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Stability Analysis of a Chain of Integrators with
Pulse-Width-Modulation Controller
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Abstract—In application, many controllers are implemented
through Pulse-Width-Modulation (PWM). Owing to the non-
linearity and discontinuity of PWM signal, the closed-loop
stability analysis is challenging even for linear systems. In this
paper, we investigate the stability problem for a linear chain of
integrators with PWM controller. Different from the existing
works, the proposed procedure is developed based on Zero-
Order-Hold (ZOH) and we prove that the system is stable
when the switching period of the PWM signal is small enough.
Simulation results of 1-order and 2-order systems demonstrate
the effectiveness of the proposed method.

I. INTRODUCTION

Digital control is a branch of control theory in which
a continuous-time plant is controlled with a digital device.
It has widespread applications as the availability of cheap
microprocessors. A digital controller is usually cascaded with
a plant in a feedback system and requires both an A/D
converter and a D/A converter. Normally the A/D converter is
a sampler that converts analog signals to a digital format, and
the D/A converter is often a Zero-Order-Holder that converts
digital signals to a form that can be used as inputs to a plant
[5].

In addition to a digital controller implemented ZOH, there
is another kind of form which is designed using PWM.
PWM is a way of describing a digital signal that is created
through a modulation technique, which involves encoding
a message into a pulsing signal. One early application of
PWM was in an audio amplifier in the 1960s [8], [10],
and around the same time PWM started to be used in AC
motor control [19]. Since then PWM has been widely used
in electric, electronic and electromechanical systems, such
as signal processing [13], voltage regulation [20], attitude
control [7], servo control [3] and the like. The reason PWM
has been used in a wide variety of applications is due to
the simplicity of realization, low power loss, low sensitivity
to noise, elimination of dead zone and so on. Owing to
the inherent nonlinearities introduced by the PWM signal, a
control system designed by continuous or digital approaches
needs to be re-designed before it can be implemented in
a PWM based control system [14]. Normally the re-design

1Shuaipeng He is with Department of Electrical and Computer Engineer-
ing,The University of Texas at San Antonio, San Antonio, TX 78249, USA.
shuaipeng.he@utsa.edu

2Chunjiang Qian is with Department of Electrical and Computer Engi-
neering,The University of Texas at San Antonio, San Antonio, TX 78249,
USA. chunjiang.gian@utsa.edu

3Yunlei Zou is with School of Mathematical Sciences, Yangzhou Uni-
versity, Yangzhou, Jiangsu, 225002, PR China, and also with Department
of Electrical and Computer Engineering, The University of Texas at San
Antonio, San Antonio, TX 78249, USA. ylzou@yzu.edu.cn

978-1-5386-8266-1/$31.00 ©2020 AACC

procedure is realized by approximating the control input to
the width of the pulse signal in each sampling period based
on the principle of equivalent areas [2].

Even though a controller can stabilize a system when it
is implemented in analog format, it could fail if it’s imple-
mented in digital format due to a large sampling interval.
The sampling rate characterizes the transient response and
stability of the hybrid system and must be selected carefully
to avoid instability. For PWM based control systems, the
stability analysis is even more challenging due to the inherent
nonlinear and discontinuous characteristics of a pulse-width-
modulator. The stability analysis for PWM based feedback
control systems has received much attention for the decade
since 1960s. For example, [18] proposed a frequency domain
stability criterion, yielding a geometric interpretation in the
Popov plane. [4] used an exact analytical method for the
determination of the response of such systems to arbitrary
inputs, which has the limitation associated with the use
of describing function. [15] presented a graphical analysis
approach which only applied to the first order sampled-
data systems. [9] presented a stability result based on the
Lyapunov’s second method but its linear model was given in
a transfer function form and all the poles were assumed real
and different. The stability criterion presented by [12] is not
applicable to systems with integrator. [22] used Lyapunov’s
second method and gave a stability criterion for PWM based
feedback systems that only contain one integrating element.

In recent years, a growing number of researchers are
devoting time to the stability analysis of PWM based control
systems. For example, [6] studied the stability problem of
PWM based feedback control for both linear and nonlinear
plant. The authors assume the linear plant is Hurwitz sta-
ble or only has one pole at the origin, and the nonlinear
system has a stable Jacobian matrix. [1] presented a stability
analysis for PWM systems incorporate DC-DC converters by
employing linear matrix inequalities (LMlIs). [16] proposed
stability analysis for the fuzzy PWM system which based on
intelligent digital redesign method. [21] studied the stability
problem of PWM feedback systems with time-varying delays
and stochastic perturbations by establishing a Lyapunov-
Krasovskii function. [17] proposed an exact linearization
for two-dimensional systems with the PWM inputs via the
method of input transformation.

In this paper, we use the Lyapunov’s second method to
present a new stability analysis procedure for a linear chain
of integrators whose poles are all at the origin. The main
difference between our work and the existing works is that
we establish a new proof procedure based on the foundation
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of ZOH and only one parameter needs to be decided. A
sufficient condition of the switching period of PWM signal
is obtained and two numerical simulations are given to
demonstrate the effectiveness of the proposed method.

II. PRELIMINARIES

o xt
x=Fx+ Gu
(a)
—K
X T
ZOH [ % =Fx+ Gu —’/——>
(b)
x
_K ke
X T

PWM P % =Fx+ Gu !

(c) |7
Xk

Fig. 1. System (1) with (a): A continuous-time controller. (b): A digital
controller via ZOH. (c): A digital controller via PWM.

As Fig.1 shows, we consider a class of linear system

& = Fx + Gu, (D
where
o1 --- 0 0
F=|: : oo ., G=|: ,
00 --- 1 0
00 --- 0 1
nxn nx1l

x € R™ is the state vector, and v € R is the control input.
For a controllable system (1), the continuous state feedback
controller

u(t) = —Kzx ()

can always stabilize it with an appropriate selection of
control gains K = [ky, ko, -+, kp].

Theorem 1: For the same control gain vector K selected
in (2) and under a proper sampling period 7', there exists a
discrete-time controller

u(ty) = —Kz(kT),k =0,1,2, - - 3)

that globally asymptotically stabilizes system (1).
Proof. System (1) under a discrete-time controller u(ty)
via ZOH can be discreterized as

Tpt1 = Py + Tu(ty), €]

where ® = efT and T" = fOT ef'sG ds. With (3), the discrete-
time closed-loop system is
A
Th+1 = ((I) - FK)$k = \I/Z‘k. (5)

Given the control gain vector K, it is easy to calculate all
the eigenvalues of W that are inside the unit circle with a
small enough sampling period 7', which means the discrete-
time closed-loop system (5) is globally asymptotically stable.
Thus, there exists a symmetric positive definite matrix P
such that

v'py —p=—1J. (6)
Choose a Lyapunov function

V(zy) =z} Py, (7
which is positive definite and proper. Let

AV =V (xy1) — V(xg). (8)
The equation (8) along the closed-loop system (5) is
AV =V (xgy1) — V(zg)

(V)T P(Wy,) — 2f Py,
=2} (T PV — P)xy,

= —l=xl?,

)

which is negative definite and this completes the proof.

III. MAIN RESULTS

Inspired by [12], the output of the PWM controller is
described by

{Umaz csgn(u(ty)), 0<t— Xy <aTh,
UpPwm) =

0, oy <t— NIy < T,
(10)
where A = 0,1,2,-+ N — 1, a = [ € [0,1] is the

duty cycle. Here, U,,,, is a positive constant defined as
Umnaz = maz {u=|Kzx|,z € Q,},

where 2, € R™ is a compact set and 77 is the switching
period which is related to the sampling period 71" designed
in (5) by

= ey

N7
where N is a positive constant to be designed later. And the
signum function is defined by

1, z >0,
sgn(z) =40, x=0, (12)
-1, x<0.

Theorem 2: For the same control gain vector K selected
in (2), the PWM controller (10) with a proper selection of
N semi-globally asymptotically stabilizes system (1).

Proof. The system (1) under the PWM controller (10) can
be discreterized as

Tp1 = Pag + Ducpwnry, (13)
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where & = efT and T = fOT ef'*G ds. Based on (5),
equation (13) can be rewritten as

Tpy1 = Pop + Tu(ty) + Tupwar — Tu(ty)

(14)
2 Uy + w,

where w = €3 — €1, €2 = lupwary and &1 = Tu(ty).
Choose the Lyapunov function (7), then its difference (8)
along equation (14) becomes

AV = (U +w)T P(Uay, + w) — xf Py,
=2 T PUzy 4 21O Pw + w' Py,
+ w? Pw — x} Pxy,
< —llaell® + 202 Pkl + 1 2] llw].

In order to determine if AV is negative definite, we need
to estimate the last two terms in equation (15). According
to equation (14), w = &9 — €1, so firstly we calculate
€2. Substituting the control law u py ) (10) into g2 =
F’LL(pWM), we have

oy T1+aTy
62:(/ eFSGd5+/
0 T

(N-1)Ty1+aTy
+/ F&Gds) " Umazx Sgn( (tk:))
(N-1)Ty

aTy aly
= (/ eFSGds+/ G ds + -
0 0
aTy
+ / eF[s+(N_1)T1]Gds) Upmaz - sgn(u(ty))
0

aT;
_ (IJreFT1 Jr.”JreF(J\fq)Tl) / 1

ef*Gds
0

5)

ef*Gds+ -

(16)
For any positive integer m, it is easy to obtain that
1 mT) i 11), (mT)"~
A (= (”.”LTl) a7
o 0 ... 1

Based on equation (17), we have
(I+6FT1 _’_“__i_eF(N—l)Tl)

By (18) and (19), we have

J' (n—3)!

n—1 /N-1 "
NaTy)" + ( iﬂ) T (aTy)" I

—2 /N—1 ; ,
n— e TJ aT n—1—j
G (@)™ + (Z “) I

j=1 =1 (20)
I fr(aln)! |
. Umaw : sgn(u(tk))
Similarly, €1 can be calculated as
L
T 11"Tn—1
€1 :/ ef*Gds - u(ty) = (o= )'_ u(ty). (21)
0 :
el
Since o = % and u(ty) = —Kxy, €1 can be rewritten
as
1 Tn
( 1) Tr— 1
€1 = “Unmaz - sgn(u(ty)).  (22)
%Tla

Based on (20) and (22), we have the expression of w shown
in (23).

Next, we estimate the vector w. For the sake of simplicity,
we denote

A [ 1 ol 1
2 -n—1 n—1 1_ —7mn
dn = (Z i > e 1)!T1 ﬁ(aTl) n!T @

= 24)
and
&éN%(ﬂW+%
N-1 (25)
Ly 1
_ T n— ]
> (Z > T e

Note that o € [0 1], so for any positive integer I, the

r N—1 N—-1 7 i )
N (231 z) - (E:l Z'”—l) (nle”*l following relation holds:
N—-1 _ e al S . (26)
— |0 N (le 2) =t A .
= ) Keeping T = % in mind and by (26) we have
: N+ (N—1)2 4+ (N—1)n?
L0 0 N J g < VA( ) A4 )" rratd,
(18) N7
2 . n—1
and < NEN"+- N T'a+d, 27
1 n Nn
1H(QT1) 1 &
ot i (a1)"™ < ET o+ dy,
/ ef*Gds = (=1} ) (19) N
0 L :T . Whereanﬁ+ﬁ+~-~+ﬁ+ﬁ+l,andn22
71(eTh) is a positive constant.
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r n—1 /N—1 . , 1
NX(aT)"+ Y < 3 1'3> 3T i (@) = T
=1 \i=1
1 1 nk e i\ 1gd_ 1 1—j 1 1
v N(nil)' (aTl)n_ * Jj=1 (z; ZJ) at 1m(aT1)n_ - (nfl)!Tn_ - Umaz ' Sgn(u(tk))' (23)
i N{(aTy)t — 4T |
Next we estimate d,,. According to the Faulhaber’s For-  where _ .
mula [11], the sum of the first N — 1 positive integers of (n+ 2)77: .
power n — 1 can be expressed as (n+2)T
= (N-Dr 1 ’= (n —|—:2)T3
"=t - (N-1)" )
= n 2 (n+2)T
. (28) 0.7
K B; (n — 1)' n—i B N
+ Z m (n—1)! (N-=1)"", is a constant vector.

1=2

where B; are the Bernoulli numbers. Substituting (28) into
(24) results in

— (N_ 1)nTn E(N_ 1)n—1 n
" n!N™ 2 (n—1)IN"
n—1 n—i
B, (N-1)" 1
Tl — —T™
+; An—i) N» am gt
N-—-1)" 1 N —1)1
< gfl *TnOer#T”a
N7 n! N7™ (29)
n—1 i
N-—-1)""
1 1 1
< _ mn _ mn _ mn
_NTa+NTa+NTa
< %T"a

Based on the format of C), in (27), a straightforward calcu-
lation leads to C,, < (n — 1), n > 2. With (29) the general
term &, can be estimated as

n+2

&n < T"a (30)

)

where n is the system order. Then (23) can be estimated as

Based on the estimation of ||w|| in (32), it follows from
(15) that

AV < gl + 2| Pl [[lw]| + [[P]]]]w]]?

(33)

< — M|,
where M 1— 2H‘I’IIIIPJ\\|7H9HHKH _ IIPHH9]|\\;HKH2 is a
constant. Choose N such that N > 2||¥||||P||||0]||| K] +

IPIlI6|I*||K||?, then AV becomes negative definite, which
means the closed-loop system (14) is stable. As a conclusion,
the PWM controller (10) with a proper selection of N
asymptotically stabilizes the system (1).

IV. SIMULATION

In this section, numerical simulations are studied to il-
lustrate the stability of two examples with PWM controller
under different selections of V.

A. example 1
Consider the 1-order system

T =u,

(34)

where the system matrix F' = 0 and G = 1. The control gain
matrix K here is a scalar and we assume K = 2. It is easy
to calculate that ® = ¢ = 1 and T = fOT e1ds = T.
Thus the closed loop system with w(tx) is

Th+1 — (1 - QT)LL'k (35)

(n+2)T"
(n+2)T" ! It is easy to see that the closed-loop system (35) is stable
w < ) aUmax. G1) when the sampling period T satisfies 0 < 7' < 1. If we
- PR N choose T = %, according to (14), the closed-loop system
(n 8‘ QIZT with u py ) can be written as
, Trp+1 = =T + w. (36)
With o = %’ and u(ty) = —Kzj, in mind, finally ||w|| 2
can be estimated as Based on (16) and (21), 5 and ; can be obtained as
g9 = NaTy - Unaz - sgn(u(ty)),
| < oy - L] (2 i (37)
< i e =T ulty).
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Obviously w = €2 — &7 = 0, so the closed-loop system
(36) is stable independently of N. Based on (32), § = 0
when system order is one, thus N can be any positive
integer according to (33), which draws the same conclusion
as above.

N=1

0 2 4 6 8 10
time/sec

Fig. 2. State trajectory of system (34) with the PWM controller (N = 1).
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Fig. 3. State trajectory of system (34) with the PWM controller (N = 10).

Fig. 2 and Fig. 3 give the simulation results, from which
we can see that the closed-loop system (36) is always
convergent no matter the values of V.

B. example 2

Consider the 2-order system

& = Fz 4+ Gu, (38)
0 1
0 0
matrix is K = [1 1].

where F' = } and G = [ﬂ Assume the control gain

Similarly, it is easy to obtain ® = [1

0 1
Thus the closed-loop system with wu(t) is
1172 p_1°
1 =Ux, = 2 2
Tp1 = Vi { e (39)

and the sampling period 7' to make (39) stable satisfies 0 <
T < 2. Choose T = 1, then we have ¥ = (l? 065]‘:
According to (6), the symmetric positive definite matrix

. 3 05 4 .
8 195 1.75| BY (32), we have ¢ = {0] According to
(14), the closed-loop system with the PWM controller is

0.5 0.5

Tpt1 = [_1 0 } Tp +w. (40)

For the Lyapunov function V(zy) = xZ Pxy, if we choose

N = alw|[PYI6]IK] + 2IPIIoI]K | = 256, the
difference AV along (40) becomes
1
AV < _§ka”2’ (41)

which means the closed-loop system (40) is stable.

N=5

50

o' %20 === x2| 7

i
30} ) /\\ (\ |

0 100 200 300 400
time/sec

Fig. 4. State trajectories of system (38) with the PWM controller (N = 5).

From Fig. 4 we can see that, if N is not big enough such
as N = 5, the closed-loop system (40) will not converge.
As shown in Fig. 5 and Fig. 6, system states converge with
different overshooting and settling time if [V is big enough.
There are two points worth mentioning here. The first one
is that the range of N calculated above is just a sufficient
condition but not a necessary condition. Thus even when [NV
is beyond the range that we give, the closed-loop system
could still be stable. The second one is, in our simulation
only the stability is considered to test different values of N,
thus the other control performances, such as overshooting
and settling time, might not be the best.

V. CONCLUSIONS

This paper presents a new Lyapunov stability analysis for
a chain of integrators with the PWM controller. Based on the

3657

Authorized licensed use limited to: Cornell University Library. Downloaded on August 22,2020 at 21:34:32 UTC from IEEE Xplore. Restrictions apply.



Fig. 5.
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State trajectories of system (38) with the PWM controller (N =

[13]

N=500

[14]

il [15]

i [16]

[17]

(18]

(19]

3 I I I I
0 100 200 300 400

time/sec

[20]

State trajectories of system (38) with the PWM controller (N =
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foundation of ZOH, a sufficient condition of the switching
period of PWM signal is given to ensure the closed-loop
stability. Numerical simulation results show the effectiveness
of the proposed method.
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