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Abstract

Non-deterministic Finite Automata (NFA) are space-efficient
finite state machines that have significant applications in
domains such as pattern matching and data analytics. In
this paper, we investigate why the Graphics Processing
Unit (GPU)—a massively parallel computational device
with the highest memory bandwidth available on general-
purpose processors—cannot efficiently execute NFAs.
First, we identify excessive data movement in the GPU
memory hierarchy and describe how to privatize reads
effectively using GPU’s on-chip memory hierarchy to
reduce this excessive data movement. We also show that
in several cases, indirect table lookups in NFAs can be
eliminated by converting memory reads into computation,
to further reduce the number of memory reads. Although
our optimization techniques significantly alleviate these
memory-related bottlenecks, a side effect of these techniques
is the static assignment of work to cores. This leads to
poor compute utilization, where GPU cores are wasted on
idle NFA states. Therefore, we propose a new dynamic
scheme that effectively balances compute utilization with
reducedmemory usage. Our combined optimizations provide
a significant improvement over the previous state-of-
the-art GPU implementations of NFAs. Moreover, they
enable current GPUs to outperform the domain-specific
accelerator for NFAs (i.e., Automata Processor) across several
applications while performing within an order of magnitude
for the rest of the applications.
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1 Introduction

Finite automata are the workhorses of pattern matching,
data analytics, malware detection, bio-informatics, and
XML parsing among many other applications [1, 2, 4–
6, 12, 13, 33–35, 39, 40, 45, 64, 65]. Two representations of
finite automata—non-deterministic finite automata (NFAs)
and deterministic finite automata (DFAs)—are commonly
used in the implementation of finite automata based
applications [16]. Although DFAs are simpler in terms of
transitions, DFA execution is embarrassingly serial, and
DFAs can be exponentially larger than equivalent NFAs [40,
59, 63]. Prior work [21, 25, 30, 31, 62, 63] significantly reduces
the latency of DFA execution by parallelizing chunks of the
input stream and resolving the dependencies across states.
However, current enumeration or speculation mechanisms
increase parallelism which is not always needed, especially
for large-scale automata applications.
The non-deterministic nature of NFAs lends itself

naturally to parallel execution leading to a number of
NFA accelerators [18, 22, 36–38, 42, 43, 66]. In particular,
the Automata Processor (AP) proposed by Micron [17]
is an in-memory accelerator for NFAs. The AP achieves
significant throughput and energy benefits because of its
ability to perform in-memory computations that exploit
the parallelism of NFAs [17, 54]. However, APs have to
deal with several challenges. First, APs can hold a limited
number of NFA states at a time and when executing
large-scale workloads need repeated re-executions and re-
configurations that hamper throughput significantly [24].
Second, their multiple-instruction single data (MISD) model
means their ability to execute multiple input streams in
parallel is limited.
On the other hand, GPUs are massively parallel

accelerators that are widely used. Execution of NFAs on
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highly parallel architectures like GPUs, therefore, appears
very attractive. However, NFA-based applications are very
hard to accelerate on traditional von Neumann architectures
(e.g., CPUs and GPUs) [17, 27, 32, 44]. In this paper, we
address this hard problem with the help of a careful analysis
of the bottlenecks of NFA execution on GPUs. Specifically,
we find that there are two main problems. First, a typical
NFA execution incurs significant data movement because for
processing each input byte, a large transition table stored
in the global memory needs to be looked up. Solutions to
reduce this data movement invariably use a fixed mapping
of NFA states to GPU threads, which leads to the second
problem—hardware under-utilization. Many NFA states are
not active (cold) in a given NFA, so a fixed mapping leads
to idle threads. These idle threads unnecessarily consume
GPU resources and do not perform any useful work leading
to low throughput and poor hardware utilization. Overall,
high data movement and poor hardware utilization are the
major sources of inefficiencies.
We solve the first problem by identifying that the

transition table used in most implementations contains
redundant entries and is also highly sparse. Therefore, we
propose a new compact data structure to access transition
information that can significantly reduce off-chip memory
accesses. We also show that some indirect table lookups can
be eliminated by converting them into local computations.
However, we find that such data movement optimizations
require an undesirable fixed mapping between threads
and states. Therefore, we solve the second problem by
developing a hybrid mapping where the most active (hot)
NFA states receive a static mapping and all other states
are assigned resources dynamically. Our mapping scheme
not only significantly boosts useful work as most threads
are assigned to active states, but also allows more NFAs to
execute concurrently. To the best of our knowledge, in the
context of NFA processing, no prior work has considered
both data movement and utilization problems in conjunction.
In summary, this paper makes the following contributions:

• This paper analyzes the bottlenecks of NFA execution on
GPUs and finds that high data movement and low utilization
are the two major inefficiencies leading to low throughput.

• We find that the data movement problem is due to
the irregular accesses to the transition table. This table is
too large to fit in the on-chip resources due to significant
redundancy and sparsity in the transition table. Our solution
stores the topology and matchset information in a novel
compact format such that it can be stored and accessed from
the on-chip resources for most NFA states.

• We find that utilization is low because not all states are
active. Hence, we take advantage of state activity information
to assign one thread per hot state and other cold states are
executed on-demand. This improves utilization as a result of
increased activity of threads.

•Overall, our mechanisms outperform the state-of-the-art
work in this area. Specifically, across 16 NFA applications, the
best of our schemes improves the throughput on average by
26.5× over iNFAnt [14] and 5.3× over NFA-CG [67]. Further,
we only require 0.7% of the global memory transactions used
by iNFAnt.

2 Background

This section describes NFAs and their processing on GPUs.

2.1 Pattern Matching via NFAs

A non-deterministic finite automaton1 (NFA) is a directed
graph where each node represents a state and each edge
represents a state transition. Every state in the NFA has a
matchset that contains the alphabets (symbols) it matches.
Every NFA has at least one start state and at least one
reporting state. The matching process begins by activating
the start states. An NFA consumes one symbol at a time
from the input stream. For each symbol, all currently active

states attempt to match the incoming symbol with their
matchset. If any of themmatch, they activate their successors.
Unlike deterministic finite automata, where only one state is
active, NFAs can have multiple states active simultaneously—
making them ideal for parallel architectures. If a reporting
state matches an input symbol, it generates a report showing
that a relevant pattern has been observed in the input stream.
Usually, all starting states are always-active, unless a user
wants to search patterns that only start at a certain position
of the input stream.
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S0

(a) NFA accepting pattern

b*.y*z: the start states are

shown in octagons and the

reporting states are shown

in double-circles.

S0 S1 S2 S3
... S2, S3
b S1 S2, S3
... S2, S3
x S2, S3
y S2, S3 S2, S3
z S2, S3 report

(b) Illustrating a transition

table lookup. If the input

symbol is x and the current

active states are S0 and S1,

then the shaded cells are

fetched and S2, S3 become

active.

Figure 1. Working example of an NFA.

For example, Figure 1 (a) shows an NFA accepting pattern
b*.y*z. It has two start states S0 and S1, and a reporting
state S3. Suppose S0 and S1 are active and the incoming
symbol is x. Since S1 matches x, its successors S2 and S3
become active. S0 and S1 are always-active, so in the next
step, the active states are S0, S1, S2, S3.
1In this paper, we focus on Glushkov NFAs [19]. They are ϵ -free and the
matchset is on the node instead of on the edge. Any NFA that accepts a
non-empty string can be transformed into an equivalent Glushkov NFA [19].



2.2 NFA Processing on GPUs

GPUs support concurrent execution of a large number of
threads and also have very high memory bandwidth – orders
of magnitude more than CPUs. NFAs are a good fit for
GPUs because they exhibit parallelism at multiple levels [27].
Consider the NFA processing mechanism as shown in
Algorithm 1. First, multiple input streams (e.g., different
network packets) can be processed in parallel (Line 2).
Second, many NFAs (e.g., different intrusion signatures)
can run in parallel on the same input stream (e.g., a single
network packet, Line 3). Finally, within the same NFA and
the same input symbol, multiple states can be active at the
same time (Line 8). Therefore, there are multiple sources of
parallelism: (1) input stream level parallelism, (2) NFA-level
parallelism, and (3) state-level parallelism.

Algorithm 1 Parallelism in NFA Processing

1: procedure NFA_processing
2: for all input stream ss do ▷ Input stream-level parallelism
3: for all NFAs n do ▷ NFA-level parallelism
4: Process_Input_Stream(n, ss)
5: procedure Process_Input_Stream(n, ss)
6: Initialize starting nodes in active_bitset
7: while i < ss.length do ▷ Process each symbol serially
8: for all s in n do ▷ State-level parallelism; s : NFA State, n: NFA
9: if active_bitset[s] then
10: tablecell⇐ T [ss[i]][s] ▷ Transition table lookup
11: if ’report’ in tablecell then
12: report(s , i )
13: for all c in tablecell do ▷ Matched state activates successors
14: next_active_bitset[c]⇐ 1
15: active_bitset⇐ next_active_bitset
16: Zero next_active_bitset
17: i⇐ i + 1

A General Approach for NFA Processing on GPUs.

Given that NFAs must process each input symbol serially
(Line 7 in Algorithm 1), and that most GPUs do not support
a cheap global barrier, it is natural to map an entire NFA
to a single thread block, which is a group of threads that
can execute a hardware barrier. This hardware barrier can
be used to step through the input stream. An application
usually contains many NFAs (Table 2) with different sizes.
However, all thread blocks are of the same size, so actual
implementations will pack multiple NFAs into the same
thread block forgoing some NFA-level parallelism. A naïve
implementation would then map an individual state to a
thread in the thread block. Each thread block then maintains
two bitsets, one showing which states are active in the
current step and another identifying those that will be
active in the next step. When an active state matches the
current input symbol, its successors are set in the next active
bitset (Line 13-14).
A transition table lookup combines state match and

fetching successors. Prior work [7, 14, 15, 46, 48, 49, 56, 67],
for example, use variants of a transition table where each
row is indexed by a symbol α and each column is indexed by
a state S—an alphabet-oriented transition table. Each entry (or

cell) of the table contains the successors of S when S matches
with α . If S is a reporting state and matches with α , a report
is generated.
In our example, Figure 1 (b) shows an example of the

transition table lookup for the NFA shown in Figure 1 (a).
Assume the incoming symbol is x (Figure 1 (b)), and the
current active states are S0 and S1. The threads assigned to
the two states, therefore, fetch the two shaded cells from the
transition table. States S2 and S3 are set to the next active
bitset along with the always-active states (S0, S1 in this NFA).
When all states have processed the current input symbol, we
synchronize the threads using a __syncthreads() barrier,
swap the current and next active bitsets, and reset the next
active bitset (Line 15-17).

3 Problem and Previous Efforts

In this section, we first characterize the problem of high data
movement and low compute utilization when processing
NFAs on GPUs. We discuss the high-level reasons for these
inefficiencies followed by a discussion on how previous
works attempt to address them.

3.1 Data Movement

NFAs on general-purpose processors read from memory
for three reasons: checking the active bitset, loading the
input symbols, and accessing the transition table. Of these,
the active bitset can be stored in the GPU on-chip shared
memory. The input streams and the transition table, though,
reside in global memory in the previous works. Indeed, the
alphabet-oriented transition table size is O(N · A), where N
is the number of states, and A is the size of the alphabet (256
in our work). This is too large to fit in on-chip memories or
registers.
Accessing global memory for NFAs incurs performance

overheads. Consider that each thread must read the entire
input stream. In the ideal case, all these requests would
be satisfied from the cache, but this is not guaranteed. It
is also not possible to omit the memory accesses caused
by loading the bytes of input streams. Another source of
global memory accesses are lookups of the transition table.
Each active state must, based on the current symbol, look
up a cell to identify successors to activate. Assuming 32-bit
state identifiers and an average of 4 successors to activate,
each active state must read 16 additional bytes per input
symbol, which is a significant overhead. With the help of
our optimizations, we shall show later that these additional
reads can be reduced.

3.2 Compute Utilization

As nodes in an NFA are only activated based on the
sequence of input symbols, many states in an NFA are
never or very rarely activated [24]. Therefore, having a one-
to-one mapping between states to threads means several



inactive states would waste thread resources leading to
poor utilization and throughput. Across all the evaluated
applications (Section 6), we observe that only a small
percentage of states are active during the execution. The
average and maximum percentages of active states are 0.39%
and 3.05%, respectively. Although this percentage still implies
hundreds to thousands of active states—more parallelism
than a CPU could handle—a large fraction of GPU threads
are still idle.
It is instructive to examine this problem from the

perspective of graph processing algorithms. This style of
NFA processing would be classified as topology-driven [26],
which is known to be work-inefficient. In those algorithms,
therefore, a worklist containing the frontier of active vertices
is maintained. The threads are mapped only to the active
vertices, thus utilization is 100% since threads do only useful
work. To verify the feasibility of a worklist approach, we
use the IrGL compiler [29] to generate worklist versions
for NFAs. Using a 1MB input stream, we found that in Brill,
the best version achieves 114KB/s. By contrast, iNFAnt [14]
achieves 143KB/s. Hence, applying the worklist directly for
NFA processing on GPU is not efficient for two reasons.
First, unlike graph processing, some states (i.e., nodes) are
always active in NFA processing. Second, NFAs require
synchronization after each input symbol and perform very
little work per input symbol. Therefore, maintaining a
worklist incurs high overhead and hence it is critical to have
a lightweight and efficient way to increase utilization.

3.3 Limitations of Prior Efforts

iNFAnt [14] uses a variant of the alphabet-oriented
transition table described earlier. The columns represent
edges in the NFA, not states, and the rows continue to
represent alphabet symbols. In this table, a cell can have at
most one state. For example, an edge u → v that matches on
symbol a creates a column for u, whose row for a contains v .
During execution, each column (and therefore an edge (u,v))
is mapped to a single GPU thread. Each thread checks if its
assigned state u is active in the active bitset, and activates v
if the current input symbol is a. iNFAnt does not perform
any special optimizations for data movement and utilization.
Zu et al. [67] introduce the notion of compatible groups,

where the states that belong to the same compatible group
cannot be active simultaneously. This allows a compatible
group to be assigned to a single thread, improving utilization.
However, this approach, which we name NFA-CG, uses a
very expensive method to compute compatible groups – its
time complexity is at least quadratic in the number of NFA
states and other non-heuristic methods are exponential. Our
proposal for improving utilization is linear in the number of
states, and also achieves better utilization.
Ideally, the only memory loads should be for the input

symbols. Consider a kernel launched with T thread blocks
(each containingW warps) and the length of the input stream
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Figure 2. The data movement normalized to the ideal

cases: two prior schemes use 25× and 18× compared to

the ideal case where only the input stream is loaded.

The evaluation methodology is discussed in Section 6.

in symbols is L. In such a case, the number of global memory
load transactions for input only is TWL. Figure 2 shows
the number of global load transactions for existing works
iNFAnt [14] and NFA-CG [67] normalized to the ideal case
for input-only memory transactions. On average, iNFAnt
has 25× more transactions, and NFA-CG has 18× in the
evaluated applications.

4 Addressing the Data Movement Problem

via Matchset Analysis

In this section, we first analyze the inefficiencies associated
with the alphabet-oriented transition table. We discuss how
addressing these inefficiencies can reduce off-chip accesses
and alleviate the problem of data movement.

4.1 Inefficiencies in the Transition Table

As discussed in Section 2, the existing transition table stores
both the matchset and NFA topology information. Instead of
checking whether the current input symbol is present in the
matchset of the current state, it converts this computation to
transition table lookups. However, we find that the resultant
transition table can no longer fit in the GPU on-chip memory
as storing the combination of matchset and NFA topology
introduces redundancy and increases sparsity.
To understand and quantify the volume of redundancy

and sparsity in the transition table, consider Figure 3 which
shows two metrics. Redundancy is defined as the ratio of
the total number of edges across all NFAs in the application
to the total number of non-empty (or occupied) entries in
the transition table. As the number of edges can only be
less than (or equal to) the number of occupied entries, a low
ratio indicates higher redundancy since an edge is stored in
multiple locations of the transition table. Sparsity is defined
as the ratio of occupied entries to the total number of entries
in the transition table. A low ratio for sparsity suggests that
not all transition table entries are occupied. We observe from
Figure 3 that on average both metrics are very low across
all the evaluated NFA applications showing that alphabet-
oriented transition table wastes a lot of memory.
From our discussion in Section 2, we can identify two

reasons that lead to these inefficiencies. First, an edge in
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entries/table-size) in the transition table. Lower is
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the NFA can occur multiple times in the transition table.
For example, all entries in column S1 in Figure 1 (b) store
the same value (S2, S3) because S1 accepts a wildcard. In
general, if a state accepts k symbols, all its outgoing edges
have to be stored k times. Second, in most NFA applications,
a large percentage of states only accept a few symbols. For
example, the column for S0 only contains one entry as S0
only accepts b, but the entire column has to be kept in the
transition table which makes it sparse. In conclusion, there
is excessive redundancy and sparsity in the transition table.
This makes it an inefficient way to store the matchset and
topology information.

4.2 Optimization I: A NewWay to Store and Access

Matchset and Topology Information

(NewTran/NT)

To reduce the excessive data movement problem incurred
by the transition table, we propose a new way to store
matchset and topology information. The key idea is to
create a per-node data structure that contains the node’s:
a) matchset, b) outgoing edges, and c) other miscellaneous
attributes. This per-node data structure is stored only once

eliminating redundancy. Furthermore, we avoid storing the
complete Cartesian product of alphabets and states in an off-
chip transition table addressing the sparsity problem. Our
proposal converts the per symbol look-ups of the transition
table to a one-time memory access per state, which makes
the data movement of our scheme close to the ideal case as
shown in Section 3.3.
Per-node data structure. Figure 4 1 shows the per-node
data structure NodeInfo. We use an array of eight 32-bit
integers for the 256-bit matchset (matchset, 32 bytes). When
symbol a is examined, each active thread checks for a match
by checking if the bit corresponding to a is set: matchset[a
/ 32] & (1 << (a % 32)). Since NVIDIA GPUs do
not support indexing into a register, the matchset must be
stored in the local memory which is private to each thread.
We will show in Section 4.3 how we also put the matchset
in the registers when possible. We maintain 4 out edges per
node in a 64-bit integer (outedges, 8 bytes), which consumes
two 32-bit registers per thread. We also need to encode

struct NodeInfoMC {
        uint8_t start, end;
        uint64_t outedges;
        char attributes;
};

struct MS {
        int matchset[8];
};

reporting

start

always
-active

attributes
complete

complement

2

000011110000

111000001111

Start End

Complete

Complement

Start End

3 4

struct NodeInfo {
        int matchset[8];

        uint64_t outedges;
        char attributes;
};

1

Figure 4. Illustrating the per-node data structure

of NewTran (NT). Shaded variables are in the local

memory and others are in the registers.

the attributes of a state (as shown in Figure 4 2 ), so we
maintain these attributes in the 8-bit variable attributes,
which consumes an additional register. Currently, we use 5
bits of the attribute variable. Three bits record if a state is a
reporting, start, or always-active state. Two additional bits
record if the matchset is complete or complement to enable
the compression optimization described in Section 4.3.
Matching process. The per-node data structure is fixed
mapped to each thread. Before processing the input symbols,
each thread loads the per-node data structure from the global
memory. After the data structure is loaded, the thread starts
to iterate over the input stream. Instead of looking up the
transition table for determining a match, each active state
compares the incoming symbol against its matchset in the
privatized NodeInfo data structure. We still keep the double-
buffered active bitset to record whether a state is active as
described in Section 2.2. We use an array in global memory
to hold the reports generated during the NFA processing.
GPU atomic instructions are used to perform concurrent
writes to this array.
Space consumption. Each NodeInfo data structure
consumes 32 + 8 + 1 = 41 bytes. For N states, this is 41 × N
bytes. The alphabet-oriented transition table, on the other
hand, requires 256× 16×N = 4096×N bytes (256 is the size
of the alphabet, while 16 bytes store up to 4 successor states
per cell). Hence, our scheme only uses 1% space compared to
the alphabet-oriented transition table. The reduced memory
consumption enables the execution to better exploit the on-
chip resources of GPU for the topology and the matchsets
of NFAs.

4.3 Optimization II: Matchset Compression (MaC)

Figure 4 shows that matchset information is stored in
local memory. We find additional opportunity to compress
this information to reduce the global memory transactions.
To compress the matchset information, we focus on two
categories of states:



Complete state. If the matchset for a state, when viewed
as a 256-bit string, contains one continuous set of “1”s, we
term that state as complete.
Complement state. If the matchset for a state is not
complete, but its (bitwise) complement is complete, (i.e.,
∼matchset is complete), we term that state as complement.
When a state is either complete or complement, we can

represent its entire matchset as a range using only two 8-bit
variables, start and end (Figure 4 3 ) to denote the input
symbols it matches. Then, for complete states, we can check
if the incoming symbol s is matched simply by evaluating
s ≥ start && s ≤ end. For complement states, we can
simply invert the sense of the result. Thus, all accesses to
the matchset can be eliminated by converting the indirect
memory read on the transition table to a pure range check
computation.
Figure 5 shows that a large portion of states are either

complete or complement. On average, matchset lookups for
70% of states can be replaced by range checks.
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complete, complement, or not compressible.

To implement the complete/complement compression
scheme, we split the NodeInfo data structure into two
structures as shown in Figure 4 4 , namely NodeInfoMC and
MS. If a state is compressible, we only load NodeInfoMC,
which uses 16 bits (start and end) to store the matchset. If
the state is not compressible, we load MS as before. Depending
on whether a state is compressible or not, we load 16 bits or
272 (16 + 256) bits for the matchset. In general, if a fraction p
of states are compressible, the average global load per node
data structure is 16p + 272(1 − p). As the majority of the
states are compressible (Figure 5), our matchset compression
scheme uses fewer loads to the local memory while also
reducing the global memory transactions.

5 Addressing the Utilization Problem via

Activity Analysis

In this section, we focus on addressing the problem of
under-utilization as discussed earlier in Section 3.2. We first
analyze the activity of states and use this information for an
intelligent mapping of states to threads. The key idea is to
map only the highly active states to dedicated threads and
assign resources to remaining low activity states on-demand.

5.1 Analysis of Activation Frequency

It follows from Section 2 that always-active start states
do useful work during the entire execution. However, the
activity of the other states is not clear. Figure 6 shows the
CDF of the activation frequency of all the non-starting states
across seven representative applications. All other evaluated
applications are similar to the representative applications.
We observe that for the majority of applications, 80% of non-
starting states are activated for less than 1% of the processed
symbols. Similar behavior was also observed by Liu et al. [24].
However, their study did not consider the frequency of the
activity and only evaluated whether the state is active or
never-active. Our finding is that although many states can
be active at least once, the frequency of activation is usually
very low.
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Figure 6. The activity profile of the states. For the

majority of applications, 80% of non-starting states are

activated for only less than 1% of the processed symbols.

We exploit this activity profile in GPUs and propose tomap
only the states that are activated frequently to the dedicated
threads. Other infrequently activated states and are assigned
resources on-demand. To accomplish this, we need to answer
two research questions: (1) Given a certain mapping, how do
we coordinate between fixed mapped hot (active) states and
the on-demand loaded cold (rarely active) states? (2) How do
we classify hot states and cold states? We will answer these
two questions in Section 5.2 and Section 5.3, respectively.

5.2 Optimization III: Activity-based Processing

In this section, we discuss how we handle hot and cold states
to improve the overall utilization. We propose to develop
a hybrid approach that uses one-one mapping (topology-
driven) for hot states and a worklist (data-driven) for the
cold states. Each hot state is given to a dedicated thread,
while cold states are not assigned to any dedicated threads.
As in NT, each thread loads the NodeInfo2 data structure for
its hot state before processing the input stream. As described
in Section 2.2, we store whether a hot state is active in the
per-block active bitset. Each thread also reserves space for an

2This can be NodeInfoMC depending on whether we turn on the matchset
compression (Section 4.3). We will use NodeInfo for the two cases.



additional NodeInfo data structure to be used for any cold
states dynamically assigned to it during execution.

Execution for all input symbols takes place in two modes:
first, a hot mode (which executes all hot states) followed by
a cold mode (which executes any cold states that have been
activated). If a hot state activates a cold state, it places the
cold state ID in the next cold worklist. This worklist is stored
in shared on-chip memory and we use a shared deduplication
bitset to avoid duplication of state IDs in the worklist. After
all hot states have completed the processing of the input
symbol, the hot mode is complete. Next, execution switches
to the cold states in the current cold worklist (CW ) populated
during the processing of the previous input symbol. If CW
is empty, execution skips the cold mode.
If CW is not empty, each thread in the thread block

is assigned with one or more states of the worklist. We
distribute the elements in the worklist equally across all
threads in the thread block. A thread then processes the cold
state assigned to it by loading the NodeInfo of the cold state
from global memory into the reserved cold NodeInfo. A cold-
to-hot transition is handled by set the bit of the activated
hot state in the active bitset, while a cold-to-cold transition
is handled by placing activated states in the next CW if it is
not set in deduplication bitset.
Before continuing the hot mode of the next symbol, the

next CW is assigned to the CW, and we reset the tail pointer
of the next CW emptying it.
Illustrative Example. Figure 7a illustrates our activity-
based optimizations using an example with a thread block.
Assume that the hot states S0, S1 are mapped to the threads
and the cold states S2, S3 are processed through the worklists.
Figure 7a 1 shows that currently, we are processing the
symbol x of the input stream xyz, and S0 and S1 (both hot
states) are active. Symbol x (Figure 7a 1 ) triggers two hot-
to-cold transitions (S1 to S2 and S1 to S3, Figure 7a A ). S2
and S3 are pushed to the next cold worklist, by atomically
incrementing tail_of_next_worklist (Figure 7a B ). After
the hot mode, the threads move to the cold mode to process
the current cold worklist, which is empty. Since there is no
work in this step, the cold mode does not start. In the end of
the current step, the next cold worklist and the cold worklist
are swapped and the tail pointer of the next cold worklist is
reset to 0 (Figure 7a C ).
The processing of input symbol y then begins

(Figure 7a 2 ), with hot-to-cold transitions S1 to S2
and S1 to S3 in the hot mode (Figure 7a D ). They are pushed
to the cold worklist. The deduplication bitset is also set. In
the cold mode, two threads process the S2 and S3 that was
pushed to the CW in the previous step when we processed
x. Since S2 matches with y, it generates two cold-to-cold
transitions (Figure 7a E ). However, by checking the worklist
deduplication bitset (Figure 7a F ), S2 and S3 are not pushed
to the worklist. After the cold mode, the threads in the
thread block are synchronized and the next step of the

tail_of_next_worklist

xyz1

xyz2

Thread Block

S1 S2 Next Cold Worklist
S2 S3

Cold Worklist

Hot
Mode

Cold
Mode

…

A

S1 S3

Next Cold Worklist

S2 S3

Cold Worklist…

D

S2 S3
E

Hot
Mode

Cold
Mode

Hot
Mode

Cold
Mode

Thread Block

y S2
z
S3

*
S1

b
S0

S1 S3

Cold Worklist <— Next Cold Worklist and Zero Next Cold Worklist
__syncthreads()

S1 S2

FS2 S2
Duplication

C

S3S2

B

(a) An illustrative example for our activity-based

processing scheme: orange shaded states are hot (active)

states mapped to threads and cold (inactive) states are

handled via worklist. The active bitset for hot states is not

shown.

Input Hot States Cold States Matched
States Actions

Index Char Active BS Next
Active BS CW Next

CW
1 x S0 S1 S0 S1 - S2 S3 S1 S1 activates S2 S3

2 y S0 S1 S0 S1 S2 S3 S2 S3 S1 S2 S1 activates S2, S3
S2 activates S2, S3

3 z S0 S1 S0 S1 S2 S3 S2 S3 S1 S3 report S3, 4
S1 enables S2 S3

(b) The complete matching process of input stream xyz using
the activity-based processing scheme. CW stands for cold

worklist; BS stands for bitset.

Figure 7. Illustrating the activity-based processing

execution begins with states S0, S1, S3 and S4 as active.
Figure 7b summarizes the complete steps to process the xyz
input stream.

5.3 How do we choose the hot states?

In this section, we describe three different ways to classify
states as hot or cold and pick the method that performs best
empirically.
Profiling. The first scheme is based on prior work [24],
which shows that the activation frequency of NFA states in
a small representative input is similar to the entire input.
In this evaluation, we use the 1KB prefix of the 1MB input
as the profiling input. If a state has an activation frequency
more than a threshold in the profiling input, we consider it as
a hot state during the entire execution. In the experimental
results, we use 10% as the threshold. We have also tested
other thresholds but they do not affect our conclusion.
Offloading by BFS layers. Second, we consider a
percentage of states (ordered by their BFS layers) as hot states.
Users can control the percentage of states to be deemed as
hot. The assignment of hot states is an iterative process. We
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Figure 8. Throughput sensitivity to the selection of hot states. Detailed evaluation methodology is in Section 6.

HotStart (or HotStart_Opt, an optimized version) has the best performance among these selection schemes. Hence,

we choose the always-active start states as hot states.

sort the states by their BFS-layers and then mark them as hot
states in the ascending order until the number of hot states
reaches the percentage specified by the user. This scheme
relies on the topology of the NFA and does not need any
profiling information. In this experiment, we use 10%, 20%,
and 30% as the percentage of the hot states.
Make start states hot—HotStart. Our third scheme only
considers the always-active start states as hot states. It does
not require profiling or tuning of parameters/thresholds.
The scheme is based on the observation from Figure 6 that
other than the always-active starting states, the activation
frequency for most other states is very low.
Experimental decision. Figure 8 shows the normalized
throughput and utilization numbers of the aforementioned
three schemes. We make the following observations. First,
we find HotStart gives the best performance among
the evaluated configurations on average. Second, we find
that the performance is correlated to the states per block,
which works as a proxy to show the utilization of GPU. As
HotStart has the most states per block, its utilization is
the best among these cases. Third, for a few applications
(e.g. CRSPR1, CRSPR2), HotStart does not give the best
performance, but still gives comparable performance. This
is because the activation frequency of non-starting states
is high (Figure 6). Therefore, the loading of the node data
structure to the worklist leads to more data movement. To
summarize, HotStart gives us a simple and synergistic
solution for both data movement and utilization, while
achieving the best performance across the evaluated hot
states selection schemes.
Elimination of Active Bitset. In HotStart, every
activated state is in the worklist except the always-active

starting states. Hence, we remove the active bitset from
the thread block. By this simple optimization specific to
HotStart, the register usage is reduced from 70 registers to
40 registers per thread, leading to an increase of occupancy.
Figure 8 shows that this optimized version of HotStart

(HotStart_Opt) gives 77% improvement and we use it in
the rest of the experiments.

6 Evaluation Methodology

Evaluated Schemes. Table 1 summarizes the schemes that
we evaluate in this paper. iNFAnt [14] and NFA-CG [67]
are prior works in the area of NFA Processing in GPUs as
discussed in Section 3.3. iNFAnt [14] maps each edge to a
thread and NFA-CG [67] maps a compatible group (a group
of states) to a thread. Next, we evaluate our schemes NT
(Section 4.2), NT-MaC (Section 4.3), which dedicate each
thread to each state. They only focus on reducing data
movement. Then we evaluate HotStart and HotStart-
MaC (Section 5), which are built using HotStart_Opt
and work on top of NT and NT-MaC, respectively. They
enhance utilization by mapping only always-active start

states to the threads (Section 5.3) without the need of
profiling. To demonstrate the effectiveness of data movement
optimization, we also evaluate HotStartTT, which uses
an alphabet-oriented transition table but also applies our
utilization-related optimizations.

Table 1. Overview of the evaluated schemes on GPU

Scheme Thread Mapping Data Movement Utilization
iNFAnt [14] Edge - -
NFA-CG [67] Compatible Group - Compatible Group

NT State Opt. I -
NT-MaC State Opt. I + Opt. II -
HotStart Hot State Opt. I Opt. III

HotStart-MaC Hot State Opt. I + Opt. II Opt. III
HotStartTT Hot State - Opt. III

AP Performance Modeling. We also compare to the
automata processor (AP) [17], a domain-specific architecture
for NFA processing. Since AP is not publicly available, we
use a simple, optimistic performance model influenced by
VASim [52] for AP performance estimation. If we have n
input streams each containingm symbols, each NFA must
process n ×m symbols. If AP can hold C NFA states, and if



the application has A NFA states, then ⌈A/C⌉ batches are
required. In one AP chip, C equals to 49152. As current AP
chip is documented to run at 133MHz, a symbol needs 7.5 ns
for processing. Thus, TimeAP_ideal = 7.5 ·mn · ⌈A/C⌉. Since
APs must be reconfigured between batches, we add per batch
reconfiguration overhead of 50 ms [54] to TimeAP_ideal to
obtain TimeAP . Both these models are optimistic because we
ignore other overheads of AP, such as the time taken to
record reports (i.e., matches). Earlier work has noted that
this can be a significant overhead in several applications [50].
Note that all the performance numbers for GPUs include the
report generation overhead.
Experimental Setup. We mainly use an NVIDIA Quadro
P6000 GPU for evaluation. We also report the sensitivity of
our results on NVIDIA Tesla V100. We report the GPU kernel
time gathered using CUDA events. The throughput (our
metric for performance) is measured in terms of number of
input symbols processed per second. Each set of experiments
is performed 7 times and we report 95% confidence intervals
for our results (shown as error bars). Our results/conclusions
are consistent across different runs. Usually, these error bars
are too small to visualize since the widest CI bar is 0.36% of
the normalized throughput bar. For a fair comparison with
prior works [14, 67], our results do not include the I/O time
and data structure preparation time as prior works do not
focus on optimizing them. We expect that these overheads
will be amortized over longGPU computation time and hence
we focus on optimizing the latter.
Application Configurations. We evaluate 18 applications
from three different benchmark suites: AutomataZoo [53],
Regex [10] and ANMLZoo [51]. Table 2 shows the
characteristics of the evaluated applications. All these
applications have sufficient parallelism in terms of number
of states per NFA, number of NFAs (also called as connected
components [CC]). The total number of states can be in the
order of millions (Table 2). We use 1MB input (split into 1000
1KB input streams) for each application (except APPRNG
and SeqMat) to provide parallelism for input streams. Two
applications (APPRNG and SeqMat) do not have always-

active start states, so we cannot feed the 1KB chunks of input
to them. Hence, we evaluate them separately in Section 7.
Large NFAs are filtered out for NT. Most applications
only have small NFAs (connected components). However,
ClamAV, Snort, YARA, and TCP have a few NFAs (up to
1.5% of their total number of NFAs) that have more than
256 states. Since our NT proposal does not support NFA
size greater than thread block size, and NFA-CG could not
finish calculating compatible groups for these NFAs, we filter
out the NFAs that have more than 256 states to ensure a
fair comparison. This does not apply to our HotStart and

HotStart-MaC which, like iNFAnt, support any size NFAs.

Out-degree is limited to 4. Different states can have
different out degrees leading to load imbalance in amount
of work per thread. Like NFA-CG [67], we modify the NFAs

so that the outgoing edges of each state is 4 or less using
an iterative algorithm. We split each state that has an out-
degree greater than 4 into two with each getting half of the
original edges, and connect the duplicates to the predecessors
and successors to maintain the semantics of the NFA. This
process repeats until all states have 4 or fewer out edges. For
some graphs, this process does not terminate (e.g., a complete
graph where each node has out-degree of 5). If this process
does not terminate in N steps (where N is the number of
states), the NFA is filtered out. There are 2 NFAs in ClamAV
and 5 NFAs in Snort that cannot be limited to states with
out-degree ≤ 4 and hence are discarded.

7 Experimental Results

Figure 9 shows the performance results of our schemes and
the performance achieved by AP normalized to iNFAnt. The
y-axis is in log scale. Table 3 shows the raw throughput
achieved by our evaluated schemes. On average, HotStart-
MaC gives 26.5× speedup and HotStart gives 20.5×
speedup, which achieves the best and the second-best
performance among all schemes. They also achieve the best
performance on all applications except CRSPR1, CRSPR2
and Pro, where HotStartTT is the fastest. Furthermore,
HotStart-MaC and HotStart are 5.3x and 4.7x faster than
NFA-CG, respectively.
Analysis of cases where HotStart-MaC is the best.

HotStart-MaC performs the best in YARA, ER, Snort, Brill,
and HM among all GPU schemes (Table 3). Specifically,
in these applications, HotStart-MaC achieves significant
speedup — at least 27% improvement in Snort and up to 373%
improvement in HM compared to HotStart. There are two
reasons. First, in these five applications, at least 50% of their
states are compressible. Second, all of them have a large
number of states. Their per-node data structures are too large
to fit into the L1 cache of the GPU, especially when many
states are handled through the worklist, reducing the size of
per-node data structures yields significant improvement.
Analysis of cases where HotStart is the best. On
the other hand, HotStart-MaC does not outperform
HotStart for the rest of the applications, although the
gap is consistently within 10%. This is expected since if
an application (e.g., CRSPR2) has no compressible states
HotStart-MaC will have more overhead than HotStart.
However, even for an application that hasmany compressible
states, HotStart-MaC can perform worse than HotStart,
because the overhead of converting memory accesses to
computation may outweigh the benefit. For example, in CAV,
although all its states are compressible, HotStart-MaC
still has a 5% slowdown than HotStart. One reason is the
matching process in CAV only goes to very shallow parts
of the NFAs, where only very a small set of states are used
frequently. In this case, very few states are swapped in and



Table 2. Characteristics of evaluated NFA applications.

Application State Info Connected Component (CC) Info
Name Abbr. #states #start #always-active #reporting #compressible #CC max_CC_size avg_CC_size

Brill [53] Brill 115549 5.1% 5.1% 5.1% 100.0% 5946 40 19.4
ClamAV [53] CAV 2374717 1.4% 1.4% 1.4% 100.0% 33171 22075 71.6

CRISPR_CasOFFinder [53] CRSPR1 74000 5.4% 5.4% 2.7% 0.0% 2000 37 37.0
CRISPR_CasOT [53] CRSPR2 202000 2.0% 2.0% 1.0% 0.0% 2000 101 101.0
APPRNG_4sided [53] APPRNG1 20000 5.0% 0.0% 20.0% 20.0% 1000 20 20.0
EntityResolution [53] ER 413352 2.4% 2.4% 2.4% 66.7% 10000 75 41.3
Hamming_l18d3 [53] HM 108000 1.9% 1.9% 1.9% 100.0% 1000 108 108.0
Levenshtein_l19d3 [53] LV 109000 3.7% 3.7% 3.7% 100.0% 1000 109 109.0

Protomata [53] Pro 24103 5.4% 5.4% 5.5% 46.6% 1309 123 18.4
SeqMatch_w6p6 [53] SeqMat 51570 20.0% 0.0% 3.3% 100.0% 1719 30 30.0

Snort [53] Snort 202043 1.6% 1.2% 1.6% 51.4% 2486 4509 81.3
YARA [53] YARA 1047528 2.2% 2.2% 2.3% 98.0% 23530 1017 44.5
Bro217 [10] Bro 2312 8.1% 8.1% 8.1% 44.6% 187 84 12.4

ExactMath [10] EM 12439 2.4% 2.4% 2.4% 100.0% 297 87 41.9
Ranges05 [10] Rg05 12621 2.4% 2.4% 2.4% 99.0% 299 94 42.2
Ranges1 [10] Rg1 12464 2.4% 2.4% 2.4% 98.3% 297 96 42.0
TCP [10] TCP 19704 3.8% 3.8% 3.9% 94.0% 738 391 26.7

PowerEN [51] PEN 40513 7.1% 7.1% 8.5% 99.7% 2857 52 14.2

CA
V

YA
RA ER

Sn
or

t

CR
SP

R2
Bril

l LV HM

CR
SP

R1
PE

N Pr
o

TC
P

Rg0
5

Rg1 EM Bro

Geo
Mea

n
1
2
4
8

16
32
64

128
256
512

Th
ro

ug
hp

ut
N

or
m

al
iz

ed
 t

o 
iN

FA
nt AP

AP_ideal
NT
NT-Mac
NFA-CG
HotStartTT
HotStart
HotStart-Mac

Figure 9. Throughput enhancement results normalized to iNFAnt. On average HotStart-MaC achieves 26.5×
speedup across 16 applications. The best GPU results outperform an AP chip in 5 applications (CAV, YARA, Snort,

LV, and Bro).

Table 3. Absolute throughput with our schemes (MB/s). The best performance among GPU schemes is highlighted.

Arch config CAV YARA ER Snort CRSPR2 Brill LV HM CRSPR1 PEN Pro TCP Rg05 Rg1 EM Bro

AP AP_ideal 2.72 6.06 14.81 26.67 26.67 44.44 44.44 44.44 66.67 133.33 133.33 133.33 133.33 133.33 133.33 133.33
AP 0.36 0.82 2.14 4.21 4.21 8.16 8.16 8.16 15.38 133.33 133.33 133.33 133.33 133.33 133.33 133.33

GPU

iNFAnt [14] 0.01 0.02 0.06 0.22 0.11 0.19 0.21 0.22 0.33 0.53 0.84 0.92 1.16 1.19 1.19 6.07
NT 0.04 0.09 0.20 0.79 0.33 0.61 0.36 0.58 0.88 2.15 3.06 4.51 6.86 6.97 6.96 35.01

NT-Mac 0.04 0.09 0.17 0.67 0.27 0.57 0.37 0.56 0.73 2.07 2.53 3.71 6.05 5.90 6.72 28.16
NFA-CG [67] 0.04 0.06 0.16 1.10 0.35 0.24 2.42 0.76 1.11 1.58 1.34 9.36 20.70 26.57 26.53 28.57
HotStartTT 0.10 0.11 0.36 2.71 0.60 0.37 4.53 1.16 2.31 9.73 9.84 39.83 73.41 73.55 73.32 112.94
HotStart 1.38 0.82 0.90 7.63 0.34 0.56 8.59 0.49 0.92 16.06 4.61 59.54 103.58 102.84 104.47 145.88

HotStart-Mac 1.31 1.29 1.60 9.70 0.31 2.50 7.80 2.32 0.82 14.26 8.26 57.66 99.54 99.85 101.95 117.58

out from the worklist, and hence the benefit of matchset
compression is small.
The performance impact of increasing utilization

alone. Even though HotStartTT does not use NT
for data movement optimization, it is 14x faster than
iNFAnt. Compared to NFA-CG that also only has utilization
optimization (based on statically computed compatible
groups), our HotStartTT is 2.7x faster since compatible
groups do not capture the notion of activity. HotStartTT is
also the fastest scheme in CRSPR1, CRSPR2, and Pro, since
at most 46% of states in these applications are compressible.

In addition, as their states are activated frequently (Figure 6),
the swap-in and swap-out in the worklist of HotStart
and HotStart-MaC incur more data movement than
HotStartTT.
The performance impact of data movement

optimization. NT and NT-MaC are 3.7x and 3.4x
faster than iNFAnt respectively, however they are at least
26% worse than NFA-CG because optimizing data movement
only without considering core utilization is not sufficient.
Although our matchset compression optimization works
well in HotStart-MaC, it demonstrates performance
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Figure 10. Throughput enhancement for the

applications without always-active start states

in the single input stream scenario. Our schemes

outperform NFA-CG and iNFAnt by at least 9% and

2.6×, respectively.
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Figure 11. Effect on data movement reduction: our

schemes use significantly fewer gld_transactions than

prior work. For example, HotStart-MaC reduces

gld_transactions by 99.3% over iNFAnt.

degradation when applied with pure NT. This is because
matchset compression converts memory accesses to the
range checking computation. As a result, the NT-MaC
GPU kernel uses more registers than NT. If the per-node
data structures fit into L1, the loss of register resources
potentially affects performance.
Evaluation of SeqMat and APPRNG. Two applications
(SeqMat, and APPRNG) do not have always-active start states.
Therefore, we do not evaluate them using HotStart in the
multiple input streams scenario. Instead, we use a 1MB input
stream to evaluate these applications. Figure 10 shows the
performance of these applications. We compare our data
movement optimization schemes NT and NT-MaC with
iNFAnt and NFA-CG. In these two applications, we found
that on average, NT and NT-MaC have 2.6x and 3.5x speedup
over iNFAnt respectively. Our NT and NT-MaC schemes
also show 9% and 50% improvement over NFA-CG.
How far are we from AP? In CAV, YARA, Snort, LV,
our best GPU scheme outperforms the domain-specific
AP chip by 3.8×, 1.6×, 2.3×, 1.1× (Table 3), because these
applications have a large number of states requiring repeated
re-configurations and re-executions on AP. Bro also has 1.1×
speedup than AP. All other applications except Pro also
perform within 10× of the AP performance as they make
good use of the GPU resources, where Pro performs 12.54×
worse than AP.
Effect on Data Movement Figure 11 shows the percentage
of reduced global load transactions compared to iNFAnt.
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Figure 12. Effect on the number of NFA states per thread

block (a proxy for compute utilization). More states are

handled per thread block in HotStart.
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Figure 13. Performance sensitivity to Volta GPU

Architecture. Both HotStart-MaC and HotStart

show more than 15× speedup over iNFAnt, indicating

their effectiveness on newer GPU architectures.

We observe that HotStart and HotStart-MaC use 98.9%
and 99.3% fewer gld_transactions respectively than
iNFAnt, because they optimize for both data movement and
utilization. Although HotStartTT does not optimize for
data movement, it uses 98.7% fewer gld_transactions than
iNFAnt. This is because the utilization optimization reduces
the number of thread blocks that access the transition table
and the input streams. Similarly, NFA-CG uses 88.2% fewer
gld_transactions than iNFAnt.With only data movement
optimizations, NT and NT-MaC use 95.9% and 96.1% fewer
gld_transactions than iNFAnt respectively.
Effect on Utilization.We use the number of NFA states per
thread block as a metric for evaluating utilization. Figure 12
shows this metric for the evaluated schemes. As we do not
change the amount of work per thread, mapping more states
per block implies better utilization.
We limit our comparison of utilization to NFA-CG and

our HotStart/HotStart-MaC/HotStartTT, because NT
and NT-MaC do not focus on utilization and always map
one state to a thread. Additionally, in iNFAnt, increasing the
states mapped to a thread block does not increase the useful
work per thread, so we do not include it in our comparison.

We found for most of the applications, HotStart achieves
better utilization than NFA-CG, because only the always-
active start states are mapped to threads, which means
they are always doing useful work. In particular, NFA-CG
fails to improve utilization in Pro, because each statically
constructed compatible group only has one state in it,
meaning any pair of states can be activated at the same time
due to the NFA topology and matchsets of Pro. In contrast,



by leveraging our insight into activation frequency (Figure 6)
our HotStart can improve utilization even for Pro.
Sensitivity to Volta Architecture.We also evaluated our
mechanisms on NVIDIA V100 GPU [3] and the results
are shown in Figure 13. We observe a similar trend as
what has been shown in Figure 9—our schemes still give
significant speedup. Specifically, on average HotStart-MaC
and HotStart give 16.7× and 15.0× speedup over iNFAnt,
respectively. HotStartTT gives 8.9× speedup over iNFAnt.
Given that the Volta has larger L1 caches compared to Pascal
GPU, the magnitude of speedup we achieve is lower but
still very significant indicating that our data movement and
utilization optimizations are effective on newer architectures
as well.

8 Related Work

There is a large body of work on pattern matching on
CPUs [57], network processors [11], and custom accelerators
coupled to CPUs [20]. We recommend interested readers
to an excellent survey paper [58] for a broad overview
of the field. Here, we restrict ourselves to GPU/SIMD
implementations of pattern matching using finite automata.
Reducing Data Movement. DFA-using engines [7, 47, 49,
55, 61] try first to reduce the size of the state transition tables
using compression [9, 60, 61], which is often necessary to
fit the DFAs in GPU global memory. However, as DFAs are
serial, they are mapped to a single thread whose on-chip
resources cannot accommodate the footprint of individual
DFAs. Alphabet reduction [23, 56] reduces the size of the
symbol set by merging behaviorally-equivalent symbols and
introducing an indirection table, however, it is ineffective
on large DFAs [61]. Our matchset compression technique is
orthogonal to alphabet reduction and exploits the sparsity
patterns in the matchsets.
To reduce cost of memory accesses, input symbols were

loaded to shared memory [7, 55], input data layout was
changed [55] to avoid uncoalesced accesses, or vector loads
were used [49]. Others used k-stride NFAs [8], which
consume k bytes at a time, but can blow up the alphabet to
|Σ|k . Some implementations place state transition tables in
texture memory [49] or on-chip constant memory [7]. Prior
work [41] explored packet signature matching on GPU using
DFA and XFA [40] and though that work suggested profiling
hot XFA states and storing them in on-chip shared memory,
it did not implement it as the size of on-chip shared memory
was too small. Both textures and on-chip constant memory
are limited in size, so large parts of the state transition tables
remain in and are accessed using global memory.
If NFA topology is fixed, memory use can be reduced

by embedding the topology of the NFA in the code [28] or
inferring it from pattern-specific data [44]. The matchsets
continue to be stored in global memory allowing different

matchsets to be loaded at runtime. However, this technique
is most suited for fixed-topology NFAs.
Improving Utilization. NFAs are compact in size, but
their non-deterministic parallel execution requires that each
thread handle a single transition [14] or a single state (this
work). To improve utilization, more states must be mapped to
a single thread. In previous works [61, 67], clusters of states
called compatible groups are created that contain states that
cannot be active at the same time [67] or that are likely to be
active at the same time [61]. Compatible groups are mapped
to the same thread [67] (for improving utilization) or are used
to limit the lookups needed [61] (for decreasing work). The
compatible groups of Zu et al. [67] improve utilization but
are computationally expensive to compute. In contrast, our
schemes construct a subset of NFA nodes that are mapped
to threads at linear cost while achieving greater utilization
than their compatible groups. Compared to Yu et al. [61],
we separate topology and symbol/matchset information to
limit the lookups without having to compute their notion of
compatible groups.

9 Conclusions

In this paper, we proposed and evaluated three optimizations
to significantly improve the throughput of NFA Processing
on GPUs. These optimizations address sub-optimal data
movement and low utilization, which stem from primarily
two aspects: a) the matchset and topology information is
stored off-chip and accessed in an irregular fashion, b) not
all the NFA states are active all the time but still consume
resources leading to GPU under-utilization. Our first two
optimizations focus on the data movement problem and
allow the needed matchset and topology information to
remain on-chip as much as possible. Our third optimization
identifies and maps only active states to dedicated threads
while less active states are processed on-demand using a
worklist-based approach. Overall, we achieve significant
improvement in NFA processing throughput over the state-
of-the-art mechanisms across a wide range of emerging
applications. Moreover, our optimizations enable GPUs to
outperform the domain-specific accelerator (AP) for several
applications while being within an order of magnitude of
AP performance for the remainder. As a part of our future
work, we plan to close this remaining gap with the help of
hardware/software co-design optimizations.
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A Artifact Appendix

A.1 Abstract

The artifact contains the source code and Python/shell scripts,

which are expected to reproduce the results of Table 3. We also

provide our raw experimental data and the scripts to plot other

figures of our paper.

A.2 Artifact check-list (meta-information)

• Algorithm: iNFAnt [14], NFA-CG [67], NT, NT-MaC,

HotStart, HotStart-MaC, HotStartTT

• Program: CUDA and C/C++ code

• Compilation: We use cmake to build the project.

Specifically, we use GCC 6.5.0 and NVCC 9.2 with the

-O3 flag

• Binary: CUDA executables

• Datasets: NFAs and input streams from

AutomataZoo [53], ANMLZoo [51], and Regex [10]

benchmark suites.

• Run-time environment: Ubuntu 18.04 with CUDA and

GPU Computing SDK installed.

• Hardware: CUDA-enabled GPU. We have tested our

project on NVIDIA Quadro P6000 and NVIDIA Tesla

V100

• Output: Achieved throughput (byte per second) in text

files that can be used for generating figures.

• Experiment workflow: Clone repository, setup

environment, run scripts, review generated results.

• How much disk space required (approximately)?:

10GB

• Publicly available?: Yes

A.3 Description

A.3.1 Source Code

The source code of our work is hosted in Zenodo and GitHub.
The GitHub repository has the most updated version.

https://github.com/bigwater/gpunfa-artifact
https://doi.org/10.5281/zenodo.3560474

A.3.2 Hardware dependencies

We developed and tested our work on two NVIDIA GPUs
(Quadro P6000 and Tesla V100). We expect that our code can
run on GPUs with the compute capability no less than 5.0.

A.3.3 Software dependencies

Our work requires CUDA 9.2 SDK. Our work uses cmake 3.13
for compilation. We use Python 3.7 for our Python scripts.
Our Python scripts require matplotlib, numpy, pandas,
scipy, xlrd libraries. If you use conda, simply run the
following bash commands to ensure we have the same
Python environment.

conda create --name gpunfa_env python=3.7 \
matplotlib numpy scipy pandas xlrd && \
conda activate gpunfa_env

A.3.4 Datasets

All datasets are from public available benchmark suites.
We convert their automata files to ANML format [51]. We
provide the dataset that is ready to use in our repository.

A.4 Installation

Setup the project. The setup.sh will automatically unzip
the datasets, build the executables, and set up environmental
variables.
git clone https://github.com/bigwater/\
gpunfa-artifact.git &&
cd gpunfa-artifact &&
source setup.sh

Our project contains three executables: infant, ppopp12,
and obat. They are added to your PATH variable after the
setup. The former two executables are our implementations
of iNFAnt and NFA-CG, respectively. The obat contains
our schemes. They share the same options and arguments
settings. Take obat as an example, you can check how to
use it by showing the help using obat -? or obat -h.
Sanity check. We provide a small NFA and an input stream
to verify that the binaries are successfully built. For example,
to check NT in the small dataset:
cd small_dataset
obat -i inputstream -a apple.anml -g obat2

The apple.anml automata reports (in report.txt)
ending positions for pattern apple in inputstream: 5, 47,
64, and 75, from state __45__.

A.5 Experiment workflow

cd ${GPUNFA_ROOT} &&
./run_experiments_get_table3.sh

The entire set requires several hours to finish. It uses the
same configuration as the paper and generates Table 3
automatically.

A.6 Evaluation and expected result

Generating Table 3. A CSV file abs_throughput.csv
(Table 3) will be generated after finishing the previous
experiments.
Generating figures from raw data. The following script
plots all the figures using our raw data.
cd ${GPUNFA_ROOT}
./gen_figures.sh

This script needs around 20 minutes to
finish. All the figures will be generated in
${GPUNFA_ROOT}/raw_data/figures folder.
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