Automatica 121 (2020) 109198

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Technical communique

A necessary and sufficient condition for stability of a class of planar N

nonlinear systems™

Yunlei Zou ***, Chunjiang Qian ", Shuaipeng He

Check for
updates

2 School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
b Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA

ARTICLE INFO ABSTRACT

Article history:

Received 17 November 2019
Received in revised form 2 May 2020
Accepted 16 July 2020

Available online 18 August 2020

Keywords:

Stability

Planar nonlinear system
Particular solution
Lyapunov function

In this paper, the stability problem of a class of planar nonlinear systems is investigated. Motivated by
the Routh-Hurwitz stability criterion for planar linear systems, a necessary and sufficient condition for
stability of a class of planar nonlinear systems is established. To prove the necessity, a new method
called particular solution method is provided to justify instability. In addition, a sufficient condition
for existence of oscillations is introduced. The necessary and sufficient condition can provide a simple
way to design controllers by adjusting control parameters for some planar nonlinear systems.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we analyze stability problem of a class of planar
nonlinear systems described by

(1)

X1 = C1X1 + CX5,
. 1
X = c3x1/” + Caxy,

where x = (x; xo)7 € R? is state vector, p is a positive odd
number, and ¢y, ¢z, €3, ¢4 € R are constants. As p = 1, system
(1) becomes a linear system X; = C1X1 + C2X2, X = C3Xq + C4Xp. It
is well known that planar linear system x = Ax is asymptotically
stable if and only if its characteristic polynomial det |Al — A| is
Hurwitz, that is c1, ¢3, €3, ¢4 satisfy ¢; + ¢4 < 0 and c1¢4 > 303
(Routh-Hurwitz stability criterion, Hurwitz, 1964; Routh, 1877).
For the planar nonlinear system (1) with p > 1, a natural question
is that if it has a result similar to the Routh-Hurwitz stability
criterion.

Planar nonlinear systems are a kind of dynamical systems
where the information propagation occurs in two independent di-
rections (Dayawansa, Martin, & Knowles, 1990). Such systems are
widely used to describe various practical and physical systems,
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like circuit analysis, image processing, seismographic data trans-
mission, multidimensional digital filtering and thermal processes,
etc. (Shtessel, Shkolnikov, & Levant, 2007). Stability problem is
one of the most active topics in nonlinear control theory (Hahn,
1967). It is crucial as a step in achieving many other control
problems such as output regulation, optimal control, disturbance
decoupling and attenuation, etc. (Khalil & Grizzle, 2002).

Over the past few decades, a great number of interesting
results have been obtained for stability of nonlinear systems (Li
& Wu, 2016; Li, Yang, & Song, 2019; Ooba, 2012; Sontag &
Sussmann, 1980; Wu, Yang, Shi, & Su, 2015), and many tech-
niques, such as center manifold theory (Aeyels, 1985), the idea
of zero dynamics (Byrnes & Isidori, 1991), homogeneous domina-
tion approach (Qian & Lin, 2006; Zhu & Qian, 2018), etc., have
been proposed. Specially, by using sum of squares (SOS) tech-
niques, Chesi (2013) provided an exact linear matrix inequality
(LMI) condition for robust asymptotic stability of uncertain sys-
tems. In Aylward, Parrilo, and Slotine (2008), the robust stability
properties of uncertain nonlinear systems with polynomial or
rational dynamics were analyzed with convexity-based meth-
ods. In Lacerda and Seiler (2017), a systematic procedure was
presented to investigate robust stability of uncertain systems in
polytopic domains. However, due to lack of constructive applied
approaches (Qian & Lin, 2001), there are few references to investi-
gate necessary and sufficient conditions for stability of nonlinear
systems.

For the following planar nonlinear system with input

X1 =X —Xg, X2 = U, (2)

Bacciotti (1992) showed that there is no continuously differen-
tiable state feedback controller stabilizing system (2). Kawski


https://doi.org/10.1016/j.automatica.2020.109198
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109198&domain=pdf
mailto:ylzou@yzu.edu.cn
mailto:chunjiang.qian@utsa.edu
mailto:shuaipeng.he@my.utsa.edu
https://doi.org/10.1016/j.automatica.2020.109198

2 Y. Zou, C. Qian and S. He / Automatica 121 (2020) 109198

(1989) designed a controller u = —ax, + bx:/e' and proved that

system (2) is asymptotically stable if b > a > 1. It is easy to
. 1/3 . .

see that the system (2) with u = —ax, 4+ bx,’” is a special case of

(1).If there exists a necessary and sufficient condition for stability
of system (1), then we can easily solve stabilization problem for
system (2). Thus, it is meaningful to investigate necessary and
sufficient conditions for stability of system (1).

Motivated by the Routh-Hurwitz stability criterion for planar
linear control, we propose a necessary and sufficient condition for
stability of system (1), that is system (1) is asymptotically stable
if and only if ¢y, ¢, 3 and ¢4 satisfy ¢; + ¢4 < 0 and ¢1¢} > cach.
We prove the necessary and sufficient condition with particular
solution method and Lyapunov method. This paper is organized
as follows: In Section 2, we give a number of basic concepts.
The main results are presented in Section 3, where a necessary
and sufficient condition for stability is given, the problem of
oscillation detection is addressed, and a sufficient condition for
oscillation existence is formulated. Additionally, the application
of stability condition in state-feedback control design is analyzed,
and three examples are given. Concluding remarks are given in
Section 4.

2. Preliminaries

This section presents some fundamental theorems and some
useful lemmas which will play important roles in obtaining the
main results of this paper.

Theorem 1 (Lyapunov Stability Theorem, Lyapunov (1992)). Given
a nonlinear system

x=f(x),x e R", 3)

where f(x) is Lipschitz continuous and f(0) = 0. System (3)
is asymptotically stable, if there exists a continuously differen-
tai‘g(bge function V(x) such that V(x) is positive definite and V(x) :=
X

S f(x) < 0 forall x # 0.

Theorem 2 (LaSalle’s Invariance Theorem, LaSalle (1960)). The
nonlinear system (3) is asymptotically stable, if there exists a contin-
uously differentiable function V(x) such that V(x) is positive definite,
V(ix) == %]’(x) < 0, and the only solution of x = f(x) and
Vx)=0isx=0.

Theorem 3 (Chetaev Instability Theorem, Chetaev (1961)). The
x = 0 is an unstable equilibrium point of (3), if there exists a
continuously differentiable function V(x) such that: (i) the origin is a
boundary point of the set G = {x € R"|V(x) > 0}, (ii) there exists a
neighborhood U of the x = 0 such that V(x) > 0 for any x € UNG.

Lemma 4 (Du, Qian, Li, & Chu, 2019, Qian, 2002). For any positive
integers m, n and real-valued functio;l y(x,y) > O, the inequality
XMy < Sy (6 V)X 4 Sy T (x, y)ly| ™ holds.
Lemma 5. Consider a continuously differentiable function
p_ 5 b pi

V(x) = X" +axxy, + ——x0, 4

(%) p+11+12+p+12 (4)
where x = (X1 x2)" € R%, b > 0 and p is a positive odd number. If
aP*! < b, then V(x) is positive definite.

Proof. Since @' < b, & := 1 — ;i is a positive number
satisfying & € (0, 1). Noting |a| = bY/®+1)(1 — &), it follows from

Lemma 4 that
P
|ax,xy| = ‘(Xi/p(] _ 8)1/(p+1)) ((b(l _ 8))1/(p+1)x2)‘

1
< P —e) 4

p p+1
—x X b(1 —&).
_p+1|1 p+1|2| (1—¢)

Since p is a positive odd number, the above inequality yields
1—¢) 221 p(1—¢

axixy > M )xlp _ M )x‘;“. (5)
p+1 p+1

Substituting (5) into (4), we have

p p%l p(1—e¢) p;%l b(1—¢) ptq b p+1

V(x) > X — X — X
()_p—i-l] p+1 1 p+1 2 p+172
g bl be
:p X1p+ X;H—l,
p+1 p+1

which implies that V(x) > 0 for all x # 0. Therefore, V(x) is
positive definite. O

Lemma 6. The nonlinear system (1) has a particular solution if
there is a solution to f(\) = O where

A P
f0)= (5 ~a) 0 -ad. (6)

If f(1) = 0 has non-negative solutions, there must exist a particular
solution to system (1) which is not asymptotically stable.

Proof. When (c;, c3) = (0, 0), it is clear that (6) has solutions
A1 = ¢1 and A, = ¢4p, and system (1) has a particular solution
described as x;(t) = e“1'x;(0), xp(t) = e%“'x,(0). In addition,
if one of A; or A, is non-negative, the above solution is not
asymptotically stable.

When (c;, c3) # (0, 0), without loss of generality, we assume
c; # 0. Assume A* is a solution to f(1) = 0. Then (1) has the
following explicit solution

x1(t) = €"'x,(0)
¥ 1 2t
a0 = (25) e x0)

)

(7)

for any x;(0). First, it can be verified that (7) satisfies x; =
1Mt (0) = c1xq + czx’z’, which means that (7) satisfies the first

y p
equation of (1). By f(A*) =0, i.e,, (% - c4> (A*—c1)— czcg =0,
we have

* * 1/p
() ome
p &)

It follows from (7) and (8) that

A=\ e
Xy =— ( 1) eT[xl/p(O)
p &)

A —c\'? P
:(< ) e )emo
2

N 1/p )\* —c 1/p %
=3 (eA fx1(0)) +c4 ( - 1) eT[xi/p(O)
2

1
=C3X1/p + C4X2,

which means that (7) also satisfies the second equation of (1).
Therefore, (7) is a particular solution of (1). In addition, if A* is
non-negative, by the construction the solution (7) is not asymp-
totically stable. O

Remark 7. If (6) is replaced by

F) = (& — cal(pr — c1) — cac}, (9)

the result presented in Lemma 6 also holds. Thus, we can also use
the solutions of (9) to solve particular solutions for system (1).

It is clear that system (1) becomes a planar linear system when
p = 1, and (6) is its characteristic polynomial. Here, we call (6)
p-order characteristic polynomial of the planar nonlinear system
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(1). Lemma 6 implies that we can construct particular solutions
for system (1) based on the solutions of p-order characteristic
polynomial, and then justify instability of system (1).

3. Main results

In this section, we shall give the main results of this paper. We
first analyze a necessary and sufficient condition for stability of
system (1).

Theorem 8. The nonlinear system (1) is asymptotically stable if
and only if ¢1, ¢, ¢3 and ¢4 satisfy ¢1 + ¢4 < 0 and c1cy > cx¢5.

Proof. (sufficiency) The sufficient proof is broken into two cases.

Case 1: cic4, > 0.Since ¢y + ¢4 < O, thenc; < 0,¢c4 <O

and (cq, ¢4) # (0, 0). Without loss of generallity, assume ¢4 < O.
pt+

Choose the Lyapunov function V(x) = %xlT + ﬁxﬁ“ b>o0,

which is positive definite. The time derivative of V(x) along with
the trajectory of (1) is

. i1
V(x)=cx," +(c+ bC3)X]/p P+ begxht!
p+1
_ (p+Dbey (pX’z’“ plea+bes) p i, POXy’ )
p p+1  (p+Dbcy > (p+ ey
If c;c3 = 0, we can choose b such that (‘Zgﬂff))pﬂ <k du? to
pt+

cich > cach = 0.1f cac3 > 0, set b = pcy/c3, then ( Efﬂ)’l’fci)) -

p+1
c
(73) = o
c4 €€y

have V(x) < 0.By The01em 1, system (1) is asygnptotlcally stable.
Pt

= pcl since ¢ich > ccf > 0. By Lemma 5, we

_ C2C4 P+1

If c;c3 < 0, set b = —pcy/cs3, then V(x) = clxlT . Since

¢; < 0and ¢; < 0, then V(x) < 0. By Theorem 2, system (1) is
asymptotically stable.

Case 2: cicy < 0. Since c;¢5 < c1¢} < 0, then ca¢3 < 0. Denote
_ (p+1)cicq

= “1% and b = — 2. Consider the Lyapunov function
c3(pcr—cq) c3
p p+1 b 1
V(x) = x> 4 axx xb
(%) P+ 1 taxiXo + —— Pt 1 X,

By Lemma 5, V(x) is positive definite. The time derivative of V(x)
along with the trajectory of (1) is

. pt1
V(x) = (c1 +acs)x,” + (c1 4 ca)axixy + (€20 + cab)b ™!

p+1

_ala+a)p+1) (px1" CaX1X> cacXt! )
per— 4 p+1 c3 acs(p+ 1)/

Since ( 3)"+1 < &, by Lemma 5, we have V(x) < 0. By Lyapunov
Stability Theorem 1, system (1) is asymptotically stable.
(Necessity) We just need to prove that when c; + ¢4 > 0 or
clcf; < czcg, system (1) is not asymptotically stable. This part is
mainly based on Lemma 6 and is broken into three cases.

Case 1. cic] < . By (6), we have f(0) = cicf — cucf <
0. Since f(A) is continuous and tends to positive infinity as x
goes to positive infinity, f(A) = 0 must have a non-negative
solution. By Lemma 6, system (1) has a particular solution which
is not asymptotically stable, that is the planar system (1) is not
asymptotically stable.

Case 2. ¢c; + ¢4 > 0 and ¢} > 0. By (6), we have
A p—1 1

Fo=(5-c) ((145)r - (@@ +ew),
p p

which implies f(1) has one extreme point A =
ing the extreme point into (6) yields

— 1
f<p(q + c4)> _ _(61 pc4)P+ —ad <o,
p+1 p+1

p(q +C4 . Substitut-

Since ¢; 4+ ¢4 > 0, f(A) = 0 must have a non-negative solution.
By Lemma 6, the planar system (1) is not asymptotically stable.
Case 3.c; + ¢4 > 0 and czcé7 < 0. Since (1) is not asymptotically
stable when cicf < ¢y}, we assume cicf > c,cb. Choose the
Lyapunov function

w
Vix)= L x,”
p+1
The time derivative of V(x) is
. pt1
V(x) = (c1 —acs)x,” — (1 + ca)axixz + (cab — cra)h ™!
+ (C2 + bes x)/Pxb.

Seta = S7P%4 and b = —2 > 0, then ¢; — acz = ‘9F4P 3pd
(P+1)(3 c p+1

cb — ca = “1;“4”’ Thus V(x) = (¢ + c4)V(x). If c; + ¢4 > O,

then V(x) > 0 when V(x) > 0. By Theorem 3, system (1) is

unstable. If cy + ¢4 = 0, then V( ) = 0 and V(x) > 0 due to

b+l = C;f:‘l < —% = b. By Theorem 2, system (1) is not

+1 Pan (10)

asymptotlcaslly stable. O

The necessary proof of Theorem 8 implies that we can use
particular solutions of system (1) to justify instability. We call this
method particular solution method. This method can be used to
simply and intuitively determine instability of some systems. For
example, we can use the particular solution method to show that
the following system

. 3 3 . 3 3
X1 = C1X] + C2X5, Xp = C3X] + C4X5C1 11

is not asymptotically stable when c;c4 < cpc3. System (11) is a
general form of X; = —0.1x3 + 2x3, X, = —2x} — 0.1x3, which
was studied in the recent works (Chen, Rubanova, Bettencourt,
& Duvenaud, 2018, https://github.com/rtqgichen/torchdiffeq/tree/
master/exam-ples) on neural ODE.

The work (Efimov & Perruquetti, 2010) proposed that there ex-
isted an invariant set between unstable subset and stable subset
which contained oscillating trajectory. Theorem 8 implies that,
under the condition clc4 > c2c3, system (1) is unstable when
ci+c¢4 > 0and 1t is asymptotlcally stable when ¢; + ¢4 < 0.
For the case of clc4 > c2c3 and ¢; + ¢4 = 0, we have V(x) =0
and V(x) > 0 where V(x) is defined in (10). Hence, we have the
following result.

Proposition 9. The solution of the planar system (1) is an oscilla-
tion if ¢1¢) > ¢, and ¢q + ¢4 = 0.

Oscillations are very common phenomenon in practice.
Yakubovich and Tomberg (1989) introduced an important and
useful concept to study oscillations. The proposed conditions
for oscillations in the sense of Yakubovich are based on exis-
tence of two Lyapunov functions (Efimov & Fradkov, 2009). The
first Lyapunov function ensures local instability of the origin,
while the second Lyapunov function provides global bounded-
ness for system trajectories. Here, based on the particular so-
lution method and Lyapunov method, a sufficient condition for
oscillation existence of system (1) is formulated.

In what follows, we demonstrate the application of stability
condition in state-feedback control design. Consider a class of
planar nonlinear systems described by

{ ):(1 = C1X1 + szg, (12)
X2 = U,

where x = (x; x;)| € R? is state vector, p is a positive odd
number, and cq, ¢; € R are constants. The stabilization problem
of system (12) was first studied by Kawski (1989). Here, we
have the following result, which can be directly derived from
Theorem 8 and Proposition 9.
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Theorem 10. The controller u = k1x}/ P 4 kyxy, where ki and k,
satisfy ¢1 + ko < 0 and c1k) > c,kY, globally stabilizes system (12).
Moreover, if ky and k, satisfy cik, > ¢k and ¢; + k, = 0, the
solution of system (12) is an oscillation.

Next, we give three examples to illustrate the usefulness of
Theorem 10.

Example 11. Consider the system

{ X:] = 91X1 +92X%, (13)
X2 = U,

where 61, 6, are unknown positive parameters with known
bounds. Assume a; < 6; < by, a; < 6, < by, where ay, by,
a, and b, are known constants. By Theorem 10, we can design a
controller as follows

u= —k1x1/3 — koxy, (14)

where the control gains k1 and ko satisfy
01 — kz < 0 and 6’1(—’(2)3 > 92(—](1)3, that is k2 > 91 and k1 >
(61k3/62)'3. The bound conditions of 6, and 6, yield max(6;) = by

13 1/3 13 1/3
and max((%) ) = (M> . Let
2 a

bll<§>1/3

k> by, ki > ( (15)

a>
The controller (14) with k; and k, satisfying (15) stabilizes system
(13).

Example 12. Reconsider the stabilization problem of system (2).
By Theorem 10, we can design a controller u = —ax; —i—bx}/3 with
aand b satisfy 1—a < 0, (—a)® > —b3, thatisb > a > 1, which
is in accord with the result given in Kawski (1989). Specifically,
system (2) with u = —ax, —kbx}/3 is an oscillator when a = 1 and
b > 1. For instance, when a = 3/2 and b = 2, the trajectory of the
system (2) with u = —ax, +bx} s graphed in Fig. 1. Whena = 1
and b = 2, the solution of the system (2) with u = —ax, + bx}/3
is oscillating, which is shown in Fig. 2.

Example 13. Consider a second-order dynamic model of a
reduced-order boiler system in thermal power plants (Su, Qian,
& Shen, 2016), described by

X1 = sign(x;)|xy [,

. 16
{ X =X + f(u). (18)
By Theorem 10, we design controllers as follows

fu) = —kysign(x;)|x; |3 — kyx,. (17)

Substituting (17) into (16), we have

1.031
P

{ X1 = sign(x;)|x;| (18)

Xy = —kysign(x1)x; | V151 — (ky — 1)xs.

By Theorem 8, system (18) is stable when k; —1 > 0 and k; > 0,
that is k; > 0 and k, > 1. For instance, as k; = 1 and k, = 2, the
nonlinear system (18) is asymptotically stable and the solution is
graphed in Fig. 3.

4. Conclusion

In this paper, we study stability problem for a class of pla-
nar nonlinear systems. A necessary and sufficient condition for
stability is put forward. A new method called particular solution
method is developed to justify instability. It is worth pointing
out that the particular solution method proposed in this paper
can also be exploited to justify instability of more general planar

Fig. 1. Trajectory of the system (2) with u = 7%x2 +2x}/3 and x(0) = (1 —2)".

Fig. 2. Oscillating solution for the system (2) with u = —x; + 2x:/3 and
x0)=(1 —2)".
2
Xi
15 *2
1h
05F
x
oF
05
-1
0 2 4 6 8 10 12 14 16 18

Fig. 3. Solution to the system (18) with (kq, k;) = (1,2) and x(0) = (2 — 1)".

nonlinear systems. In addition, the analysis method for stability
of the planar nonlinear system (1) can be used to study stability
of high order nonlinear systems. The necessary and sufficient
condition for stability of high order nonlinear systems is currently
under investigation.
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