(u, a).

On the other hand,∫
U′×A′

νy|u,a(Y
′|u, a)dνu,a(u, a)

=

∫
U′×A′

∫
Y ′
Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

)
dy dνu,a(u, a)

=

∫
U′×A′

∫
Y ′
Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

) (
dνy(y)
dy

)−1

dνy(y)dνu,a(u, a)

=

∫
Y ′

(∫
U′×A′

Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

) (
dνy(y)
dy

)−1

dνu,a(u, a)

)
dνy(y),

8
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Algorithm 4.1. Metropolis-within-Gibbs Core Structure.

Choose (u(1), a(1)) ∈ U × A.
for n = 1 : N do

1. Sample u(n+1) ∼ K
a(n) ,y(u(n)|· ).

2. Sample a(n+1) ∼ L
u(n+1),y(a(n)|· ).

end for

applying Tonelli’s theorem once again to obtain the last equality. Since Y ′ was arbitrary, it
follows that for νy-a.e. y we have

νu,a|y(U
′ × A′|y) =

∫
U′×A′

Z−1
Γ exp

(
−1
2
‖y− Ga(u)‖2Γ

)

×
(
dνy(y)
dy

)−1

dνu,a(u, a).

In turn, from the arbitrariness of U′,A′ it follows that, for νy-a.e. y the measure νu,a|y(·|y) is
absolutely continuous with respect to νu,a and its Radon–Nykodym derivative satisfies

dνu,a|y
dνu,a

(u, a) ∝ exp

(
−1
2
‖y− Ga(u)‖2Γ

)

as claimed, where the constant of proportionality depends on y. �

As in the finite dimensional case, we have the following result:

Proposition 3.6 (Well-posedness of posterior). Under the same assumption as in
proposition 3.5, suppose further that for qu,a-almost any (u, a), ‖Ga(u)− G(u)‖ < ε, and G
is bounded. Then we have

dTV(νu|y,μu|y) < Cε (3.8)

for some constant C independent of ε.

Remark 3.7. In the context of grid-based forward approximations, the condition
‘‖Ga(u)− G(u)‖ < ε qu,a-almost surely’ can be interpreted as ‘almost any draw from the
approximation parameter space A can produce an approximation of the forward model with
error at most ε’. This is often the case, for example, when the grids are finer than some threshold
under regularity conditions on the input space.

4. Sampling the posterior

The structure of the joint posterior νu,a|y over unknowns u ∈ U and approximations a ∈ A
suggests using aMetropolis-within-Gibbs sampler, which constructs aMarkov chain (u(n), a(n))
by alternatingly sampling each coordinate (algorithm 4.1):

In the above, Ka,y and L
u,y are Metropolis–Hastings Markov kernels that are reversible

with respect to u|(a, y) and a|(u, y). We remark that the kernel Ka,y involves evaluation of the
forward model approximation Ga but not of the intractable full model G. While the choice and
design of the kernels Ka,y and L

u,y will clearly be problem-specific, and here we consider a
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standard method appropriate for the case where the input space U is a space of functions to
define Ka,y.

Before describing how to sample the full conditionals νu|a,y and νa|u,y of u|(a, y) and a|(u, y)
it is useful to note that they satisfy the following expressions:

dνu|a,y
dνu

(u) ∝ exp (−Ψ(u, a; y)) ,
dνa|u,y
dνa

(a) ∝ exp (−Ψ(u, a; y)) . (4.1)

4.1. Sampling the full conditional u|y,a

For given a and y, we can sample from νu|a,y using pCN [3], with proposal

ũ :=
√

1− β2u+ βξ, ξ ∼ μu,

and acceptance probability

α(u, ũ) := min {1, exp (−Ψ(ũ, a; y)+Ψ(u, a; y))} .

Other discretization-invariantMCMC samplers [9, 35] could also be used to update u|y, a, but
pCN is a straightforward and effective choice in the examples considered here.

4.2. Sampling the full conditional a|y, u

4.2.1. Sampling grid-based discretizations. We will use a Markov kernel Lu,y(a|·) written as
a mixture of two kernels, i.e.

L
u,y(a|·) = ζLu,y

1 (a|·)+ (1− ζ)Lu,y
2 (a|·),

each of which is induced by a different Metropolis–Hastings algorithm. ζ determines the mix-
ture weight. The proposal mechanism for each of the kernels corresponds to a different type of
movement, described next:

(a) For Lu,y
1 (a|·) we use Metropolis–Hastings to sample from the distribution νa|u,y using the

following proposal: given a = (k, θ) with θ = [θ1, . . . , θk] we set k̃ = k (i.e. the number
of grid points stays the same) and let θ̃ be defined by

θ̃i = θi, i = 1, . . . , k− 1,

and sample θ̃k from a distribution on D with density (w.r.t. Lebesgue measure on D) τ θ.
In principle the density used to sample θ̃k may depend on θ.

(b) For Lu,y
2 (a|·) we use Metropolis–Hastings to sample from the distribution νa|u,y using the

following proposal: given a = (k, θ) we sample k̃ ∼ σ(k|·) where σ(k|·) is aMarkov kernel
on N, and then generate θ̃ according to

• If k̃ > k let θ̃i = θi for all i = 1, . . . , k and then sample θ̃k+1, . . . , θ̃k̃ independently
from the density τ θ.

• If k̃ � k let θ̃i = θi for all i = 1, . . . , k̃.

Remark 4.1. We notice that the proposals described above are particular cases of the ones
used in reversible jump Markov chain Monte Carlo [19].

10



Inverse Problems 36 (2020) 105008 D Bigoni et al

For the Metropolis–Hastings algorithm associated to L
u,y
1 (a|·) the acceptance probability

takes the form

α1(a, ã) = min

{
1, exp (−Ψ(u, ã; y)+Ψ(u, a; y))

τθ̃(θk)

τθ(θ̃k)

}
,

where recall a = (k, θ) and θ = (θ1, . . . , θk) and ã is defined similarly.
For the Metropolis–Hastings algorithm associated to L

u,y
2 (a|·) the acceptance probability

takes the form

α2(a, ã) = min

{
1,

σ(k|k̃)νk(k̃)
σ(k̃|k)νk(k)

exp (−Ψ(u, ã; y)+Ψ(u, a; y))H(k, θ, k̃, θ̃)

}
,

where

H(k, θ, k̃, θ̃) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−k̃∏
i=1

τθ̃(θk̃+i) if k > k̃,

⎛
⎝ k̃−k∏

i=1

τθ(θ̃k+i)

⎞
⎠

−1

if k̃ � k.

We notice that since each of the kernels Lu,y
1 (a|·) and L

u,y
2 (a|·) is defined by a Metropo-

lis–Hastings algorithm, they leave the target νa|u,y invariant, and hence so does the kernel
L
u,y(a|·).

Remark 4.2. If in the above the distribution τ θ is, regardless of θ, the uniform distribution
on the domain D, then the acceptance probabilities reduce, respectively, to

α1(a, ã) = min {1, exp (−Ψ(u, ã; y)+Ψ(u, a; y))} ,

and

α2(a, ã) = min

{
1,

σ(k|k̃)νk(k̃)
σ(k̃|k)νk(k)

exp (−Ψ(u, ã; y)+Ψ(u, a; y))

}
.

4.2.2. Sampling density-based discretizations. Since in this case the dimension of θ is fixed,
the calculation of the acceptance probabilities is straightforward and the details are omitted.
We refer to subsection 5.3 for a numerical example.

5. Numerical examples

In this section we demonstrate the applicability of our framework and sampling approach in
a variety of inverse problems. Our aim is illustrating the benefits and potential limitations of
the methods; for this reason we consider inverse problems for which we have intuitive under-
standing of where the discretizations should concentrate, thus validating the performance of
the proposed approach. Before discussing the numerical results, we summarize the main goals
and outcomes of each set of experiments:

• In subsection 5.1 we consider an inverse problem in mechanics [4], for which some
observation settings highly influence the best choice of discretization while others inform
it mildly. Our numerical results show that the gain afforded by grid learning is most

11
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clear whenever the observation locations highly influence the choice of discretization. We
employ grid-based discretizations as described in example 3.1 with an Euler discretization
of the forward map. We also illustrate the applicability of the method in both finite and
infinite-dimensional representations of the unknown parameter, showing a more dramatic
effect in the latter.

• In subsection 5.2 we consider an inverse problem in signal processing [21], with a choice
of observation locations that determine where the discretization should concentrate. Our
numerical results show that the grids adapt to the expected region, and that the degrees of
freedom in the discretization necessary to reconstruct the unknown is below that necessary
to satisfy stability of the numerical method with uniform grids. We employ grid-based
discretizations as described in example 3.1 with an Euler–Maruyama discretization of the
forward map.

• In subsection 5.3 we consider an inverse problem in source detection, where the true
hidden unknown determines how best to discretize the forward model. Our numeri-
cal results show that the grids adapt as expected. We employ density-based discretiza-
tions as described in example 3.2 with a finite element discretization of the forward
model.

5.1. Euler discretization of ODEs: estimation of the Young’s modulus of a cantilever beam

We consider an inhomogeneous cantilever beam clamped on one side (x = 0) and free on the
other (x = L). Define D = [0, L]. Let u(x) denote its Young’s modulus and let M(x) be a load
applied onto the beam. Timoshenko’s beam theory gives the displacement z(x) of the beam
and the angle of rotation ϕ(x) through the coupled ordinary differential equations⎧⎪⎪⎨

⎪⎪⎩
d
dx

[
u(x)

2(1+ r)

(
ϕ(x)− d

dx
z(x)

)]
=
M(x)
κA

,

d
dx

(
u(x)I

d
dx

ϕ(x)

)
= κA

u(x)
2(1+ r)

(
ϕ(x)− d

dx
z(x)

)
,

(5.1)

where r, κ, A, I are physical constants. Following [4], we consider the inverse problem of
estimating the Young’s modulus u(x) from sparse observations of the displacement z(x), where
both u and z are functions from D to R.

LetF : u �→ z be the solution map to equation (5.1). Let {si}mi=1 ⊂ D be the locations of the
observation sensors, leading to the observation operator O : z �→ y ∈ R

m defined coordinate-
wise by

Oi(z) :=
∫ L

0
zϕi dx, ϕi(x) :=

1
γi

exp
(
−(si − x)2/(2δ2)

)
, 1 � i � m,

where δ = 10−4 and γ i is the normalizing constant such that
∫ L
0 ϕi dx = 1. Data are generated

according to the model

y = O ◦ F (u)+ η =: G(u)+ η,

where η denotes the observation error, which is assumed to follow a Gaussian distribution
N(0, γ2

obsI). Notice that for system (5.1) with proper boundary conditions specified at x = 0,
the displacement z(x�) at any point 0 < x� < L depends only on the values {u(x) : x < x�}.
Thus, we expect suitable discretizations of the forward model to refine finely only the region
{0 < x < sm}, where sm is the right-most observation location. We will discuss this in detail
in section 5.1.2.

12



Inverse Problems 36 (2020) 105008 D Bigoni et al

5.1.1. Forward discretization. To solve system (5.1) we employ a finite difference method. A
family of numerical solutions can be parameterized by the set

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . .}, θ = [x1, . . . , xk] ∈ [0, L]k

}
,

where k is the number of grid points and θ are the grid locations. Precisely, for a = (k, θ) ∈ A,
we first reorder θ so that

0 =: x0 � x1 � . . . � xk � xk+1 :=L

and we let

Fa : u �→ za

be the linearly interpolated explicit Euler finite difference solution to (5.1), discretized using the
ordered grid θ. We also discretize the observation operatorO using an Euler forward method,
defined by

Oa
i (z

a) =
k∑
j=0

za(x j)ϕi(x j)(x j+1 − x j).

Finally G is approximated by Ga :=Oa ◦ Fa.

5.1.2. Implementation details and numerical results. For our numerical experiments we con-
sider a beam of length L = 10m, width w = 0.1m and thickness h = 0.3m. We use a
Poisson ratio r = 0.28 and Timoshenko shear coefficient κ = 5/6. A = wh represents the
cross-sectional area of the beam and I = wh3/12 is the second moment of inertia. We run
a virtual experiment of applying a point mass of 5 kg at the end of the beam, as seen
in blue in figures 1(a) and 2(a). We assume that the observations are gathered with error
γ2
obs = 10−3.
We first assume that the beam ismade of 5 segments of different kinds of steel, each of length

2m, with corresponding Young’s moduli u∗ = {u∗i }5i=1 = {190, 213, 195, 208, 200GPa}. The
prior on u ∈ U = R

5 is given by pu(u) = N (u; 2001, 25I5) where 1 denotes the all-ones vec-
tor. For this case we assume that the number of grid points k is fixed to be k = 85, i.e., the
prior pk(k) is a point mass. The grid locations θ are assumed to be a priori uniformly dis-
tributed in [0, L]k. Results are reported in figure 1. We next assume that the Young’s modulus
u(x) ∈ U = C([0, L];R) varies continuously with x. We set a Gaussian process prior on u
defined byμu = GP(200, c) with c(x, x′) = 50 exp

(
−(x − x′)2/0.5

)
. For this case we assume

that the prior on the number of grid points k follows a Poisson distribution with mean 60, i.e.,
νk(k) = Poisson(60), and the grid locations θ still have a uniform prior given k. The
true Young’s modulus underlying the data and the reconstruction results are reported in
figure 2. Sampling is performed, both in the discrete and continuous settings, updat-
ing u and a alternately for a total number of N = 1.2× 105 iterations, with β = 0.08,
ζ = 0.5.

In both figures 1 and 2 two settings are considered. In the first one observations are concen-
trated on the right side of the beam and in the second on the left. For reference, figure 3 shows
idealized posteriors considered, obtained with very fine discretizations k = 500, for each of
the settings. Notice that for system (5.1) with proper boundary conditions specified at x = 0,
the displacement z(x0) at any point 0 < x0 < L depends only on the values u(x) of Young’s
moduli with x < x0. This implies that when observations are gathered on the left side of the
beam, the posterior on u(x) agrees with the prior on the right-side, and no resources should be
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Figure 1. Reconstruction of a piece-wise constant Young’s modulus. Two settings for
the observation locations are considered, shown in figures (a) and (f). For each setting,
figures (b) and (g) show one sample from the marginal distribution qa|y(a) simulated by
MCMC. Figures (c) and (h) report box-plots with the number of grid points that fall
in each subinterval [i− 1, i], i = 1, . . . , 10. Figures (d) and (i) show the mean (dashed
black) and the 5, 10, 90, 95-percentiles (thin black) of the marginal qu|y(u), versus the
true value (red), with data-driven forward discretization. Figures (e) and (j) show the
same results with a fixed uniform-grid discretization.

on discretizing the forward map on that region. In that case our adaptive data-driven discretiza-
tions are strongly concentrated on the left, as shown in figures 1(g) and (h) and 2(b) and 2(c).
However, when observations are gathered on the right side of the beam, the data is informative
on u(x) for all 0 < x < L. In such case, figures 1(b) and (c) and 2(b) and 2(c) show that the
data-driven discretizations are concentrated on the right, but less heavily so. See tables B.1
and B.2 in the appendix B for a more detailed description of the grid points distribution in both
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Figure 2. Reconstruction of a continuous Young’s modulus. Two settings for the obser-
vation locations are considered, shown in figures (a) and (f). For each setting, figures (b)
and (g) show one sample from the marginal distribution qa|y(a) simulated by MCMC.
Figures (c) and (h) report box plots with number of grid points that fall in each subin-
terval [i− 1, i], i = 1, . . . , 10. Figures (d) and (i) show the mean (dashed black) and the
5, 10, 90, 95-percentiles (thin black) of the marginal qu|y(u), versus the true value (red),
with data-driven forward discretization. Figures (e) and (j) show the same results with a
fixed uniform-grid discretization.

cases. Also, our results indicate that using data-driven discretizations will lead to a better esti-
mation of the true Young’s modulus, compared to fixed-grid discretizations. Additional results
in the continuous Young’s modulus setting are provided in the appendix. See table B.3 and
figure 8 for the averaged acceptence probability for u and a, and history of MCMC samples
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Figure 3. Idealized posterior pu|y(u), with mean (dashed black) and the 5, 10, 90, 95-
percentiles (thin black), versus the true value (red).

of the high-dimensional u at some fixed locations, indicating the stationarity of the Markov
chain.

Let (u(n), a(n)) be the output of the Gibbs sampling algorithm at iteration n. The reconstruc-
tion error is defined as follows:

er =

√√√√ N∑
n=1

∣∣Ga(n) (u(n))− G(u)
∣∣2, (5.2)

where G(u) is approximately calculated on a very fine grid. In figure 4 we plot the reconstruc-
tion error for the second experiment where the Young’s moduli is continuous and observations
are gathered on the right-side. With fixed-grid discretization, the reconstruction error is small
where the discretization matches the observation points. With adaptive data-driven discretiza-
tions the grid points will adaptively match the observation points in order to produce less
error.

5.2. Euler–Maruyama discretization of SDEs: a signal processing application

Let f :Rd → R
d be globally Lipschitz continuous and consider the SDE

dz(t) = f (z)dt + du, 0 < t � T, z(0) = 0, (5.3)

where u denotes d-dimensional Brownian motion. We aim to recover u from observations of
the solution z. We suppose that the observations y = [y1, . . . , ym] are given by

yi = z(ti)+ ηi, i = 1, . . . ,m, (5.4)
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Figure 4. The reconstruction error with fixed-grid discretization (blue) and with data-
driven grid discretization (orange). Red triangles are observations locations, while blue
crosses are the grid points used in the fixed-grid discretization.

where η = [η1, . . . , ηm] is assumed to follow a centered Gaussian distribution with covariance
Γ and

0 < t1 < · · · < tm < T

are given observation times. Following [21], we cast the problem in the setting of section 2.
First note that the solution to the integral equation

z(t) =
∫ t

0
f (z(s)) ds+ u(t), 0 � t � T, (5.5)

defines a map

F : C([0, T],Rd)→ C([0, T],Rd) (5.6)

u �→ z. (5.7)

Thus we set the input and output space to be U = Z = C([0, T],Rd).
Next we define an observation operator

O : C([0, T],Rd)→ R
m

z �→ [z(s1), . . . , z(sm)]

and set G = O ◦ F . We put as prior on u the standard d-dimensional Wiener measure, that we
denote μu. Then the posterior distribution μu|y is given by equation (2.4), which if Γ = γ2Im
may be rewritten as

dμu|y
dμu

(u) ∝ exp

(
1
2γ2

m∑
i=1

|yi − G(u)(si)|2
)
. (5.8)

Note that the likelihood does not involve evaluation ofF (u) at times t > sm, and hence changing
the definition of F (u)(t) for t > sm does not change the posterior measure. Thus, we expect
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suitable discretizations of the forward model to refine finely only times up to the right-most
observation.

5.2.1. Forward discretization. For most nonlinear drifts f, the integral equation (5.6) cannot
be solved in closed form and a numerical method needs to be employed. A family of numerical
solutions may be parameterized by the set

A :=
{
a = (k, θ) : k ∈ K ⊂ {1, 2, . . .}, θ = [t1, . . . , tk] ∈ [0, T]k

}
.

Precisely, for a = (k, θ) ∈ A we define an approximate, Euler–Maruyama solution map

Fa : C([0, T],Rd)→ C([0, T],Rd)

u �→ za

as follows. First, we reorder the t j’s so that

0 =: t0 � t1 � . . . � tk � tk+1 :=T.

Then we define zaj := za(t j) as za0 = 0, and

zaj+1 = zaj + (t j+1 − t j) f (z
a
j)+ u(t j+1)− u(t j), 1 � j � k. (5.9)

Finally, for t ∈ (t j, t j+1) we define za(t) by linear interpolation of zaj and z
a
j+1.

Having defined the parameter space A we now describe a choice of prior distribution νa
on A and the resulting combined prior νu,a on (u, a) ∈ U ×A. First we choose a prior νk
on the number k of grid-points. Given the number of grid points k, assuming no knowledge
on appropriate discretizations for the SDE (5.3) we put a uniform prior on grid locations
θ = [t1, . . . , tk].

Remark 5.1. More information could be put into the prior. In particular it seems natural to
impose that grids are finer at the beginning of the time interval.

5.2.2. Implementation details and numerical results. For our numerical experiments we
considered the SDE (5.3) with T = 10 and double-well drift

f (t) = 10t(1− t2)/(1+ t2). (5.10)

We generated synthetic observation data y by solving (5.3) on a very fine grid, and then per-
turbing the solution at uniformly distributed times ti = 0.2i, i = 1, . . . , 24 = m so that the
last observation corresponds to time t = 4.8. The observation noise was taken to uncorre-
lated, Γ = γ2Im, with γ = 0.1. The motivation for choosing this example is that there is
certain intuition as to where one would desire the discretization grid-points to concentrate.
Indeed, since all the observations ti are in the interval [0.2, 4.8] it is clear from equation (5.8)
that any discretization points t j ∈ (4.8, 10] will not contribute to better approximate μu|y.
In other words, those grid points would help in approximating F but not in approximating
G = O ◦ F .
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Figure 5. Recovered SDE trajectory in the time-interval t ∈ [0, 10]. The true trajec-
tory is shown in dashed black line. The posterior median is shown in red, and 5
and 95-percentiles are shown in black. The small circles denote the locations of the
observations.

We report our results for a small grid-size k = 24. Similar but less dramatic effect was seen
for larger grid size. Precisely, we chose our set of admissible grids to be given by

[t0, . . . , t25] : 0.01 = t0 � t1 � . . . � t25 = 10.

For implementation purposes, elements in the space U = C([0, T],R) were represented as vec-
tors inR1000 containing their values on a uniform grid of step-size 0.1.We run these algorithms
with parameter choices N = 105, β = 0.1, ζ = 0.5.

The experiments show a successful reconstruction of the SDE path. Moreover, the grids
concentrate in [0, 4.8] in agreement with our intuition and the uncertainty quantification is
satisfactory. In contrast, we see that when using the same number of grid points but on a
uniform grid the Euler–Maruyama scheme is unstable, leading to a collapse of the MCMC
algorithm. Then, the posterior constructed with a uniform grid completely fails at reconstruct-
ing the SDE path, and the uncertainty quantification is overoptimistic due to poor mixing of
the chain (figure 5).

5.3. Finite element discretization: source detection

Consider the boundary value problem{
−Δz(x) = δ(x − u), x ∈ D,

z(x) = 0, x ∈ ∂D,
(5.11)

where D = (0, 1)× (0, 1) ⊂ R
2 is the unit square and δ is the Dirac function at the origin. We

aim to recover the source location u from sparse observations

yi = z(si)+ ηi, i = 1, . . . ,m, (5.12)

where η = [η1, . . . , ηm] follows a centered Gaussian distribution with covariance Γ and
s1, . . . , sm ∈ D\{u} are observation locations. To cast the problem in the setting of section 2,
we let F be given by Green’s function for the Laplacian on the unit square (which does not
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admit an analytical formula but can be computed e.g. via series expansions [31]) and O be
defined by point-wise evaluation at the observation locations. The prior on u is the uniform
distribution in the unit square D, which we denote pu(u). Since U = D is finite dimensional,
the posterior has Lebesgue density given by equation (2.3). We find this problem to be a good
test, as there is a clear understanding that the data-driven mesh should concentrate around the
source.

5.3.1. Forward discretization. To solve equation (5.11) numerically we employ the finite ele-
ment method. The use of uniform grid is here wasteful, as the mesh should ideally concentrate
around the unknown source u.

We will use grids obtained as the Delauny triangulation of central Voronoi tessellations
{Vi}ki=1 and generators {xi}ki=1, where each xi ∈ D and Vi ⊂ D. This can be calculated as the
solution of the optimization problem, parameterized by a probability density ρ on D:

min
{xi}⊂D,{Vi}

k∑
i=1

∫
Vi

ρ(x)‖x − xi‖2 dx, (5.13)

subject to the constraint that {Vi}ki=1 is a tessellation of D. One can refer to [12] for more
details. For a fixed density ρ and integer k we denote the optimal grid points by {xρ,i}ki=1. Then
the approximated solution map is defined as

Fa : D→ H1
0(D) (5.14)

u �→ za (5.15)

where za is given by the finite element solution of equation (5.11) with respect to (the Delauny
triangulation of) the grid points {xρ,i}ki=1. Details on the creation of grid for prescribed
parameters ρ and k will be discussed below.

In the spirit of adapting the grid to favor the ones maximizing the model evidence,
we constrain ρ to belong to a family of parametric densities Π = {ρ(x; θ)|θ ∈ R

P} where
ρ(x; θ) = Beta(α1, β1)× Beta(α2, β2) is the product measure of two Beta distributions. There-
fore in this case θ = (α1, β1,α2, β2) and P = 4. Each pair (k, θ) describes a member in the
discretization family A, where k controls the number of grid points, while θ controls how
these grid points are distributed in the spatial dimension.

5.3.2. Implementation details and numerical results. We solved equation (5.11) on a fine
grid k = 2000 with the true point source u∗ = (0.85, 0.85). The observation locations
were {s1, . . . , s25} = {0.5, 0.6, 0.7, 0.8, 0.9}× {0.5, 0.6, 0.7, 0.8, 0.9}. Observation noise was
uncorrelated with Γ = γ2I25, γ = 0.05.

In this example the prior of u is the uniform distribution on D = (0, 1)× (0, 1) and u is ini-
tialized at (0.2, 0.2).The parameters θ are also set to have a uniformprior θ = (α1, β1,α2, β2) ∼
Uniform

(
[1, 10]4

)
. We initialize (α1, β1,α2, β2) = (1, 1, 1, 1), which corresponds to (near)

uniform grid in D. For simplicity, in this experiment we set a point mass prior on k, with
k = 100. We run the algorithm with N = 104.

We compare our algorithm to the traditional method where we fix a uniform grid in D and
run the MCMC algorithm only on u. We found out that with the same number of grid points,
our data-driven approach gives a posterior distribution qu|y that is more concentrated around
the true location of the point source, as shown in figures 6(a) and (b). Also, figure 6(c) shows
that the adaptive discretization is concentrated at the top right corner of the region, where the
hidden point source u∗ is located.
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Figure 6. Figures (a) and (b) show the posterior distribution q(u|y), where the grid is
fixed and uniform in (a), and data-driven in (b). Red star indicates the true location of
the source, blue dots are random samples from the posterior, blue triangle is the posterior
mean, and dash (resp. dotted) lines correspond to the 90% (resp. 95%) coordinate-wise
credible regions. Figure (c) shows the grid generated in the last iteration of the MCMC
update.

Figure 7. The mean, 10 and 90-percentile of the pushforward distributionF�(qu|y) under
three different settings: (1) both the posterior qu|y and its pushforward F�(qu|y) are com-
puted on a fixed and uniform grid; (2) the posterior qu|y is computed on a fixed and
uniform grid, and its pushforward F�(qu|y) is calculated using a (nearly) exact solver; (3)
both the posterior and its pushforward are computed on a data-driven grid.
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Next we show that data-driven discretizations of the forward map can be employed to pro-
vide improved uncertainty quantification of the PDE solution, and not only to better reconstruct
the unknown input. To illustrate this, we approximate the pushforward distribution F�(qu|y)
in three different ways, as shown in figure 7. Let (u(n), a(n)) denote the output of the Gibbs
sampling algorithm at iteration n. We first consider the traditional method where the grid is
fixed and uniform, that is, a(n) = a is fixed. Then the pushforward distribution can be well-
approximated by {Fa(u(n))}Nn=1, for N large enough.We then consider the same setting except
that Fa is replaced by a forward map F computed in a fine grid k = 2000 and the pushfor-
ward is approximated by {F (u(n))}Nn=1. Finally we consider a data-driven setting stemming
from our algorithm, where the pushforward distribution is approximated by {Fa(n) (u(n))}Nn=1.
We see that our algorithm reconstructs well the solution to the PDE, with a more accurate mean
and a smaller variance.

6. Conclusions and open directions

• We have shown that, in a variety of inverse problems, the observations contain useful infor-
mation to guide the discretization of the forward model, allowing a better reconstruction
of the unknown than using uniform grids with the same number of degrees of freedom.
Despite these results being promising, it is important to note that updating the discretiza-
tion parameters may be costly in itself, and may result in slower mixing of the MCMC
methods. For this reason, we envision that the proposed approachmay havemore potential
when the computational solution of the inverse problem is very sensitive to the discretiza-
tion of the forwardmap and discretizing it is expensive.We also believe that density-based
discretizations may help in alleviating the cost of discretization learning.

• An interesting avenue of research stemming from this work is the development of prior
discretizationmodels that are informed by numerical analysis of the forwardmapF , while
recognizing the uncertainty in the best discretization of the forward model G. Moreover,
more sophisticated prior models beyond the product structure considered here should be
investigated.

• Topics for further research include the development of new local proposals and sam-
pling algorithms for grid-based discretizations, and the numerical implementation of the
approach in computationally demanding inverse problems beyond the proof-of-concept
ones considered here.
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Appendix A. Algorithm pseudo-code

See (algorithm A.1).

Appendix B. Additional results for section 5.1

See (tables B.1–B.3 and figure 8).
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Algorithm A.1. Metropolis within-Gibbs.

Input parameters: β (pCN step-size), ζ (probability of location moves), N (sample size).
Choose (u(1), a(1)) ∈ U ×A.
for n = 1 : N do

Stage I. Do a pCN move to update u given a, y:

(i) Propose ũ(n) =
√

1− β2 u(n) + βv(n), v(n) ∼ μu.

(ii) Set u(n+1) = ũ(n) with probability

a(u(n), ũ(n)) = min
{
1, exp

(
Ψ(u(n) , a(n); y)−Ψ(ũ(n), a(n); y)

)}

(iii) Set u(n+1) = u(n) otherwise.

Stage II. Update a = (k, θ) given u and y.
Stage IIa.With probability ζ, update θ given u, y with a grid re-location step:

(i) Propose ã(n) by picking one of the k interior grid points of a(n) uniformly at random,
and replacing it by a uniform draw in D.

(ii) Set a(n+1) = ã(n) with probability

α(a(n), ã(n)) = min
{
1, exp

(
Ψ(u(n+1), a(n); y)−Ψ(u(n+1), ã(n); y)

)}
.

(iii) Set a(n+1) = a(n) otherwise.

Stage IIb. Otherwise, (with probability 1− ζ) update k with a birth/death step:

(i) Propose a new number k̃(n) of grid-points.

(ii) If k̃(n) � k(n) remove uniformly chosen grid-points.

(iii) If k̃(n) > k(n) draw required number of new grid points uniformly at random in D.

(iv) Set a(n+1) = ã(n) with probability

α(a(n) , ã(n)) = min
{
1, νk (̃k

(n))
νk(k(n))

exp
(
Ψ(u(n+1), a(n); y)−Ψ(u(n+1), ã(n); y)

)}
.

(v) Set a(n+1) = a(n) otherwise.

end for
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Table B.1. Distribution of grid points when observations are concentrated on the right,
in the piecewise-constant Young’ modulus case. Element on ith row and jth column
represents the posterior probability of having i grid points in the subinterval j.

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)

2–3 0.0015 0.0047 0.0116 0.0094 0.0164 0 0 0 0 0
4–5 0.0791 0.1089 0.2003 0.1721 0.1875 0.0260 0.0967 0.0363 0.0554 0
6–7 0.3345 0.3940 0.4002 0.4017 0.3956 0.2309 0.2817 0.1789 0.3529 0.0578
8–9 0.3956 0.3412 0.2785 0.2967 0.2907 0.3548 0.3011 0.4835 0.3944 0.3808
10–11 0.1548 0.1268 0.0920 0.0983 0.0924 0.2579 0.2612 0.2565 0.1635 0.3886
12–13 0.0289 0.0230 0.0153 0.0199 0.0159 0.0988 0.0550 0.0425 0.0312 0.1524
14–15 0.0052 0.0012 0.0016 0.0019 0.0016 0.0255 0.0044 0.0020 0.0027 0.0195
16–17 0.0004 0.0003 0.0004 0 0 0.0051 0 0.0002 0 0.0009
18–19 0 0 0 0 0 0.0009 0 0 0 0

Table B.2. Distribution of grid points when observations are concentrated on the left,
in the piecewise-constant Young’ modulus case. Element on ith row and jth column
represents the posterior probability of having i grid points in the subinterval j.

(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 8) (8, 9) (9, 10)

2–3 0 0 0 0 0 0.1712 0.1481 0.1435 0.1259 0.0605
4–5 0 0.0496 0.0076 0 0.0325 0.3420 0.3139 0.3183 0.3162 0.2362
6–7 0 0.2488 0.1263 0.0257 0.2238 0.2860 0.2995 0.3133 0.3087 0.3360
8–9 0.0497 0.3785 0.3236 0.2174 0.4048 0.1341 0.1542 0.1508 0.1615 0.2316
10–11 0.2055 0.2390 0.3357 0.4114 0.2623 0.0383 0.0540 0.0483 0.0554 0.0954
12–13 0.3384 0.0717 0.1573 0.2492 0.0705 0.0062 0.0118 0.0097 0.0131 0.0274
14–15 0.2516 0.0111 0.0424 0.0789 0.0061 0.0012 0.0016 0.0009 0.0017 0.0053
16–17 0.1163 0.0013 0.0070 0.0155 0 0 0 0 0 0.0009
18–19 0.0321 0 0.0009 0.0018 0 0 0 0 0 0
20–21 0.0053 0 0 0 0 0 0 0 0 0
22–23 0.0007 0 0 0 0 0 0 0 0 0

Table B.3. Averaged acceptance probability of u and a respectively, in
the continuous Young’ modulus case.

Right obs. Left obs.

u 0.2728 0.4590
a 0.1953 0.2314
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Figure 8. History ofMCMC samples (black line) and running sample averages (red line)
of continuous Young’s modulus u(x), at fixed locations x = 4 and x = 8 repectively,
suggesting stationarity of the Markov chain.
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