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Abstract

Learning from label proportions (LLP) is a weakly supervised setting for classification in which
unlabeled training instances are grouped into bags, and each bag is annotated with the proportion of
each class occurring in that bag. Prior work on LLP has yet to establish a consistent learning procedure,
nor does there exist a theoretically justified, general purpose training criterion. In this work we address
these two issues by posing LLP in terms of mutual contamination models (MCMs), which have recently
been applied successfully to study various other weak supervision settings. In the process, we establish
several novel technical results for MCMs, including unbiased losses and generalization error bounds under
non-iid sampling plans. We also point out the limitations of a common experimental setting for LLP,
and propose a new one based on our MCM framework.

1 Introduction

Learning from label proportions (LLP) is a weak supervision setting for classification. In this problem,
training data come in the form of bags. Each bag contains unlabeled instances and is annotated with the
proportion of instances arising from each class. Various methods for LLP have been developed, including
those based on support vector machines and related models [32, 44, 43, 30, 9, 19, 36], Bayesian and graphical
models [18, 14, 40, 29, 15], deep learning [21, 1, 12, 22, 41], clustering [7, 39], and random forests [37]. In
addition, LLP has found various applications including image and video analysis [8, 19], high energy physics
[10], vote prediction [40], remote sensing [21, 11], medical image analysis [5], activity recognition [29], and
reproductive medicine [15].

Despite the emergence of LLP as a prominent weak learning paradigm, the theoretical underpinnings of
LLP have been slow to develop. In particular, prior work has not established an algorithm for LLP that is
consistent with respect to a classification performance measure. Furthermore, there does not even exist a
general-purpose, theoretically grounded empirical objective for training LLP classifiers.

We propose a statistical framework for LLP based on mutual contamination models (MCMs), which
have been used previously as models for classification with noisy labels and other weak supervision problems
[34, 3, 25, 4, 17]. We use this framework to motivate a principled empirical objective for LLP, prove
generalization error bounds associated to two bag generation models, and establish universal consistency
with respect to the balanced error rate (BER). The MCM framework further motivates a novel experimental
setting that overcomes a limitation of earlier experimental comparisons.

Related Work. Quadrianto et al. [31] study an exponential family model for labels given features,
and show that the model is characterized by a certain “mean map" parameter that can be estimated in
the LLP setting. They also provide Rademacher complexity bounds for the mean map and the associated
log-posterior, but do not address a classification performance measure. Patrini et al. [28] extend the work of
[31] in several ways, including a generalization error bound on the risk of a classifier. This bound is expressed
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in terms of an empirical LLP risk, a “bag Rademacher complexity," and a “label proportion complexity." The
authors state that when bags are pure (LPs close to 0 or 1), the last of these terms is small, while for impure
bags, the second term is small and the first term increases. While this bound motivates their algorithms,
it is not clear how such a bound would imply consistency. Yu et al. [45] study the idea of minimizing the
“empirical proportion risk" (EPR), which seeks a classifier that best reproduces the observed LPs. They
develop a PAC-style bound on the accuracy of the resulting classifier under the assumption that all bags
are very pure. Our work is the first to develop generalization error analysis and universal consistency for a
classification performance measure, and we do so under a broadly applicable statistical model on bags.

The literature on LLP has so far yielded two general purpose training objectives that are usable across a
variety of learning models. The first of these, the aforementioned EPR, minimizes the average discrepancy
between observed and predicted LPs, where discrepancy is often measured by absolute or squared error in the
binary case [45, 41, 10], and cross-entropy in the multiclass case [41, 12, 22, 5]. While [45] has been cited as
theoretical support for this objective, that paper assumes the bags are very pure, and even provides examples
of EPR minimization failure when bags are not sufficiently pure. We offer our own counterexample in an
appendix. The second is the combinatorial objective introduced by [44] that incorporates the unknown labels
as variables in the optimization, and jointly optimizes a conventional classification empirical risk together
with a term (usually EPR) that encourages correctness of the imputed labels [44, 43, 21, 30, 9, 36, 37, 19, 12].
To our knowledge there is also no statistical theory supporting this objective. In contrast, we propose a
theoretically grounded, general purpose criterion for training LLP models.

Finally, we note that an earlier version of this work approached LLP using so-called “label-flipping" or
“class-conditional" noise models, as opposed to MCMs [35]. While that approach lead to the same algorithm
described here, that setting is less natural for LLP, and the present version adds several more theoretical
and experimental results.

Notation. Let X denote the feature space and {−1, 1} the label space. For convenience we often
abbreviate −1 and +1 by “-" and “+", and write {±} = {−,+}. A binary classification loss function, or
loss for short, is a function ℓ : R × {−1, 1} → R (we allow losses to take negative values). For σ ∈ {±},
denote ℓσ(t) := ℓ(t, σ). A loss ℓ is Lipschitz (continuous) if there exists L such that for every σ ∈ {±}, and
every t, t′ ∈ R, |ℓσ(t) − ℓσ(t

′)| ≤ L|t− t′|. The smallest such L for which this property holds is denoted |ℓ|.
Additionally, we define |ℓ|0 := max(|ℓ+(0)|, |ℓ−(0)|).

A decision function is a measurable function f : X → R. The classifier induced by a decision function f is
the function x 7→ sign(f(x)). We will only consider classifiers induced by a decision function. In addition, we
will often refer to a decision function as a classifier, in which case we mean the induced classifier. Let P+ and
P− be the class-conditional distributions of the feature vector X , and denote P = (P−, P+). The performance
measure considered in this work is the balanced error rate (BER) which, for a given loss ℓ, and class conditional
distributions P = (P+, P−), is defined by Eℓ

P (f) :=
1
2EX∼P+ [ℓ+(f(X))] + 1

2EX∼P−
[ℓ−(f(X))].

For an integer n, denote [n] := {1, 2, . . . , n}. Given a sequence of numbers (ai)i∈[m], denote the arithmetic

and harmonic means by AM(ai) := 1
m

∑
i∈[m] ai and HM(ai) := ( 1

m

∑
i∈[m] a

−1
i )−1. Finally, define the

probability simplex ∆N := {w ∈ R
N |wi ≥ 0 ∀i, and

∑
i wi = 1}.

2 Mutual Contamination Models

In this section we define MCMs and present new technical results for learning from MCMs that motivate our
study of LLP in the next section, and which may also be of independent interest. We will consider collections
of instances X1, . . . , Xm ∼ γP+ + (1− γ)P−, where γ ∈ [0, 1] and m are fixed. Foreshadowing LLP, we refer
to such collections of instances as bags.

We adopt the following assumption on bag data generation, with two cases depending on within-bag
dependencies. Suppose there are L total bags with sizes ni, i ∈ [L], proportions γi ∈ [0, 1], and elements Xij ,
i ∈ [L], j ∈ [ni]. We assume

The distributions P+ and P− are the same for all bags. γi and mi may vary from bag to bag. If i 6= r,
then Xij and Xrs are independent ∀j, s. Furthermore, for all i,
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(IIM) In the independent instance model, Xij
iid∼ γiP+ + (1− γi)P−;

(IBM) In the independent bag model, the marginal distribution of Xij is γiP+ + (1− γi)P−.

(IBM) allows the instances within each bag to be dependent. Furthermore, any dependence structure,
such as a covariance matrix, may change from bag to bag. (IIM) is a special case of (IBM) that allows us
to quantify the impact of bag size ni on generalization error.

2.1 Mutual Contamination Models and Unbiased Losses

Recall that P denotes the pair (P+, P−). Let κ = (κ+, κ−) be such that κ++κ− < 1. A mutual contamination
model is the pair P κ := (P κ

+, P
κ
−) where

P κ
+ := (1− κ+)P+ + κ+P− and P κ

− := (1− κ−)P− + κ−P+.

P κ
+ and P κ

− may be thought of as noisy or contaminated versions of P+ and P−, respectively, where the
contamination arises from the other distribution. MCMs are common models for label noise [34, 25, 4],
where κσ may be interpreted as the label noise rates P(Y = −σ|Ỹ = σ), where Y and Ỹ are the true and
observed labels.

Given ℓ and κ define the loss ℓκ by

ℓκσ(t) :=
1− κ−σ

1− κ− − κ+
ℓσ(t)−

κ−σ

1− κ− − κ+
ℓ−σ(t), σ ∈ {±}.

This loss undoes the bias present in the mutual contamination model.

Proposition 1. Consider any P = (P+, P−), κ = (κ+, κ−) with κ+ + κ− < 1, and loss ℓ. For any f such
that all four of the quantities EX∼P±

ℓ±(f(X)) exist and are finite, Eℓ
P (f) = Eℓκ

Pκ(f).

This result mirrors a similar result established by Natarajan et al. [26] under a label-flipping model for
label noise, which is the other prominent models for random label noise besides the MCM. The proof simply
matches coefficients of EX∼P±

ℓ±(f(X)) on either side of the desired identity.
In an appendix we offer a sufficient condition for ℓκ to be convex. We also show (as an aside) that Prop.

1 enables a simple proof of a known result concerning symmetric losses, i.e., losses for which ℓ(t, 1)+ ℓ(t,−1)
is constant, such as the sigmoid loss. In particular, symmetric losses are immune to label noise under MCMs,
meaning the original loss ℓ can be minimized on data drawn from the MCM and still optimize the clean
BER [25, 42, 6].

The significance of Prop. 1 is that Eℓ
P (f) is the quantity we want to minimize, while Eℓκ

Pκ(f) can be
estimated given data from an MCM. In particular, given bags X+

1 , . . . , X+
n+ ∼ P κ

+ and X−
1 , . . . , X−

n− ∼ P κ
−,

Prop. 1 motivates minimizing the estimate of BER given by

Ê(f) := 1

2n+

n+∑

j=1

ℓκ+(f(X
+
j )) +

1

2n−

n−∑

j=1

ℓκ−(f(X
−
j )) =

1

2

∑

σ∈{±}

1

nσ

nσ∑

j=1

ℓκσ(f(X
σ
j ))

over f ∈ F , where F is some class of decision functions. We have

Proposition 2. Under (IBM) , for any f such that the quantities EX∼P±
ℓ±(f(X)) exist and are finite,

E[Ê(f)] = Eℓ
P (f).

2.2 Learning from Multiple Mutual Contamination Models

In the next section we view LLP in terms of a more general problem that we now define. Suppose we are
given N different MCMs. Each has the same true class-conditional distributions P+ and P−, but possibly
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different contamination proportions κi = (κ+
i , κ

−
i ), i ∈ [N ]. Let P κi = (P κi

+ , P κi

− ) denote the ith MCM, and
assume κ+

i + κ−
i < 1. Now suppose that for each i ∈ [N ], we observe

X+
i1, . . . , X

+

in
+
i

∼ P κi

+ := (1− κ+
i )P+ + κ+

i P−,

X−
i1, . . . , X

−

in
−

i

∼ P κi

− := (1− κ−
i )P− + κ−

i P+.

The problem of learning from multiple mutual contamination models (LMMCM) is to use all of the above
data to design a single classifier that minimizes the clean BER Eℓ

P .
A natural approach to this problem is to minimize the weighted empirical risk

Êw(f) :=
N∑

i=1

wiÊi(f) where Êi(f) :=
1

2n+
i

n
+
i∑

j=1

ℓκi

+ (f(X+
ij )) +

1

2n−
i

n
−

i∑

j=1

ℓκi

− (f(X−
ij )),

where w ∈ ∆N . By Prop. 1, under (IBM) each Êi(f) is an unbiased estimate of Eℓ
P (f), and therefore so is

Êw(f). This leads to the question of how best to set w. Intuitively, MCMs P κi with less corruption should
receive larger weights. We confirm this intuition by choosing wi to optimize a generalization error bound
(GEB). Our GEBs uses two weighted, multi-sample extensions of Rademacher complexity, corresponding to
(IIM) and (IBM) , that we now introduce.

Let S denote all the data Xσ
ij from N MCMs as described above.

Definition 3. Let F be a class of decision functions. Assume that supf∈F supx∈X |f(x)| < ∞. For any

c ∈ R
N
≥0, define

R
I
c(F) := ESE(ǫσ

ij
)

[
sup
f∈F

N∑

i=1

ci
∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ǫσijf(X
σ
ij)

]
, (1)

and

R
B
c (F) := ESE((σi,Xi)∼P̂κi )

i∈[N ]
E(ǫi)

[
sup
f∈F

N∑

i=1

ǫicif(Xi)

]
, (2)

where ǫσij , ǫi
iid∼ unif({−1, 1}) are Rademacher random variables and P̂ κi is the distribution that selects

σi ∼ unif({−1, 1}), and then draws Xi uniformly from Xσ
i,1, . . . , X

σ
i,nσ

i
.

The inner two summations in (1) reflect an adaptation of the usual Rademacher complexity to the BER,
and the outer summation reflects the multiple MCMs. Eqn. (2) may be seen as a modification of (1) where
the inner two sums are viewed as an empirical expectation that is pulled out of the supremum. If F satisfies
the following, then R

I
c(F) and R

B
c (F) are bounded by tractable expressions.

(SR) There exist constants A and B such that supf∈F supx∈X |f(x)| ≤ A, and for all M , x1, . . . , xM ∈ X ,

and a ∈ R
M
≥0,

E(ǫi)

[
sup
f∈F

M∑

i=1

ǫiaif(xi)

]
≤ B

√√√√
M∑

i=1

a2i .

As one example of an F satisfying (SR) , let k be a symmetric positive definite (SPD) kernel, bounded1 by
K, and let H be the associated reproducing kernel Hilbert space (RKHS). Let Fk

K,R denote the ball of radius

R, centered at 0, in H. As a second example, assume X ⊂ R
d and ‖X‖2 := supx∈X ‖x‖2 < ∞, where ‖ · ‖2

is the Euclidean norm. Let α, β ∈ R
M
+ and denote [x]+ = max(0, x). Define the class of two-layer neural

networks with ReLU activation by

FNN

α,β = {f(x) = vT [Ux]+ : v ∈ R
h, U ∈ R

h×d, |vi| ≤ αi, ‖ui‖2 ≤ βi, i = 1, 2, . . . , h}.
1An SPD kernel k is bounded by K if

√

k(x, x) ≤ K for all x. For example, the Gaussian kernel k(x, x′) = exp(−γ‖x−x′‖2)
is bounded by K = 1.
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Proposition 4. Fk
K,R satisfies (SR) with (A,B) = (RK,RK), and FNN

α,β satisfies (SR) with (A,B) =
(‖α‖2‖β‖2‖X‖2, 2〈α, β〉‖X‖2).

We emphasize that other classes F admit quantitative bounds on R
I
c(F) and R

B
c (F) that do not conform

to (SR) , and that can also be leveraged as we do below. We focus on (SR) because the GEBs simplify

considerably making it possible to derive closed form expressions for the optimal wi. Below we write
(SR)

≤ to
indicate an upper bound that holds provided (SR) is true.

Our first main result establishes GEBs for LMMCM under both (IIM) and (IBM) .

Theorem 5. Let S collect all the data (Xσ
ij) from N MCMs with common base distributions P+, P−, and

contamination proportions κi = (κ+
i , κ

−
i ) satisfying κ−

i + κ+
i < 1. Let F be a class of decision functions

such that A = supf∈F supx∈X |f(x)| < ∞, let ℓ a Lipschitz loss, w ∈ ∆N , and δ > 0. Under (IIM) , with
probability ≥ 1− δ wrt the draw of S,

sup
f∈F

∣∣∣Êw(f)− E(f)
∣∣∣ ≤ 2RI

c(F) + C

√√√√
N∑

i=1

w2
i

n̄i(1− κ−
i − κ+

i )
2

(SR)

≤ D

√√√√
N∑

i=1

w2
i

n̄i(1− κ−
i − κ+

i )
2

(3)

where n̄i := HM(n−
i , n

+
i ), ci = wi|ℓ|/(1− κ−

i − κ+
i ), C = (1 + A|ℓ|)

√
log(2/δ), and D = 2B|ℓ|+ C. Under

(IBM) , the same statement holds after replacing R
I
c(F) → R

B
c (F) and n̄i → 1.

Several remarks are in order. Under (IIM) , even in the special case N = 1 without noise (κ−
1 = κ+

1 = 0)
the result appears new, and amounts to an adaptation of the standard Rademacher complexity bound to
BER. The case N = 1 with noise can be used to prove consistency (with n̄1 → ∞) of a discrimination rule
for a single MCM given knowledge of, or consistent estimates of κ−

1 , κ
+
1 . Previous results of this type have

analyzed MCMs via label-flipping models which is less natural [4].
Because the result holds for any w ∈ ∆N , as long as the κi are known a priori, we may set w to optimize

the rightmost expressions in (3). This leads to optimal weights wi ∝ n̄i(1 − κ−
i − κ+

i )
2 under (IBM) (here

and below, replace n̄i by 1 for (IBM) ), which supports our claim that MCMs with more information (larger
samples, less noise) should receive more weight. With this choice of weights, the summation in the bound
reduces to 1

N
HM(1/n̄i(1 − κ−

i − κ+
i )

2). In contrast, with uniform weights wi = 1/N the summation equals
1
N

AM(1/n̄i(1− κ−
i − κ+

i )
2). The harmonic mean is much less sensitive to the presence of outliers, i.e., very

noisy MCMs, than the arithmetic.

3 Learning from Label Proportions

In learning from label proportions with binary labels, the learner has access to (b1, γ̂1), . . . , (bL, γ̂L), where
each bi is a bag of ni unlabeled instances, and each γ̂i ∈ [0, 1] is the proportion of instances from class 1 in
the bag. The goal is to learn an accurate classifier as measured by some performance measure, which in our
case we take to be the BER. This choice is already a departure from prior work on LLP, which typically
looks at misclassification rate (MCR). The BER is defined without reference to a distribution of the label
Y , and is thus invariant to changes in this distribution. In other words, BER is immune to shifts in class
prevalence, and hence to shifts in the distribution of label proportions.

We adopt the following data generation model for bags. Each bag has a true label proportion γi ∈ [0, 1].
For each i, let (Xij , Yij), j ∈ [ni], be random variables. The ith bag is formed from (Xij)j∈[ni], and the

observed or empirical label proportion is γ̂i =
1
ni

∑
j

Yij+1
2 . Let γ,Y , and X be vectors collecting all of the

values of γi, Yij , and Xij , respectively. We assume

The distributions P+ and P− are the same for all bags. The γi may be random, and the sizes ni are
nonrandom. Conditioned on γ, if i 6= r, then Xij and Xrs are independent ∀j, s. Furthermore, conditioned
on γ, for bag i

5



(CIIM) In the conditionally independent instance model,
Yij+1

2

iid∼ Bernoulli(γi) and conditioned on
Yi1, . . . , Yini

, Xi1, . . . , Xini
are independent with Xij ∼ PYij

.

(CIBM) In the conditionally independent bag model, E[γ̂i] = γi and for each j, the distribution of
Xij |Yi1, . . . , Yini

is PYij
.

Under (CIBM) , conditioned on γ, for bag i the labels Yi1, . . . , Yini
may be dependent, and given these

labels the instances Xij may also be dependent. Furthermore, the dependence structure may change from
bag to bag. This means that given its label, the distribution of an instance is still dependent on its bag, in
contrast to prior work [31]. We also allow that the γi may be dependent, so that without conditioning on γ,
the bags themselves may be dependent.

As in the previous section, the significance of our model is that it provides for (conditionally) unbiased
estimates of BER as we describe below. Indeed, if we view γ as fixed, (CIIM) clearly implies (IIM) (in
fact, the two independent instance models are equivalent). However, it is not the case that (CIBM) implies
(IBM) – the introduction of the latent labels allows for a more general independent bag model while still
ensuring unbiased BER estimates. A weakening of (CIBM) , namely

(CIBM’) For each j, E[
Yij+1

2 ] = γi and the distribution of Xij |Yi1, . . . , Yini
is PYij

does imply (IBM) (still viewing γ as fixed), as we show in an appendix.
In this section we propose to reduce LLP to the setting of the previous section by pairing the bags, so

that each pair of bags constitutes an MCM.

3.1 LLP when True Label Proportions are Known

We first consider the less realistic setting where the γi are deterministic and known. In this situation we may
reduce LLP to LMMCS by pairing bags. In particular, we re-index the bags and let (b−i , γ

−
i ) and (b+i , γ

+
i )

constitute the ith pair of bags, such that γ−
i < γ+

i . The bags may be paired in any way that depends on
γ1, . . . , γL, subject to γ−

i < γ+
i ∀i. We also assume the total number of bags is L = 2N , so that the number

of bag pairs is N .
If we set κi = (κ+

i , κ
−
i ) := (1 − γ+

i , γ
−
i ), then we are in the setting of LMMCM described in the

previous setting. Furthermore, 1 − κ−
i − κ+

i = γ+
i − γ−

i > 0. Therefore we may apply all of the theory
developed in the previous section without modification. Since γ is deterministic, (CIIM) and (CIBM)’
imply (IIM) and (IBM) as discussed above, and we may simply apply Theorem 5 to obtain GEBs for
LLP. Choosing weights wi to minimize the (SR) form yields final bounds proportional to the square root of
1
N

HM(1/(n̄i(γ
+
i −γ−

i )2)) = (
∑

i n̄i(γ
+
i −γ−

i )2)−1 (under (CIBM’) replace n̄i → 1). In the LLP setting, we
may further optimize this bound by optimizing the pairing of bags. This leads to an integer program known
as the weighted matching problem for which exact and approximate algorithms are known. See appendices
for details.

If γ is random, and the γi are distinct (which occurs w. p. 1, e.g., if γ is jointly continuous), Theorem 5
still holds conditioned on γ, and therefore unconditionally by the law of total expectation.

Although the γi are typically unknown in practice, the above discussion still yields a useful algorithm:
simply “plug in” γ̂i for γi and proceed to minimize Êw(f) (with optimally paired bags and optimized weights)
over F . A description of the learning procedure, which we use in our experiments, is presented in Algorithm
1.

Algorithm 1 Plug-in approach to LLP via LMMCM (outline)

1: Input: (b1, γ̂1), . . . , (b2N , γ̂2N ), model class F , loss ℓ, tuning parameters
2: procedure LLP-LMMCM

3: Solve weighted matching problem to find pairings maximizing
∑

i(γ̂
+
i − γ̂−

i )2 (see supp.)
4: Set κi = (1− γ̂+

i , γ̂−
i ) and optimal weights wi ∝ (γ̂+

i − γ̂−
i )2

5: Minimize Êw(f) over F , perhaps with regularization
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3.2 Consistent Learning from Label Proportions

When the true label proportions are not known, as is usually the case in practice, it is difficult to establish
consistency of the plug-in approach without restrictive assumptions. This is because the γ̂i are random, and
so there is always some nonnegligible probability that in each pair, the bag with larger γi will be misidentified.
This problem is especially pronounced for very small bag sizes. For example, if two bags with γ1 = .45 and
γ2 = .55 are paired, and the bag sizes are 8 with independent labels, the probability that γ̂2 < γ̂1 is .26.
One approach to overcoming this issue is to have the bag sizes nσ

i tend to ∞ asymptotically, in which case

γ̂i
a.s.→ γi. This is a less interesting setting, however, because the learner can discard all but one pair of bags

and still achieve consistency using existing techniques for learning in MCMs [4]. Furthermore, the bag size
is often fixed in applications.

We propose an approach based on merging the original “small bags" to form “big bags," and then applying
the approach of Section 3.1. For convenience assume all original (small) bags have the same size ni = n
moving forward. Let K be an integer and assume N is a multiple of K for convenience, N = MK. As
before, let (bi, γ̂i), i ∈ [2N ], be the original, unpaired bags of size n. We refer to a K-merging scheme as
any procedure that takes the original unpaired bags of size n and combines them, using knowledge of the γ̂i,
to form paired bags of size nK. Let the paired bags be denoted (B+

i , Γ̂
+
i ) and (B−

i , Γ̂−
i ), i ∈ [M ]. Let Iσi

denote the original indices of the small bags comprising Bσ
i , so that Bσ

i = ∪j∈I
+
i
bi and Γ̂σ

i = 1
K

∑
j∈Iσ

i
γ̂σ
j .

We offer two examples of K-merging schemes. The first, called the blockwise-pairwise (BP) scheme,
simply takes the original small bags in their given order. The ith block of 2K consecutive small bags are
used to form the ith pair of big bags. This is done by considering consecutive, nonoverlapping pairs of small
bags and assigning the small bag with larger γ̂i to B+

i . Using notation, we define I+i = {j ∈ [2K(i− 1) + 1 :
2Ki] | j is odd and γ̂j ≥ γ̂j+1 or j is even and γ̂j ≥ γ̂j−1} and I−i = [2K(i − 1) + 1 : 2Ki]\I+i (ties may be
broken arbitrarily). The blockwise-max (BM) scheme is like BP, except that for each block of 2K small bags,
the K small bags with largest γ̂j are assigned to the positive bag. One can imagine more elaborate schemes

that are not blockwise. We say that scheme 1 dominates scheme 2 if, with probability 1, for every i, Γ̂+
i − Γ̂−

i

for scheme 1 is at least as large as it is for scheme 2. For example, BM dominates BP.
Next, we form the modified weighted empirical risk. For each i ∈ [M ] and σ ∈ {±}, let (Xσ

ij), j ∈ [nK],

denote the elements of Bσ
i , and (Y σ

ij ) the associated labels. Also set κ̂i = (1 − Γ̂+
i , Γ̂

−
i ). Let w ∈ ∆M such

that wi ∝ (Γ̂+
i − Γ̂−

i )
2, and define

Ẽ(f) :=
M∑

i=1

wiẼi(f) where Ẽi(f) :=


 1

2n

∑

σ∈{±}

nK∑

j=1

ℓκ̂i

σ (f(Xσ
ij))


 .

In the proof of Thm. 6, we show that under (CIBM) , with high probability, Ẽi(f) is an unbiased estimate
for Eℓ

P (f) when conditioned on γ and Y .
To state our main result we adopt the following assumption on the distribution of label proportions.

(LP) There exist ∆, τ > 0 such that the sequence of random variables Zj = 1{|γj−γj+1|<∆} satisfies the

following. For every J ⊆ [2N − 1], P(
∏

j∈J Zj = 1) ≤ τ |J|.

This condition is satisfied if the γi are iid draws from any non-constant distribution. However, it also allows
for the γi to be correlated. As one example, let (wj) be iid random variables with support ⊇ [−1, 1]. (LP)
is satisfied if γj+1 = γj + wj , where wj is the truncation of wj to [−γj , 1 − γj ]. The point of (LP) is that
it offers a dependence setting where a one-sided version of Hoeffding’s inequality holds, which allows us to
conclude that with high probability, for all odd j ∈ [2N ], |γj − γj+1| ≥ ∆ for approximately N(1− τ) of the
original pairs of small bags [27].

We now state our main result. Define Γ+
i = EY |γ [Γ̂

+
i ] and Γ−

i = EY |γ [Γ̂
−
i ].

Theorem 6. Let (LP) hold. Let ǫ0 ∈ (0,∆(1− τ)). Let F satisfy supx∈X ,f∈F |f(x)| ≤ A < ∞ and let ℓ be

a Lipschitz loss. Let ǫ ∈ (0, ∆(1−τ)−ǫ0
1+∆ ] and δ ∈ (0, 1]. For the BP merging scheme, under (CIIM) , with
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probability at least 1− δ − 2N
K
e−2Kǫ2 with respect to the draw of γ,Y ,X,

Γ̂+
i − Γ̂−

i ≥ Γ+
i − Γ−

i − ǫ ≥ ǫ0

and

sup
f∈F

∣∣∣Ẽ(f)− E(f)
∣∣∣ ≤ 2RI

c(F) + C

√
HM((Γ+

i − Γ−
i − ǫ)−2)

2(N/K)n

(SR)

≤ D

√
HM((Γ+

i − Γ−
i − ǫ)−2)

2(N/K)n
, (4)

where ci = wi|ℓ|/(Γ+
i − Γ−

i − ǫ), C = (1 + A|ℓ|)
√
log(2/δ), and D = 2B|ℓ|+ C. Under (CIBM), the same

bounds hold with the same probability if we substitute R
I
c(F) → R

B
c (F) and n → 1.

This result states that BP achieves essentially the same bound (modulo ǫ) as if we applied LMMCM to
the big bags with known Γ+

i ,Γ
−
i . We also note that there is no restriction on bag size n. A corollary of this

result also applies to any scheme that dominates BP, as we explain in an appendix.
Theorem 6 implies a consistent learning algorithm for LLP under both (CIIM) and (CIBM) , using

any merging scheme that dominates BP. To achieve consistency the bound should tend to zero while the
confidence tends to 1, as N → ∞. Even with n fixed, this is true provided K → ∞ and N/K → ∞ as
N → ∞, such that N = O(Kβ) for some β > 0. Beyond that, standard arguments may be applied to arrive
at a formal consistency result. In an appendix we state such a result for completeness. Here the consistency
is universal in that it makes no assumptions on P− or P+.

4 Experiments

The vast majority of LLP methodology papers simulate data for LLP by taking a classification data set,
randomly shuffling the data, and sectioning off the data into bags of a certain size. This implies that the
expected label proportions for all bags are the same, and as bag size increases, all label proportions converge
to the class prior probabilities. The case where all LPs are the same is precisely the setting where LLP
becomes intractable, and hence these papers report decreasing performance with increasing bag size.

We propose an alternate sampling scheme inspired by our MCM framework. Each experiment is based
on a classification data set, a distribution of LPs, and the bag size n. For each dataset, the total number
of training instances T is fixed, so that the number of bags is T/n. We consider the Adult (T = 8192) and
MAGIC Gamma Ray Telescope (T = 6144) datasets (both available from the UCI repository2), LPs that
are iid uniform on [0, 12 ] and on [ 12 , 1], and bag sizes n ∈ {8, 32, 128, 512}. The total number of experimental
settings is thus 2 × 2 × 4 = 16. The numerical features in both datasets are standardized to have 0 mean
and unit variance, the categorical features are one-hot encoded.

We implement a method based on our general approach (see Algorithm 1) by taking ℓ to be the logistic

loss, F to be the RKHS associated to a Gaussian kernel k, and selecting f ∈ F by minimizing Êw(f)+λ‖f‖2F .
By the representer theorem [33], the minimizer of this objective has the form f(x) =

∑
i αik(x, xi) where

αi ∈ R and xi ranges over all training instances. Our Python implementation uses SciPy’s L-BFGS routine
to find the optimal αi. The kernel parameter is computed by 1

d∗V ar(X) where d is the number of features

and V ar(X) is the variance of the data matrix, and the parameter λ ∈ {1, 10−1, 10−2, . . . , 10−5} is chosen
by 5-fold cross validation. We tried the EPR as a criterion for model selection but found our own criterion
to be better. For each dataset, our implementation runs all 8 settings in roughly 50 minutes using 48 cores.

We compare against InvCal [32] and alter-∝SVM [44], the two most common reference methods in LLP,
using Matlab implementations provided by the authors of [44]. Those methods are designed to optimize
accuracy, whereas ours is designed to optimize BER. For a fair comparison, for each method we shift the
decision function’s threshold to generate an ROC curve and evaluate the area under the curve (AUC) using
all data that was not used for training. For each experimental setting, the reported AUC and standard

2http://archive.ics.uci.edu/ml
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deviation reflect the average results over 5 randomized trials. Additional experimental details are found in
an appendix.

The results are reported in Table 1. Bold numbers indicate that a method’s mean AUC was the largest for
that experimental setting. We see that for the smallest bag size, the methods all perform comparably, while
for larger bag sizes, LMMCM exhibits far less degradation in performance. Using the Wilcoxon signed-rank
test, we find that LMMCM outperforms InvCal with p-value < 0.005.

Table 1: AUC. Column header indicates bag size.
Data set, LP dist Method 8 32 128 512

Adult,
[
0, 1

2

] InvCal 0.8720 ± 0.0035 0.8672 ± 0.0067 0.8537 ± 0.0101 0.7256 ± 0.0159
alter-∝SVM 0.8586 ± 0.0185 0.7394 ± 0.0686 0.7260 ± 0.0953 0.6876 ± 0.1219
LMMCM 0.8728 ± 0.0019 0.8693 ± 0.0047 0.8669 ± 0.0041 0.8674 ± 0.0040

Adult,
[
1
2 , 1

] InvCal 0.8680 ± 0.0021 0.8598 ± 0.0073 0.8284 ± 0.0093 0.7480 ± 0.0500
alter-∝SVM 0.8587 ± 0.0097 0.7429 ± 0.1473 0.8204 ± 0.0318 0.7602 ± 0.1215
LMMCM 0.8584 ± 0.0164 0.8644 ± 0.0052 0.8601 ± 0.0045 0.8500 ± 0.0186

MAGIC,
[
0, 1

2

] InvCal 0.8918 ± 0.0076 0.8574 ± 0.0079 0.8295 ± 0.0139 0.8133 ± 0.0109
alter-∝SVM 0.8701 ± 0.0026 0.7704 ± 0.0818 0.7753 ± 0.0207 0.6851 ± 0.1580
LMMCM 0.8909 ± 0.0077 0.8799 ± 0.0113 0.8753 ± 0.0157 0.8734 ± 0.0092

MAGIC,
[
1
2 , 1

] InvCal 0.8936 ± 0.0066 0.8612 ± 0.0056 0.8180 ± 0.0092 0.8215 ± 0.0136
alter-∝SVM 0.8689 ± 0.0135 0.8219 ± 0.0218 0.8179 ± 0.0487 0.7949 ± 0.0478
LMMCM 0.8911 ± 0.0083 0.8790 ± 0.0091 0.8684 ± 0.0046 0.8567 ± 0.0292

We performed an additional set of experiments where the number of bags N remains fixed. For Adult
dataset, the total number of bags is 16, and for MAGIC, it is 12. For each method, we generate an ROC
curve and evaluate the area under the curve (AUC) using the test data. The average AUCs and the standard
deviations over 5 random trials are reported in Table 2. Bold numbers indicate that a method’s mean AUC
was the largest for that experimental setting. We observe that LMMCM exhibits excellent performance in
this setting as well.

Table 2: AUC. Column header indicates bag size.
Data set, LP dist Method 8 32 128 512

Adult,
[
0, 1

2

] InvCal 0.6427 ± 0.0922 0.6545 ± 0.0643 0.6518 ± 0.0139 0.7230 ± 0.0253
alter-∝SVM 0.6525 ± 0.0817 0.5959 ± 0.1145 0.6199 ± 0.1267 0.6419 ± 0.0997
LMMCM 0.7299 ± 0.0796 0.7765 ± 0.0590 0.8329 ± 0.0166 0.8456 ± 0.0213

Adult,
[
1
2 , 1

] InvCal 0.5973 ± 0.0740 0.6634 ± 0.0864 0.6408 ± 0.0216 0.7218 ± 0.0170
alter-∝SVM 0.6035 ± 0.1626 0.7774 ± 0.0443 0.5863 ± 0.2775 0.7106 ± 0.2193
LMMCM 0.7228 ± 0.1048 0.7674 ± 0.0586 0.8428 ± 0.0101 0.8588 ± 0.0091

MAGIC,
[
0, 1

2

] InvCal 0.7381 ± 0.0439 0.7828 ± 0.0212 0.7936 ± 0.0371 0.8196 ± 0.0231
alter-∝SVM 0.5997 ± 0.1163 0.5376 ± 0.1671 0.6859 ± 0.0371 0.7193 ± 0.1278
LMMCM 0.7180 ± 0.0450 0.7852 ± 0.7828 0.8140 ± 0.0463 0.8630 ± 0.0275

MAGIC,
[
1
2 , 1

] InvCal 0.6741 ± 0.0673 0.7405 ± 0.0433 0.7876 ± 0.0249 0.8135 ± 0.0132
alter-∝SVM 0.6589 ± 0.1029 0.6330 ± 0.1254 0.6790 ± 0.1072 0.7965 ± 0.0708
LMMCM 0.6807 ± 0.0779 0.7639 ± 0.0335 0.7905 ± 0.0258 0.8491 ± 0.0245

5 Conclusion

We have introduced a principled framework for LLP based on MCMs. We have developed several novel
results for MCMs, and used them to develop a statistically consistent procedure and an effective practical
algorithm for LLP. The most natural direction for future work is to extend to multiclass.
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A Failure Case for Empirical Proportion Risk Minimization

We offer a simple example where minimizing the empirical proportion risk leads to suboptimal performance.
Let P− be uniform on [0, 1], with density p−(x) = 1{x∈[0,1]}, and let P+ have the triangular density function

p+(x) = 2x1{x∈[0,1]}. Suppose there is a single bag, and that the label proportion is γ = 1
2 . Also suppose F

consists of threshold classifiers ft(x) = sign(x− t), t ∈ [0, 1]. This class contains the optimal BER classifier
(define wrt 0-1 loss) corresponding to t∗ = 1

2 . Now suppose we are in the infinite bag-size limit (which only
makes the problem easier), so that the observed label proportion γ̂ is simply γ = 1

2 . Then we seek the
threshold t′ that minimizes

EPR(t) :=

∣∣∣∣P(ft(X) = 1)− 1

2

∣∣∣∣
p

.

For any p > 0, t′ is the median of the marginal distribution of X , 1
2P− + 1

2P+, which equals (
√
5 − 1)/2 ≈

0.62 6= t∗. Thus, minimizing EPR does not yield an optimal classifier for BER or for misclassification rate,
which agrees with BER in this setting where the two classes are equally likely.

Now suppose there are N bags, with label proportions γ1, . . . , γN drawn iid from a distribution whose
(population) mean and median are 1

2 , such as the uniform distribution on [0, 1]. The optimal BER classifier
remains the same, with threshold t∗ = 1

2 . The optimal classifier wrt misclassification rate is also the same,
assuming we view E[γi] =

1
2 as the class prior. In the infinite bag-size limit, EPR would seek the threshold

t′ that minimizes

EPRN (t) :=
1

N

N∑

i=1

|P(ft(X) = 1)− γi|p .

For p = 1, EPR minimization selects t′ such that P(ft′(X) = 1) is the empirical median of γ1, . . . , γN ,
which will be near 1

2 , which means t′ will be near 0.62. For p = 2, EPR minimization selects t′ such that
P(ft′(X) = 1) is the empirical mean of γ1, . . . , γN , which will again be near 1

2 , which again means t′ will be
near 0.62.

More generally, based on the above example, EPR seems likely to fail whenever P+ and P− are not
sufficiently “symmetric."

B Proofs of Results From Main Document

This section contains the proofs.

B.1 Proof of Proposition 1

Consider the loss function ℓ̃ given by

ℓ̃+(t) = Aℓ+(t)−Bℓ−(t),

ℓ̃−(t) = Cℓ−(t)−Dℓ+(t).

Equating E ℓ̃
Pκ(f) to Eℓ

P (f) yields four equations in the four unknowns A, B, C, and D, corresponding to the

coefficients of EX∼P±
ℓ±(f(X)). The unique solution to this system is ℓ̃ = ℓκ.

B.2 Proof of Proposition 4

We begin with Fk
R,K . For any R > 0, f ∈ Fk

R,K , and x ∈ X ,

|f(x)| = |〈f, k(·, x)〉| ≤ ‖f‖H‖k(·, x)‖H = RK.

by the reproducing property and Cauchy-Schwarz. Thus A = RK.
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For the second part, the expectation may be bounded by a modification of the standard bound of
Rademacher complexity for kernel classes. Thus,

E(ǫi)

[
sup

f∈Fk
R,K

∑

i

aiǫif(xi)

]
= E(ǫi)

[
sup

f∈Fk
R,K

∑

i

aiǫi〈f, k(·, xi)〉
]

(5)

= E(ǫi)

[
sup

f∈Fk
R,K

〈
f,
∑

i

aiǫik(·, xi)

〉]

= E(ǫi)

[〈
R

∑
i aiǫik(·, xi)

‖∑i aiǫik(·, xi)‖
,
∑

i

aiǫik(·, xi)

〉]
(6)

= RE(ǫi)




√√√√
∥∥∥∥∥
∑

i

aiǫik(·, xi)

∥∥∥∥∥

2



≤ R

√√√√√E(ǫi)



∥∥∥∥∥
∑

i

aiǫik(·, xi)

∥∥∥∥∥

2

 (7)

= R

√∑

i

a2i ‖k(·, xi)‖2 (8)

≤ RK

√√√√
M∑

i=1

a2i , (9)

where (5) uses the reproducing property, (6) is the condition for equality in Cauchy-Schwarz, (7) is Jensen’s
inequality, (8) follows from independence of the Rademacher random variables, and (9) follows from the
reproducing property and the bound on the kernel.

Next, consider FNN

α,β . For the first part we have for any f ∈ FNN

α,β and x ∈ X ,

|f(x)| = |〈v, [Ux]+〉|
≤ ‖v‖‖[Ux]+‖
≤ ‖α‖‖[Ux]+‖
≤ ‖α‖‖Ux‖

= ‖α‖
√∑

j

|〈uj, x〉|2

≤ ‖α‖
√∑

j

‖uj‖2‖x‖2

≤ ‖X‖‖α‖
√∑

j

‖uj‖2

≤ ‖X‖‖α‖‖βj‖.
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For the second part, observe

E(ǫk)

[
sup
f∈F

M∑

k=1

ǫkakf(xk)

]
= E(ǫk)


sup
f∈F

M∑

k=1

ǫkak

h∑

j=1

vj [〈uj , xk〉]+




= E(ǫk)


sup
f∈F

M∑

k=1

ǫk

h∑

j=1

vj [〈uj , akxk〉]+




= E(ǫk)


sup
f∈F

h∑

j=1

vj

M∑

k=1

ǫk [〈uj , akxk〉]+




≤ E(ǫk)


sup
f∈F

∣∣∣∣∣∣

h∑

j=1

vj

M∑

k=1

ǫk [〈uj , akxk〉]+

∣∣∣∣∣∣




≤ E(ǫk)


sup
f∈F

h∑

j=1

αj

∣∣∣∣∣

M∑

k=1

ǫk [〈uj, akxk〉]+

∣∣∣∣∣




≤
h∑

j=1

αjE(ǫk) sup
f∈F

∣∣∣∣∣

M∑

k=1

ǫk [〈uj , akxk〉]+

∣∣∣∣∣ .

=

h∑

j=1

αjE(ǫk) sup
uj :‖uj‖≤βj

∣∣∣∣∣

M∑

k=1

ǫk [〈uj , akxk〉]+

∣∣∣∣∣ . (10)

We bound the expectations in (10) using Ledoux-Talagrand contraction [20, Theorem 4.12].

Theorem 7 (Ledoux-Talagrand contraction). Let F : R+ → R+ be convex and increasing. Further let ϕi,
i ∈ [M ] be 1-Lipschitz functions such that ϕ(0) = 0. Then, for any bounded subset T ⊂ R

M ,

E(ǫi)F

(
1

2
sup
t∈T

∣∣∣∣∣

M∑

i=1

ǫiϕi(ti)

∣∣∣∣∣

)
≤ E(ǫi)F

(
sup
t∈T

∣∣∣∣∣

M∑

i=1

ǫiti

∣∣∣∣∣

)
.

To apply this result, for each j notice that

E(ǫk) sup
uj :‖uj‖≤βj

∣∣∣∣∣

M∑

k=1

ǫk [〈uj , akxk〉]+

∣∣∣∣∣ = E(ǫk) sup
t∈Tj

∣∣∣∣∣

M∑

k=1

ǫk [tk]+

∣∣∣∣∣

where t = (t1, t2, . . . , tM )
T

and

Tj =
{
t = (〈uj , a1x1〉, 〈uj , a2x2〉, . . . , 〈uj , aMxM 〉)T ∈ R

M : ‖uj‖ ≤ βj

}

12



which is clearly bounded. Now taking F to be the identity and ϕi = [·]+, we have

E(ǫk) sup
uj :‖uj‖≤βj

∣∣∣∣∣

M∑

k=1

ǫk [〈uj , akxk〉]+

∣∣∣∣∣ ≤ 2E(ǫk) sup
uj :‖uj‖≤βj

∣∣∣∣∣

M∑

k=1

ǫk〈uj , akxk〉
∣∣∣∣∣

= 2E(ǫk) sup
uj :‖uj‖≤βj

∣∣∣∣∣

〈
uj ,

M∑

k=1

ǫkakxk

〉∣∣∣∣∣

= 2E(ǫk)

〈
βj

∑M
k=1 ǫkakxk

‖
∑M

k=1 ǫkakxk‖
,

M∑

k=1

ǫkakxk

〉

= 2βjE(ǫk)

√√√√
∥∥∥∥∥

M∑

k=1

ǫkakxk

∥∥∥∥∥

2

(11)

≤ 2βj

√√√√
E(ǫk)

∥∥∥∥∥

M∑

k=1

ǫkakxk

∥∥∥∥∥

2

(12)

≤ 2βj

√√√√
M∑

k=1

a2k‖xk‖2 (13)

≤ 2‖X‖2βj

√√√√
M∑

k=1

a2k, (14)

where (11) uses the condition for equality in Cauchy-Schartz, (12) uses Jensen’s inequality, and (13) uses
independence of the ǫk. The result now follows from (10) and (14).

B.3 Proof of Theorem 5

We first review the following properties of the supremum which are easily verified.

P1 For any real-valued functions f1, f2 : X → R,

sup
x

f1(x)− sup
x

f2(x) ≤ sup
x
(f1(x)− f2(x)).

P2 For any real-valued functions f1, f2 : X → R,

sup
x
(f1(x) + f2(x)) ≤ sup

x
f1(x) + sup

x
f2(x).

P3 sup(·) is a convex function, i.e., if (xλ)λ∈Λ and (x′
λ)λ∈Λ are two sequences (where Λ is possibly un-

countable), then ∀α ∈ [0, 1],

sup
λ∈Λ

(αxλ + (1− α)x′
λ) ≤ α sup

λ∈Λ
xλ + (1− α) sup

λ∈Λ
x′
λ.

Introduce the variable S to denote all realizations Xσ
ij , 1 ∈ [N ], σ ∈ {−,+}, j ∈ [nσ

i ]. We would like to
bound

ξ(S) := sup
f∈F

∣∣∣∣∣∣

N∑

i=1

wi


1

2

∑

σ∈{±1}


 1

nσ
i

nσ
i∑

j=1

ℓκσ(f(X
σ
ij))


− E(f)



∣∣∣∣∣∣
.
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Introduce

ξ+(S) := sup
f∈F

N∑

i=1

wi


1

2

∑

σ∈{±1}


 1

nσ
i

nσ
i∑

j=1

ℓκσ(f(X
σ
ij))


− E(f)


 ,

ξ−(S) := sup
f∈F

−
N∑

i=1

wi


1

2

∑

σ∈{±1}


 1

nσ
i

nσ
i∑

j=1

ℓκσ(f(X
σ
ij))


− E(f)


 .

Assume (IIM) holds. Since the realizations Xσ
ij are independent, we can apply the Azuma-McDiarmid

bounded difference inequality [23] to ξ+ and to ξ−. We will show that the same bound on ξ+ and ξ− holds
with probability at least 1 − δ/2. Combining these bounds gives the desired bound on ξ. We consider ξ+

below, with the analysis for ξ− being identical.

Definition 8. Let A be some set and φ : An → R. We say φ satisfies the bounded difference assumption if
∃c1, . . . , cn > 0 s.t. ∀i, 1 6 i 6 n

sup
x1,...,xn,x

′
i∈A

|φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , x
′
i, . . . , xn)| 6 ci

That is, if we substitute xi to x′
i, while keeping other xj fixed, φ changes by at most ci.

Lemma 9 (Bounded Difference Inequality). Let X1, . . . , Xn be arbitrary independent random variables on
set A and φ : An → R satisfy the bounded difference assumption. Then ∀t > 0

Pr{φ(X1, . . . , Xn)− E[φ(X1, . . . , Xn)] > t} 6 e
− 2t2∑n

i=1
c2
i .

To apply this result to ξ+, first note that for any f ∈ F , x ∈ X , and y ∈ {−1, 1},

|ℓκi(f(x), y)| ≤ |ℓκi(0, y)|+ |ℓκi(f(x), y) − ℓκi(0, y)|
≤ |ℓκi |0 + |ℓκi ||f(x)|
≤ |ℓκi |0 + |ℓκi |A.

If we modify S by replacing some Xσ
ij with another X ′, while leaving all other values in S fixed, then (by

P1) ξ+ changes by at most 2wi(|ℓ
κi |0+|ℓκi |A)
2nσ

i

, and we obtain that with probability at least 1 − δ/2 over the

draw of S1, . . . , SN ,

ξ+ − E
[
ξ+

]
≤ 2

√√√√1

2

N∑

i=1

w2
i (|ℓκi |0 + |ℓκi |A)2

n̄i

log(2/δ)

2

≤ 2(1 +A|ℓ|)

√√√√1

2

N∑

i=1

w2
i

n̄i(1− κ−
i − κ+

i )
2

log(2/δ)

2
,

where we have used |ℓκi |0 ≤ 1/(1− κ−
i − κ+

i ) and |ℓκi | ≤ |ℓ|/(1− κ−
i − κ+

i ).
To bound E [ξ+] we will use ideas from Rademacher complexity theory. Thus let S′ denote a separate

(ghost) sample of corrupted data (Xσ
ij)

iid∼ P̃ κi
σ , i = 1, . . . , N , σ ∈ {±}, j = 1, . . . , nσ

i , independent of

the realizations in S. Let ÊS [f ] be shorthand for
∑

iwi

∑
σ∈{±}

1
2nσ

i

∑
j ℓ

κi
σ (f(Xσ

ij)). Denote by (ǫσij) i ∈
[N ], σ ∈ {±}, j ∈ [nσ

i ], iid Rademacher variables (independent from everything else), and let E(ǫσ
ij
) denote
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the expectation with respect to all of these variables. We have

E
[
ξ+

]
= ES


sup
f∈F

N∑

i=1

wi




 ∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ℓκi

σ (f(Xσ
ij))


− Eℓ

P (f)






= ES

[
sup
f∈F

(
ÊS [f ]− ES′

[
ÊS′ [f ]

])]

(by writing Eℓ
P (f) =

∑
wiEℓκi

Pκi (f) and applying Prop. 1 for each i)

≤ ES,S′

[
sup
f∈F

(
ÊS [f ]− ÊS′ [f ]

)]

(by P3 and Jensen’s inequality)

= ES,S′


sup
f∈F

(
N∑

i=1

wi

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ℓκi

σ (f(Xσ
ij))− ℓκi

σ (f(Xσ
ij))

)


= ES,S′,(ǫσ
ij
)


sup
f∈F

(
N∑

i=1

wi

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ǫσij

(
ℓκi

σ (f(Xσ
ij))− ℓκi

σ (f(Xσ
ij))

))



(for all i, σ, j, Xσ
ij and Xσ

ij are iid, and ǫσij are symmetric)

≤ ES,S′,(ǫσ
ij
)


sup
f∈F

N∑

i=1

wi

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ǫσijℓ
κi

σ (f(Xσ
ij))




+ ES,S′,(ǫσ
ij
)


sup
f∈F

N∑

i=1

wi

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

(−ǫσij)ℓ
κi

σ (f(Xσ
ij))




(by P2)

= 2ESE(ǫσ
ij
)


sup
f∈F

N∑

i=1

wi

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ǫσijℓ
κi

σ (f(Xij))


 .

To bound the innermost expectation we use the following result from Meir and Zhang [24].

Lemma 10. Suppose {φt} , {ψt} , t = 1, . . . , T , are two sets of functions on a set Θ such that for each t and
θ, θ′ ∈ Θ, |φt(θ) − φt(θ

′)| ≤ |ψt(θ)− ψt(θ
′)|. Then for all functions c : Θ → R,

E(ǫt)

[
sup
θ

{
c(θ) +

T∑

t=1

ǫtφt(θ)

}]
≤ E(ǫt)

[
sup
θ

{
c(θ) +

T∑

t=1

ǫtψt(θ)

}]
.

Switching from the single index t to our three indices i, σ, and j, we apply the lemma with Θ = F , θ = f ,

c(θ) = 0, φσ
ij(θ) =

wi

2nσ
i

ℓκi
σ (f(Xσ

ij)), and ψσ
ij(θ) =

wi|ℓ|

2nσ
i
(1−κ

−

i
−κ

+
i
)
f(Xσ

ij), where we use |ℓκi
σ | ≤ |ℓ|/(1−κ−

i −κ+
i ).

This yields

E
[
ξ+

]
≤ 2ESE(ǫσ

ij
)


sup
f∈F

N∑

i=1

wi|ℓ|
1− κ−

i − κ+
i

∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ǫσijf(X
σ
ij)




= 2RI
c(F),
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To see the second inequality in (3), by (SR) we have

2RI
c(F) ≤ 2B|ℓ|

√√√√∑

i,σ,j

(
wi

2nσ
i (1− κ−

i − κ+
i )

)2

= 2B|ℓ|
√∑

i

w2
i

4(1− κ−
i − κ+

i )
2

∑

σ

1

nσ
i

= 2B|ℓ|
√∑

i

w2
i

2n̄i(1 − κ−
i − κ+

i )
2

=
√
2B|ℓ|

√∑

i

w2
i

n̄i(1− κ−
i − κ+

i )
2
,

This concludes the proof in the (IIM) case.
Now assume (IBM) holds. The idea is to apply the bounded difference inequality at the MCM level. If

we modify S by replacing Xσ
ij (with i fixed, j, σ variable) with other values (Xσ

ij)
′, while leaving all other

values in S fixed, then (by P1) ξ+ changes by at most 2wi(|ℓκi |0+|ℓκi |A), and we obtain that with probability
at least 1− δ/2 over the draw of S,

ξ+ − E
[
ξ+

]
≤

√√√√
N∑

i=1

w2
i (|ℓκi |0 + |ℓκi |A)2 log(2/δ)

2

≤ (1 +A|ℓ|)
√

log(2/δ)

2

√√√√
N∑

i=1

w2
i

(1 − κ−
i − κ+

i )
2
.

To bound E [ξ+], we use the same reasoning as in the (IIM) case to arrive at

E
[
ξ+

]
≤ 2ESE(ǫi)


sup
f∈F

N∑

i=1

wiǫi
∑

σ∈{±}

1

2nσ
i

nσ
i∑

j=1

ℓκi

σ (f(Xij))


 ,

where now there is a Rademacher variable for every bag. The inner two summations may be expressed

E(σ,X)∼P̂κi
[ℓκi

σ (f(X))]

and so by Jensen’s inequality and Lemma 10 we have

E
[
ξ+

]
≤ 2ESE(ǫi)

[
sup
f∈F

N∑

i=1

wiE(σ,X)∼P̂κi
[ℓκi
σ (f(X))]

]

≤ 2ESE((σi,Xi)∼P̂κi )
i∈[N ]

E(ǫi)

[
sup
f∈F

N∑

i=1

ǫiwiℓ
κi

σi
(f(Xi))

]

≤ 2ESE((σi,Xi)∼P̂κi )i∈[N ]
E(ǫi)

[
sup
f∈F

N∑

i=1

ǫi
wi|ℓ|

1− κ−
i − κ+

i

f(Xi)

]

= 2RB
c (F)

This proves the first inequality. To prove the second, by (SR) we have

2RB
c (F) ≤ 2B|ℓ|

√∑

i

w2
i

(1 − κ−
i − κ+

i )
2
.

This concludes the proof.
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B.4 Proof of Theorem 6

We begin by stating a generalization of Chernoff’s bound to correlated binary random variables [27, 16].

Lemma 11. Let Z1, . . . , Zm be binary random variables. Suppose there exists 0 ≤ τ ≤ 1 such that for all
I ⊂ [m], P(

∏
i∈I Zi = 1) ≤ τ |I|. Then for any ǫ ≥ 0, P(

∑m
i=1 Zi ≥ m(τ + ǫ)) ≤ e−2mǫ2 .

We will first prove the theorem for BP. The result for dominating schemes will then follow easily. Thus,
assume the K-merging scheme is BP. For now assume (CIBM) , which is implied by (CIIM) .

Let γ̂+
ik be the larger of the two empirical label proportions within the kth pair of small bags within the

ith pair of big bags, and similarly let γ̂−
ik be the smaller. Also let γ+

ik be the larger of the two true label
proportions within the kth pair of small bags within the ith pair of big bags, and similarly let γ−

ik be the
smaller.

Let ǫ0 ∈ (0,∆(1 − τ)) and let ǫ ∈ (0, ∆(1−τ)−ǫ0
1+∆ ]. For i ∈ [M ], let Ki be the number of original pairs in

the ith block (the ith pair of big bags) for which |γ+
ik − γ−

ik| ≥ ∆, k ∈ [K] and define Ωγ,i to be the event

that Ki ≥ K(1− τ − ǫ). By Lemma 11 and (LP) , we have Prγ(Ω
c
γ,i) ≤ e−2Kǫ2 .

Also define ΩY ,i to be the event that Γ̂+
i − Γ̂−

i ≥ EY |γ [Γ̂
+
i − Γ̂−

i ]− ǫ = Γ+
i −Γ−

i − ǫ. Note that conditioned

on γ, Γ̂+
i − Γ̂−

i = 1
K

∑K
k=1(γ̂

+
ik− γ̂−

ik) is the sum of K independent random variables with range [0, 1] (here we
use the definition of BP and conditional independence of the small bags under (CIBM) ). By Hoeffding’s

inequality, PY |γ(Ω
c
Y ,i) ≤ e−2Kǫ2 .

Now define Ωγ :=
⋂M

i=1 Ωγ,i and ΩY :=
⋂M

i=1 ΩY ,i. Also define Θ to be the event that the first inequality
in (4) does not hold. Then

P(Θ) ≤ P(Θ|Ωγ ∩ ΩY ) + P((Ωγ ∩ ΩY )c)

≤ P(Θ|Ωγ ∩ ΩY ) + P(Ωc
γ) + P(Ωc

Y )

≤ P(Θ|Ωγ ∩ ΩY ) +
N

K
e−2Kǫ2 + EγEY |γ

[
1{Ωc

Y
}

]

≤ P(Θ|Ωγ ∩ ΩY ) +
2N

K
e−2Kǫ2

= Eγ,Y

[
EX|γ,Y

[
1{Θ}|γ,Y

]
|Ωγ ∩ΩY

]
+

2N

K
e−2Kǫ2 .

We next bound the inner expectation of the last line above, which is the conditional probability of Θ
given fixed values of (γ,Y ) ∈ Ωγ ∩ ΩY . We will bound this probability the same argument as in the proof
of Thm. 5. To apply that argument, we first need to confirm two things: Conditioned on γ,Y , (1) for each

i, Γ̂+
i − Γ̂−

i > 0, and (2) the empirical error Ẽ(f) is an unbiased estimate of Eℓ
P . The first property is given

by the following.

Lemma 12. Conditioned on (γ,Y ) ∈ Ωγ ∩ ΩY , for all i ∈ [M ]

Γ̂+
i − Γ̂−

i ≥ Γ+
i − Γ−

i − ǫ ≥ ǫ0.

Proof. Fix (γ,Y ) ∈ Ωγ ∩ΩY . Let i ∈ [M ]. By definition of ΩY ,

Γ̂+
i − Γ̂−

i ≥ EY |γ [Γ̂
+
i − Γ̂−

i ]− ǫ

=

(
1

K

K∑

k=1

EY |γ [γ̂
+
ik − γ̂−

ik]

)
− ǫ

≥
(

1

K

K∑

k=1

γ+
ik − γ−

ik

)
− ǫ.
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To see the last step, let U and V be random variables with means p and q. Then E[max(U, V )−min(U, V )] =
E[|U − V |] ≥ |E[U − V ]| = |p− q| = max(p, q) −min(p, q), by Jensen’s inequality. Here we have again used
the definitions of BP and (CIBM) .

By definition of Ωγ , γ+
ik − γ−

ik ≥ ∆ for Ki ≥ K(1− τ − ǫ) values of k ∈ [K]. From this we conclude that

Γ̂+
i − Γ̂−

i ≥ ∆(1 − τ − ǫ)− ǫ ≥ ǫ0, where the last step follows from ǫ ≤ ∆(1−τ)−ǫ0
1+∆ .

For the second property, recall Ẽ(f) = ∑
i wiẼi(f) with w ∈ ∆M and wi ∝ (Γ̂+

i − Γ̂−
i )

2. We note that

EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]
is well defined because |ℓκ̂i(f(x))| is bounded for x ∈ X . This follows from the

assumption supf∈F ,x∈X |f(x)| ≤ A < ∞, the fact that ℓκ̂i is Lipschitz continuous on Ωγ ∩ ΩY by Lemma

12, and the observation |ℓκ̂i(f(x))| ≤ |ℓκ̂i |0 + |ℓκ̂i |A.

Lemma 13. For all f ∈ F , EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]
= Eℓ

P (f).

Proof. Recall that Xmj denotes the jth instance in the mth original (pre-merging) small bag, m ∈ [2N ],
j ∈ [n], and that Ymj denotes the corresponding label. We have

EX|γ,Y ∈Ωγ∩ΩY

[
Ẽi(f)

]

=
1

2
EX|γ,Y ∈Ωγ∩ΩY


 1

nK

∑

m∈I
+
i

n∑

j=1

ℓκ̂i

+ (f(Xmj)) +
1

nK

∑

m∈I
−

i

n∑

j=1

ℓκ̂i

− (f(Xmj))




=
1

2
EX|γ,Y ∈Ωγ∩ΩY

[
Γ̂+
i

1

nKΓ̂+
i

∑

m∈I
+
i

∑

j:Ymj=1

ℓκ̂i

+ (f(Xmj))

+ (1 − Γ̂+
i )

1

nK(1− Γ̂+
i )

∑

m∈I
+
i

∑

j:Ymj=−1

ℓκ̂i

+ (f(Xmj))

+ Γ̂−
i

1

nKΓ̂−
i

∑

m∈I
−

i

∑

j:Ymj=1

ℓκ̂i

− (f(Xmj))

+ (1 − Γ̂−
i )

1

nK(1− Γ̂−
i )

∑

m∈I
−

i

∑

Ymj=−1

ℓκ̂i

− (f(Xmj))

]

=
1

2

{
Γ̂+
i EX∼P+

[
ℓκ̂i

+ (f(X))
]
+ (1 − Γ̂+

i )EX∼P−

[
ℓκ̂i

+ (f(X))
]

+ Γ̂−
i EX∼P+

[
ℓκ̂i

− (f(X))
]
+ (1 − Γ̂−

i )EX∼P−

[
ℓκ̂i

− (f(X))
]}

=
1

2

{
E
X∼P

κ̂i
+

[
ℓκ̂i

+ (f(X))
]
+ E

X∼P
κ̂i
−

[
ℓκ̂i

− (f(X))
]}

= Eℓ
P (f)

where the third step uses the definition of (CIBM) , and the last step uses Prop. 1 and Lemma 12.

By Lemmas 12 and Lemma 13, we can apply the argument in the proof of Theorem 5, conditioned on
(γ,Y ) ∈ Ωγ ∩ ΩY , with the estimator Ẽ instead of Êw. The only other changes are that in the application
of Lemma 10, we use the bound

|ℓκ̂i | ≤ |ℓ|
Γ̂+
i − Γ̂−

i

≤ |ℓ|
Γ+
i − Γ−

i − ǫ
,

and in the final bounds, we upper bound (Γ̂+
i − Γ̂−

i )
−1 by (Γ+

i − Γ−
i − ǫ)−1.
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C Symmetric Losses

A loss is said to by symmetric if there exists a constant K such that for all t, ℓ(t, 1)+ℓ(t,−1) = K. Examples
include the 0-1, sigmoid, and ramp losses. For a symmetric loss, ℓκ simplifies to

ℓκ(t, y) =
1

1− κ+ − κ−
ℓ(t, y)− K

1− κ+ − κ−
(κ−

1{y=1} + κ+
1{y=−1}).

Combined with Proposition 1, this yields

Eℓ
Pκ(f) = (1 − κ+ − κ−)Eℓ

P (f) +K
(κ+ + κ−

2

)
.

Therefore, the two sides have the same minimizer which implies that the BER is immune to label noise
under a mutual contamination model. That is, training on the contaminated data without modifying the
loss still minimizes the clean BER. This result has been previously observed for the 0/1 loss [25] and general
symmetric losses [42, 6]. The above argument gives a simple derivation from Prop. 1.

D Convexity

We say that the loss ℓ is convex if, for each σ, ℓσ(t) is a convex function of t. Let ℓ′′σ denote the second
derivative of ℓ with respect to its first variable. The condition in (15) below was used by Natarajan et al. [26]
to prove a convexity result an unbiased loss in the class-conditional noise setting. Here we prove a version
for MCMs.

Proposition 14. Suppose κ− + κ+ < 1 and let ℓ be a convex, twice differentiable loss satisfying

ℓ′′+(t) = ℓ′′−(t). (15)

If κσ < 1
2 for σ ∈ {±}, then ℓκ is convex.

Examples of losses satisfying the second order condition include the logistic, Huber, and squared error
losses. The result is proved by simply observing

(ℓκσ)
′′(t) = ℓ′′+(t)

1− 2κ−σ

1− κ− − κ+

≥ 0.

The statement about Êi(f) being convex when f is linear was a holdover from an earlier draft and should

be disregarded. In the infinite bag size limit, Êi(f) converges to Eℓ
P (f), which is convex in the output of

f provided ℓ is convex. Sufficient conditions for the convexity of Êi(f) or Êw(f) for small bag sizes is an
interesting open question.

E (CIBM’) implies (IBM)

Assume that (CIBM’) holds. To show (IBM) , we need to show that for a fixed bag i, and for all j ∈ [ni],
the marginal distribution of Xij , conditioned on the bag, is γiP+ + (1− γi)P−. Thus let A be an arbitrary
event. Also let pi be the joint pmf of Yi1, . . . , Yini

, conditioned on the bag. Without loss of generality let
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j = 1. We have

P(Xi1 ∈ A) = EX [1{Xi1∈A}]

= EYi1,...,Yini
EXi1|Yi1,...,Yini

[
1{Xi1∈A}

]

= EYi1,...,Yini
PYi1(Xi1 ∈ A) (16)

=
∑

(y1,...,yni
)∈{−1,1}ni

Py1(Xi1 ∈ A)pi(y1, . . . , yni
)

= P+(A)
∑

(y2,...,yni
)∈{−1,1}ni−1

pi(1, y2, . . . , yni
)

+ P−(A)
∑

(y2,...,yni
)∈{−1,1}ni−1

pi(−1, y2, . . . , yni
)

= γiP+(A) + (1− γi)P−(A), (17)

where (16) and (17) use (CIMB’).

F Optimal Bag Matching

The bound is minimized by selecting weights

wi ∝ n̄i(γ
+
i − γ−

i )2,

which gives preference to pairs of bags where one bag is mostly +1’s (large γ+
i ) and the other is mostly -1’s

(small γ−
i ). With these weights, the (SR) bound is proportional to under (CIIM)

√√√√
(

N∑

i=1

n̄i(γ
+
i − γ−

i )2

)−1

.

Here and below, under (CIBM’)’ substitute n̄i → 1.
We can optimize the pairing of bags by further optimizing the bound. Consider the unpaired bags (Bi, γi),

i = 1, . . . , 2N . Recall that n̄i = HM(n+
i , n

−
i ). We would like to pair each bag to a different bag, forming

pairs (γ+
i , γ−

i ), such that
N∑

i=1

n̄i(γ
+
i − γ−

i )2

is maximized. For each i < j, let uij be a binary variable, with uij = 1 indicating that the ith and jth bags
are paired. The optimal pairing of bags is given by the solution to the following integer program:

max
u

∑

1≤i<2N

∑

i<j≤2N

HM(ni, nj)(γi − γj)
2uij (18)

s.t. uij ∈ {0, 1}, ∀i, j
∑

i<j

uij +
∑

j<i

uji = 1, ∀i

The equality constraint ensures that every bag is paired with precisely one other distinct bag. This problem
is known as the “maximum weighted (perfect) matching" problem. An exact algorithm to solve it was given
by Edmonds [13], and several approximate algorithms also exist for large scale problems.

When nσ
i = n for all i and σ, the solution to this integer program is very simple.
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Proposition 15. If nσ
i = n for all i and σ, then the solution to (18) is to match the largest γi with the

smallest, the second largest γi with the second smallest, and so on.

Proof. Suppose the statement is false. Then there exists an optimal solution, and i and j, such that γ+
i > γ+

j

and γ−
i > γ−

j . Now consider the matching obtained by swapping the bags associated to γ−
i and γ−

j . Then
the objective function increases by

(γ+
i − γ−

j )2 + (γ+
j − γ−

i )2 − (γ+
i − γ−

i )2 − (γ+
j − γ−

j )2 = 2(γ+
i − γ+

j )(γ−
i − γ−

j ) > 0.

This contradicts the assumed optimality.

G Merging Schemes that Dominate Blockwise-Pairwise

Let Γ+
i and Γ−

i denote the quantities Γ+
i and Γ−

i when the merging scheme is BP, and let Γ+
i and Γ−

i refer to

any other merging scheme under consideration. Similarly, let Γ̂
+

i and Γ̂
−

i denote the quantities Γ̂+
i and Γ̂−

i

when the merging scheme is BP, and let Γ̂+
i and Γ̂−

i refer to any other merging scheme under consideration.

For a K-merging scheme that dominates BP, we still have Γ̂+
i − Γ̂−

i ≥ Γ+
i −Γ−

i − ǫ ≥ ǫ0 > 0 on Ωγ ∩ΩY

by definition of dominating. Hence the same proof goes through in this case, and we may state the following.

Theorem 16. Let (LP) hold. Let ǫ0 ∈ (0,∆(1−τ)). Let ℓ be a Lipschitz loss and let F satisfy supx∈X ,f∈F |f(x)| ≤
A < ∞. Let ǫ ∈ (0, ∆(1−τ)−ǫ0

1+∆ ] and δ ∈ (0, 1]. For any K-merging scheme that dominates BP , under (CIIM)

, with probability at least 1− δ − 2N
K
e−2Kǫ2 with respect to the draw of γ,Y ,X,

Γ̂+
i − Γ̂−

i ≥ Γ+
i − Γ−

i − ǫ ≥ ǫ0

and

sup
f∈F

∣∣∣Ẽ(f)− E(f)
∣∣∣ ≤ 2RI

c(F) + C

√
HM((Γ+

i − Γ−
i − ǫ)−2)

(N/K)n

(SR)

≤ D

√
HM((Γ+

i − Γ−
i − ǫ)−2)

(N/K)n
, (19)

where ci = wi|ℓ|/(Γ+
i − Γ−

i − ǫ), C = (1 + A|ℓ|)
√
log(2/δ), and D = 2B|ℓ|+ C. Under (CIBM), the same

bounds hold with the same probability if we substitute R
I
c(F) → R

B
c (F) and n → 1.

We conjecture that it is possible to improve the bound for dominating schemes. Using the current proof
technique, this would require proving that

Γ̂+
i − Γ̂−

i ≥ Γ+
i − Γ−

i − ǫ

with high probability. For example, with BM, this would require a one-sided tail inequality for how the
difference between the average of the larger half and the average of the smaller half of 2K independent random
variables deviates from its mean. The BP scheme was selected as a reference because it is straightforward
to prove such a bound for BP using Hoeffding’s inequality.

H Consistency

A discrimination rule f̂ is (weakly) consistent if Eℓ
P (f̂) → inff Eℓ

P (f) in probability as N → ∞, where the
infimum is over all decision functions.

We first note that if we desire consistency wrt the BER defined with 0-1 loss, it suffices to prove consistency
wrt the BER defined with a loss ℓ that is “classification calibrated" [2]. This is because the BER corresponds
to a special case of the usual misclassification risk when the class probabilities are equal. Thus, let ℓ be
Lipschitz and classification calibrated, such as the logistic loss.
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We state our consistency result for the discrimination rule

f̂ ∈ arg min
f∈F

J(f) := Ẽ(f) + λ‖f‖2Fk
,

where Fk is the reproducing kernel Hilbert space associated to a symmetric, positive definite kernel, and
λ > 0.

Theorem 17. Let X be compact and let k be a bounded, universal kernel on X . Let K → ∞ such
that N/K → ∞ and N = O(Kβ) for some β > 0, as N → ∞. Let λ be such that λ → 0 and
λ(N/K)/ log(N/K) → ∞ as N → ∞. Let (LP) and (CIBM) hold. Then for any merging scheme that
dominates BP,

E(f̂) → inf
f

Eℓ
P (f) (20)

in probability as N → ∞.

Proof. Let B denote the bound on the kernel. By Proposition 4 and by Theorem 16 applied to Fk
B,R, for all

ǫ0 ∈ (0,∆(1 − τ)), ǫ ∈ (0, ∆(1−τ)−ǫ0
1+∆ ], and δ ∈ (0, 1], with probability at least 1− δ − N

K
e−2Kǫ2 ,

sup
f∈Bk(R)

∣∣∣Ẽ(f)− Eℓ
P (f)

∣∣∣ ≤ D

ǫ0

√
K

N

where D = (1 +RB|ℓ|)
√
log(2/δ) + 2RB|ℓ|.

Observe that J(f̂) ≤ J(0) ≤ |ℓ|0
ǫ0

. Therefore λ‖f̂‖2 ≤ |ℓ|0
ǫ0

− Ẽ(f̂) ≤ 2|ℓ|0
ǫ0

and so ‖f̂‖2 ≤ 2|ℓ|0
ǫ0λ

.

Set R =
√

2|ℓ|0
ǫ0λ

. Note that R grows asymptotically because λ shrinks. We just saw that f̂ ∈ Bk(R).

Let ǫ > 0. Fix fǫ ∈ Fk s.t. Eℓ
P (fǫ) ≤ inff Eℓ

P + ǫ/2, possible since k is universal [38]. Note that
fǫ ∈ Bk(R) for N sufficiently large. In this case the generalization error bound implies that with probability

≥ 1− δ − N
K
e−2Kǫ2 ,

Eℓ
P (f̂) ≤ Ẽ(f̂) + D

ǫ0

√
K

N

≤ Ẽ(fǫ) + λ‖fǫ‖2 − λ‖f̂‖2 + D

ǫ0

√
K

N

≤ Ẽ(fǫ) + λ‖fǫ‖2 +
D

ǫ0

√
K

N

≤ Eℓ
P (fǫ) + λ‖fǫ‖2 +

2D

ǫ0

√
K

N
.

Taking δ = K/N , the result now follows.

I Experimental Details

The parameters of InvCal [32] and alter-∝SVM [44] are tuned by five-fold cross validation. We only consider
the RBF kernel. Following [44], the parameters for both methods were set as follows. The kernel bandwidth
γ of the RBF kernel is chosen from {0.01, 0.1, 1}. For InvCal, the parameters are tuned from Cp ∈ {0.1, 1, 10},
and ǫ ∈ {0, 0.01, 0.1}. For alter-∝SVM, the parameters are tuned from C ∈ {0.1, 1, 10}, and Cp ∈ {1, 10, 100}.

A Matlab implementation of both InvCal and alter-∝SVM was obtained online.3 These implementations
rely on LIBSVM4 and CVX5. We modified the code to preform parameter tuning with cross validation as

3https://github.com/felixyu/pSVM
4https://www.csie.ntu.edu.tw/ cjlin/libsvm/
5http://cvxr.com/cvx/

22



described above. LIBSVM contains its own random number generator that was unfortunately not seeded
and hence the results for alter-∝SVM are not reproducible.

For the MAGIC dataset, InvCal takes roughly 30 minutes on 36 cores to complete the experiments for
all bag sizes. For the Adult dataset, InvCal takes roughly 60 minutes on 36 cores. For alter-∝-SVM, the
approximated runtime on MAGIC dataset is 70 minutes on 144 cores. On Adult dataset, it is 100 minutes
on 144 cores.

All three algorithms require random initialization. Yu et al. [44] randomly initialize their algorithm ten
times and take the result with smallest objective value. This was deemed to be computationally excessive,
and hence we only consider one random initialization for each method. This could account for the relatively
poor performance of alter-∝SVM compared to past reported performance.

We found that in some cases, the code for alter-∝-SVM wouldn’t create a variable ’support_v’, which is
used to predict the test label. This resulted from LIBSVM not returning any support vectors. If ’support_v’
did not exist for a given fold, we excluded that fold from the cross-validation error estimate.

For bag size 8, in the experiments with fixed number of bags, on a handful of occasions there are only
two bags in the validation data within a given fold of cross-validation, and both bags have the same label
proportion. When this occurs, we cannot compute our criterion, and exclude such folds.
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