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Abstract. Satellite remote sensing provides a global view to
processes on Earth that has unique benefits compared to mak-
ing measurements on the ground, such as global coverage
and enormous data volume. The typical downsides are spatial
and temporal gaps and potentially low data quality. Meaning-
ful statistical inference from such data requires overcoming
these problems and developing efficient and robust compu-
tational tools. We design and implement a computationally
efficient multi-scale Gaussian process (GP) software pack-
age, satGP, geared towards remote sensing applications. The
software is able to handle problems of enormous sizes and to
compute marginals and sample from the random field condi-
tioning on at least hundreds of millions of observations. This
is achieved by optimizing the computation by, e.g., random-
ization and splitting the problem into parallel local subprob-
lems which aggressively discard uninformative data.

We describe the mean function of the Gaussian process by
approximating marginals of a Markov random field (MRF).
Variability around the mean is modeled with a multi-scale co-
variance kernel, which consists of Matérn, exponential, and
periodic components. We also demonstrate how winds can be
used to inform covariances locally. The covariance kernel pa-
rameters are learned by calculating an approximate marginal
maximum likelihood estimate, and the validity of both the
multi-scale approach and the method used to learn the kernel
parameters is verified in synthetic experiments.

We apply these techniques to a moderate size ozone data
set produced by an atmospheric chemistry model and to the
very large number of observations retrieved from the Orbit-

ing Carbon Observatory 2 (OCO-2) satellite. The satGP soft-
ware is released under an open-source license.

1 Introduction

Climate change is one of the most important present-day
global environmental challenges. The underlying reason is
anthropogenic carbon emissions. According to the Inter-
governmental Panel on Climate Change, carbon dioxide
(CO2) has the strongest effect on warming the planet of the
well-mixed greenhouse gases, with the radiative forcing of
ca. 1.68 W m−2 (IPCC, 2013).

Several instruments orbiting the Earth produce enormous
quantities of remote sensing data, used to compute lo-
cal estimates of CO2 and other atmospheric constituents
by solving complicated inverse problems and further pro-
cessed to, e.g., gridded data products and flux estimates
(Cressie, 2018). These instruments include the Greenhouse
gases Observing SATellite (GOSAT) from Japan (Yokota
et al., 2009), operational since January 2009; the OCO-2
from NASA (Crisp et al., 2012), launched in July 2014;
and the Chinese TanSat (Yi et al., 2018), launched in De-
cember 2016. GOSAT-2 was launched in October 2018,
and in May 2019 the OCO-3 instrument (Eldering et al.,
2019) was taken to the International Space Station. In ad-
dition to the CO2-measuring instruments, also other types of
data are produced by remote sensing. For instance the Eu-
ropean TROPOspheric Monitoring Instrument (TROPOMI)
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produces measurements of nitrogen dioxide, formaldehyde,
carbon monoxide, aerosols, methane, and ozone. Common
denominators among most non-gridded remote sensing data
sets include a large number of observations, global coverage
but small area observed at any given time, sensitivity to pre-
vailing weather conditions and cloud cover, unknown and/or
unreported error covariances, and predetermined positioning
that rules out freely observing at a given time and location.
These shortcomings can be partly remedied with techniques
from computational statistics, such as those implemented in
the satGP software, which this paper introduces.

There are two key advances in this work. First, we de-
scribe the computational approaches that allow satGP to
tackle remote-sensing-related spatial statistics problems of
enormous sizes. Second, we present formulations of a multi-
scale covariance function and a space-dependent mean func-
tion, types of which we have not seen used in the remote
sensing community. We also show how these functions can
be efficiently learned from data.

Related to this work, several kriging studies have been
published before in the context of remotely sensed CO2.
Zeng et al. (2013) analyzed the variability in CO2 in both
space and time over China and produced monthly maps from
GOSAT data with slightly over 10 000 observations. Nguyen
et al. (2014) used a 4-times-larger set of observations with
Kalman smoothing in a reduced dimension with GOSAT and
the Atmospheric InfraRed Sounder (AIRS) data from NASA.
A map of atmospheric carbon dioxide derived from GOSAT
data was presented at the higher resolution of 1◦× 1.25◦ in
space and 6 d in time by Hammerling et al. (2012). In another
publication by the same authors, synthetic OCO-2 observa-
tions were considered with the same spatial resolution.

More recently Zeng et al. (2017) presented a global data
set derived from GOSAT with the spatiotemporal resolution
of 3 d and 1◦, and this study evaluated also the temporal trend
of the XCO2. The results were validated against observations
from the Total Carbon Column Observing Network (TC-
CON) and against modeling results from CarbonTracker and
Goddard Earth Observing System with atmospheric chem-
istry (GEOS-Chem). Tadić et al. (2017) described a moving-
window block kriging algorithm to introduce time depen-
dence into a GOSAT-based XCO2 map construction pro-
cess using a quasi-probabilistic screening method for sub-
sampling observations, thinning the data for computational
reasons. Other recent studies have also contained analyses of
OCO-2 data – for example Zammit-Mangion et al. (2018)
presented fixed rank kriging results based on OCO-2 data
using a 16 d moving window. In many of these studies, the
obtained CO2 fields appear very smooth.

Applications to remote sensing data have also resulted in
publications more focused on methods. Ma and Kang (2020)
described a “fused” Gaussian process, combining a graphi-
cal model with a Gaussian process and applying that to sea
surface temperature data. In another computationally sophis-
ticated application, Zammit-Mangion et al. (2015) simulta-

neously modeled both flux fields and concentrations using
a bivariate spatiotemporal model with Hamiltonian Monte
Carlo (Neal, 2011) for sampling the posterior. Due to compu-
tational challenges the spatial area investigated in this work
was very small.

For Gaussian processes, various approaches have been
studied to overcome the difficulties posed by large amounts
of data. For instance, Lindgren et al. (2011) provide an ex-
plicit link between some random fields arising as solutions
to certain stochastic partial differential equations and Markov
random fields. A recent review of Vecchia-type approxima-
tions (Vecchia, 1988) is given by Katzfuss et al. (2018), and
Heaton et al. (2018) presents a comparison of the perfor-
mance of several recently developed spatial statistics meth-
ods with applications to data from the Moderate Resolution
Imaging Spectroradiometer (MODIS). The difficulty of or-
dering the observations for effective inference with Gaussian
processes, especially as the dimension of the inputs grows, is
discussed by Ambikasaran et al. (2016).

In this work we describe the satGP program, which solves
very large spatiotemporal statistics problems with up to at
least the order of 108 marginals conditioned on 108 obser-
vations. While advances have recently been made in the
field, we are not aware of any literature or software solv-
ing problems of quite this scale so far. The effectiveness is
partly based on combining ideas related to Vecchia-type and
nearest-neighbor Gaussian processes (Datta et al., 2016), but
satGP also employs several computational tricks such as sub-
sampling observations and filtering out uninformative data at
several levels when possible. The program includes a flexi-
ble implementation for space-dependent mean functions and
space-independent covariance kernels and routines for learn-
ing their parameters from data. The spatial dependence of
the mean function is learned by computing marginals of a
Markov random field (MRF). The covariance function is con-
structed in a way that allows for describing the multiple natu-
ral length scales in the data. After learning the model param-
eters the program computes posterior predictive fields, and
realizations can be drawn from both the posterior and the
prior.

We validate the multi-scale covariance modeling approach
by learning the covariance function parameters of a data set
drawn with satGP from the prior of a multi-scale Gaussian
process. To demonstrate the computational capabilities of
this early version of satGP, we computed global XCO2 con-
centrations for a duration of 1526 d at 0.5◦ spatial and daily
temporal resolution, amounting to calculating 350 million
marginal distributions, conditioning on 116 million XCO2
observations from OCO-2. Figure 9 shows an example of
what these results look like. We also present a nonstation-
ary covariance kernel formulation that utilizes wind data for
computation, and we use that covariance function with OCO-
2 data. The utility of using winds with CO2 data has been
demonstrated before by, e.g., Nassar et al. (2017).
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Figure 1. Mean function m with components fi given by Eq. (11). The solid lines show the mean function value for each day, fitted to the
XCO2 observations, marked by the dots. The OCO-2 mean function results are discussed in Sect. 4.4.

In addition to the OCO-2 work, we demonstrate the ca-
pabilities of satGP with synthetic ozone data from the Whole
Atmosphere Community Climate Model (WACCM4) (Marsh
et al., 2013), emulating observing with the Global Ozone
Monitoring by Occultation of Stars (GOMOS) instrument
(Bertaux et al., 2004, 2010; Kyrölä et al., 2004) on Envisat.
Using synthetic data allows us to directly compare Gaussian
process posterior estimates to an exactly known ground truth.
The software could equally well be applied to any other ob-
served quantity of interest.

The rest of the paper is organized in the following manner.
Section 2 describes the methods both generally and as im-
plemented in satGP. Section 3 discusses the computational
details in satGP. Section 4 presents and discusses simulation
results, including a multi-scale synthetic parameter identifia-
bility study, an application to synthetic WACCM4-generated
data, and applications using the OCO-2 V9 data. In the con-
cluding Sect. 5, current limitations and some possible future
directions are briefly mentioned.

2 Methods

In geosciences, kriging (Cressie and Wikle, 2001; Chiles and
Delfiner, 2012) is used for performing spatial statistics tasks
such as gap-filling or representing data in a grid. The semi-
variogram models used in kriging are closely related to the
covariance models used in the Gaussian process formalism
(Santner et al., 2003; Rasmussen and Williams, 2006; Gel-
man et al., 2013), where instead of learning the variogram
model from the data, a form of a covariance function is pre-
scribed and its parameters estimated.

With Gaussian processes, we want to learn properties of a
spatiotemporal surface from some observational data of some

quantity of interest. To each point in space and time corre-
sponds a Gaussian distribution of that quantity, whose mean
and variance can be calculated by solving a local regression
problem. This is closely related to solving a spatiotemporal
interpolation problem when the observations have Gaussian
errors.

The theory of Bayesian statistics, Gaussian processes, and
Markov random fields that is used in this work is well known,
and therefore, many of the novel aspects in this section have
to do with the computational methods and modifications
that are presented, such as observation selection schemes in
Sect. 2.5 or approximate marginal maximum likelihood com-
putation in Sect. 2.6. These modifications trade precision for
tractability but in a way that tries minimize the loss in accu-
racy. Due to the desire to be able to solve very large prob-
lems, some sacrifices need to be made to be able to obtain
any solution.

This section goes through the Gaussian process formal-
ism and presents both generic and satGP-specific forms of
mean and covariance functions. This is followed by discus-
sion of how observation selection is carried out for solving
local subproblems and how model parameters are learned.
The presentation of the general Gaussian process problem is
based on Santner et al. (2003) and Rasmussen and Williams
(2006). Commonly used notation is listed in Table 1.

2.1 Gaussian process regression

A Gaussian process is a stochastic process, which can be
thought of as an infinite-dimensional Gaussian distribution
in that the joint distributions of the process at any finite set of
space–time points are multivariate normal. We denote points
in the spatiotemporal domain by x ∈ Rq . In this work q = 3,
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Table 1. Most commonly used notation related to inputs and mean/covariance functions in Sect. 2 and the Markov random field in Sect. 2.3.1.
The second column gives the set in which the symbol belongs – or in some cases the set of which the symbol is a subset. The domain sets in
the second column are defined as Dlat,

[
latmin, latmax

]
, Dlon,

[
lonmin, lonmax

]
, Dt,R+, and D,Dlat×Dlon×Dt ⊂ Rq , and V denotes

the set of nodes in the graph described in Sect. 2.3.1.

Symbol ∈ Meaning

x D Generic spatiotemporal coordinate vector
xt Dt Temporal part of coordinate vector x, implemented as seconds since 1970
xs Rq−1 Spatial part of generic coordinate x, in practice xs

= [xlat,xlon
]
T

xlat Dlat North–south component of coordinate vector x as defined by variable area in Table 2
xlon Dlon East–west component of coordinate vector x as defined by variable area in Table 2
xij Dlat×Dlon Spatial location corresponding to ith latitude and j th longitude in the satGP regular grid
x∗ Rq Gaussian process test input – the spatiotemporal location where the GP is evaluated
xobs Rn×q Matrix of space–time locations where the n observations in ψobs were made

β Rnβ Mean function coefficients; see m below. These may be space dependent.
βν Rnβ β coefficients for the spatial location corresponding to graph label ν in the MRF
βij Rnβ β coefficients at grid point xij in the satGP latitude–longitude grid
βV Rnβ×V β coefficients for all grid points in the satGP latitude–longitude grid
δ Rnδ Space-dependent mean function parameters that cannot be learned via Eqs. (6) and (7)
δν Rnδ δ parameters for the spatial location corresponding to graph label ν in the MRF
δV Rnδ×V δ coefficients for all grid points in the satGP latitude–longitude grid
θ Rnθ Covariance function parameters of all the subkernels of the multi-scale kernel
θ (·) Rnθ(·) Covariance function parameters of the subkernel in the subindex (·)

I – The set of all spatial/temporal indexes for each x; size of |I | is therefore q.
IST ⊆ I Spatiotemporal index set: corresponding k is a function of space and time.
IS ⊆ I Spatial index set: corresponding k is a function of space only.
`c, c ∈ I R+ Covariance kernel length-scale parameter along axis c

`I ′ R+|I
′
| Covariance kernel length-scale parameters along all dimensions in I ′

ν V Label of a specific node of the graph describing the MRF. In Sect. 2.4 ν is a parameter (∈ R+)
used to define the Matérn kernel smoothness parameter.

νij V Label of the node of the graph corresponding to the spatial location of xij

∂ν ⊆ V Set of nodes in the graph with edges to node ν

9 – Random field of the quantity of interest
9(x) R Random variable of the quantity of interest corresponding to 9 at x
ψobs Rn Values of the observations of the field at locations xobs

ψ RD Realization of the random field 9

k(x,x′) R Covariance function value of inputs x and x′

m(x;β,δ) R Mean function value at x with parameters β and δ: m(x;β,δ)= f (x;δ)T β
f (x;δ) R Vector of functions to construct the mean function at x with parameters β and δ
F Rn×nβ Matrix with coefficients Fij = fj (xobs

i
;δ)

K Rn×n Covariance matrix with elements Kij = k(xobs
i
,xobs
j
)

even though this restriction can be overcome if needed, and
satGP does have limited support for space-only problems.

The Gaussian process, or Gaussian random field, is de-
noted by

9 ∼ GP(m(x;β),k(x,x′;θ)), (1)

where m : Rq→ R and k : Rq×q→ R are the mean and
covariance functions of the process parameterized by hy-
perparameter vectors β ∈ Rnβ and θ ∈ Rnθ . The infinite-
dimensional (since the domain of x is typically infinite) de-

scription in Eq. (1) is reduced below to a finite-dimensional
problem, in which case k(x,x′) describes an entry of the co-
variance matrix of the joint distribution of random variables
9(x) over all x that one is interested in.

The function m above is called drift in kriging literature,
and the expected value of the process in regions with no data
will tend to the value of this mean function. It is chosen to re-
flect the deterministic patterns in the data, and the particular
form picked to model m will also affect how the function k
and parameters θ in Eq. (1) need to be specified. With inad-
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equate modeling of the mean function, the uncertainty esti-
mates obtained with Gaussian process regression may end up
being unnecessarily large. For instance linear trends, constant
factors, and seasonal and other periodic fluctuations should
be included in m if they are known. An example of what is
used with the OCO-2 data is shown later in Eq. (11).

In what follows, the domain Rq 3 x is divided into two
disjoint parts, one of which, X train

⊂ Rq , is the set of coordi-
nates xobs

i , where observation data (training data) were mea-
sured, and another one, X test,Rq\X train, denotes its comple-
ment. Points in X test are denoted by x∗ and called test inputs
as is often done in Gaussian process literature. Observations
at locations {xobs

i : i = 1, . . .,n}, both real and synthetic ones
generated by the Gaussian process, are denoted by ψobs

i ∈ R,
and the vector of all ψobs

i is written as ψobs.
For the mean function m in Eq. (1), a specific form,

m(x;β,δ)= f (x;δ)T β ≡ f̃ (xt
;δ(xs))T β(xs), (2)

is used in this work. The superindexes s and t refer to the
spatial and temporal parts of the generic coordinate x, and δ
values are auxiliary parameters which are space dependent.
The purpose of the righthand side with the function f̃ is to
underline that f depends on the spatial part of x only via the
space-dependent δ parameters and that the β parameters do
not depend on xt, the temporal part of x. The temporal evolu-
tion of the mean function is in this particular form determined
only by the function f (x;δ),[f1(x;δ), . . .,fnβ (x;δ)]

T , and
for each fi there is a space-dependent regression coefficient
βi .

The parameter vectors δ contains space-dependent param-
eters that affect the form of any of the fi in a way that cannot
be modeled with the β coefficients in the functional form of
Eq. (2). The length of these space-dependent δ vectors is nδ .
Given the parameters δ for all the inputs in xobs and a set of
functions fi for constructing the mean function, we define
matrix F ∈ Rn×nβ with elements Fij = fi(xobs

j ;δ), where the
δ is now specific to the location xobs

i .
The definition ofm above is very general and can describe

in practice a large number of realistic scenarios. Nonetheless,
the form of Eq. (2) imposes the strong assumption of sepa-
ration of space and time in that the β and δ parameters do
not depend on time. The explicit form of functions fi used to
model the OCO-2 data are given below in Sect. 2.2.

The covariance function k(x,x′;θ) controls the smooth-
ness of the draws ψ from 9. It outputs the prior covariance
of the random variables9(x) and9(x′) at x and x′. The pa-
rameter vector θ typically contains at least one scale parame-
ter ` and a parameter τ controlling the maximum covariance,
τ 2. The ` parameters correspond to the length scales of the
random fluctuations of the realizations around the mean func-
tion, and the τ parameters describe the amplitude of that fluc-
tuation. By defining the covariance matrix K ∈ Rn×n with
elements Ki,j = k(xobs

i ,xobs
j ;θ), the joint distribution of the

field at observed locations is given by

9obs
∼N (Fβ,K)) . (3)

Explicit forms of functionsm and k are described in Sect. 2.2
and 2.4, respectively. Additional practical guidelines are
given in Appendix A.

The paradigm of Bayesian statistics is standard for ana-
lyzing data and uncertainties, and it is also widely used in
geosciences (Rodgers, 2000; Gelman et al., 2013). Given the
observed data 9obs

= ψobs at some finite set of points xobs,
the object of interest of the Bayesian inference problem in
this work is the joint posterior distribution of the Gaussian
process and the parameters,

p(ψ,β,δ,θ |ψobs)=

p(ψobs
|ψ,β,δ,θ)p(ψ |β,δ,θ)p(β,δ,θ)

p(ψobs)
, (4)

where p(ψ |β,δ,θ) is the Gaussian process prior, and
p(β,δ,θ) is a prior on the Gaussian process hyperparam-
eters. In this particular equation β and δ actually denote
spatially varying hyperparameter fields. The calculation in
Eq. (4) is not generally tractable for a huge number of in-
puts x, but posterior estimates of the GP, p(ψ |ψobs, β̂, δ̂, θ̂),
can be calculated for a finite set of inputs by conditioning
on parameter point estimates θ̂ , β̂, and δ̂. The covariance pa-
rameter estimate θ̂ may be found by minimizing some loss
function L,

θ̂ = arg minθ L(θ), (5)

described explicitly below in Sect. 2.6. Given a point esti-
mate of the parameters θ and δ, along with a Gaussian prior
for the β parameters with mean µβ and covariance 6β , the
posterior distribution of the β parameters can be computed
with,

E
[
β|9obs

= ψobs,θ ,δ
]
=

(
FTK−1F+6−1

β

)−1

FTK−1
(
ψobs
−Fµβ

)
+µβ (6)

Cov
[
β|9obs

= ψobs,θ ,δ
]
=

(
FTK−1F+6−1

β

)−1
. (7)

The matrix K is generally a dense matrix of size n×n, where
n is the number of observations, and as n may be extremely
large, direct inversion of this matrix is in practice impossible.
However, in this work inverting the full K is not necessary;
we want to find parameters β that vary locally, which is done
by splitting the full problem into many smaller subproblems,
solving the β parameters in a grid, as described in Sect. 2.3.
This grid is then used to construct matrix F by interpolating
the values of β and δ obtained.

The δ parameters are found approximately in this work by
a three-step process: first a point estimate of parameters β
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and δ is computed using an optimization algorithm; second,
parameters β are recomputed by Eq. (6) given the estimate
of δ from the first stage; and third, the δ parameters alone are
recalibrated by optimization using the newly found β param-
eters. In practice this procedure produces stable results with
the OCO-2 data, and for pathological data sets repeated alter-
nating optimization of the parameters may be performed. The
calibration process is described in more detail in Sect. 2.3.2.

Even though a full posterior distribution of the parameters
is not obtained this way, the solution of the Gaussian process
itself is Bayesian in that the posterior marginals at each x∗

are found by conditioning on the observations. In the satGP
software, the space-dependent β and δ parameters are fitted
first, and any learning of the covariance parameters is done
only after that.

For prediction in the context of Gaussian random func-
tions, the properties of multivariate normal distributions are
exploited for calculating marginals of the random field 9 at
any set of inputs. The posterior distribution p(ψ∗|ψobs, θ̂ , β̂)

of the Gaussian process at some test input x∗ can, given point
estimates β̂ and θ̂ , be modeled according to Eq. (3) with(
9∗

9obs

)
∼N

([
f (x∗)T

F

]
β̂,

[
K(x∗,x∗) K(x∗,xobs)

K(xobs,x∗) K(xobs,xobs)

])
, (8)

where the vector of inputs has been divided into two parts
– one for the test input x∗ and the other one for the ob-
servations xobs. The notation K(x∗,xobs) refers to the first
row (minus the first element) of the covariance matrix with
elements K(x∗,xobs)j = k(x

∗,xobs
j ), and the matrix in the

lower-right corner, K(xobs,xobs) is the same as matrix K in,
e.g., Eq. (3). The random variable at x∗ can then be written
as 9∗ |̂β, θ̂ ∼N (µ∗,6∗), where its mean and covariance are
given by

µ∗ =f
(
x∗
)T
β̂

+K
(
x∗,xobs

)
K
(

xobs,xobs
)−1(

ψobs
−Fβ̂

)
(9)

and

6∗ =K
(
x∗,x∗

)
−K

(
x∗,xobs

)
K
(

xobs,xobs
)−1

K
(

xobs,x∗
)
, (10)

and where the covariance 6∗ is the Schur complement of
K(x∗,x∗). The formulas in Eqs. (8)–(10) work equally well
when the x∗ contains more than one test input. However, as
of now, in satGP these equations are solved for a single test
input at a time. When computing 9∗ with these formulas,
satGP uses observations close to x∗ (see Sect. 2.5) and the
values of β and δ calibrated at x∗s.

2.2 Mean functions in satGP

Equation (2) gives the most general mean function form
available in satGP. The functions fi above are user defined,
and, for ease of use, satGP includes functionality for using a
zero-mean function, a spatially independent mean function,
and an arbitrary gridded array of values. The specific forms
of fi used for the OCO-2 experiments in Sect. 4 are

f1(x)= sin
(

2πxt1−1
period+ δ

)
f2(x)= cos

(
4πxt1−1

period+ δ
)

f3(x)= 1
f4(x)= x

t,


(11)

where 1period is for OCO-2 the duration of 1 year, and δ
is a space-dependent phase shift. The function f1 fits the
summer–winter cycle, and f2 fits the semiannual cycle. It is
assumed that for any given x, f1 and f2 can be modeled with
the same δ parameters. The constant term is given by f3, and
f4 gives the slow global trend. As an example of the local
behavior, Fig. 1 shows the mean function fit to the observed
local daily mean values of XCO2 from OCO-2 for several lo-
cations. The WACCM4 ozone study in Sect. 4.2 added two
more functions f5 and f6 similar to f1 and f2 but with dif-
ferent 1period parameters.

2.3 Learning the spatial dependence of β

When satGP is not used for learning GP covariance parame-
ters or generating synthetic training sets, the finite set of test
inputs x∗ for GP calculation is a grid with predefined geo-
graphical and temporal extents and resolution. Solving the
GP marginalization and sampling problems then amounts to
solving Eqs. (9) and (10) at each corresponding space–time
point. Since, e.g., sources, sinks, and timing of seasons are
local, the mean function should be different from one spa-
tial grid point to another. This is achieved by modeling the β
parameters as a Markov random field. The MRF imposes the
condition that neighboring grid cells should not be too differ-
ent from each other. How different they are allowed to be is
a modeling choice; see Appendix A. This section describes
how the spatial dependence is resolved in satGP using com-
putational statistics.

In addition to solving this spatial problem, the marginal
distributions of the β parameters need to be solved for each
individual vertex. Point estimates of the δ parameters, men-
tioned in Sect. 2.1, are found at the same time with the β
parameters. The intimately connected spatial and local prob-
lems are described in the subsections below.

2.3.1 Mean function parameters β are described as a
Markov random field

A Markov random field is a probabilistic model that de-
scribes the conditional independence structure in a set of ran-
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dom variables. In satGP, an MRF is used to describe how the
β coefficients depend on each other spatially. The MRF used
in satGP assumes that, in addition to data, the β coefficients
only depend on the coefficient values in the neighboring grid
points.

Technically, the MRF in satGP is an undirected
graphical model G,(V,E) (Lauritzen, 1996), with the
set of vertices or nodes V,{νij |i = 1. . .nlat,j = 1. . .nlon}

and edges E,{(νi,j ,νi+1,j )|i = 1. . .nlat− 1,j = 1. . .nlon} ∪

{(νk,l,νk,l+1)|k = 1. . .nlat, l = 1. . .nlon− 1}. We use both ν
and νij to denote a generic vertex in a graph, and in the
specific MRF setting used in satGP, each νij corresponds
to the random vector βij at grid point (i,j). After finding
the marginal distributions of these vectors in the graph the
maximum a posteriori (MAP) values of βij are used as the
parameters of the mean function for the spatial location cor-
responding to the (i,j) element.

The set of edges E defines the Markov structure of the
graph, i.e., how the β coefficients of the nodes depend on
each other. For any non-edge vertex νi,j , there are edges
in E to the east, south, west, and north, meaning that only
these neighboring vertices, collectively denoted by ∂νij,{ν ∈
V|(ν,νij ) ∈ E}, directly affect the vertex. More specifically,
the Markov property defined by the set E implies that the
probability of the β parameters of latitude i and longitude j
is given by p(βij )=

∫
∂νij
p(νij |∂νij )p(∂νij ), where it is un-

derstood that νij and ∂νij refer directly to the random vari-
ables, βij and the joint distribution of the β coefficients of
its adjacent vertices, respectively.

The satGP program needs to compute the marginal dis-
tributions of each βij to learn the spatially varying mean
function parameters. Due to the lattice structure of the graph,
according to Hammersley and Clifford (1971) the full joint
distribution of the graph p(V) factors as

∏
(ν,ν′)∈E

1
Z
φ(ν,ν′),

where Z is called a partition function, and φ are so-called
compatibility functions. This suggests that an algorithm that
solves local subproblems could be used. One possible choice
is the variable elimination algorithm, which is an exact stan-
dard algorithm suitable for undirected graphs of moderate
size. To make the computation faster, satGP currently mod-
ifies it by computing each diagonal in the graph, shown in
Fig. 2, in parallel from ν0,0 to νnlat,nlon and then back from
νnlat,nlon to ν0,0. Each νij is conditioned on the previously
evaluated vertices in ∂νij , but the diagonal edges of the
so-called reconstituted graph are not introduced, as would
normally be done. When starting again from the bottom-
right corner after computing diagonals numbered 1. . .N , the
(N + 1)th diagonal is not conditioned on previously com-
puted nodes. Once the diagonals nlon and N + nlon− 2 that
“sandwich” the node ν from both upper-left and lower-right
sides have been computed, the posterior distribution of βν –
and any other vertex on the (N + nlon− 1)th diagonal – can
be calculated.

The modification of the algorithm loses the ability of the
upper-right and lower-left corners to communicate effec-

tively, but since most remote sensing data sets contain at least
some observations for some time period for most nodes, the
far-away information does not affect results in many practi-
cal scenarios. Techniques such as generalized belief propaga-
tion (Wainwright and Jordan, 2008) could be used to obtain
a better fit to the data, in case a need emerges to improve the
spatial fitting of the mean function coefficients.

The results should not change due to changes in the user-
chosen grid resolution, and for this reason satGP inversely
weights the edges exponentially according to the distances
between the (geographical) coordinates corresponding to the
connected nodes. This rate of exponential decay is user con-
figurable by the dscale parameter; see Appendix A.

2.3.2 Computing the individual posterior marginals
p(βν|ψ

obs,θ)

Assume that for the vertex ν in Fig. 2 the neighbors marked
∂ν have been computed. Computing the marginal distribution
of β and an estimate of δ at ν, referred to below as βν and δν ,
is carried out in several steps. These steps take place inside
solving the spatial problem described above as follows: the
steps listed below are computed for each vertex, correspond-
ing to a spatial location. The computation uses information
from previously computed points as prior information.

In the particular form of the mean function m used for
OCO-2 data in Eq. (11), the phase-shift parameter δ can-
not be estimated with regression the way β is found in
Eqs. (9) and (10). For this reason, the nonlinear space-
dependent δ parameters are found with an optimization algo-
rithm from the NLopt package (Johnson, 2014), by default
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm,
before finding β̂ with Eq. (6). After obtaining β̂ the δ pa-
rameters are re-optimized given the β̂. The full calibration
process for a single graph node ν proceeds in the following
manner:

1. Select nν observations ψobs
ν of the observable that are

close in terms of the spatial components of the covari-
ance. Specifically, when evaluating whether to select an
observation ψobs

i for carrying out computations at test
input x∗ corresponding to some vertex ν, we set the time
component of xobs

i to that of the test input, xobs
i

t
← x∗t,

making the temporal part of the covariance function ir-
relevant in this selection process. Observation selection
is described in detail in Sect. 2.5.

2. Find a best-guess δν (and βν , which is not used) by run-
ning the BFGS optimization algorithm (Nocedal, 1980)
to find an approximate maximum a posteriori estimate
by computing
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Figure 2. The marginal distribution p(ν) of vertex ν is conditional only on the neighbors in ∂ν (connected to ν with red edges) due to the
Markov structure in the pictured lattice graph. For effective solving, the vertices on the diagonal dashed lines are computed simultaneously
making the algorithm non-exact. The order numbers labeling the diagonal lines represent an ordering in which the diagonals can be computed
in parallel to get all the marginals in O(N) wall time, where N,nlat+ nlon− 1. Southwest and northeast corners of the domain are labeled
SW and NE in the graph. The final values of the parameters are obtained when diagonals from N to 2N − 1 are computed.

β̃ν, δ̃ν = arg min
β,δ

{ nν∑
j=1
(m(xν;βν,δν)−ψ

obs
ν j )

2

+

∑
ν′∈∂ν

(
(δν − δν′)

T (δν − δν′) (12)

+ (βν −βν′)
T (βν −βν′)

)}
.

The first sum runs over the training data selected by the
observation selection method described in Sect. 2.5, and
the second sum constrains the parameter values close to
those in ∂ν . This optimization problem is very simple
since there are few β and/or δ parameters for the indi-
vidual vertices.

3. Given δ̃ν , an estimate of the GP covariance parameters θ̃
– e.g., from a previous simulation or a best guess – and
the observations ψobs

ν , compute E[βν |ψobs
ν , θ̃ , δ̃ν] and

Cov[βν |ψ
obs
ν , θ̃ , δ̃ν] via Eqs. (6) and (7). Together these

give p(βν |ψ
obs
ν , θ̃ , δ̃ν). If this computation uses a flat

prior, as we do in this work, this is by Bayes’ theorem
proportional to the likelihood p(ψobs

ν |βν, θ̃ , δ̃ν).

4. Find the posterior marginal distribution of
βν by applying Bayes’ theorem and using
the computed distributions at the neighboring
nodes as prior information. Due to the Markov
structure this becomes p(βν |ψ

obs
ν , θ̃ , δ̃ν)∝

p(ψobs
ν |βν, θ̃ , δ̃ν)

∏
νij∈∂ν

p(βij |ψobs
νij
, θ̃ , δ̃νij ). If the

spatial location corresponding to ν does not have any
data to inform the fit (if ψobs

ν is a zero-length vector),
then parameter values from ∂ν will determine the fit.

5. Using the βν obtained at the previous step, re-optimize
only the δν parameters as above in step number 2. Since
βν is not varied, the term (βν −βν′)

T (βν −βν′) in
Eq. (12) plays no role here.

The mean value of the distribution of βν coming out from
step 4 corresponds to the β̂ in, e.g., Eq. (9), where x∗ would
now refer to the spatial location of vertex ν. Similarly, in case
δ-type coefficients are used, the functions fi will depend on
the final δν values computed in step 5. The full sets of β and
δ coefficients for all the vertices in the graph are denoted by
βV and δV , and the sets of calibrated values are written as
β̂V and δ̂V .
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2.4 Covariance functions in satGP

The smoothness, amplitude, and length scales of the Gaus-
sian process realizations are determined by the covariance
kernel used. The satGP program supports several different
types of covariance function components for forming the full
covariance function k in Eq. (1). The options available re-
flect the properties that can be expected in remote sensing
data – varying smoothness and meridional and zonal length
scales, potential periodicity, and changing the orientation of
the data-informed and uninformed axes according to wind
speed and direction. This section lists the available covari-
ance function formulations, and other forms may be easily
added in the code.

For convenience, let

ξ
γ

I (x,x
′),

∑
c∈I

∣∣∣∣xc− x′c`c

∣∣∣∣γ = ‖PI (x)−PI (x′)‖γ0, (13)

where γ > 0 is the exponent, I is a (sub)set of the dimensions
of the inputs x and x′, `c values are length-scale parameters
corresponding to the different dimensions in I , e.g., tempo-
ral (`t), zonal (`lon), or meridional (`lat) directions, and xc

values are different components of the inputs, e.g., xt, xlat,
and xlon. The spatial length-scale parameters `lat and `lon are
in units of distance on the surface of the unit sphere, corre-
sponding to radians at the Equator. The PI matrix projects x
onto indices/dimensions in I ; 0 is a diagonal covariance ma-
trix with diagonal elements `2

c , and the notation ‖r‖0 stands
for
√

rT0−1r , where r is an arbitrary vector of the appro-
priate size. For remote sensing data used in this work, space-
only variables form the set IS,{lat, lon}, and for spatial and
temporal variables together the notation IST,{lat, lon, t} is
used. Notation lat and lon refer to the spatial components of
x, collectively earlier referred to as xs, and t refers to the
temporal component. The form of ξ in Eq. (13) implies that
the different dimensions have separate length-scale parame-
ters `. The exponent γ in ξ is, however, shared between the
dimensions. For the set of all ` parameters over a set I ′ of
dimensions we write `I ′ . All the covariance functions below
depend on a parameter τ , square of which determines the
maximum covariance that is attained when x = x′.

The exponential family of covariance functions with pa-
rameters θexp,[τ,`IST ,γ ]

T is defined by the covariance
function

kexp(x,x
′
;θexp),τ

2 exp
(
−ξ

γ

IST
(x,x′)

)
. (14)

The exponent γ controls the smoothness of the samples from
the Gaussian process, with γ = 2 yielding infinitely differen-
tiable realizations.

The Matérn family of covariance functions, with
θM,[τ,`IST ,ν]

T is given by the covariance

kM(x,x
′
;θM),

τ 2sν

0(ν)2ν−1Kν(s), (15)

where s = 2
√
νξ1
IST
(x,x′) and ν controls the smoothness pa-

rameter usually denoted by α via α = ν+ q
2 . The functionKν

is the modified Bessel function of the second kind of order
ν. With q = 1, the value ν =∞ corresponds to the squared
exponential kernel and ν = 0.5 to the exponential kernel with
γ = 1. Despite this similarity between the Matérn and expo-
nential kernels, the realizations of the random function from
the processes with values 1

2 < ν <∞ do not correspond to
those with the kernel kexp with any value of γ .

A periodic kernel with θper,[τ,`IS ,`per]
T is defined in

satGP by

kper(x,x
′
;θper),

τ 2exp

(
−

2
`2

per
sin2

(
π

[
xt
− x′

t

1period

])
− ξ2

IS
(x,x′)

)
. (16)

The parameter1period is the period length, which is assumed
to be well known a priori and therefore is not among the pa-
rameters that are calibrated. The second term in the exponent
controls the spatial dependence via length-scale parameters
in `IS , and `per determines how far the temporal covariance
extends, modulo 1period.

satGP contains an additional covariance function that uti-
lizes local wind information when computing the covari-
ances. The underlying rationale is that winds affect how
quantities of interest such as gases in the atmosphere or al-
gae blooms in surface water spread. For this reason, if wind
data are available, it is natural to try to use them for inference
with the Gaussian process. We define the wind-informed co-
variance kernel with parameters θw,[τ,`,`t,ρ,w

∗
]
T by

kw(x,x
′
;θw),kexp(xw,x

′
w;τ,{`‖,`⊥,`t},2). (17)

The parameter ρ in θw defines how strongly the magnitude of
the wind vector at the test input, w∗,[w∗lat,w

∗

lon]
T (the last

parameter in θw), affects the shape of the covariance. The
kernel itself is an exponential kernel, where the spatial com-
ponents of the vectors x and x′ are transformed by wind data,
and the covariance lengths are transformed by wind speed.
A spatiotemporal vector x = [xlat,xlon,xt

] is transformed by
wind to the vector xw in a new coordinate system according
to

xw,

(xs
− x∗s)Tw‖

(xs
− x∗s)Tw⊥

xt

 , (18)

where xs and x∗s are the spatial components of vectors x
and x∗, and w‖ and w⊥ are the unit vectors in the lat–long
coordinates along and perpendicular to wind direction at the
test input x∗.

The spatial scaling (`) parameters for kw, corresponding
now to the covariance scales parallel and perpendicular to
the wind direction, are given by

`‖,`
4
√

1+ |w∗|ρ, `⊥,`. (19)
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Figure 3. Equicovariance ellipses from the wind-informed kernel
with various wind vectors w∗ and values of ρ. The wind values are
taken at the test input x∗, but the covariance function k is evaluated
also for each pair of observations x and x′.

The parameter vector for the exponential kernel then be-
comes θexp← [τ,`‖,`⊥,`t ,2]T , where the last element de-
notes the exponent γ used by the exponential kernel. A num-
ber of possible covariance ellipses resulting from the trans-
formation procedure are shown in Fig. 3. Some data sets, like
OCO-2, incorporate wind information, and satGP does have
the capability of gridding that data using another Gaussian
process. Reading in gridded wind data from other sources is
also a possibility. Using kw requires that wind data are avail-
able at each x∗.

The covariance functions used in this work to model 9
are sums of several kernels – sums of valid Gaussian process
kernels remain valid kernels. The general form of the multi-
scale kernel used in satGP is given by

k
(
x,x′;θ

)
= δx,x′σ

2
x +

nker∑
i=1

kkeri
(
x,x′;θkeri

)
, (20)

where the first term, which in kriging is called the nugget,
contains the observation error variances, and each keri ∈

{exp,M,per,w}.
The kernel components of a multi-scale kernel are in this

work called subkernels. The combined set of parameters is
denoted by θ = [θTker1

, . . .,θTkernker
]
T . Not all subkernel types

are included in all experiments – rather, the simulations in
Sect. 4 utilize kernels with one to three components. What
those components should be depends on what fields are be-
ing modeled and what kinds of correlation structures the user
expects to find in the data. Section 4.1 discusses identifiabil-
ity of the different subkernel parameters of the multi-scale
kernel.

Instead of calling k(x,x′;θ) in Eq. (20) a multi-scale ker-
nel, the term multi-component kernel could also be used to
describe the form. The term “multi-scale” underlines that
the purpose of the combined kernel is to model data well,
which contains several natural length scales, as remote sens-
ing products often do. Furthermore, we believe that com-
bining several kernels with identical length-scale parameters
does not represent a common use case.

2.5 Covariance localization and observation selection
for the multi-scale kernel

Using a large number of observations makes solving the
Gaussian process Eqs. (9) and (10) intractable as the cost
of inverting the covariance matrix scales as O(n3

obs). This
creates a need for finding approximate solutions while in-
troducing as little error as possible. In satGP, covariance lo-
calization is used to utilize only a subset of observations for
computing Eqs. (9) and (10). To control the localization be-
havior the user needs to set two parameters: the maximum
subkernel covariance matrix size κ and the minimum covari-
ance parameter σ 2

min.
Assume that the multi-scale kernel defined by the user

contains nker subkernels. For each test input x∗ and for each
subkernel kl , the set of observations feasible for inclusion in
K in Eqs. (6) and (7) is

Aobs
∗,l ,

{
ψi ∈ ψ

obs
|kl(x

obs
i ,x∗) > σ 2

min,

ψi 6∈ A
obs
∗,j ∀j < l

}
, (21)

where the last condition prevents observations from being
added by several subkernels. In the end we select a single
set of observations Aobs

∗ for each test input by combining
some or all of the observations included in each Aobs

∗,l . The
observation selection proceeds sequentially through the list
of subkernels according to the procedure presented in Fig. 4.
Recomputing the κ ′ for each subkernel on line 3 of the al-
gorithm allows the selection of more than κ observations by
subkernels if the previous subkernels did not have κ feasible
observations available. This is done to allow the full kernel
size to grow to nkerκ when possible. On line 4, the observa-
tion selection operator S(Aobs

∗,l ,κ
′) chooses κ ′ observations

from each Aobs
∗,l either greedily by picking the observations

with highest covariance with x∗ or randomly by sampling
uniformly without replacement from Aobs

∗,l . Out of these two
methods random selection avoids observation sorting and is
therefore faster, especially if a huge number of data are near
the test input x∗. This comes at the cost of producing noisier
fields of marginal posterior means. For covariance parameter
estimation random selection works well. See Appendix A for
additional details.

Since the subkernels are handled sequentially, their order
may affect which observations are selected due to the exclu-
sion in Eq. (21), and to grow the full kernel to size nkerκ as
often as possible, it is recommended to specify the subkernel
with the largest ` parameters as the last one. After construct-
ing Aobs

∗ , the covariance matrix K is constructed by evaluat-
ing the full covariance function k according to Eq. (20) for
all pairs of selected observations.

For learning the spatially varying β and δ parameters for
grid index (i,j) in the mean function with the methods in
Sect. 2.3.2, the observation selection is performed by dis-
regarding the time component on the inputs, i.e., by setting

Geosci. Model Dev., 13, 3439–3463, 2020 https://doi.org/10.5194/gmd-13-3439-2020



J. Susiluoto et al.: Efficient multi-scale Gaussian process regression for satellite data 3449

Figure 4. Algorithm for selecting observations for carrying out pre-
dictions at test input x∗. The sets Aobs

∗ are defined by Eq. (21), and
the variable κ is the maximum subkernel size, also listed in Table 2
and discussed in Sect. 3. The selection operator S(Aobs

∗,l
,κ ′) chooses

κ ′ observations from each Aobs
∗,l

either greedily or randomly.

xobs
i

t
← xij

t for all xobs
i in the training data. The reason for

this is that, since learning the mean function amounts to fit-
ting spatially varying parameter vectors β and δ, the data to
perform the fit should not be selected based on covariance
in the time direction, as the mean function should be equally
valid at all times.

Selecting the observations could also be done based on
values of k instead of each kl individually or by other ap-
proaches, such as the one presented by Schäfer et al. (2017).
However, even though the method of observation selection
does have an effect on the inferred posterior marginals, the
screening property of Gaussian processes ensures that this
effect is not major as long as observational noise is small
and the nearest observations are included in all directions.
The parameter identifiability results in Sect. 4.1 and the
WACCM4 results in Sect. 4.2 verify that the current nearest-
neighbor-in-covariance approach works as intended.

2.6 Learning the covariance parameters θ

From Sect. 2.1 the log marginal likelihood of observations
ψobs given a set of parameters θ , β, and δ is given by

2logp
(
ψobs
|β,δ,θ

)
=

−‖

(
ψobs
−Fβ

)
‖

2
K− log |K| − nobs log(2π), (22)

where the covariance function parameters θ implicitly deter-
mine K, and the nonlinear space-dependent mean function
parameters δ affect the values in F. The maximum (marginal)
likelihood estimate (MLE) θ̂ of θ can be found via minimiz-
ing

L(θ)= ‖
(
ψobs
−Fβ̂

)
‖

2
K+ log |K| + nobs log(2π) (23)

as stated in context of Eq. (5).

In the presence of a huge number of observations, calculat-
ing the determinant of the full covariance |K| is not feasible,
and maximizing the log-likelihood is approximated by

θ̂ = arg min
θ

∑
x∗i ∈Eref

{
‖

(
ψobs

locali −Fi β̂
)
‖

2
K̃i
+ log |K̃i |

}
, (24)

where Eref is a set of randomly sampled points from the
spatiotemporal domain specified for the experiment, deter-
mined by the parameters area and ndays in Table 2. The β̂
and δ̂ parameters, the latter of which is embedded in F, are
the point estimates corresponding to each x∗i , interpolated
from the values obtained for the full grid. The optimization
in Eq. (24) is carried out over all subkernel parameters with
some caveats: currently the smoothness-related parameter ν
for the Matérn kernel and the exponent γ for the exponential
kernel are not calibrated, and naturally neither are the wind
data w∗ listed as a parameter for the wind-informed covari-
ance – however, the parameter ρ affecting that kernel can be
learned.

While the selection of inputs included in Eref has an effect
on the obtained parameter estimate, that effect has proven in
simulations to be small. The vectors ψobs

locali ∈ R
di , where di

is the number of observations chosen by the observation se-
lection method of Sect. 2.5 for test input x∗i , contain observa-
tions closest in covariance to x∗i , each of which is a reference
point included in Eref. The matrices Fi are the corresponding
F-matrices, as described in Sect. 2.1. The last term in Eq. (23)
is dropped, since while varying θ in Eq. (24) changes di , the
number of total observations in the problem should funda-
mentally stay the same.

The maximum likelihood estimate approximation in
Eq. (24) contains a sum over blocks of observations, which
can together be thought of as a block-diagonal approximation
of the full dense covariance for all observations in all ψobs

locali .
The blocks in this approximation are the dense covariance
matrices K̃i , and in contrast to a full dense K, in this ap-
proximation the cross-covariances between observations in
ψobs

locali and ψobs
localj , i 6= j , are set to 0. This is done even if

the randomly selected corresponding inputs x∗i and x∗j are
close to each other. Due to the O(n3) cost of inverting the
covariance matrix, which is needed for finding the maximum
likelihood estimate, using the block approximation provides
a critical efficiency improvement without which learning the
covariance function parameters would not be feasible.

While this method is suitable for finding point esti-
mates for the parameters θ , the computed approximated log-
likelihood has an unknown scaling factor resulting in an un-
known multiplicative factor for the variance term in the ex-
ponent of the Gaussian distribution, and hence information
about the true size of the posterior distribution of the covari-
ance parameters p(θ |ψobs, β̂V , δ̂V ) is lost.

By default the scaled posterior p(θ |ψobs, β̂V , δ̂V ) is ex-
plored by using the adaptive Metropolis (AM) Markov chain
Monte Carlo (MCMC) algorithm (Haario et al., 2001), an im-
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Table 2. Most important satGP control variables and high-level C structs: first section contains parameters for program logic, second for
domain specification, third for covariance and mean function definition, and last for observation handling. This list is by no means exhaustive
– the configuration file contains lots of variables that can control the program. Some additional tweaking is possible by changing hard-coded
values directly in the source code, such as those listed in Appendix A.

Variable Type Low High Notes

learn_k int 0 2 (0) Do not train θ ; (1) generate observations and learn θ ; (2) learn θ from non-synthetic data.
learn_m int 0 1 (0) Do not train local β and δ; (1) find local β and δ as in Sect. 2.3.
sampling int 0 2 (0) Skip sampling; (1) calculate GP marginals at each grid point; (2) sample from GP.

area char* – – Area definition setting longitude and latitude minimum and maximum values
ndays int 1 ∞ Number of days to be simulated
ω float > 0 180 1 d grid resolution in degrees – small values degrade esp. posterior sampling performance.

nker int 1 10 Number of subkernels kl in k
cfc struct* – – Recursive struct pointer defining k1. . .knker and corresponding θ ; see Sect. 2.4.
mf struct* – – Struct pointer for defining type of m(·, ·) and associated (initial) β and δ; see Sect. 2.2.

ζtrain float 0 ∞ Fraction of observations that are randomly included in ψobs when learning θ , β, and δ
ζsample float 0 ∞ Fraction of observations that are randomly included in ψobs when sampling6= 0
σ 2

min float 0 ∞ Discard observation at xobs
i

for x∗ if k(xobs
i
,x∗) < σ 2

min; see Sect. 2.5.
nref int 0 ∞ Number of reference points in Eref in Eq. (24) for training θ
nsynthetic int 0 ∞ Number of random locations where synthetic data are generated for training θ
σ 2

synthetic float 0 ∞ Variance in Gaussian noise added to synthetic observations

κ int 1 ∞ Maximum subkernel size; values κ > n−1
ker1000 will be slow due to O(κ3) scaling.

plementation of which is included in the satGP source code.
MCMC methods (Gamerman, 1997) are used to draw sam-
ples from probability distributions when direct sampling is
not possible, but the likelihood function can still be evalu-
ated. The samples are drawn by generating a Markov chain
of parameter values, which is an autocorrelated sample from
the posterior. The AM algorithm is an adaptive method that
is efficient for many real-world sampling situations. The ob-
servation selection procedure in Sect. 2.5 introduces discon-
tinuities to the posterior distribution due to selected observa-
tions changing when the covariance function parameters are
modified. Computing θ̂← E[θ |ψobs, β̂V , δ̂V ] with MCMC
– i.e., using the posterior mean of a Monte Carlo sample –
usually works around this noisiness in the likelihood. On the
downside, MCMC is computationally much more demand-
ing than finding the maximum a posteriori estimate with op-
timization, since MCMC may require computing up to mil-
lions of likelihood evaluations. In the satGP context using
MCMC is feasible since the forward model simply amounts
to sampling from a multivariate normal distribution, which is
very fast. Furthermore, the parameter dimension is moderate,
even with multiple subkernels, limiting the need to gener-
ate extremely long chains. The current version of satGP uses
a flat prior distribution for the covariance parameters, with
hard limits on the parameter ranges.

The software also includes a capability to learn the co-
variance parameters using optimization algorithms such as
COBYLA or SBPLEX available in NLopt. These methods

are much faster than MCMC but have the tendency of get-
ting stuck in local minima, limiting their usefulness.

3 Overview of Computation

The satGP code is written in C, with visualization scripts
written in Python and parallelization implemented with
OpenMP directives. The program reads data from netCDF
and text files and the configuration from a C header file. For
linear algebra satGP uses the C interfaces of LAPACK and
BLAS and LAPACKE and CBLAS, and optimization tasks
are carried out with the NLopt library. The computations are
performed in single precision in order to save memory re-
sources with the largest data sets and also to improve perfor-
mance.

The most important configuration variables are listed in
Table 2. The user needs to define whether parameters are
learned or prescribed and whether marginals or samples from
the GP are to be computed. The mean function and the
covariance kernel are defined by initializing corresponding
structs with parameters and their limits if calibration is to
be performed. For computing GP marginals or drawing sam-
ples from the random process, the geographic and temporal
extents need to be specified, and the mean function and the
covariance kernel used must be given.

Several parameters can be tweaked to improve computa-
tional efficiency, including all of those in the second and last
sections of Table 2. The first main bottleneck for computing
a marginal at x∗ is sorting the observations for selecting the
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most informative ones to be used in the covariance matrices;
see Sect. 2.5. This requires roughly O(rl logrl + κ logκ) op-
erations for each subkernel, where rl is the number of grid
locations xij in the spatiotemporal grid such that for the
lth subkernel, kl(xij ,x∗) > σ 2

min. For subkernels with γ = 2,
rl ∝

∏q

i=1`
l
i , with `li denoting the length-scale parameters

over all the dimensions of the inputs x. In other words, rl
is proportional the size of the hypersphere inside which ob-
servations are considered for each x∗. The second bottleneck
is calculating the Cholesky decompositions of the covariance
matrices K with cost O((nkerκ)

3). The cost of calculating the
means and variances for the GP in a grid for a set of ntimes
points on the time axis is therefore given by

cost=O
(
Antimes

ω2

[
(nkerκ)

3

+

nker∑
l=1

(rl logrl + κ logκ)

])
, (25)

where A is the grid area in degrees squared, and ω is the grid
resolution. When the random observation selection method
mentioned in Sect. 2.5 is used, the rl logr in Eq. (25) be-
comes just rl .

The execution of the program is presented in Fig. 5.
The function AddToState() reads observations (asyn-
chronously) into a state object that tracks the proximity of
each observation to each grid point. Only a part of the obser-
vations is added, controlled on line 6 by the parameter ηitrain,
which corresponds to the inclusion probability of each obser-
vation. This probability depends on ζtrain in Table 2 via

ηitrain,
d
(

xobs
i ,xobs

iprev

)
ωζtrain

∧ 1, (26)

where d(xobs
i ,xobs

iprev
) is the Euclidean distance of the point at

xobs
i that is being proposed for addition to the previous added

point at xobs
previ

, and ∧ is the standard notation for minimum.
Hence with ζ = 0 all observations are added.

For computing the marginals, the spatial domain can
be decomposed with Decompose(), line 23, into several
spatial subdomains (sd) so that arbitrary-size grids can be
computed. This makes solving large problems with lim-
ited amount of memory possible, but it only works with
sampling= 2. This option is in practice rarely needed,
and it was not needed for the simulations in Sect. 4.
The state object is emptied by ReInitializeState(),
which also potentially sets new subdomain extents. Func-
tion SampleFromPrior() actually performs the compu-
tations on ll. 30–37 but with the inputs x∗ in a random pattern
instead of in a grid as is the case in ll. 27–38.

The AddSubdomainData() method on l. 29 adds data
as on ll. 3–9 but only to the current subdomain. After that,
the SelectObservations() method (l. 31) carries out
selecting the best observations as described in Sect. 2.5.

Figure 5. Overview of satGP execution. After initialization, data
are read for trainingm and k, and possible MRF computation is car-
ried out. This is followed by sampling the prior if a synthetic study
is performed and learning the θ parameters controlling k. Gaussian
process marginals are then computed in a grid, potentially by de-
composing the domain for large grids. Finally, samples from the
GP may be drawn. The names of the subprograms here deviate from
those in the code to improve readability.
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For constructing the set of potential observations, the grid
is searched for locations that may have informative obser-
vations for the current test input stored in the state object.
These locations are first ordered into categories with decreas-
ing potential covariance, and for the best locations, which
together hold at least 2κ observations, the covariance func-
tion with the test input is evaluated. Out of these, the κ best
are chosen. The factor of 2 can be increased for the wind-
informed kernel, and the value 8 is used in the demonstration
in Sect. 4.8.

The function ComputeMarginal() constructs the co-
variance matrix K, inverts via the Cholesky decomposition,
and solves Eqs. (9) and (10) to find the marginal distribution
at any test input x∗. That function returns the negative log-
likelihood and is therefore directly used in learning the co-
variance parameters θ in FindCovfunCoeffs() on line
18.

The Gaussian process algorithm is an interpolation algo-
rithm when observation noise is 0, and interpolation algo-
rithms may misbehave when used for extrapolation. In a spa-
tiotemporal large grid, when sampling = 2, i.e., when draws
of the Gaussian process are generated in a regular spatiotem-
poral grid, computing conditionals based on the previous pre-
dictions would amount to extrapolation if done in order. For
this reason, a deterministic sparse ordering is used, which
ensures that test inputs corresponding to simultaneous pre-
dictions are far from each other so that their mutual covari-
ance is negligible. Conditioning on already computed values
is therefore for the vast majority of GP evaluations interpola-
tion instead of extrapolation.

4 Results and discussion

In this section we present several simulation studies. The
first experiment examines parameter identifiability with the
multi-scale kernel using satGP-generated data. We then
demonstrate how satGP posterior distributions look like
compared to truth using synthetic ozone fields from the
WACCM4 model.

After that we concentrate on analyzing satGP results pro-
duced using the OCO-2 Level 2 data. First, we learn the pa-
rameters of the locally varying mean function of the form in
Eq. (2) by computing the MRF, and those fields are then ana-
lyzed. We then learn the covariance parameters of the OCO-
2 XCO2 spatiotemporal field from data. Knowing both the
mean and the covariance functions allows us to evaluate the
Gaussian process globally in a grid, and we present snap-
shots of the global mean and uncertainty fields. The section
concludes by comparing posterior marginal fields generated
by using single-scale and multi-scale kernels and by demon-
strating how the wind-informed kernel works.

4.1 Parameter identifiability with the multi-scale
kernel

We performed a synthetic study to confirm the identifiability
of the multi-scale covariance function parameters. The syn-
thetic data were generated by satGP by sampling from zero-
mean processes with known covariance parameters and with
a random spatial pattern from the prior, adding 1 % noise.
The parameters were then estimated by computing the poste-
rior mean estimates using adaptive Metropolis.

The identifiability experiment was performed with various
kernels, and recovering the true parameters was the more dif-
ficult the more complex the kernel was. With a single Matérn,
exponential, or periodic kernel, the parameters could be re-
covered very easily. This was also true for a combination of
exponential and Matérn kernels with a relatively small κ pa-
rameter.

The covariance kernel parameters were still recoverable
with a combination of three kernels, Matérn with ν = 5

2 , ex-
ponential, and periodic. This setup required using a larger
κ = 256. With small κ , some of the parameters had a ten-
dency to end up at the lower boundary, possibly due to effects
of the covariance cutoff on the determinant of the covariance
matrix in Eq. (22). Optimization using minimization algo-
rithms such as Nelder–Mead, COBYLA (Constrained Opti-
mization BY Linear Approximation), or BOBYQA (Bound
Optimization BY Quadratic Approximation) tended to often
end up in local minima, and for this reason MCMC was used
instead. The number of random reference points in Eref in
Eq. (24) was set to 12, which was enough to reliably recover
parameters close to the true value.

The parameter limits, true values, and posterior means of
the synthetic experiment with three kernels are given in Ta-
ble 3. In total 200 000 observations were created in the region
between −10 and 10◦ latitude and −10 and 10◦ longitude
over a period of 4 years according to the true values reported
in Table 3. A total of 10 million MCMC iterations were com-
puted to make sure that the posterior covariance stabilized.
The posterior, with first 50 % of the chain discarded as burn-
in, is shown in Fig. 6

How well parameters can be learned from data depends
always on the data and the exact Gaussian process form cho-
sen. While the identifiability studies presented here show
that the parameter calibration procedure works and that co-
variance parameters are recoverable in a synthetic settings,
identifiability cannot be always expected. Still, even in these
cases, the MAP and/or posterior mean estimates of the co-
variance parameters should provide good point estimates for
θ .

4.2 Posterior predictive distribution from synthetic
WACCM4 ozone data

A synthetic study using WACCM4-generated ozone data was
conducted to verify and to illustrate that the methods to learn
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Figure 6. Scaled MCMC posteriors from a synthetic study where data were generated with a multi-scale Gaussian process. The figure
demonstrates that even with three subkernels, multi-scale Gaussian process kernel parameters can be recovered. The lower-left part shows
the pairwise marginal distributions of the parameters, and the black crosses denote the true parameter values. The axis labels are on the left
and below the figure. The upper-right triangle shows sample correlations between the parameters from the chain, with axis labels on the left
and on the top. Small within-subkernel positive correlations are present. The contours shown include 85 % (black), 50 % (red), and 15 %
(blue) of the posterior mass.

the model parameters β, δ, and θ produce a realistic GP re-
gression model that then produces credible posterior predic-
tive fields. In a synthetic setting the mean values of the poste-
rior predictive distributions should be close to the true fields,
and the discrepancies between the ground truth and the pre-
dicted fields need to be explainable by the predicted marginal
uncertainties. The role of this part in the study is to give an
example of how a Gaussian process predictive posterior field
produced with satGP compares with the underlying true field.

The WACCM4 model is an atmospheric component of the
Community Earth System Model from NCAR (Hurrell et al.,

2013), capable of comprehensively representing atmospheric
chemistry and modeling the atmosphere up to thermosphere.
WACCM4-generated ozone data for the years 2002–2003,
with a latitude–longitude grid resolution of 1.9◦× 2.5◦, 88
vertical levels going up to roughly 140 km, and an internal
time step of 30 min, were used as ground truth and to gen-
erate synthetic observations. Since the model was used for
generating synthetic two-dimensional data, a specific atmo-
spheric sigma hybrid pressure level of 3.7 kPa was selected.

Ozone data at approximately 400 locations were sampled
daily over a two-year period in a random pattern from the do-
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Table 3. Lower and upper limits, with true and estimated parame-
ter values. The three-kernel synthetic covariance function parameter
estimation problem is already very difficult, here resulting in slight
overestimation of the parameters of the smallest kernel.

Low High True Est Est−True
True

τmat 0.05 1 0.5 0.652 0.304
`mat

lat 0.003 0.02 0.007 0.00989 0.413
`mat

lon 0.003 0.02 0.01 0.0135 0.350
`mat

t 1 d 14 d 7 d 8.06 d 0.15
τper 0.01 2 1 1.073 0.073
`

per
lat 0.001 0.04 0.02 0.0207 0.035
`

per
lon 0.001 0.04 0.02 0.0220 0.1
`per 0.01 0.3 0.1 0.1075 0.075
τ exp 0.5 3 1 0.927 −0.077
`

exp
lat 0.005 0.1 0.025 0.0352 0.408
`

exp
lon 0.005 0.1 0.04 0.0405 0.0125
`

exp
t 7 d 30 d 21 d 24.83 d 0.182

main of the experiment to learn the parameters of the mean
and covariance functions. The training data set was then gen-
erated by interpolating to these points from the simulated
WACCM4 data. This sampling procedure corresponds to cre-
ating on average one observation daily for each 12.5◦×12.5◦

longitude–latitude square.
Using these data, the mean function parameters were fitted

locally using the method in Sect. 2.3.1, utilizing the func-
tions fi in Eq. (11), but with two additional terms f5 and
f6, which were similar to the f1 and f2 except for differ-
ent1period parameters and phase-shift parameters δ that were
shared between these f5 and f6 only. These functions were
used to model periodical behavior with 2 and 1.5 year period
lengths. The covariance function parameters of a kernel con-
sisting of a single Matérn kernel, Eq. (15), were learned using
the approximate maximum likelihood technique described
in Sect. 2.6 with data from the first year. The parameter ν
used for the kernel was 5

2 . The optimization was carried out
with MCMC, and the posterior mean estimate of the covari-
ance parameters was selected for θ̂ . The values of the co-
variance parameters obtained were τ = 0.589, `lat = 0.143,
`lon = 0.225, and `t = 2 d 16 h 15 min. That `lon is larger
than `lat echoes the OCO-2 results presented later in Table 4.

For computing the posterior predictive distributions, the
observational data ψobs were sampled from the WACCM4
simulations at locations closest in space and time to where
the GOMOS instrument made measurements during its first
year of operation. No noise was added to these observations.
The posterior predictive distribution was computed for 1 full
year, and the total number of observations used was 39 538.
The reason for using different spatial patterns for learning
the model parameters and for running the Gaussian process
regression was that with this choice, the quality of the fit of
the mean and covariance functions was not dependent on the
spatial location, and therefore, if major spatial discrepancies

Table 4. Covariance function parameter values learned from OCO-
2 data. First column shows the Matérn kernel parameters, and the
second column shows the exponential kernel parameters. The spa-
tial length-scale parameters are given as distance on the unit sphere,
with 0.01 corresponding to approximately 64 km. The length scales
along the parallels, `(·)lon, are much larger than that along the merid-

ians, `(·)lat .

(·)=mat (·)= exp

τ (·) 0.899 2.72
`
(·)
lat 0.00513 0.0418
`
(·)
lon 0.0363 0.397
`
(·)
t 20 h 22 min 16 d 20 h 12 min

between the ground truth and the posterior predictive fields
had emerged, those could then have been attributed to the
GOMOS sampling pattern used to generate the synthetic ob-
servations ψobs.

The marginal posterior predictive distributions were com-
puted globally in a uniform grid with the resolution of 2.5◦

in the east–west direction and 1.9◦ in the north–south direc-
tion between 78.63◦ S and 78.63◦N and daily over the pe-
riod from 6 January 2002 to 5 January 2003, totaling around
4.384 million marginals in the predictive posterior. The 1-
year-long computation took 19 min 18 s on a relatively fast
Intel i7-8850H laptop CPU.

Figure 7 shows the ground truth from WACCM4 with
the mean field and corresponding marginal uncertainties ob-
tained from satGP for 2 December 2002. The ground truth
and the estimated fields are very similar, and the uncertainty
is higher when there are no observations nearby. The poste-
rior mean field retains a lot of fine detail from the ground
truth and is not overly smoothed or sharp, suggesting that
the covariance parameter calibration procedure has found a
well-performing estimate for the covariance parameters θ .
The smallest reported uncertainties are close to 0, as they
should, due to lack of observation error.

4.3 The OCO-2 V9 data

The simulations with non-synthetic remote sensing data use
the V9 data from the OCO-2 satellite. OCO-2 was launched
in 2014, and it orbits the Earth on a Sun-synchronous orbit
(Crisp et al., 2012; O’Dell et al., 2012), completing 14.57
revolutions around Earth in 1 d. The footprint area of each
measurement is roughly 1.29km× 2.25km, but the data are
very sparse in time and in space. In the presence of clouds,
the satellite is not able to produce measurements, and this
poses a challenge for areas with persistent cloud covers, such
as northern Europe in the winter.

The present work uses the XCO2 data, their related re-
ported uncertainties, associated coordinate information, and
zonal and meridional wind speeds that are contained in the
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Figure 7. Ozone field mixing ratios at 3.7 kPa for 2 December 2002.
Panel (a) shows the simulated ground truth from WACCM4, while
(b) is the GP posterior mean, and (c) gives the posterior predictive
uncertainties. A single Matérn kernel was used. In (b) the larger
circles with the white edges are observations from 2 December, and
the smaller circles stand for observations from 1 and 3 December.

data files. The time period considered is from 6 Septem-
ber 2014 to 10 November 2018, and we use only observations
flagged as good, of which there are in total 116 489 342.

4.4 Solving the mean function for OCO-2 V9

Calibrating the mean function from OCO-2 V9 XCO2 data
as described in Sect. 2.3.1 produces the estimates for the β
and δ coefficients shown in Fig. 8. The βi parameters are
the coefficients of the functions fi in Eq. (11), and δ is the
phase-shift parameter in f1 and f2. The upper-left quadrant
of Fig. 8 shows the semiannual variability in the XCO2 con-
centration. The timing of winter and summer in the North-
ern Hemisphere and Southern Hemisphere explains the color
shift along the Equator. The lower-left quadrant shows the
amplitude of the 2-times-faster oscillations, and like β1, β2
also shows the highest amplitude oscillations in the boreal
region.

The constant term β3 in the upper-right quadrant shows the
background concentration. Some of the reddest areas such as

East China, both coasts of the United States, central Europe,
and the Persian Gulf stand out, and they are also areas where
major emission sources are known to exist. Finding local el-
evated concentrations compared to surrounding areas echoes
the observations made by Hakkarainen et al. (2016), where
empirically defined time-integrated local XCO2 anomalies
were interpreted as possible emission sources. The trend
component β4 varies only a little spatially, due to CO2 mix-
ing in the atmosphere over time, and for this reason it is not
shown here. The phase-shift parameter δ is modeled sepa-
rately, and the field in the lower-right quadrant is obtained
by optimization, conditioning on the β factors. This partly
explains the different spatial pattern. Figure 8 shows how the
phases of the annual XCO2 cycles differ between regions, but
the δ values need to be interpreted together with the β1 and
β2 coefficients.

At high latitudes XCO2 observations from OCO-2 are
available only for a short period every year, and the qual-
ity of these measurements is often poorer. For this reason the
calibration procedure may yield unrealistic and noisy values
close to the poles, especially for parameters β1 and β2. The
obtained parameter values closer than 20◦ to the northern and
southern edges of the domain were averaged by setting the

parameter values at each xij to βij ← β̂ij d
20 +

(20−d)β
20 , where

d is the distance to the edge of the domain in degrees, β̂ij is
the calibrated parameter vector at xij , and β is the average
value of the parameters over the area where xij is located and
where averaging is performed. The δ parameter was treated
similarly. This adjustment was done as a postprocessing step
after finding the mean function coefficients. The main benefit
of performing this adjustment is that the posterior predictive
distributions become more realistic in winter at high latitudes
when the mean function dominates.

Figure 1 shows time series of the mean function for a vari-
ety of locations, verifying that the exact form chosen is able
to describe much of the local variability in XCO2.

4.5 Covariance parameters of the OCO-2 V9 data

The OCO-2 data have several natural spatial and temporal
length scales. The distance between adjacent observations is
only 1 to 2 km in space and some hundredths of a second
in time, but the distance between consecutive orbits is thou-
sands of kilometers in space and several hours in time. On
consecutive days the satellite passes close to the trajectory of
the previous day at a distance of tens to 300 km depending on
the latitude. The Earth has natural temporal diurnal and an-
nual cycles, but since OCO-2 is Sun-synchronous, only the
latter matters with OCO-2 data. Since the annual cycle is al-
ready fitted by finding the mean function coefficients β1 and
β2 in Eq. (11) corresponding to the periodic functions f1 and
f2, a periodic covariance kernel component is not included.
The OCO-2 data are therefore modeled with a kernel consist-
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Figure 8. Mean values of mean function coefficients that were described as a Markov random field, calculated in a 2◦× 2◦ grid between
85◦ N and 85◦ S. The βi coefficients multiply the fi functions in Eq. (11). Panel (d) shows how the phase parameter δ can vary more in the
Southern Hemisphere where β1 and β2 are small. The mean function and fitted daily means for several locations with the corresponding
mean function parameters are shown in Fig. 1.

ing of a larger-scale exponential and a smaller-scale Matérn
subkernel.

The covariance parameters for the two-component kernel
are given in Table 4. The values used were the median val-
ues from sampling the posterior with MCMC. When learn-
ing the parameters from a data set with several natural length
scales, the posterior may appear multimodal, with some of
the modes only having relatively little mass. In such a case,
the median provides a more robust estimate for the parame-
ters than the mean. The `(·)lon and `(·)t parameters of the poste-
rior mean were slightly larger, which would result in slower
computation. Selecting the median is further justified by the
slight overestimation of some parameters in the synthetic
study in Sect. 4.1.

Learning the covariance parameters from OCO-2 V9
data used the following configuration parameters for satGP:
ζtrain = 0, κ = 256, and nref = 12. A total of 1.1184 million
MCMC iterations were completed, with the first 50 % dis-
carded as burn-in to produce statistics. The reference points
were randomly picked from a rectangle with corners at (0◦ S,
65◦ E) and (60◦ N, 145◦ E). While using the whole globe
would have been a principled choice, MCMC requires lots of
iterations, and for any claim of global coverage, nref would
have needed to be much larger.

4.6 Posterior predictive distributions of XCO2 from
the OCO-2 V9 data

The marginal posterior predictive distribution at test points
x∗, given by Eqs. (9) and (10), were calculated globally in a
0.5◦ grid between 80◦ S and 80◦ N at daily time resolution.

The first day of simulation was 6 September 2014, and the
last day was 10 November 2018, spanning in total 1526 d.
For each day, 230 400 marginals were computed, resulting
in a collective 351 million inverted covariance matrices. The
satGP parameters used were ζsample = 0 and κ = 256, and the
covariance kernel used was the one learned in Sect. 4.5, with
parameters given in Table 4. The simulation wall time was
26 d on a moderately fast Intel i7-8700K CPU utilizing the
available 12 CPU threads and 32 GiB memory.

Figures 9 and 10 present global fields of the mean values
and marginal uncertainties, with a subset (to avoid excessive
overdrawing) of observations shown as a scatter plot in the
(a) panels. The (b) panels show how uncertainty is reduced
with the overpass of OCO-2. This uncertainty reduction di-
minishes fast due to the Matérn component of the multi-scale
kernel having a very short length-scale parameter in the time
dimension. In Figs. 9a and 10a, the background color (mean
of the Gaussian process posterior) usually matches the obser-
vations, but due to observational noise, the posterior mean is
not everywhere an interpolated field.

4.7 Comparison of single- and multi-scale kernels with
OCO-2 data

Data from the OCO-2 can be used to demonstrate how the
multi-scale kernel formulation affects the predictive poste-
rior distributions. Figure 11 shows posterior marginals from
15 September 2014. Figure 11a and b contain results from
the multi-scale kernel described in Sect. 4.5, and the second
row (c and d) shows fields from only the exponential part
of the multi-scale kernel. The parameters of the multi-scale
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Figure 9. (a) XCO2 posterior mean values and (b) their uncertain-
ties on the 30 October 2014. The most informative observations are
shown with the concentrations, with the large white circles being
from the 30th, medium circles from 1 d before or after, and small
circles from 2 days before or after. The OCO-2 utilizes sunlight for
retrieval, which is why there are very few observations above 60◦ N.
These fields include latitudes up to 85◦ S and 85◦ N.

kernel are shown in Table 4. Figure 11e and f contain the
difference fields between the first and the second rows. The
single-kernel uncertainty is very low in Fig. 11d since lots of
observations fall into regions of high covariance with almost
any test input, with the exception of the northern side of Ire-
land, which does not have any observations nearby. Since the
covariance kernel parameters were trained for the multi-scale
kernel, the parameters used for the single kernel are not the
ones describing the XCO2 field best.

Figure 11a shows that as intended, the multi-scale ap-
proach leads to local enhancements of the XCO2 mean field.
Far from the measurements, the smaller Matérn kernel no
longer reduces the predicted marginal uncertainties, and this
leads to an increase in uncertainty in these areas. Figure 11e
shows additional enhancements of the XCO2 mean fields,
which are in this case due to the different maximum covari-
ances between the multi-scale and single-scale kernels.

The total kernel size was kept at 1024 (κ = 512 for a and b;
κ = 1024 for c and d) in both experiments, and thinning
and grid resolution parameter values were ζsample = 5 and
ω = 0.5◦. The very same observations were used for both
simulations.

Figure 10. (a) XCO2 posterior mean values and (b) their uncertain-
ties on 10 June 2016. While photosynthesis in the Northern Hemi-
sphere is already reducing the carbon dioxide concentrations glob-
ally, the observations condition the Gaussian process to higher mean
values than in Fig. 9. In the summer months the uncertainty stays
high close to the South Pole. These fields include latitudes up to
85◦ S and 85◦ N.

4.8 Wind-informed kernel with OCO-2 data

The wind-informed kernel, Eq. (17), lets local wind data at
test input x∗ rotate and scale the axes along which the covari-
ance between two points is computed. Modeled winds are
included with OCO-2 data, and they can be used to produce
gridded winds that can then be used locally with the compu-
tation of each marginal posterior predictive distribution.

The covariance parameters for a single wind kernel were
learned by taking the median of an MCMC posterior, simi-
larly as was done in Sect. 4.5. The resulting parameters were
τ = 2.07, `= 0.038, and ρ = 56.7. The variance in ρ was
high, possibly due to the square root in the current formu-
lation in Eq. (19). For this simulation, ζ = 1, κ = 1024, and
ω = 0.7, and the simulation time for the area from 27◦ N,
115◦ E to 40◦ N, 145◦ E for the single day was 2.652 s (wall
time) on the i7-8750H laptop CPU.

The simulation results are shown in Fig. 12. Low uncer-
tainties shown in blue color in (b) spread with the winds, as
do the concentration estimates in (a), both due to the high
reading in South Korea and the low reading close to Shang-
hai.

Optimally the wind-informed kernel should utilize winds
that are not recomputed from the observations as was done
here for convenience but rather directly from a weather or
climate model or from a wind data product. The satGP pro-
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Figure 11. Comparison of a multi-scale kernel with the two components described in Sect. 4.5 and a single component kernel defined by
the parameters of the exponential kernel. These parameters were given in Table 4. The observations used are the same and are shown in
panels (a) and (c) as circles. The large ones with white borders are observations from the present day, 15 September 2014; medium circles
are observations from the 14th and 16th, and small circles are from the 13th and 17th.

Figure 12. (a) GP posterior mean of XCO2 and (b) its uncertainties with the wind-informed kernel. The area shown contains the Korean
Peninsula in the center, China on the left, and Japan on the center right. The large circles with the white edges are present-day observations,
medium circles are observations from adjacent days, and the smallest ones are observations from 2 d away. Wind direction and magnitude
are given by the black arrows, and uncertainty is clearly reduced where wind is blowing directly towards or away from the observations.

gram contains configuration options for doing this. The opti-
mal covariance function parameter values are conditional on
the wind data, so the values should be learned separately for
each new application and wind data set.

5 Conclusions and future work

In this work we introduced the first version of a fast general
purpose Gaussian process software, satGP v0.1.2, which is in
particular intended to be used with remote sensing data. We
showed how the program solves spatial statistics problems
of enormous sizes by using a spatially varying mean func-
tion, learned by computing marginals of an MRF, and by us-
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ing a multi-scale covariance function, parameters of which
are found either by using optimization algorithms or with
adaptive Markov chain Monte Carlo. We also presented how
satGP allows the conduction of synthetic parameter identifi-
cation studies by sampling from Gaussian process prior and
posterior distributions, and this could be done with any ker-
nel prescribed, including a nonstationary wind-informed ker-
nel. The features of satGP were demonstrated first with a
small-scale synthetic ozone study and then using the enor-
mous XCO2 data set produced by the NASA Orbiting Car-
bon Observatory 2.

Various aspects of satGP can be improved in future ver-
sions, some of which include improving the observation se-
lection/thinning scheme for statistical optimality, adding sup-
port for multivariate models and higher input dimensions,
and adding methods for finding locally stationary model pa-
rameters to be able to describe heterogeneous scenes better.
Despite all the room for development, satGP is a useful tool
already in its present state, and it may with little additional
modeling be used, e.g., to fuse data from different sources,
such as GOSAT, GOSAT-2, OCO-2, TANSAT, and OCO-3.
This will enable producing more precise posterior estimates,
and with that a more complete picture of the evolution of for
instance the atmospheric carbon dioxide distribution. Such
statistically principled products that incorporate uncertainty
information can then be used as a robust backbone for both
making policy decisions and further scientific analyses.
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Appendix A: Input parameters and variables in satGP

The satGP software by design allows for a lot of flexibility
for defining how to model the quantity of interest as a Gaus-
sian random field. This section goes over those possibilities
and some practical recommendations. The parameters in Ta-
ble 2 are described in more detail than earlier, along with
some other configuration variables in the configuration file
config.h. Some of the details in this section may change
for future versions of the software.

Of the four sections in Table 2, the first is obvious, as
those parameters control the main logic of satGP. It is rec-
ommended to first learn the mean function, then with that
mean function to learn the covariance function, and only af-
ter that to calculate the means and variances for the Gaussian
process with sampling= 1. The setting sampling= 2 can be
used, e.g., for illustration purposes, to understanding how the
different realizations of the random function would look like
or to generate synthetic data products.

The area parameter defines the longitude–latitude ex-
tents of the domain where satGP performs the computa-
tions. The strings and the corresponding areas are defined
in the beginning of the file gaussian_proc.h and can
be changed there as needed. Current available areas contain,
e.g., NorthAmerica, Europe, EastAsia, World, and
TESTAREA.

The parameter ndays defines how many days are to be sim-
ulated after the starting day. Currently the starting day is hard
coded in the code to be the first day of OCO-2 data. However,
if use_daylist6= 0 in the configuration file, a list of days
can be used. This list can quite easily generated by modify-
ing a trivial python script create_daylist.py, which is
included with satGP.

The ω parameter determines how much spatial detail is re-
solved when sampling or computing marginals of the random
field. A small value like 0.1 will make computing very expen-
sive, and using such values might be unnecessary when the
smallest covariance subkernel length-scale parameters are
large. The spatial ` parameters are in the scale of distances
on the unit ball, and therefore on the Equator, an ` parameter
of 0.05 corresponds to a length scale of around 2.9◦, so the
ω parameter should rarely be much less than half of that. On
the other hand, if the observations are spatially very close to
each other and describing local variation is aimed for, then
the ` parameters also need to be small. Given computational
constraints, larger values or different area parameters may
need to be used.

In the third section of Table 2, the first parameter nker de-
notes the number of subkernels. Even though the hard limit
is set to 10, in practice this should be between one and
three since the parameters of more than three subkernels are
not necessarily reasonably identifiable. More kernels means
more computational cost, due to the κ parameter, which is
the last one in the table and is discussed later.

The parameters cfc and mf are not strictly input variables
but rather C struct pointers that are created based on in-
put variables. These variables are described in the configu-
ration file, and they amount to choosing the covariance ker-
nels from prescribed types (e.g. Matérn, exponential, and pe-
riodic) then defining the parameters for those kernels. The
best parameters are those that are learned with learn_k = 2
when non-synthetic data are used.

Learning the covariance parameters θ is best performed
with MCMC, and the posterior mean and median have
proven to be useful values. For unimodal posterior distribu-
tions these values are usually very close to each other. The
number of MCMC iterations is controlled by the variable
mcmc_iters, for which 106 is a large enough value. The
number of reference points nref in the set Eref in Eq. (24)
that is used for computing the log-likelihood can be set to
a low value of, e.g., the number of CPU threads, if at least
12 are available. If with MCMC the chain gets stuck in local
minima, the value of the mcmcs->scalefactor in the
mcmc() function in mcmc.h may be shrunk, and equally
well, if the posterior ends up being flat with respect to many
parameters, it may be increased. This is justified since, due to
the approximate maximum likelihood method, correct scal-
ing factor of the log posterior density is in any case unknown.

For learning the covariance parameters, parameter limits
need to be given. These should correspond to the expected
length scales in the data – e.g., long-range fluctuations with
low-amplitude, and short-scale variations due to local effects.
It is in practice best if the parameter ranges do not overlap.

If the exponent of the exponential kernel needs to
be changed, that needs to be done by changing the
exponent variable in the covfun_dyn() func-
tion in the file covariance_functions.h. Sim-
ilarly, if the order of the Matérn kernel needs to
be changed, that can be done by changing the vari-
able n in functions covfun_matern52() and
initialize_covfunconfig() in that same file.

For constructing the mean function, the configuration file
contains the parameter mftype. The possible values are
as follows: (0) a zero-mean function is used; (1) a mean
function that changes only in time is used; (2) a (time-
dependent) field is read in and used – this can be, e.g.,
the mean value from a previous Gaussian process simula-
tion; and (3) a space- and time-dependent mean function
is used. The function itself is given as a function pointer
to variable mean_function in the configuration file, and
this function needs to be defined somewhere – e.g., in the
file mean_functions.h. For the mean function, another
variable, mfcoeff, needs to be set. This is the total num-
ber of parameters (β and δ in Eq. 2) if mftype ∈ {1,3}.
If the mean function parameters are learned, the param-
eter nnonbetas, the number of mean function nonlin-
ear δ parameters, needs to be set to the appropriate value
in the function fit_beta_parameters_with_unc()
in mean_functions.h. For global mean function co-

Geosci. Model Dev., 13, 3439–3463, 2020 https://doi.org/10.5194/gmd-13-3439-2020



J. Susiluoto et al.: Efficient multi-scale Gaussian process regression for satellite data 3461

efficients, the values of those coefficients are given in
the configuration file, where the parameter limits for
learning the space-dependent mean function parameters
are also set. Finally, when learning the space-dependent
mean function parameters, the smoothness of the field
may be controlled by changing the dscale parame-
ter in the configuration file and, to a lesser extent,
by modifying the dfmin and dfmax parameters in
function fit_beta_parameters_with_unc() in file
mean_functions.h. Another strategy for, e.g., pro-
ducing smoother mean function coefficient fields is
to use high values for ζtrain and κ and large spa-
tial length-scale parameters in the covariance kernel.
Changing the priors for the β parameters is done in
Sect. 2 of fit_beta_parameters_with_unc() in
mean_functions.h.

In the last section, the ζtrain parameter controls data thin-
ning when learning covariance kernel parameters, and the
ζsample does the same when sampling 6= 0. How the thinning
takes place was explained in the context of Eq. (26). While
with few observations no thinning needs to be done at all –
i.e., ζ· may be set to zero – with large data sets the repre-
sentability of data may be improved when a coarse grid is
used for computation, and also memory bottlenecks may be
avoided. These parameters may be increased if faster execu-
tion is required, for example for debugging purposes.

The σ 2
min parameter controls which observations are not

considered at all when computing at a location x∗, as de-
scribed by Eq. (21). The higher this is, the more data are
discarded. Setting σ 2

min to a very low value makes search-
ing for candidate observations slow, while picking too high a
value may make posterior fields look edgy. In practice values
between 10−7 and 10−3 seem to work well. This parame-
ter is not meant to be changed often; due to this, it is set in
create_config() in the file gaussian_proc.h.

The variable nsynthetic defines how many synthetic obser-
vations are generated when learn_k = 1. Very large values
are once again expensive, and instead a smaller area should
rather be used with more moderate values of nsynthetic. Those
values can be in practice up to 105 or more. With very low
values, it may be that spatial patterns specified by the pre-
scribed covariance kernel are not represented appropriately,
and therefore values less than 104 should be avoided, ex-
cept for maybe in setups with only a single subkernel. If
σ 2

synthetic is high, parameter identifiability suffers. What val-
ues are enough large also depends on the maximum covari-
ance parameters of the Gaussian process, given by the τ 2 pa-
rameters in the formulas of Sect. 2.4.

The last parameter in Table 2, κ , defines the maximum
subkernel size. The larger this parameter is, the more data
are included for constructing the covariance matrix K, whose
Cholesky decomposition needs to be computed to solve the
local regression problem inherent to Gaussian processes. In
practice the full kernel size should be kept under 1000, and
in order to compute GP calculations fast, a full kernel size
of less than 500 is recommended. However, with a very
small number of marginals, values up to 104 may be exper-
imented with. When nkerκ < 64, the speedup due to solving
the GP formulas faster decreases, since at that point comput-
ing Cholesky decompositions no longer takes up the major-
ity of the computing time. This lower bound depends on the
CPU architecture and the sizes of the various CPU caches.

Whether the observations for computing the lo-
cal values are chosen at random or greedily is
determined by the variable select_closest
in function pick_observations() in file
covariance_functions.h. The value used should
normally be nonzero, since with random selection adjacent
grid points often do not utilize the best available observations
closest by, leading to noisiness or graininess in the posterior
mean field.

In addition to the parameters and variables listed here,
there are also other parameters in the configuration file and in
the code, even though those should not need to be changed.
Any variables that the user might want to tweak are generally
accompanied by at least some comments describing their ef-
fects.

In the current version, the satGP program is run with the
script gproc.sh, whose comments describe the various op-
tions. Compiling and running require a modern GNU C com-
piler version (such as version 8) and the meson build sys-
tem, and additionally all the needed libraries listed in Sect. 3.
The current low version number reflects the fact that, as of
now, installing and using the software will require a degree of
technical knowledge, including some Python, C, and BASH
programming skills.
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