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Abstract

Medial temporal lobe (MTL) consists of hippocampal subfields and neighboring cortices. These
heterogeneous structures are differentially involved in memory, cognitive and emotional
functions, and present non-uniformly distributed atrophy contributing to cognitive disorders. The
major goal of this study is to examine how genetics influences AD pathogenesis via MTL
substructures by analyzing high-resolution MRI data. We performed GWAS to examine the
associations between 565,373 SNPs and 14 MTL substructure volumes. A novel association
with right Brodmann area 36 (R-BA36) volume was discovered in an ERC7 SNP (i.e.,
rs2968869). Further analyses on larger samples found rs2968869 associated with gray matter
density and glucose metabolism measures in the right hippocampus, and disease status.
Tissue-specific transcriptomics analysis identified the minor allele of rs2968869 (rs2968869-C)
associated with reduced ERC1 expression in the hippocampus. All the findings indicated a
protective role of rs2968869-C in AD. This study demonstrated the power of high-resolution MRI
data and the promise of fine-grained MTL substructures for revealing the genetic basis of AD

neurodegeneration biomarkers.
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1 Introduction

Alzheimer's disease (AD) is an irreversible neurodegenerative brain disease distinguished by
progressive impairment of memory and decline in cognitive abilities. Based on the statistics from
the 2019 Alzheimer's disease facts and figures (Gaugler et al.;2019), AD is the 6" leading cause
of death in the United States as it currently has no cure and is eventually fatal. AD is known as
the most common type of age-related dementia, but the disease causes are unclear. Given
neurodegeneration (i.e., N) as a major category of the amyloid- deposition, pathologic tau, and
neurodegeneration (ATN) classification for AD biomarkers (Jack et al.;2016), there is substantial
research interest in AD neuroimaging studies with particular emphasis on critical memory
structures. Although various imaging biomarkers have been identified to be related to disease
status and progression, their genetic mechanisms remain unclear. Since human brain cognitive
impairment diseases such as AD and Parkinson's disease are strongly influenced by genetic,
lifestyle and environmental factors, genetic analysis of brain imaging phenotypes is an important
research topic. The goal is to reveal the genetic basis of brain phenotypes and contribute to the
disease modeling and drug development.

Genome-wide association studies (GWAS) of quantitative endophenotypes have
successfully identified a number of loci susceptible for AD (Saykin et al.;2015), and GWAS of
whole hippocampal volume have been studied for late-onset AD (Horgusluoglu-Moloch et
al.;2017,Nho et al.;2015, 2013). However, the critical subfields of the hippocampus and
neighboring Medial temporal lobe (MTL) substructures are underexplored in genetic studies.
Given that atrophy of these structures is not homogeneous (Foo et al.;2016), volume loss on
specific MTL substructures has been identified as useful biomarkers in the existing AD studies
(Cong et al.;2015). It becomes an increasingly important research topic to identify genetic
susceptibility factors for hippocampal subfields and neighboring MTL substructures. Of note,

hippocampal subfield volumes are highly heritable, and thus can be used as quantitative traits in



genetic association and linkage studies (Greenspan et al.;2017). In recent GWAS findings,
volume loss on hippocampal subfields was found to be associated with multiple genome-wide
significant loci (Hibar et al.;2017,Morey et al.;2019, n.d.,Smeeth et al.;2019,Zhao et al.;2019),
including novel genes which were not reported in prior genetic studies of the whole hippocampal
volume (van der Meer et al.;2018). This suggests the promise of hippocampal subfields and
neighboring MTL substructures as valuable quantitative traits in genetic association studies.

Most existing subfield-related GWAS are based on FreeSurfer (Iglesias et al.;2015,Van
Leemput et al.;2009) segmentation results, which mainly focus on the hippocampal subfields
and laminae. The adjacent cortical regions of the hippocampus are usually ignored, while some
of those (e.g., perirhinal cortex) have been reported as the earliest affected regions in AD
pathology (Sanchez-Mejias et al.;2019,Xie et al.;2017). To address this limitation, the regions of
interest (ROIs) studied in this work are expanded from the hippocampus to the medial temporal
lobe (MTL). The MTL in human brain mechanisms plays a prominent role in memory, cognitive,
and emotional functions (Lech and Suchan;2013,Mulders et al.;2019). The MTL system is
composed of a group of anatomically related structures that are essential for semantic memory
and episodic memory. As shown in Figure 1, the MTL system consists of (1) hippocampal
subfields including cornu ammonis (CA1/2/3), dentate gyrus (DG), and subiculum (SUB), and (2)
adjacent neighboring regions such as perirhinal (PRC), entorhinal (ERC), and parahippocampal
(PHC) cortices (Squire et al.;2004).

Similar to hippocampal subfields, in AD progression, the neuron damage is not uniformly
distributed across the entire MTL (Miller et al.;2013). Specialized functions of anatomically
complex MTL sub-structures vary, and thus it is important to investigate not only the MTL as a
whole but also each MTL substructure individually. The hippocampus is embedded at the end of
a cortical processing hierarchy and recognized as fundamental for declarative memory
formation, learning, and emotional processing. It serves as a content-independent hub (Schultz
et al.;2019), while the areas of surrounding MTL cortices are thought to communicate with the
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hippocampus closely and comprehensively characterized in the aspects of spatial navigation,
scene processing, and memory storage (Smith and Kosslyn;2013). The portions of PRC, ERC,
and CA1 are involved in the onset of the neuropathological pathways of AD with evidence of
remarkable neurofibrillary tangle (NFT) aggregation in the primitive stage of AD (Braak and
Braak;1997,Carr et al.;2017,Maruszak and Thuret;2014), and the rest of the MTL regions are
also affected with the development of AD.

Ignoring MTL neighboring regions of the hippocampus makes the genetic mechanisms
related to MTL cortices such as ERC, PRC, and PHC underlying older adult neurogenesis in AD
remaining underexplored. As a widely accepted fact, PRC and ERC are among the first regions
of tau deposition. However, given the size, complexity, heterogeneity, and the large anatomical
variability of the MTL cortices, in the existing subfield related GWAS, a major challenge of
accurately capturing volumetric measures of the MTL substructures is imaging resolution. The
conventional 3T T1-weighted magnetic resonance imaging (MRI) scans adopted in the existing
GWAS usually have imaging resolution 1x1x1 mm? or similar, while the 3T T2-weighted high-
resolution MRI scans adopted in recent imaging studies (Cong et al.;2018, 2016) have imaging
resolution 0.4x0.4x2 mm?® or similar. Supplementary Figure 1 shows an example comparison
between conventional 3T T1-weighted MRI and 3T T2-weighted high-resolution MRI on a same
subject. With the higher MRI resolution, hippocampal subfield layers could be better
distinguished from one another; thus, a more precise partition of MTL regions can be either
manually or automatically obtained without requiring strong magnetic field strength during the
process of MRI acquisition.

Recent studies (Sone et al.;2017,Wisse et al.;2018) adopt a strategy of using T2-
weighted high-resolution MRI together with traditional T1-weighted MRI. By taking advantage of
the more fine-grained MTL sub-regional measures, these studies have demonstrated that PRC
atrophy occurred as the first affected region and was significantly correlated to early AD before
the hippocampal subfields were influenced. Besides, these studies also illustrate the selectivity

5



of the MTL atrophy by examining the volume changes of hippocampal subfields and neighboring
cortical regions. As neurogenesis is essential for memory and cognition, volume loss (atrophy)
on MTL sub-regions are found as a discriminative biomarker for preclinical detection of early AD.
However, as mentioned before, the genetic mechanisms related to imaging biomarkers such as
structural atrophy of MTL cortices underlying neurogenesis in AD remain underexplored. To
bridge the above gap, this study is designed to investigate the genetic influences on the
volumetric measures of both hippocampal subfields and the neighboring MTL regions using
high-resolution MRI data, in order to explore MTL-specific regional neurogenetic mechanisms in

AD.

2 Materials and methods

2.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Data used in the preparation of this article obtained from the ADNI database, which was initially
launched in 2004 as a public-private partnership, and led by the Principal Investigator Michael
W. Weiner, MD. One primary aim of ADNI has been to examine whether serial imaging
biomarkers extracted from MRI, positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.

2.2 Study participants

Participants included non-Hispanic Caucasian subjects from ADNI with both high-resolution MRI
scans and genotype data available. The full inclusion and exclusion criteria for ADNI are
described at www.adni-info.org. Detailed quality control (QC) steps for imaging and genotype
data have been previously reported (Cong et al.;2018,Yao et al.;2019) and are briefly described
below. Participants were restricted to non-Hispanic Caucasians to reduce the potential
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confounding effect of population stratification in the genetic analysis. Thus, the study analyzed a
total of 134 non-Hispanic Caucasian subjects with high-resolution MRI data available and
meeting all QC criteria described in (Cong et al.;2018), including 41 healthy control (HC), 43
early MCI (EMCI), 24 late MCI (LMCI) and 26 AD participants. Detailed characteristic
information and the number of subjects in each sub-group are shown in Table 1. Besides
participants included in the GWAS of MTL substructure volumes, non-overlapping samples with
various AD endophenotypes were studied further for evaluating their associations with the
resulting MTL genetic findings. The detailed information of study participants and flowchart are
summarized in Figure 2. This study was approved by institutional review boards of all
participating institutions, and written informed consent was obtained from all participants or

authorized representatives.

2.3 MRI data acquisition and processing

The scanning protocols included a T1-weighted magnetization-prepared rapid acquisition
gradient echo (MPRAGE) sequence with whole-brain coverage and a T2-weighted turbo spin-
echo (TSE) sequence with partial-brain coverage and an oblique coronal slice orientation
(positioned orthogonally to the main axis of the hippocampus). MRI data included T1-weighted
MPRAGE scans with an acquisition matrix of 240x256x176 and voxel size 1.05%1.05%x1.2 mm3
and T2-weighted scans containing 24 or 30 coronal slices with an acquisition matrix of 448x448
and voxel size 0.39%0.39x2 mm3. Image quality check was systematically performed on the
segmentation results using ITK-SNAP 3.8.0 (Yushkevich et al.;2006) in the following aspects: 1)
hippocampus and adjacent MTL cortices coverage, 2) contrast and noise ratio of the MRI scans,
and 3) motion artifacts. As a result (see Figure 2), 134 out of 249 pairs of T1 and T2-weighted

MRI scans from ADNI1 and ADNI2 passed the quality check.



2.4 Genotyping data acquisition and processing

Genotyping data were quality-controlled, imputed and combined as described in (Yao et
al.;2019). Briefly, genotyping was performed on all ADNI participants following the
manufacturer’s protocol using blood genomic DNA samples and lllumina GWAS arrays (610-
Quad, OmniExpress, or HumanOmni2.5-4v1) (Saykin et al.;2010). Quality control was
performed in PLINK v1.90 (Purcell et al.;2007) using the following criteria: 1) call rate per
marker = 95%, 2) minor allele frequency (MAF) = 5%, 3) Hardy Weinberg Equilibrium (HWE)
test P = 1.0E-6, and 4) call rate per participant = 95%. Significant relatedness pairs with
P1_HAT > 0.45 were identified and thereafter one individual from each pair was randomly
excluded (Ramanan et al.;2015). Participants were then checked for gender and identity-by-
descent before imputation to identify the genotyping or coding error and to avoid the potential
confounding effect due to the gender ambiguity or consanguinity such as sibling pairs. To
restrict the studied participants to non-Hispanic Caucasians, we further performed population
stratification using 988 subjects with known ancestry information from HapMap3 as reference
data. We merged the ADNI and HapMap3 samples, and performed multidimensional scaling
analysis using PLINK v1.90 with identity-by-state (IBS) pairwise distance matrix on the merged
data to clustering samples in the principal component analysis space. ADNI participants were
identified as non-Hispanic Caucasians if: 1) they were clustered with HapMap3 CEU or TSI
subjects as well as had self-reported race/ethnicity as “non-Hispanic/white”, or 2) they were not
clustered with any HapMap3 subjects while had self-reported race/ethnicity as “non-
Hispanic/white”. Haplotype patterns from the 1,000 Genomes Project reference panel were then
applied to impute the SNPs that were not directly genotyped from arrays. 5,574,300 SNPs were
obtained for all subjects involved in this work.

Given the modest size of high-resolution imaging data, instead of using all the imputed

SNPs, we focused on the analysis of the markers available on the ADNI1 610-Quad panel. In



total, 565,373 SNPs were included in this GWAS of MTL substructure volumes (Figure 2). To
appropriately control for population stratification, we used PLINK v1.90 to generate the top four

principal components to be included as covariates in our genetic association analyses.

2.5 Segmentation of hippocampal subfields and neighboring MTL substructures

Automatic Segmentation of Hippocampal Subfields (ASHS) software (Yushkevich et al.;2015)
was employed for segmenting hippocampal subfields and neighboring MTL substructures, using
the atlas package provided by the Penn Memory Center at the University of Pennsylvania. The
software has been validated by its authors using k-fold cross-validation against manually traced
segmentation (Yushkevich et al.;2015), peer-reviewed (Mueller et al.;2018) and applied in
recent neuroimaging studies (de Flores et al.;2015,Hindy et al.;2016). ASHS takes as inputs the
conventional T1-weighted MRI scans and the corresponding high-resolution T2-weighted MRI
scans, and performs multi-atlas segmentation by implementing the Joint Label Fusion method
(Wang and Yushkevich;2013) and Corrective Learning (Wang et al.;2011). The segmentation
results include the following hippocampal subfields and the neighboring MTL cortices: cornu
ammonis 1/2/3 (CA1, CA2 and CA3), dentate gyrus (DG), subiculum (SUB), miscellaneous
(MISC), entorhinal cortex (ERC), perirhinal cortex (PRC, including Brodmann Areas 35 and 36,
or BA35 and BA36), parahippocampal cortex (PHC), and collateral sulcus (CS).

Given CA2 and CA3 as the smallest hippocampal subfields, we analyzed the entire CA
region as a whole. The strategy of combining the CA regions could help increase the level of
measurement stability, as shown in our prior study (Cong et al.;2018). As a result, in this study,
we analyzed 14 MTL substructures extracted using the ASHS software, including seven regions
on each hemisphere: CA (combining CA1, CA2, and CA3), DG, SUB, ERC, PHC, BA35 and

BA36 (Figure 2).



2.6 Brain imaging genetic association analysis

GWAS on the volumetric measures of the 14 MTL substructures were performed using linear
regression under an additive genetic model in PLINK v1.90 (Purcell et al.;2007). Age, gender,
education, Intracranial Volume (ICV), diagnostic status and the top four principal components
from population stratification analysis were included as covariates. Post-hoc analysis used
Bonferroni correction for adjusting both the number of SNPs and the number of quantitative
traits (i.e., significance threshold is 0.05/ 565,373 / 14 = 6.32E-09). Regional genetic
association plot was generated using LocusZoom (Pruim et al.;2011). Gene-based association
analysis was employed to gain collective statistical evidence of genetic findings at the gene-
level (Figure 2). We used GATES (Li et al.;2011) to calculate a gene-level summary p-value for
each gene by taking into account gene size, linkage disequilibrium (LD), and constituent SNP
level p-values.

The phenotypic variance explained by an identified genetic variant was evaluated using
the linear regression after removing effects from covariates as described above. Both linear
regression coefficient p-value and Cohen’s d statistic were used to illustrate the significance and
effect size of the identified variant, and to facilitate the comparison among different genotyping
groups.

Genetic findings of the MTL substructures were further examined in non-overlapping
samples regarding their associations with hippocampal measures including voxel-based
morphometry (VBM) gray matter density and Fludeoxyglucose-PET (FDG-PET) glucose
metabolism. For both association tests, linear regression models were used. In particular, we
applied additive genetic models implemented in PLINK v1.90 (Purcell et al.;2007), with age,

gender, education and the top four principal components as covariates.
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2.7 Targeted genetic analysis of VBM phenotypes

VBM, a computational approach for characterizing structural differences in brain disorders, has
been widely applied to AD studies and reported the altered brain volume in a few brain regions
including the hippocampus (Risacher et al.;2009, 2010). With this observation, we further
evaluated our genetic findings of the MTL substructures for their associations with VBM gray
matter density measure in the hippocampal region. The MRI data used in this study were
obtained from the ADNI database. These preprocessed MRI data were co-registered to a T1-
weighted template, segmented into grey matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) compartments with bias correction, unmodulated normalized to Montreal Neurologic
Institute (MNI) space as 1x1x1 mm3 voxels, and smoothed with an 8mm Gaussian kernel. ROI-
level VBM GM density measurements were further extracted based on the MarsBaR automated
anatomical labeling (AAL) atlas for 1,384 subjects who were not included in the GWAS of the
MTL substructures. Subjects were treated as outliers and excluded if their VBM measures were
greater or smaller than six standard deviations from the mean value. No subjects were removed
under this criterion, as shown in Figure 2, 1,384 subjects with quality controlled VBM GM

density measurements were analyzed (Supplementary Table 1).

2.8 Targeted genetic analysis of Fludeoxyglucose-PET (FDG-PET) phenotype

ROl-based FDG-PET studies have reported the altered hippocampal metabolism in MCI and AD
compared with HC, showing the role of FDG hippocampal measure as a promising biomarker
for AD (De Santi et al.;2001,Mosconi et al.;2005). With this observation, we examined the
relationship between our MTL genetic findings and FDG measurements. Preprocessed FDG-
PET scans were downloaded from the ADNI website (adni.loni.usc.edu) and processed as
previously described in (Risacher et al.;2015,Yao et al.;2017a). FDG-PET scans were then
aligned to the corresponding MRI scans and normalized to the MNI space as 2x2x2 mm3

voxels. ROI-level glucose metabolism measurements were further extracted based on the
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MarsBaR AAL atlas for 865 subjects who were not included in the GWAS of MTL substructures.
Subjects were treated as outliers and excluded if their FDG-PET measures were greater or
smaller than six standard deviations from the mean value. No subjects were removed under this
criterion. As shown in Figure 2, finally 865 subjects with quality-controlled FDG-PET glucose

metabolism measures were analyzed (Supplementary Table 2).

2.9 Targeted genetic association with AD status in IGAP

International Genomics of Alzheimer's Project (IGAP) (Lambert et al.;2013) is a large two-stage
study based upon GWAS on individuals of European ancestry. In Stage 1, IGAP employed
genotyped and imputed data on 7,055,881 single nucleotide polymorphisms (SNPs) to meta-
analyze four previously-published GWAS datasets consisting of 17,008 AD cases and 37,154
controls (the European Alzheimer's disease Initiative (EADI), the Alzheimer Disease Genetics
Consortium (ADGC), the Cohorts for Heart and Aging Research in Genomic Epidemiology
consortium (CHARGE), and the Genetic and Environmental Risk in AD consortium (GERAD)).
In Stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of
8,572 AD cases and 11,312 controls. Finally, a meta-analysis was performed by combining
results from Stages 1 & 2. As illustrated in Figure 2, using meta-analysis summary statistics
from IGAP stage 1, we checked the relationship between our MTL genetic findings with AD
diagnostic status. We also checked the AD association of our findings in a more recent meta-
GWAS of AD conducted by the IGAP (Kunkle et al.;2019), which analyzed 21,982 AD cases

and 41,944 controls in Stage 1.

2.10 Targeted genetic association with AD status in ADNI

We analyzed the ADNI cohort to examine the direct AD association of our MTL genetic findings.
As demonstrated in Figure 2, a total of 1,438 participants from the ADNI cohort (ADNI-1, ADNI-

GO and ADNI-2) with corresponding baseline diagnosis (i.e., five values 1-5 indicating HC, SMC,
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EMCI, LMCI, and AD, respectively) were analyzed. Genetic association analysis with clinical
diagnostic status was performed using linear regression under an additive genetic model in
PLINK v1.90 (Purcell et al.;2007). Age, gender, education, and the top four principal

components from population stratification analysis were included as covariates.

2.11 Tissue-specific eQTL analysis using UKBEC

In order to assess the potential role of the MTL genetic findings in regulating gene expression in
hippocampus, we performed brain tissue-specific expression quantitative trait loci (eQTL)
analysis. Specifically, we used brain tissue expression dataset available in BRAINEAC
(http://www.braineac.org/), a web server for data from the UK Brain Expression Consortium
(UKBEC) (Ramasamy et al.;2014). This dataset contains 12 brain tissues from 134
neuropathologically normal subjects (Figure 2). As the MTL substructures analyzed in our
GWAS were located in the hippocampus and its neighboring regions, we performed the eQTL
analysis using hippocampus-specific expression data. We examined the cis-effect of each
identified SNP on the expression of genes located within £100 kb from the SNP. This tissue-
specific eQTL result can help provide novel insights into mechanisms of how the genetic
variants affect brain structures via modulating regional gene expression levels to link genetics,

transcriptomics, and brain phenomics.

2.12 Tissue-specific gene expression analysis using Allen human brain atlas

Allen human brain atlas (AHBA,; http://human.brain-map.org/) includes the brain-wide genome-
wide microarray-based gene expression data through systematic sampling of regional brain
tissue. One goal of AHBA is to combine genomics with the neuroanatomy to better understand
the connections between genes and brain functioning. Complete microarray datasets of six
brains from healthy participants are available for download, including two full brains

(H0351.2001 and H0351.2002) and four right hemispheres (H0351.1009, H0351.1012,
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H0351.1015 and H0351.1016). The datasets contain gene expression values normalized across
all the brains. We downloaded the microarray data of all six brains, obtaining the expression
measures of 58,692 probes in 3,703 brain samples. Then we merged probes to genes and
mapped brain samples to MarsBaR AAL atlas using the mean statistics (Yao et al.;2017b).
Finally, we obtained the expression data of 29,131 genes for 115 brain ROls.

In this study, we explored the expression level of our top genetic finding in brain regions.
Given that the genetic finding was associated with the hippocampus-relevant region, we
compared its hippocampal expression with its expression in other 114 brain regions (Figure 2),
to help provide valuable information for revealing the tissue-specific function of the identified

gene.

3 Results

3.1 Participant characteristics

A total of 134 ADNI subjects were studied in the GWAS of volumetric measures of 14 MTL
substructures (see Table 1 for their characteristics). Using one-way ANOVA or Chi-squared test,
significant differences among diagnostic groups were observed for all MTL substructure

volumes while not observed for age, gender, education or ICV.

3.2 GWAS of MTL substructures volumes

Genetic association between 565,373 SNPs and volumetric measures of 14 MTL substructures
were assessed under the additive genetic model and controlled for age, gender, education, ICV,
the top four principal components from population stratification, and diagnostic status. A novel
significant association between rs2968869 and right BA36 (R-BA36) volume (p = 3.12E-09,
corrected p = 3.12E-09 x 565,373 x 14 = 0.025) was identified after adjusting for both the
number of SNPs and the number of phenotypes using the Bonferroni method (Figure 3). The
minor allele C of rs2968869 (rs2968869-C) was associated with increased R-BA36 volume
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compared to its major allele T (Figure 4(B)), and the SNP accounted for 15.23% of the variance
of the R-BA36 volume. As shown in Figure 4(B), significant differences of the R-BA36 volume
exist among three rs2968869 genotype groups (i.e., p = 1.19E-05 between TT and CT, p =
2.06E-06 between TT and CC, and p = 2.55E-02 between CT and CC). In addition, ERC1
rs2968869-C was associated with increased R-BA36 volume across all diagnostic groups

(Supplementary Figure 2).

3.3 Gene-based association analysis of MTL substructures volumes

An additional analysis was performed to test the gene-based association with R-BA36 volume.
We used GATES (Li et al.;2011) to assess the gene-based association with the volume of right
BA36. The protein-coding gene ERC1 was significantly associated with R-BA36 volume

(corrected p-value = 3.97E-03), after Bonferroni correction for the number of genes.

3.4 Association of ERC1 rs2968869 with hippocampal gray matter density

Given the effect of rs2968869 on R-BA36 volume, we further assessed the association of
rs2968869 with the VBM gray matter density of the right hippocampus in 1,384 ADNI subjects
(Supplementary Table 1) who were not included in the GWAS of MTL substructure volumes.
The minor allele (C) of rs2968869 was significantly associated with increased right hippocampal
gray matter density (p = 0.046; Figure 5(A)) under linear regression with age, gender, education

and the top four principal components as covariates.

3.5 Association of ERC1 rs2968869 with FDG-PET glucose metabolism

Altered hippocampal metabolism have been reported in AD compared to HC. In this study, we
explored whether our volumetric genetic finding could also be associated with glucose
metabolism in the same region. We examined the association of rs2968869 with right

hippocampal metabolism in 865 ADNI subjects (Supplementary Table 2) who were not included
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in the GWAS of MTL substructure volumes. We observed that rs2968869-C was significantly
associated with increased glucose metabolism in the right hippocampus (p = 0.040; Figure 5(B)).
The heterozygous group showed higher metabolism compared with the homozygous groups. Of
note, these two AD endophenotypes (i.e., gray matter density and glucose metabolism of right
hippocampus) were highly correlated with each other (correlation coefficient = 0.6). Thus we

reported the original p-values without correcting for multiple comparison.

3.6 Association of ERC1 rs2968869 with AD

The hippocampus has been widely studied as one of the earliest affected brain regions in the
progression of AD, and various imaging measures of the hippocampus are associated with AD
status. With this observation, we further examined whether the genetic finding from our imaging
GWAS was directly associated with AD by leveraging the results from IGAP, a large meta-
analysis of AD (Lambert et al.;2013). According to the summary statistics of IGAP stage 1,
rs2968869 showed significant association with AD (p = 0.045, N = 54,162), with effect size of -
0.035 indicating the protective role of rs2968869-C for AD. However, in a more recent IGAP
study (Kunkle et al.;2019), no significant AD association (p = 0.113, N = 63,926) was identified
for rs2968869.

We also examined the rs2968869 association with AD in the ADNI cohort, and observed
that rs2968869 was significantly associated with AD diagnostic status (p = 0.0069, N = 1,438)
with effect size of -0.072 indicating the protective role of rs2968869-C for AD. Both AD

association findings from IGAP and ADNI data aligned well with our imaging genetic result.

3.7 Hippocampus-specific eQTL analysis of rs2968869

Hippocampus-specific cis-eQTL analysis identified that rs2968869-C was significantly
associated with downregulated expression of ERC1 in the hippocampus (p = 6.00E-03). Figure

6(A) shows the differential expression level of ERC1 among rs2968869 genotype groups. We
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observed that the heterozygous group of rs2968869 exhibited the lowest level ERC1 expression.
To further validate if rs2968869 was the lead eQTL for ERC1 in hippocampus, we examined if
other eQTLs for ERC1 in the hippocampus were in high LD with rs2968869. From the ADNI
data, there were a total of 117 SNPs located within £100kb of ERC1, among which 18 SNPs
(including rs2968869) were eQTLs (uncorrected p < 0.05) for ERC1 in the UKBEC. Thus, we
evaluated the LD (D’ and r?) between rs2968869 with each of 17 eQTLs using the ADNI
genotyping data. Only one SNP rs2906109 was in high LD (D’ > 0.8, r*> 0.8) with the iQTL SNP
rs2968869. Both rs2968869 and rs2906109 are significantly associated with the ERC1 gene
expression (p = 6.00E-03 and 3.00E-03, respectively) and R-BA36 imaging phenotype (p =
3.12E-09 and 1.70E-08, respectively). It appears that rs2906109 shows a slightly stronger
association with the gene expression while rs2968869 shows a slightly stronger association with
the R-BA36 imaging phenotype.

We also conducted a summary Mendelian Randomization (SMR) analysis (Zhu et
al.;2016) which used Wald estimator to evaluate the association between gene expression and
the trait due to either causality or pleiotropy. The SMR analysis was performed using the GWAS
results of the R-BA36 volume and the eQTL analysis result of the hippocampus. The SMR p-
value is not significant (p > 0.05). Of note, the statistical power of SMR analysis on our data
appears substantially limited by two factors: 1) SMR requires GWAS with very large sample size
(N > 10,000; (Teumer;2018)) while our GWAS included only 134 participants; and 2) our GWAS
analysis was performed on the R-BA36 volume while the eQTL analysis was performed on the
hippocampus. We hope to further investigate the mechanisms among the lead SNP, ERC1
expression and R-BA36 volume when more relevant data become available (e.g., (1) large
GWAS data coupled with the R-BA36 volumetric phenotype and (2) ERC1 expression in the R-

BA36 region coupled with the lead SNP information).
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3.8 Hippocampus-specific gene expression analysis of ERC1

The R-BA36 associated genetic finding rs2968869 is located in ERC1. Therefore, we assessed
the hippocampus-specific expression of ERC1 by comparing it with its expression in other brain
re,gions. Figure 6(B) illustrated the distribution of ERC1 expression across all 115 brain ROls,
from which the expression of ERC1 in the hippocampus was lower than 95.65% other brain
regions. This suggests the low expression level of ERC1 in the normal hippocampus. Further
discussion on the effect of ERC1 expression level on brain function and disease is available in

the next section.

4 Discussion

We performed GWAS on volumetric measures of 14 MTL substructures, and identified a novel
association between ERC1 SNP rs2968869 and R-BA36 volume in 134 ADNI subjects. To the
best of our knowledge, this is among the first GWAS of hippocampal subfields and neighboring
MTL substructures extracted from the high-resolution MRI data in AD-related study. The minor
allele C of rs2968869 is associated with increased R-BA36 volume, demonstrating a protective
effect. The neuroprotective role of rs2968869-C is further confirmed by several post-hoc
analyses. First, rs2968869-C carriers exhibited higher gray matter density and higher glucose
metabolism in the right hippocampus in larger and independent ADNI samples. Second, a large-
scale landmark meta GWAS in AD (N = 54,162) also indicated the protective effect of
rs2968869-C. Third, a tissue-specific cis-eQTL analysis identified an association between
rs2968869-C and lower ERC1 expression in the hippocampus. Finally, brain-wide genome-wide
expression data in healthy samples also demonstrated the lower expression of ERC1 in the
right hippocampus compared with that in a majority of other brain regions. Below we discuss the

functions and involvements of ERC1 and BA36 in brain regions and AD. We also explore

18



possible underlying molecular mechanisms of AD by linking our genetic finding with phenotype
via hippocampus-specific transcriptome eQTL analysis of ERC1 rs2968869.

ERC1 (also known as ELKS) encoding protein ELKS/RABG-interacting/CAST family
member 1, which is a family of Rab3-interacting molecule (RIM)-binding proteins, has been
widely studied in brain disorders given that it is highly enriched in the active zone of the brain,
especially in the hippocampal region. In the active zone, ERC1 encoded protein controls the
presynaptic Ca2+ signal to regulate neurotransmitter release, which typically is impaired in
complex brain disorders like AD. A number of molecular studies have investigated the important
role of ERC1 in functions and organizations of the active zone. For example, ERC1 protein has
shown its positive regulation effects on both neurotransmitter release at synapses and Ca2+
influx in nerve terminals in the study of mouse hippocampus (Dong et al.;2018,Liu et al.;2014).
These findings indicate the functions of ERC1 in the active zone. ERC1 is also implicated in the
NF-kappaB signaling pathway which participates in the regulation of neuroinflammation. This
might suggest additional aspects for the involvement of ERC1 in neurodegenerative diseases
(Liu et al.;2017). Given the critical role of ERC1 in brain disorders and hippocampal region, our
reported variant rs2968869, may indicate a possible function for AD by modulating the
transcription of ERC1 in the medial temporal region.

Pathologically, NFT of the MTL substructure has been reported for the involvement in
the hippocampus and extrahippocampal cortical regions in early AD (Didic et al.;2011,Nelson et
al.;2012). Studies discover that the PRC is indeed the first region displaying NFT pathology in
early stage of AD (Mason et al.;2017,Wolk et al.;2017), instead of any hippocampal subfields as
one of the earliest affected regions in AD. Another early AD study showed that regional tau
deposition was associated with atrophy in PRC but not in hippocampal subfields (Sone et
al.;2017). PRC is comprised of BA35 and BA36, of which BA35 has been widely studied for its
association with early NFT deposition in AD pathology. However, in recent studies, BA36
demonstrates a similar or even better performance than BA35 for discriminating preclinical AD
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from normal aging (Wisse et al.;2018,Wolk et al.;2017). Accordingly, the BA36 associated
genetic finding can help provide deeper insights into the understanding of molecular
mechanisms of AD pathogenesis, especially for the early stage of AD.

Our imaging genetic analysis identified the association between ERC1 rs2968869 and
R-BA36. To understand the underlying molecular basis, it is important to examine the influence
of rs2968869 on gene expression in this particular brain region. Our cis-eQTL analysis detected
the down-regulation effect of minor allele (C) of rs2968869 on ERC1 expression in the
hippocampus. Thus, the protect role of rs2968869 suggests relatively high ERC1 expression in
the hippocampus in AD. This hypothesis has been supported in a mouse model study, which
analyzed the expression level of hippocampal ERC1 in AD and control samples, and reported
significantly higher expression of ERC1 in the AD hippocampus compared with the control
hippocampus (4.45 fold; p < 0.05) (Acquaah-Mensah et al.;2015). The brain-wide gene
expression data on healthy brains also show relatively low expression of ERC1 in the
hippocampus compared with most of other brain regions. We acknowledge that although we did
not identify casual or pleiotropic association between ERC1 expression and R-BA36 volume, it
warrants further investigation to explore the underlying mechanisms among rs2968869, ERC1
expression and R-BA36 volume when more data become available.

In conclusion, we have revealed a novel association between the minor allele (C) of
ERC1 rs2968869 and increased right BA36 volume. This genetic finding has been found to be
associated with multiple AD phenotypes including right hippocampal gray matter density and
glucose metabolism as well as AD diagnostic status, all indicating the protective effect of
rs2968869-C in AD. We also checked the associations between rs2968869 with brain imaging

phenotypes available in the ENIGMA study (http://enigma.ini.usc.edu/) and other AD

phenotypes including CSF biomarkers (ABeta, Tau and pTau) and MMSE in the ADNI study,
from which we identified one nominally significant association between rs2968869 with the
caudate volume (p = 0.032). An additional cis-eQTL analysis on brain transcriptome data has
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connected rs2968869-C with lower ERC1 expression in the hippocampus. It warrants further
investigation of the molecular mechanism of the identified ERC1 rs2968869 in the hippocampus,
including the understanding of possible molecular pathway on how the variant modulates the
ERC1 expression in the hippocampus and subsequently affects the neurotransmitter release at
the hippocampal active zone.

The advances of high-resolution MRI technology allow the extraction of improved
measures from the MTL substructures for studying their role in AD progression and their genetic
basis, which provides enormous opportunities to gain deeper insights into the molecular
mechanisms of AD pathogenesis. One limitation of this work is the modest sample size. Some
ADNI-1/GO/2 subjects have relatively low image quality due to either incomplete coverage of
the hippocampus or low image contrast, and thus are not included in the study. We anticipate
the newly collected ADNI-3 data to have improved image quality. An interesting future topic is to

perform a replication study on the ADNI-3 data.
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Table 1. Participant characteristics in the GWAS of MTL substructures.

Diagnosis HC EMCI LMCI AD p-value
Number 41 43 24 26 -

Gender (M/F) 20/21 24/19 13/11 16/10 0.64

Age 76.10+6.88 | 73.9847.21 | 72.71+8.38 | 74.4247.62 | 0.32
Education 17.00+2.30 | 17.14+2.70 | 16.50+3.13 | 16.35+2.50 | 0.57

ICV (10%cm?®) 1.511+0.15 1.5440.12 1.474+0.13 1.524+0.18 0.27
CA_L (10°mm?) 1.3710.18 1.3410.19 1.2240.28 1.10+0.28 1.44E-05
CA R (10°mm?) 1.43+0.21 1.41+0.21 1.1940.29 1.08+0.28 1.07E-08
DG_L (10°mm°) 0.77+0.11 0.76+0.12 0.70+0.19 0.65+0.14 1.08E-03
DG_R (10°mm?®) 0.84+0.15 0.81+0.13 0.7010.17 0.63+0.16 7.28E-08
SUB_L (10°mm?®) 0.46+0.08 0.48+0.06 0.4110.08 0.3940.08 1.04E-05
SUB R (10°mm°®) | 0.45%0.07 0.48+0.06 0.4040.07 0.38+0.09 9.04E-08
ERC_L (10°mm?) 0.45+0.09 0.46+0.08 0.4310.09 0.3940.07 1.50E-02
ERC_R (10°mm®) | 0.44%0.09 0.4510.09 0.3940.10 0.3940.09 1.80E-02
PHC_L (10°mm?®) 0.88+0.15 0.90+0.17 0.80+0.16 0.77+0.22 8.90E-03
PHC_R (10°mm®) | 0.94%0.15 0.98+0.20 0.88+0.12 0.85+0.16 7.60E-03
BA35 L (10°mm?®) | 0.55+0.11 0.52+0.10 0.49+0.10 0.45+0.11 1.93E-03
BA36_L (10°mm?®) | 1.77+0.33 1.70+0.28 1.65+0.35 1.52+0.30 1.60E-02
BA35 R (10°mm?®) | 0.51£0.09 0.50+0.09 0.45+0.09 0.43+0.11 1.30E-03
BA36_R (10°mm?®) | 1.68+0.32 1.67+0.25 1.47+0.30 1.3940.39 2.33E-04

Note: P-values were assessed for significant differences among diagnostic groups, and were

computed using one-way ANOVA (except for gender using chi-square test). The p-values <
0.05 are shown in bold. HC = Healthy Control; EMCI = Early Mild Cognitive Complaint; LMCI

= Late Mild Cognitive Complaint; AD = Alzheimer’s disease; ICV = Intracranial Volume.
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Figure legends

Figure 1. The medial temporal lobe system. The medial temporal lobe (MTL) contains the
hippocampus including cornu ammonis 1/2/3 (CA1, CA2 and CA3), dentate gyrus (DG), and
subiculum (SUB); and medial temporal cortices including entorhinal cortex (ERC), perirhinal
cortex ( PRC, including Brodmann Areas 35 and 36, or BA35 and BA36) and parahippocampal
cortex (PHC).

Figure 2. Flowchart of MTL sub-structure GWAS design. Abbreviations: ASHS, automatic
segmentation of hippocampal subfields; SNPs, single nucleotide polymorphisms; MTL, medial
temporal lobe; HC, healthy control; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; AD, Alzheimer's disease; CA, cornu ammonis; DG, dentate gyrus; SUB,
subiculum; ERC, entorhinal cortex; PHC, parahippocampal cortex; BA, Brodmann area; VBM,
voxel-based morphometry; FDG-PET, Fludeoxyglucose - positron emission tomography; IGAP,
International Genomics of Alzheimer's Project; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; UKBEC, UK Brain Expression Consortium; AHBA, Allen human brain atlas; ROI,
region of interest; ERC1: ELKS/RABG-interacting/CAST family member 1.

Figure 3. Manhattan plot of GWAS results of right BA36 volume. Blue and red lines
correspond to the p-value of 5E-05 and 5E-07, respectively.

Figure 4. Association and effect of ERC1 rs2968869 on right BA36 volume. (A) All SNPs within
ERC1 are plotted based on their genetic association statistics -log4o(P) values. NCBI build 37
genomic position and recombination rates are calculated from the 1,000 Genome Project reference
data. The color scale of I values is used to label SNPs based on their degree of linkage
disequilibrium with rs2968869. Genes in the region are labeled with arrows denoting 5’- to -3’
orientation. (B) Mean right BA36 volume with standard errors are plotted against rs2968869
genotype groups (TT, CT and CC). P value indicates the association significance of rs2968869 with
right BA36 volume. P values are calculated from linear regression with age, gender, education, ICV,

the top four principal components from population stratification analysis and diagnosis as covariates.
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Cohen’s d indicates the effect size of minor allele C (one copy or two copies) of rs2968869 on right
BA36 volume, after being adjusted for age, gender, education, ICV, the top four principal
components from population stratification analysis, and diagnosis. Presence of minor allele C of
rs2968869 suggests an additive effect of increasing right BA36 volume and this SNP accounts
for15.23% of the phenotypic variance.

Figure 5. Association of ERC1 rs2968869 with VBM gray matter density and FDG
metabolism in the right hippocampal region. (A) Mean right hippocampal gray matter density
with standard errors is plotted against the rs2968869 genotype groups (i.e., TT, CT and CC). P
value indicates the significance of the association between rs2968869 and mean right
hippocampal gray matter density, with age, gender, education and the top four principal
components from population stratification analysis as covariates. The C allele of rs2968869 is
associated with increased right hippocampal gray matter density. (B) Mean right hippocampal
FDG-PET glucose metabolism with standard errors is plotted against the rs2968869 genotype
groups (i.e., i.e., TT, CT and CC). The C allele of rs2968869 is associated with increased FDG-
PET measured glucose metabolism in right hippocampus.

Figure 6. Hippocampus-specific expression of ERC1. (A) illustrates the UKBEC
hippocampus-specific cis-eQTL results. It shows the expression level of ERC1 in the
hippocampus stratified by rs2968869 groups (TT, CT and CC). P-value indicates the association
significance of rs2968869 with the expression level of ERC1 in the hippocampus. P-value is
calculated from linear regression with gender as covariate. Presence of minor allele C of
rs2968869 suggests the effect of decreased expression of ERC1. (B) illustrates the expression
of ERC1 in the right hippocampus compared with other brain regions in AHBA. Histogram
shows the distribution of ERC1 expression across 115 brain AAL ROlIs. Blue line illustrates the
expression level of ERC1 in the right hippocampus at the 4.35th percentile, indicating the ERC1

expression in the right hippocampus is higher than 4.35% brain regions.
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