Analyzing and Leveraging Shared L1 Caches in GPUs

Mohamed Assem Ibrahim
William & Mary
maibrahim@email.wm.edu

Gabriel H. Loh

Advanced Micro Devices, Inc.
gabriel.loh@amd.com

ABSTRACT

Graphics Processing Units (GPUs) concurrently execute thousands
of threads, which makes them effective for achieving high through-
put for a wide range of applications. However, the memory wall
often limits peak throughput. GPUs use caches to address this limi-
tation, and hence several prior works have focused on improving
cache hit rates, which in turn can improve throughput for memory-
intensive applications. However, almost all of the prior works as-
sume a conventional cache hierarchy where each GPU core has a
private local L1 cache and all cores share the L2 cache. Our analy-
sis shows that this canonical organization does not allow optimal
utilization of caches because the private nature of L1 caches allows
multiple copies of the same cache line to get replicated across cores.
We introduce a new shared L1 cache organization, where all
cores collectively cache a single copy of the data at only one lo-
cation (core), leading to zero data replication. We achieve this by
allowing each core to cache only a non-overlapping slice of the
entire address range. Such a design is useful for significantly im-
proving the collective L1 hit rates but incurs latency overheads from
additional communications when a core requests data not allowed
to be present in its own cache. While many workloads can toler-
ate this additional latency, several workloads show performance
sensitivities. Therefore, we develop lightweight communication
optimization techniques and a run-time mechanism that consid-
ers the latency-tolerance characteristics of applications to decide
which applications should execute in private versus shared L1 cache
organization and reconfigures the caches accordingly. In effect, we
achieve significant performance and energy efficiency improve-
ments, at a modest hardware cost, for applications that prefer the
shared organization, with little to no impact on other applications.

CCS CONCEPTS

« Computer systems organization — Single instruction, mul-
tiple data.

KEYWORDS
Bandwidth, GPUs, Locality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10...$15.00
https://doi.org/10.1145/3410463.3414623

Onur Kayiran
Advanced Micro Devices, Inc.
onur.kayiran@amd.com

Yasuko Eckert

Advanced Micro Devices, Inc.
yasuko.eckert@amd.com

Adwait Jog
William & Mary
ajog@wm.edu

ACM Reference Format:

Mohamed Assem Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H. Loh,
and Adwait Jog. 2020. Analyzing and Leveraging Shared L1 Caches in GPUs.
In Proceedings of the 2020 International Conference on Parallel Architectures
and Compilation Techniques (PACT °20), October 3-7, 2020, Virtual Event, GA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3410463.
3414623

1 INTRODUCTION

Graphics Processing Units (GPUs) have emerged as very effective
general-purpose accelerators for a wide range of applications. They
have been successful because they provide very high throughput at
a competitive power budget. High-bandwidth memories provide the
foundation for supporting the fine-grain multithreading that GPUs
rely upon for achieving high throughput. However, the well-known
memory wall [68] is often the performance-limiting factor for GPUs.
Traditionally, a popular approach to address the memory wall prob-
lem has been to employ on-chip memories such as caches. In CPUs,
caches have been very effective in cutting down memory latencies.
In GPUs, however, latency is not often the first-order challenge for
many applications because of the high level of multithreading. Still,
GPUs are equipped with both software-managed (scratchpad) and
hardware-managed on-chip memories (caches) to reduce traffic to
the lower levels of the memory hierarchy. An increase in on-chip
memory hit rate can lead to a proportional decrease in memory
traffic, translating into performance improvements for memory-
intensive programs [45, 67]. Therefore, researchers in the past have
invested significant efforts in improving cache performance via
hardware and software methods [24, 26, 27, 29, 32, 54, 73].

GPUs typically employ a two-level cache hierarchy, where each
core is associated with a private local L1 cache, and all cores in the
GPU share a banked L2 cache. An interconnect connects all cores to
the L2 caches and memory partitions. The L1 caches are responsible
for reducing traffic to the interconnect and L2 cache, while the L2
cache helps to reduce memory traffic. This paper challenges such a
conventional cache organization and reveals inefficiencies in the
existing cache hierarchy in the context of GPUs. In particular, we
focus on addressing the inefficiencies associated with GPUs’ private
local L1 caches. Specifically, because of the private nature of the
L1 caches, the same cache lines can be requested by different cores,
leading to high inter-core locality [15, 23, 33, 40, 41]. This data
(cache line) replication reduces the effective aggregate capacity of
the L1 caches across all cores, leading to their lower bandwidth
utilization as we will show in Section 2.

To address these challenges, we propose and evaluate shared
local L1 caches in GPUs. The key idea is to ensure only one copy of
data exists across L1 caches, thereby eliminating data replication

and making better use of the finite cache capacity. We propose to
realize the shared L1 caches by making minimal changes to the
existing L1 cache controller and address mapping policies, with no
changes to the L1 caches. Normally, each core can cache any data
from the entire address range. Instead, our shared L1 cache design
restricts each core to cache only a unique slice of the address range.
Consequently, each core caches data from non-overlapping address
ranges, which eliminates data replication across local caches.

Although such a design is attractive for GPUs, it requires inter-
core communication if one core requests data that is not mapped
to its allocated address range. In such situations, additional latency
will be incurred to fetch the data from the L1 cache of a remote
core. Fortunately, thanks to the latency-tolerance of many GPGPU
applications, an increase in latency often has a negligible impact
on performance. However, not all applications a) can tolerate long
memory latencies, b) exhibit data replication, or c) are sensitive to
cache capacity (i.e., their working sets fit in L1 cache or they stream
with little-to-no locality). Consequently, shared local caches can
have negative or no effect on such applications’ performance. To
address these concerns, we develop lightweight mechanisms to a)
reduce the inter-core communication overhead and b) identify ap-
plications that prefer the private L1 organization and hence execute
them accordingly.

Contributions: This paper contributes the following:

e We propose shared L1 caches in GPUs. To the best of our
knowledge, this is the first paper that performs a thorough char-
acterization of shared L1 caches in GPUs and shows that they can
significantly improve the collective L1 hit rates and reduce the
bandwidth pressure to the lower levels of the memory hierarchy.

e We develop GPU-specific optimizations to reduce inter-core
communication overheads. These optimizations are vital for maxi-
mizing the benefits of the shared L1 cache organization.

o We develop a GPU-specific lightweight dynamic scheme that
classifies application phases and reconfigures the L1 cache organi-
zation (shared or private) based on the phase behavior.

o We extensively evaluate our proposal across 28 GPGPU appli-
cations. Our dynamic scheme boosts performance by 22% (up to
52%) and energy efficiency by 49% for the applications that exhibit
high data replication and cache sensitivity without degrading the
performance of the other applications. This is achieved at a modest
area overhead of 0.09 mm?/core.

e We make a case to employ our dynamic scheme for deep-
learning applications to boost their performance by 2.3%.

2 MOTIVATION AND ANALYSIS

In this section, we first quantify the data replication problem as-
sociated with private L1s in GPUs (as described in Section 1) and
then make a case for shared L1s to address this inefficiency.

2.1 Analysis of Wasted L1 Cache Space

Figure 1 shows the cache line replication ratio under the baseline
private L1 organization for the evaluated applications (methodology
detailed in Section 5.1). The cache line replication ratio is defined
as the ratio of L1 misses that can be found in other L1 caches to
total L1 misses. We observe that the replication ratio varies across
the applications. Specifically, some applications have no replication

1 s 25 _
0.9 x
0.8 o0 < 2 §
0.7 Applications with 3 ©

2 0.6 Replication Ratio < 10% 15
% 05 4
S04 memmBelas 1 2
0.3 | mmmIPC (16X) °
0.2 | —e—Replication Ratio 05 8
0.1 | ¢ L1 Miss Rate II s
1 il i NART, 5
[= w o 2] 7] »n N bR > H
fgm=q°<‘§85§m:n‘-’z§§§n.§u.w§5..su.§gs 2
B=Z<8aZpaefhecdQoualgdgooEasde
OS6OEEDQ SO HQad a0 1Quegan x?®
00 o g a- oo »
Lo ? oS
o4 o a

Figure 1: Performance of the evaluated applications in terms
of L1 miss rate, cache line replication ratio, and IPC improve-
ment under 16X the L1 cache size (normalized to baseline).
The left-hand y-axis represents cache line replication ratio
and raw L1 miss rate.

(e.g., C-BLK) or low replication (e.g., C-RAY), while others have high
replication (e.g., C-BFS).

Identifying Target Applications. The waste due to data replica-
tion may not affect all applications. Only the applications that are
sensitive to larger cache space are expected to benefit if the wasted
cache space is reduced/eliminated. Therefore, we study their perfor-
mance under a 16X larger L1 cache in Figure 1. We observe that 13
applications are both capacity-sensitive and possess high data repli-
cation. To identify the subset of the capacity-sensitive applications
that are sensitive to data replication, we study their L1 miss rates.
Applications with low L1 miss rates (e.g., C-NN and S-SpMV) may
not suffer under private L1 caches because the majority of their
requests can be satisfied locally. These applications tend to have
working sets smaller than the baseline L1 cache capacity. In general,
we consider an application to be sensitive to data replication if it
1) has a replication ratio of >10%, 2) has an L1 miss rate of >50%,
and 3) observes a speedup of >5% with 16x capacity.! Based on
these criteria, we observe that 11 applications are sensitive to data
replication (marked by the blue boxes in Figure 1). These are our
target applications.

2.2 A Case for Shared L1 Caches

One way to eliminate data replication is to enable a shared cache
organization across the local L1 caches. Under a private L1 organiza-
tion, each core can cache any line. For example, given four different
address ranges represented by different shades in Figure 3a, a pri-
vate L1 cache can store any cache line from all four address ranges.
However, under a shared L1 organization, the entire address range
is interleaved across all cores and such mapping is fixed. In other
words, each core caches data from a non-overlapping address range.
For example, as shown in Figure 3b, the address range represented
by white can be cached by only L1-0, and the address range repre-
sented by black can be cached by only L1-3. Because an exclusive
slice of the address range maps to a single L1, the shared L1 orga-
nization ensures no cache line replication across L1s. However, to
fully unlock the potential of the shared L1 organization, the cores
need to communicate to fetch the data that do not belong to their
assigned address ranges.

Sources of Benefits. To understand the scope of potential perfor-
mance benefits of the shared L1 organization, we set up a hypo-
thetical design where all cores can communicate with each other

IThis criteria is empirical and is not used by our proposed scheme in Section 4.

N
N
@

2
£ 175
5 15
g125
= 1
Z0.25
0
2 ° 2 ° 2 ° 2 k1] 2 ° 2 ° 2 k1] 2 °
S €12 €2 €3 €3 £|2 £|2 £|5 ¢
g 5|2 5|2 5|& S|2 S| 5|2 &
o [o o o a o a o o o o o a o a
C-BFS | CBFS2 | RCFD | RLUD | S-QTC | S-Triad |P-2DCONV|P-3DCONV

(a) IPC and reply bandwidth

0.9
2.25 2os8
mmm| 2+Memory Reply ==mL1 Reply ==IPC 2 = _ §0-7
175 22 ® 06
15 23 245
125 25 =
1T o5 504
075 89 503
05 532 902
025 £ @ 5 01
0o S= g 0
8 b 2 ° 2 ° 2 ° 5 $$E°°°>>EEEE
oSESZZ «
s €2 €132 £|5 ¢ Z ©LOJoEs0asES
g &d|a &|& &|a&a & OpEEd 3 8dd o
o
P2MM | P-3MM | P-GEMM | Mean aw

(b) L1 miss rate

Figure 2: Performance of a hypothetical cache design that eliminates data replication across local L1 caches. Results are nor-
malized to the private L1 baseline. Section 5.1 has the details on the experimental methodology.

L1-0 L1-1 L1-2 L1-3 L1-0 L1-1 L1-2 L1-3

(a) Private per-core L1 caches. (b) Shared L1 caches across
All L1s can cache any address cores. Each L1 can cache only an
range. exclusive address range.

Figure 3: Private and shared cache organizations.

with zero cycle overhead and share their L1 caches ensuring no
data replication. Figure 2 shows performance in terms of IPC and
L1 miss rate for the identified target applications executing on this
hypothetical system, normalized to the private L1 baseline. We ob-
serve, in Figure 2a, that such a hypothetical configuration improves
performance by between 14% and 83% across these applications,
and 39% on average. The main reason for such a performance boost
is the significant 79% reduction in the collective L1 miss rate (shown
in Figure 2b) that results in better L1 bandwidth utilization (i.e.,
total collective useful bandwidth received from the L1 hits is higher
than the baseline).? Consequently, the L2 and memory bandwidth
consumption is reduced, thereby making the L1s more effective at
addressing the memory wall challenge.

Overall, we conclude that the shared L1 organization eliminates
wasted L1 cache capacity and thus can lead to a significant per-
formance improvement for the target applications. Therefore, we
refer to them as shared-friendly applications. Next, we propose a
shared L1 cache design that aims to achieve the performance of this
hypothetical cache design for the shared-friendly applications.

3 SHARED L1 CACHES: DESIGN, ANALYSIS,
AND OPTIMIZATIONS

In this section, we describe our design that enables both private
and shared L1 organizations, and demonstrate the potential perfor-
mance of a realistic shared L1 organization.

3.1 Terminology and Address Mapping

Under a shared L1 organization, we define two terms that we use
in this paper: requester and home cores. A requester is a core that
requests a given cache line and the home is the core that can cache
that line. For example, in Figure 3b, the home core of a line that
falls in the black address range is core L1 — 3. If core L1 — 3 requests
that line, then the core is both the requester and the home for that

L1 and L2+Memory reply bandwidth represent the number of replies received from
L1 and L2+Memory, respectively, over the total execution time.

line. Additionally, a typical memory access under a shared cache
organization can be either local or remote. An access is considered
local if the requester core is also the home core. Otherwise, an
access is remote. For example, in Figure 3b, if core L1 — 0 requests a
cache line from the black address range, then it will send a remote
request to the home core L1 — 3.

Selecting the Home Core. To select the home core for a given
cache line, we use core bits. These core bits are selected from the
physical address of a request. The process of selecting these bits is
analogous to selecting the DRAM bank bits based on the physical
address. In the private L1 cache organization, there are no core bits
because the requester is always the home. In a system with N local
L1 caches (each attached to one core) that are organized in a shared
fashion, we use the least significant [log2(N)] bits of the tag as core
bits to select the home core for a given cache line. Because the core
count or the cache being organized as private or shared does not
affect the number of tag bits according to this mapping policy, our
system always uses 20 bits as tag.

3.2 Shared L1 Caches Design

Figure 4 shows the communication flow in a simple design that
enables the L1 caches to be organized as either private or shared.
Each core is connected to an L1 cache, which has associated Miss
Status Holding Registers (MSHRs) to track pending L1 misses. The
MSHRSs are connected to the network-on-chip (NoC) that routes L1
misses to the L2. In the baseline private L1 organization, each core
sends requests to its local L1, and the misses go through its local
MSHR to access the L2 via the NoC.

Handling Read Requests. With a shared L1 organization, a re-
mote read request skips the L1 cache of the requester core because
the data cannot be there. It then also skips the local MSHR €y and
goes through the NoC to reach the home core. The home core
queues the received remote request @ and consults its local L1
cache arbitrator @, which prioritizes the local cache requests over
remote requests. If there are no local requests, the remote request
accesses the L1 cache of the home core. Otherwise, the local request
is processed @ and the remote request remains queued. If the re-
quest hits in the home L1 cache, then the L1 queues the read reply
@ for injection into the NoC back to the requester. If the request
misses in the home L1 cache, then the home core sends the request
to the L2 cache through the NoC @.3 Once a read reply is received
from the L2 via the NoC, the home core installs the reply in its

3A single MSHR entry is allocated for a unique cache line address at the home’s L1 to
allow coalescing of misses originating from both local and remote read requests.

Local Request

r—

vw—IIII
-] 6 [Tt
- Arbitrator L1 T Req, Arbitrator L1 §
L To |
1" Home o T o
A o m

Core ona Core

Output

Remote Request

Core

(a) Requester sends a remote request. (b) Home receives a remote request. (c) A remote request loses L1 arbitration.

Core o“l o Reply Core

(d) Home sends a remote reply.

i = 5| @
J’ Arbitrator L1
3
Femolo I
ouQ

(e) Home handles a remote request miss.

Toput

Output
DIN=

Local Remote]
_'-1 From
Arbitrator L1i e Home,
€ Remote Reply | '_'|

Core om Py

(f) Requester receives a remote reply.

Figure 4: Request/Reply flow in a shared L1 organization. The L1 Arbitrator and the In/Out queues, shown in black in (a), are
newly added to support our proposal. Dashed lines represent L1I/MSHR bypassing,.

mShared @Shared+Chunk ®Shared+Chunk+Min(H,L2) mShared @DShared+Chunk m®Shared+Chunk+Min(H,L2) mShared @Shared+Chunk ®Shared+Chunk+Min(H,L2)
1.8 8 1 335
214 208 H 2:
T12 206 3%
Sod L= 3,2
Eg:ﬁ 5 0.4 g -1
H 2 [l =[0I h
203 £ .. o il K 5
& QO S ,\o S S &S ‘,,é E Qo8O \,o O PSS \,,é S & S & L ,\o & & & & ‘,,é
X & S O K SIS @ KL S
;aq_ib@% 0‘2’2’9 S FA P g g Pt T gogaq,f-'q. £ N o ”9
Q'L 2 L) Q Qﬂ« Q®

(a) IPC

(b) L1 miss rate

(c) Average latency on the reply network.

Figure 5: Performance of a realistic shared L1 organization. Results are normalized to the private L1 baseline.

local L1 and concurrently queues the reply @ to be injected to the
requester through the NoC. Finally, the requester core receives and
processes the remote read reply without caching it locally @.
Handling Write Requests. With a shared L1 organization, a re-
mote write request follows the same flow as a remote read request.
However, a remote write request always skips the MSHR of both
the requester and the home. Also, we use write-through and no-
write-allocate policies in the L1 caches (Section 5.1). Therefore, on a
write hit, a given write request modifies the cache line in the home
core. The modified cache line is forwarded to the L2 cache through
the NoC. However, on a write miss, no cache line is allocated at the
home core and the updated data is delivered to the L2 cache. Once
a write ACK is received from the L2, the home core forwards the
write ACK to the requester core via the NoC.

Handling Coherence. With a shared L1 organization, only a sin-
gle copy of a cache line may exist across L1s. Therefore, there may
not be a need for coherence mechanisms within a single GPU.
Handling Non-L1 Requests All non-L1 (instruction, texture, and
constant cache) misses from the GPU core are not affected by the
shared cache organization. Non-L1 misses are simply forwarded to
the L2 via the NoC as in the private L1 baseline.

Handling Atomic Operations. In the baseline, atomic operations
skip the L1 cache and are handled at L2/MC (memory controller) [6].
Similarly, in our design, atomic operations skip the requester and
home L1 caches and are handled at the unaltered L2/MC.
Communication Fabric. We evaluate shared L1 caches with a
mesh interconnect [5, 23, 30, 49, 70] in Section 3.3 and present a case
study of a crossbar-based system in Section 5.5. Other interconnect
topologies that allow inter-core communication can be used to
unlock the full potential of shared L1 caches, but we leave the study
of such topologies for future work.

3.3 Performance Analysis and Optimizations

We analyze the impact of shared L1 cache design on the shared-
friendly applications in terms of performance, L1 miss rate, and
the reply network latency as shown in Figure 5. We observe that
although the shared design (denoted as Shared) helps in significantly
reducing the L1 miss rate by 80% (as expected per our discussion in
Section 2.2), it does not translate into performance improvement
over the private L1 baseline. In fact, we observe a performance
degradation of 5%. This is because of the overhead incurred (average
packet latency of the reply traffic increases by 2.2x) due to the
additional communication. Therefore, it is essential to analyze this
overhead and propose optimizations to alleviate it.

Optimization I: Reducing
Wasted NoC Bandwidth.
Because the requester does
not install data for remote re-
quests in its own L1, fetch-
ing the requested data at a
full cache line granularity
from the home core wastes
NoC bandwidth if only a por-
tion of the line is actually re-
quested by the requester. Fig-
ure 6 shows how much data
within a line is used by the
requester cores for shared-
friendly applications. “Access=N” denotes that N bytes out of 128,
which is the cache line size, are used by the requester. We observe
that many applications do not need the entire cache line data and in
fact need only a quarter of it most of the time. We apply this known
observation [53] in a different context for reducing interconnect

mAccess=32

DAccess=64
BAccess=128

Figure 6: Fraction of useful
bytes within a cache line.

traffic between cores. Based on this observation, we design the sys-
tem such that the data reply from the home to the requester only
carries the data requested by the requester, not the entire line. The
key idea is to reduce unnecessary data movement and to also avoid
wasting precious NoC bandwidth. With the help of this optimiza-
tion (denoted as Shared+Chunk), we observe a significant speedup
of 23% for shared-friendly applications as shown in Figure 5a.
Optimization II: Better Distribution of Requests. The next
optimization (Min(H,L2)) balances the interconnect traffic by se-
lectively routing the L1 requests to either the home L1 or to L2,
whichever is fewer hops away. The key idea is to better utilize
both the home cores’ bandwidth and the L2 bandwidth and cut
down latency by going to the nearest source of data. In Figure 5,
Shared+Chunk+Min(H,L2) shows the effect of applying Min(H,L2)
on top of Shared+Chunk. In this experiment, we apply Optimiza-
tion I (chunking) on the traffic from either the home core or L2 to
the requester core. We make several key observations. First, with
Shared+Chunk+Min(H,L2), we improve the performance benefits
to 26%. This is because of the better distribution of interconnect
traffic and reduced latency. In Shared+Chunk, all requests go to
home cores, which has the potential to create network hotspots
and limit the achieved bandwidth from the home cores. With
Shared+Chunk+Min(H,L2), there is a better balance between re-
questers obtaining their data from home cores and L2. Second,
Shared+Chunk+Min(H,L2) does not provide significant L1 hit rate
benefits, compared to Shared+Chunk. Its performance benefit is
mainly because of a more uniform distribution of traffic on the
chip, not due to reduced cache contention at the home caches. Fi-
nally, Shared+Chunk+Min(H,L2) reduces the latency overhead to
9%, mainly because of lower hop counts and more uniform traffic
distribution. We conclude that, for shared-friendly applications, our
optimizations can reduce the wasted bandwidth, provide a good
balance between miss rate reduction and network latency, and show
promising performance improvements. For the rest of the paper,
we will refer to Shared+Chunk+Min(H,L2) as Shared++.
Evaluating Non-shared-friendly Applications. So far, we have
proposed an optimized shared L1 organization and validated its
usefulness on the shared-friendly applications. For completeness,
we evaluate Shared++ further on other applications (17) that are
not classified as shared-friendly (denoted as non-shared-friendly
applications). Figure 7 shows the performance of these applications
normalized to the private L1 baseline. Three observations are in
order. First, most of these applications perform as well as the private
L1 baseline and are hence classified as insensitive. These applica-
tions are likely to have a high tolerance to the latency overhead
induced by the shared L1 organization. Second, two of these appli-
cations (C-Kmeans and P-COVAR) perform better than the private L1
organization. C-Kmeans achieves a 14% performance improvement
because of the Min(H,L2) optimization. C-Kmeans has high sensitiv-
ity to cache size and no replication across cores. Thus, by bypassing
the home core and directly going to L2, we effectively increase the
cache capacity (increase the L1 hit rate). As for P-COVAR, its 20%
improvement is because of the work imbalance between the cores
in some kernels under the private L1 baseline. Specifically, some
kernels do not have enough cooperative thread arrays (CTAs) for
all the cores, which leaves the L1 caches of some cores not utilized
in the baseline. However, with Shared++, all the L1 caches serve

Insensitive

Private-friendly

Normalized IPC
OO0 ==
ONBLNO=NH

R

S & - PRI i B B I IR I
B < & R SR P A R R M S
A P& & €@ @90

o0 R
&2 S & e
Q

Figure 7: Non-shared-friendly applications under Shared++.
Results are normalized to the private L1 baseline.

the requests based on the required address range. Finally, five ap-
plications suffer a drop in performance under the proposed shared
L1 organization (minimum = 12%, maximum = 51%). We observe
that these applications either have high L1 cache locality leading
to low L1 miss rates (< 10%) or low latency tolerance. To make a
strong case for the shared L1 organization, we need a mechanism
that identifies such private-friendly applications and executes them
in a private L1 organization.

4 A DYNAMIC MECHANISM FOR HANDLING
PRIVATE-FRIENDLY APPLICATIONS

In this section, we present a per-core lightweight dynamic scheme
that locally classifies an application at runtime as shared-friendly
or private-friendly and executes the application on a shared or
private L1 organization accordingly. Our dynamic scheme utilizes
a two-step process: a sampling phase followed by an execution
phase. During the sampling phase of a core, it simultaneously col-
lects runtime metrics for both shared and private organizations.
Once the sampling phase of a core ends, it evaluates the locally col-
lected information and chooses the desired L1 organization during
the next execution phase. After concluding an execution phase, a
new sampling phase starts. By repeating this two-step process, our
scheme can adapt to the changing behavior of the application.

4.1 Sampling Methodology

In this section, we discuss the details of the sampling mechanism
and the per-core collected information as shown in Figure 8.

Set Legend
Request Address | [Sets treated as Private
) LSB of Set bits [Sets treated as Shared
Core
Even odd © L1 cCache
?
J "/ 0 Set 0
Private Stats Shared Stats Set 1

| Local L1 Requests I-—

Other Counters) Other Counters

I Local L1 Requests |-—|

Set 30
Set 31

Private
° Evaluate LS o

Sampling Stats Shared

G Sampling
Completed?

Figure 8: Sampling phase of the dynamic scheme.

Concurrent Evaluation of Private and Shared L1 Organiza-
tion. Our scheme concurrently evaluates both a shared and a pri-
vate L1 organization using the local L1 cache during the sampling
phase. We accomplish such simultaneous evaluation by treating
half of the L1 cache sets as shared and the other half as private. We
assign the even sets and the odd sets to be treated as private and
shared, respectively €). We interleave the set indexing between pri-
vate and shared at a fine granularity to decrease the bias of requests
focusing on a subset of the cache sets. Note that this approach is
not a dynamic cache partitioning scheme, thus we do not have the
associated overheads [57]. We do not change the indexing of the
cache as the set bits are the same. We use the least significant bit
(LSB) of the set bits to determine if the required set is even (to be
treated as private) or odd (to be treated as shared) @.

Sampling Phase. During the sampling phase, we use counters
to gather information that is crucial for classifying the running
application @. For example, we count the number of accesses and
misses to the local L1 cache to estimate the L1 miss rate at the end
of the sampling phase. Because we evaluate both shared and private
cache organizations concurrently, we use two groups of counters
for each option, and only the corresponding counters are updated
based on the LSB of the set bits. For example, if a core receives a
read reply from L2 to install in an odd set, then the replies from L2
counter for the sets that are treated as shared is incremented). The
sampling phase continues until both the shared and private groups
each process at least Rs local L1 accesses (Rs = 512 requests) @,
where a local L1 access occurs when a core generates a request that
is destined to its local L1 cache (i.e., requester = home). This makes
the time interval for the sampling phase variable. Also, this ensures
that each group observes enough requests to have a fair evaluation
between the two options.

Execution Phase. Once the sampling phase ends, the counters
from each group are used to evaluate which cache organization
to use @. The evaluation is based on the metrics discussed in Sec-
tion 4.2. After evaluation, the execution phase starts under the
desired L1 organization. The next sampling phase starts after pro-
cessing Rgy local L1 accesses (Rgx = 16384 requests).

Selecting the Home Core. Due to the self-paced nature of our
dynamic scheme, a given core may be in either sampling or exe-
cution phase. Additionally, a core locally chooses the preferred L1
organization. Nevertheless, as discussed in Section 3.1, a core under
a shared L1 organization (during sampling or execution) still uses
the core bits to determine the home core, even if the home core is
under private L1 organization or in a sampling phase.

Handling Coherence. The coherence protocol utilized in the pri-
vate L1 baseline is used in our dynamic mechanism. Specifically,
both the private L1 baseline and our dynamic scheme employ
flushing-based software coherence [2, 47, 48, 52, 60, 63, 69].5 This
is ensured by the usage of 1) a write-through L1 cache that is inval-
idated and flushed at every kernel boundary or at synchronization
points, and 2) a shared L2 cache that is inherently coherent. Such
system-wide flushing of the L1 caches does not differentiate be-
tween a core that is under execution phase (private or shared) or

4Rs and Rg, values are empirically chosen based on the insight to have longer
execution phases to minimize any sampling overheads.

51f a hardware-based coherence protocol is used, the directory at L2 will correctly keep
track of the list of sharer cores and the invalidations will only be sent to the sharers.

sampling phase. In other words, all L1 caches in the system will
be invalidated and flushed indiscriminately at kernel boundary or
synchronization points to ensure coherence.

Handling Private-to-Shared Transition. In case shared L1 or-
ganization is desired for the execution phase, then some leftover
cache lines may exist in the cache. A leftover line is a cache line
that was cached during sampling in the sets treated as private but
does not belong to the assigned address range of the core. However,
if a leftover line is requested, then the core will skip its local L1
cache (as requester # home) and forward the request to the home
core. Thus, these leftovers lines are not utilized by the requester
core during the execution phase. Additionally, a request destined to
a cache set storing a leftover line will always lead to a tag mismatch
with the leftover line as the core bits are different. We employ a
lazy invalidation scheme instead of migrating the leftover lines or
flushing the L1 cache because of its simplicity. However, the cache
replacement policy may be updated to consider the leftover lines for
victim-selection. These lines can be identified by using either the
core bits or by setting an extra 1-bit per cache line during sampling.
Such a policy should replace the leftover lines sooner leading to
better cache utilization.

4.2 Sampled Metrics

In this section, we assess the effectiveness of two possible metrics
that can be used in classifying an application to be either shared-
friendly or private-friendly. A good metric should clearly distin-
guish between shared-friendly and private-friendly applications
with minimum overhead in terms of the sampled information.
Metric I: Average Memory Access Time (AMAT) is a well-
known metric used to analyze memory system performance in
the CPU domain. AMAT is a good candidate for evaluation as it
covers the cache capacity aspect (via the miss rate) and reports the
average overall latency. For our scheme, AMAT is defined as:

L
AMAT = LIHitLatency + (_ X L1 ocalMissRate
L+R (1)

R
X LzAccessLatency) + (m X AMATHome)

AMATHome = HomeAccessLatency @
+ (L1RemoteMissRate X LzAccessLatency)
where L is the number of a core’s own local L1 accesses, and R is the
number of a core’s own remote L1 accesses. L/(L + R) represents a
fraction of the given core’s own requests that belong to its assigned
address range. Similarly, R/(L+ R) represents a fraction of the core’s
own requests that do not belong to its assigned address range.

At the end of the sampling phase, we evaluate AMAT for both
shared and private L1 organizations and choose the option with the
lower AMAT. Figure 9a shows the effectiveness of AMAT to choose
between shared and private L1 organization using four non-shared-
friendly applications (one insensitive and three private-friendly)
and four shared-friendly applications. We observe that for the non-
shared-friendly applications, AMAT (DynAMAT) performs as well
as the baseline by clearly identifying the insensitive and private-
friendly applications. It also performs better than Shared++ for
C-TRA, C-NN, and S-SpMV. However, DynAMAT performs poorly

18 lShared++ 18 lShared++
o 16 VAAMAT 016
a 14 a 14
= lDynAMAT+L1MRpr o 12 lDynEB+L1MRpr
s 1 ;1
08 T 08
E06 £06
c04 004
Z02 Z02
0 [
x z 2| a o s X €« z 2|9 o o =
w [~ w =4
ﬁézamaoﬁ 2 £ 2L & & Z
o 216 ¢ o o o o 2106 ¢ @ a
] »
Non-shared-friendly Shared-friendly Non-shared-friendly Shared-friendly
(a) AMAT (b) EB

Figure 9: Effect of different metrics on the dynamic scheme.

with the shared-friendly applications, losing the performance ben-
efits gained by using the shared L1 organization. This is because
AMAT is oblivious to latency tolerance in GPUs. Thus, even with
the latency overhead imposed by the shared L1 organization to ac-
cess remote home cores, GPUs may be able to hide such an increase
in latency due to their huge parallelism. This makes a case for using
another metric.

Metric II: Effective Bandwidth (EB) is defined as the ratio of
bandwidth to miss rate and is calculated based on the level of
memory hierarchy under consideration. At a given core, EB is
computed as BW/CMR, where CMR = LlafissRate X L2MissRate-
EB is a good candidate for the following reasons. First, Wang et
al. [67] showed that IPC o« EB. Thus by optimizing for a higher
EB, we aim for a higher IPC as well. Second, EB is sensitive to
the change in the L1 effective capacity as it has an L1 miss rate
aspect. Third, EB accounts for latency tolerance in GPUs as well by
considering bandwidth. In other words, even if some requests end
up incurring high latency, more requests may be processed within
the same time interval, increasing the overall received bandwidth.
Finally, using EB, we can distinguish the performance impact of
requests being cached using a shared or a private organization.
However, doing so by using a direct performance metric (e.g., IPC)
would be difficult because our scheme deals with requests, not
instructions. Furthermore, performance metrics might vary due to
reasons other than L1 performance (e.g., bandwidth obtained from
software-managed caches [25]), which can lead to an inaccurate
classification of applications during runtime. In our scheme, our
proxy EB is defined as:

LzReplies

EB = + Homegeplies 3)

LimissRrate
where L2gepjjes and Homegepjjes are the number of read/write
replies from L2 and home core(s), respectively.

At the end of the sampling phase, we evaluate EB for both shared
and private L1 organizations and choose the option with higher
EB. Figure 9b shows the effectiveness of EB in choosing between
shared and private L1 organizations. We observe that EB (DynEB)
achieves the performance improvement of a shared L1 organization
for the shared-friendly applications. As for the non-shared-friendly
applications, EB performs as well as private for C-BLK and C-TRA.
However, for C-NN and S-SpMV, EB falls behind the private L1 orga-
nization by up to 33%. To remedy that, we utilize our observation
(Section 3.3) that such applications have significantly low L1 miss
rates (< 10%) and low latency tolerance.

Optimization. We augment our DynEB by checking if the sets
treated as private have an L1 miss rate lower than LIMRTh,eshold
(= 10% in our evaluation). DynEB+LIMRpr denotes the updated

DynEB in Figure 9b. DynEB+L1MRpr performs as well as the pri-
vate L1 organization for the non-shared-friendly applications while
maintaining the IPC improvement for the shared-friendly applica-
tions. We also updated the AMAT-based metric with the L1 miss
rate optimization and, as shown in Figure 9a, DynAMAT+L1MRpr
is still not effective with the shared-friendly applications.

4.3 Hardware Overhead

As discussed in Section 3.2 and Section 4.1, our optimized shared L1
organization and DynEB do not change the L1 caches or the NoC.
We only update the request handling architecture to manage the
remote accesses. We synthesized the RTL design of the hardware
required for our optimized shared L1 organization using the 65nm
TSMC libraries in the Synopsys Design Compiler and estimated
the area overhead to be 0.085 mm? per core. DynEB leads to an
additional area overhead of 0.005 mm? per core.

5 EXPERIMENTAL EVALUATION

In this section, we first describe our experimental setup and then
evaluate our proposed solutions.

5.1 Experimental Setup

Our baseline architecture assumes a generic GPU, consisting of mul-
tiple cores (also called Compute Units, or CUs) that have private
local L1 caches. These caches are connected to multiple address-
sliced L2 cache banks via a NoC. We use two separate networks:
request and reply networks to avoid protocol deadlocks [6]. We
faithfully model our shared L1 cache organization, inter-core com-
munication, and other mechanisms using a cycle-level simulator —
GPGPU-Sim v.3 [6]. A detailed platform configuration is described
in Table 1. We evaluate 28 benchmarks from four suites (CUDA-SDK
(C) [46], Rodinia (R) [10], SHOC (S) [13], and PolyBench (P) [50]).

Table 1: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 28 cores (CUs), SIMD width = 32 (16 X 2)
48KB scratchpad, 32KB register file, Max.

1536 workitems (48 wavefronts, 32 workitems/wavefront)
16KB 4-way Write-through L1 data cache - Latency = 28 cycles [31]
L1 Caches / Core | 12KB 24-way texture cache, 8KB 2-way constant cache,

2KB 4-way I-cache, 128B cache block size

8-way 128 KB/memory channel (IMB in total)

128B cache block size - Latency = 120 cycles

8 GDDR5 Memory Controllers (MCs)

FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
Memory Model | 924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes [17]
Hynix GDDRS5 Timing [22]

6 % 6 mesh topology, 700MHz interconnect clock,

32B flit size, 4 VCs per port, 4 flits/VC,

iSLIP VC and switch allocators

Resources / Core

L2 Cache

Interconnect

5.2 Experimental Results

In this section, we evaluate and compare the following against a
private L1 organization baseline:

e Shared++: Our shared L1 organization augmented with the
optimizations in Section 3.3.

e DynEB: Our EB-based dynamic scheme, augmented with the
LIMRpr optimization (Section 4.2), to classify applications either as
shared-friendly or private-friendly.

o Best(Private,Shared++): This configuration statically cap-

tures the best of both private and shared L1 organizations by picking
the organization that achieves higher IPC.
Effect on Performance. Figure 10 shows the IPC performance
of our proposed solutions normalized to the private L1 baseline.
We observe the following. First, DynEB exploits the benefits of
the shared L1 organization for shared-friendly applications. Specif-
ically, DynEB enhances IPC by 22% on average over the private
baseline and is within 3% of Best(Private,Shared++) for the shared-
friendly applications. This is because DynEB significantly reduces
data replication, thus it increases the effective L1 cache capacity.
Second, DynEB compensates for the IPC loss of the private-friendly
applications under Shared++. As discussed in Section 3.3, these ap-
plications have a significantly low L1 miss rate and high sensitivity
to latency. Thus, their performance suffers because, with Shared++,
even a cache hit may have to go through the NoC. DynEB identifies
these applications and prefers a private L1 organization for them.
Finally, for the insensitive non-shared-friendly applications (not
shown due to lack of space), DynEB improves performance by 1%,
2%, and 4% over Best(Private,Shared++), Shared++, and private L1
baseline, respectively. This is because DynEB enables each core to
adapt to the changing behavior of the executing application and
obtain the advantages of both shared and private L1 organizations
during different phases of execution.

mShared++
DBest(Private,Shared++)
mDynEB

Normalized IPC
0000 Aaaa
ONAOIR2NANO

P-3DCONV

P-2DCONV

Private-friendly Shared-friendly

Figure 10: The effect of the proposed solutions on IPC. Re-
sults are normalized to the private L1 baseline.

Overall, DynEB improves

performance of all evaluated 1.8
applications by 9%. To demon- 16
1.4 7

strate that, in Figure 11, we
show normalized speedup for
the evaluated applications

5
1.2 o
1| gt
Lu

Normalized IPC
o o
©

sorted ascendingly. This is un- 6 |31 Shared

der the shared L1 organization 04 |#/ === Shared+Chunk
(Shared), the optimizations in o's :".gcf,?g“'
Section 3.3 (Shared+Chunk and Applications

Shared++), and the dynamic
scheme (DynEB). We observe
that although Shared+Chunk
and Shared++ push the tail of
the S-curve toward the private
L1 organization, they still suffer
due to the private-friendly applications. However, DynEB can
recover the performance loss of these applications.

Effect on L1 Miss Rate. Figure 13 shows how effective our so-
lutions are for decreasing L1 miss rate. The results are normal-
ized to the private L1 baseline. We observe the following. First,

Figure 11: The effect of
the proposed solutions
on IPC (normalized to
baseline) as S-curve.

8 W Shared++
K] 1 oBest(Private,Shared++)
0.8 mDynEB
n
50.6
- 04
-
202
o
N O
k- > €« 2 > o S|ov ¥ o QO B > > s = = £|¢€
9« ¢ Z § 4o g|lu O u S5 £ 8 z Z S|
E gk 5292988790885 5FE 2|2
0o o : (7 I [- N
2 4 ¢ “ 8 8 H
[
Private-friendly Shared-friendly All

Figure 13: The effect of the proposed solutions on L1 miss
rate. Results are normalized to the private L1 baseline.

Shared++ leads to lower L1 miss rates compared to the private L1
organization because of the extra effective capacity achieved using a
shared L1 organization. Specifically, with Shared++, the L1 miss rate
drops by 77% and 88% for shared-friendly and private-friendly ap-
plications, respectively. As for the insensitive non-shared-friendly
applications (not shown due to lack of space), Shared++ reduces
the L1 miss rate by only 13% as these applications possess low
data replication (Figure 1). Second, for shared-friendly applica-
tions, DynEB decreases the L1 miss rate by 57% compared to a
private L1 organization. This is because DynEB aims to adapt to
the shared-friendly nature of these applications and executes them
under a shared L1 organization. However, DynEB causes a 88%
increase in the L1 miss rate compared to Shared++ because it runs
half the cache sets as private during sampling. Additionally, some
cores may end up running under a private L1 organization dur-
ing some execution phases, which may lead to replication across
cores, and thus less effective capacity and higher L1 miss rate.
Specifically, Figure 12 quantifies

the number of replicas across 5
. 45
the cores under both private and E 4 i
X K 335 mPrivate
shared L1 cache organizations 873 OShared++
mDynEB
and under DynEB. As expected, g 25 4
with Shared++, we maintain a8
. 13
only a single copy of the data. 0s
However, under Private, each g § ggo '§ >z E E E
core can cache any data from the SE2z9-88anW
. SEXENHRRAAQ
address range, which may lead ¥e o

to more replications across the
cores (2.7 replicas on average).
DynEB maintains fewer replicas
compared to Private but more
compared to Shared++ (1.4 repli-
cas on average). This result conforms with the L1 miss rate in-
crease under DynEB compared to Shared++. Finally, for the private-
friendly applications, DynEB achieves an L1 miss rate similar to
the private L1 baseline, as shown in Figure 13. These applications
prefer a private L1 organization due to their high L1 hit rate and
latency sensitivities, and DynEB runs them under their preferred
organization.

Effect on Energy. The shared L1 organization introduces inter-
core traffic. However, the chunking optimization (Section 3.3) re-
duces such overheads by only sending the data requested by the
requester, not the entire line. Moreover, our proposed schemes
reduce L2 and off-chip memory traffic. Using flit and hop counts
as well as L2 and memory access counters, we use DSENT [61]
and GPUWattch [39] to estimate energy consumption. Overall, the

Figure 12: The effect of
the proposed solutions
on number of replicas.

total power under DynEB is similar to baseline, with <1% reduction
averaged across all evaluated applications. Given the improvement
in the overall throughput and execution time, the average energy
savings under DynEB is 9% compared to the baseline. Therefore,
DynEB improves performance-per-watt by 9% and the energy ef-
ficiency (performance-per-energy) by 20%, on average across all
evaluated applications. For the shared-friendly applications, DynEB
maintains the total power consumption (similar to baseline) and
saves energy by 18%. Therefore, DynEB enhances performance-per-
watt and energy efficiency for the shared-friendly applications by
22% and 49%, respectively.

Effect on Latency. Our private L1 baseline and proposed solutions
assume a local L1 access latency of 28 cycles. The shared L1 cache
organization imposes a latency overhead of 54 cycles, on average,
for the communication between the requester and the home cores.
Such inter-core communication overhead is insignificant compared
to the 247 cycles, on average, to communicate with L2 in the baseline.
Also, such latency overhead does not negatively affect the evaluated
applications because of their latency-tolerant nature.
Adaptability of DynEB. The performance results so far show the
versatility of DynEB. This is because DynEB utilizes a repeated two-
step process of sampling and execution. Thus, DynEB adapts to the
changing characteristics of a given application’s execution. Also,
DynEB is local per core. Hence, each core independently monitors
application needs and decides the desirable mode of execution. To
visualize this adaptive nature, Figure 14 shows how DynEB changes
the execution mode under C-BFS and C-NN for a representative
core. For both applications, DynEB identifies the desirable mode of
execution and sticks to it for almost the entire execution.

© Ex-Sh
g oo |
2l . i i i il
0 50 100 150 200 250 300 350 400
Cycles (x1000)
(@
o b Ex-Sh .
° | Ex-Pr
S | -8 W I I I I W It v e I I b b I
=4 S &34 - - - o - - 3 - o - - - & -
0 200 400 600 800 1000 1200 1400 1600
Cycles (x1000)
(b)

Figure 14: Execution timeline under DynEB for (a) C-BFS and
(b) C-NN. S refers to a sampling phase. Ex-Sh and Ex-Pr refer
to an execution under Shared++ and Private, respectively.

5.3 Sensitivity Studies

Effect of L1 Cache Size. We evaluate the effect of doubling the L1
cache size per core on the performance of our schemes. We observe
that Shared++ and DynEB achieve around 11% improvement for
the shared-friendly applications while maintaining the private per-
formance of the non-shared-friendly applications, over a private
baseline with 2x L1 cache size. The lower scope of the improvement
is because the working set of some shared-friendly applications
can now fit in the larger L1 cache. Additionally, some of these ap-
plications are latency-sensitive, making a shared L1 organization
less desirable for them under 2x L1 cache size. We also compare
Shared++ and DynEB, for the shared-friendly applications, under

the baseline L1 cache size (Table 1) against a private L1 organi-
zation with double the L1 cache size, denoted as Private(2x). We
observe that Shared++ and DynEB improves IPC over Private(2x)
by 8% and 4%, respectively. This shows that by enabling a shared
L1 organization, we can perform better compared to a system with
double the L1 cache resources without the extra cost/overhead of
increasing the L1 cache size (84% cache area overhead).®

Effect of L2 Cache Size. We evaluate a boosted private L1 baseline
with double the L2 cache size. We observe almost no performance
improvement for the shared-friendly applications compared to the
baseline. This is because performance is limited by the L2 reply
bandwidth bottleneck [49, 73, 74]. Such a bottleneck is relieved
with Shared++ and DynEB as the shared L1 organization utilizes
the remote cores as an additional source of bandwidth.

Effect of L1 Access Latency. In our baseline and proposed
schemes, we assume 28 cycles access latency for the L1 caches.
Figure 15a shows average performance with DynEB under different
L1 access latency, ranging from 8 to 64 cycles, each normalized to
its respective private L1 baseline. We observe that DynEB achieves
17% performance improvement for the shared-friendly applications
even under an L1 access latency of 8 cycles while maintaining the
performance of the non-shared-friendly applications.

il

-

Normalized IPC
o

3]
o
.75
E 0.8 05
E 0.6 0'2;’ u Shared++ O DynEB
5 0.4
S 3 2B vAv B2 B2
0.2 £>0T/0> 0T8> 070073
8 16 32 64| 8 16 32 64 Ex L= £x £E
S S =} -4
Non-shared- Shared- = = = =
friendly friendly (56,8) (84,16) | (68,32

(a) L1 access latency (b) Core and uncore components

Figure 15: Sensitivity studies.

Effect of Core Count. We study the scalability of Shared++ and
DynEB using 8 x 8 mesh and 10 x 10 mesh NoCs under two different
configurations. Figure 15b shows performance of both Shared++
and DynEB normalized to their respective private L1 organization
baseline. The notation in the figure is (number of cores, number of
memory partitions). We observe that IPC follows a similar trend to
what we observed using the baseline (28,8) 6 X 6 mesh. Specifically,
with DynEB, we gain significant IPC improvement for the shared-
friendly applications and maintain the private performance for
the non-shared-friendly applications. For example, for an (84,16)
system, DynEB improves IPC by 33% and 4%, on average, for the
shared-friendly and non-shared-friendly applications, respectively.
We observe higher IPC improvement under increased core count
because the overall L1 capacity increases with more cores, thus
the available collective L1 bandwidth increases under shared L1
organization. Also, with more cores, the home camping effect is
reduced. Home camping, which is similar to partition camping [1],
is caused by memory accesses that are skewed towards a subset
of the home cores, which may degrade the performance. Thus, by
increasing the core count, each core is assigned a smaller slice of

©The cache area overhead is estimated using CACTI 6.5 [44].

the address range which should likely lead to a uniform traffic
distribution among the home cores and hence scales performance.
Effect of Additional Memory Partitions. Figure 15b shows the
effect of increasing the memory partitions count (this increases
total L2 capacity, L2 bandwidth, and memory bandwidth). For an
8 X 8 mesh, we study systems with 8 and 16 memory partitions. For
a 10X 10 mesh, we study systems with 16 and 32 memory partitions.
We observe that for the systems with a smaller number of memory
partitions, our schemes achieve performance boost at least as good
as the systems with a greater number of memory partitions. This is
because our schemes are more beneficial with more cores.

Effect of Core to Memory Partition Ratio. Figure 15b shows
that our schemes can boost IPC for the shared-friendly applica-
tions under varying core-to-memory partition ratio. Even in a large
(68,32) system, DynEB achieves 21% IPC improvement over the
baseline (68,32) 10 X 10 mesh.

5.4 Case Study: Deep-Learning Applications

In this section, we briefly characterize three popular deep-learning
workloads from Tango benchmark suite [28], namely AlexNet (AN),
ResNet (RN), and SqueezeNet (SN). Additionally, we evaluate their
performance under DynEB assuming a big 76-core system with
24 memory partitions (using 10 X 10 mesh) to mimic recent GPUs
oriented to processing deep-learning applications. Figure 16a char-
acterizes the evaluated applications in terms of L1 miss rate and
cache line replication ratio (Section 2). We observe high replication
ratio (up to 98% for SN) and high L1 miss rate (up to 98% for SN) in
the evaluated applications, making them perfect candidates for our
proposed schemes. Reducing this significant replication across the
L1s enables more data to be cached on-chip, which boosts the L1
hit rate, on-chip bandwidth, and overall performance, as shown in
Figure 16b. Specifically, on average, DynEB reduces the L1 miss rate
by 79% for these applications, thus improving their performance
by up to 3.9% and by 2.3X on average.

c O s .
s & 4 | 511 Miss Rate 085 o
g, %3 06 3 &
8E : S 04 28
[mRepl. Ratio Eq 02 5
o oL1 Miss Rate 5 <2
5 o 0

RN AN SN

(a) Characterization

(b) Performance

Figure 16: Analyzing deep-learning applications in terms of
L1 miss rate, cache line replication ratio, and performance
improvement under DynEB.

5.5 Case Study: Crossbar-based Shared L1
Cache Design

In this section, we evaluate the shared L1 organization under a
crossbar NoC. A conventional crossbar connecting cores on one
side of the crossbar to L2 slices on the other does not support inter-
core communication. Therefore, in this case study, we investigate
enabling such communication via the L2 slices. Then, we propose
using work distribution crossbar [16, 18], which is already utilized
in the graphics (rendering) pipeline, to forward inter-core traffic.

Inter-core Communication via L2 Slices. We update the
L2 slices to simply receive a remote request/reply from a re-
quester/home core and forward it back to the target home/requester
core. We observe that using L2 to forward the inter-core traffic re-
duces performance by 23% compared to the private L1 organization.
This is due to the contention between L2 replies and forwarded
remote traffic, thereby significantly delaying the remote traffic and
thus losing performance.

Inter-core Communication via Work Distribution Crossbar.
We propose to utilize the work distribution crossbar [16, 18], which
already exists and is used by the graphics pipeline, to handle inter-
core traffic instead of using the L2 slices. The work distribution
crossbar is a scalable multistage butterfly NoC that supports 1)
the distribution of triangle and fragment work necessary for load
balancing and 2) the synchronization communication necessary for
ordering in the graphics pipeline [16]. Therefore, the work distribu-
tion crossbar inherently enables inter-core communication. A mul-
tistage butterfly (k-ary n-fly) supports a system with up to k” nodes
organized in n stages, where each stage has k! switches with a
radix k (i.e., k X k crossbar switch). For our 36-node baseline system
(28 cores and 8 memory partitions), we assume a 6-ary 2-fly butterfly
NoC. Figure 17a shows performance of Shared+Chunk (Section 3.3)
and DynEB (Section 4.2) under the work distribution crossbar. We
observe the following. First, Shared+Chunk and DynEB improve
performance of the shared-friendly applications, on average, by
76% and 65%, respectively. Second, for the non-shared-friendly ap-
plications (denoted as NS in Figure 17a), Shared+Chunk incurs
a 5% performance drop, on average. However, DynEB maintains
these applications’ private performance and offers a 2% perfor-
mance improvement, on average. This is because DynEB obtains
the advantages of both shared and private L1 organizations per
each application needs.

Q 3.:&'; m Shared+Chunk 3 Shared 4
Z 25 oDynEB 25 | === Shared+Chunk "
g2 A ERTE DynEB JA
® 1.5 o o ol
E 1 B r.’-‘"
205 Nqs5 ,'
0 © o
’,
CPRSLBZZE22 §/5/5 5 1| auemm
AFeJoEsggoaswE22 2 [
Ud":m”’"’gg““‘f_ 05 [f
d d
Shared-friendly NS|All Applications
(@) (b)

Figure 17: Performance of the shared L1 organization in
terms of IPC under a crossbar-based system. NS refers to
non-shared-friendly applications. Results are normalized to
a crossbar-based system with private L1 organization.

Overall, Shared+Chunk and DynEB improve performance of
all evaluated applications (denoted as All in Figure 17a) by 18%
and 23%, respectively. To demonstrate that, Figure 17b summarizes
the effect of the shared L1 organization (Shared), the proposed
chunking optimization (Shared+Chunk), and the dynamic scheme
(DynEB) on the evaluated applications sorted ascendingly. Similar
to the mesh-based system, Shared and Shared+Chunk can provide
performance benefits for the shared-friendly applications, but they
fail to push the tail of the S-curve towards the private L1 baseline

due to the private-friendly applications. On the other hand, DynEB
recovers the lost performance of the private-friendly applications,
while improving the shared-friendly applications.

Scalability. We study the scal-

ability of Shared+Chunk and o 25
DynEB for a 64-node system un- T 2

. . @ 1.5
der two different configurations. £
Specifically, we evaluate a 48- ;Eo.: B Shared: Counk
core system with 16 memory (56,8) (46.18)] (56,8) (48.16)
partitions and a 56-core system Non-shared- | Shared-
with 8 memory partitions. For friendly friendly

both configurations, we assume
a 4-ary 3-fly butterfly NoC. Fig-
ure 18 shows performance of
both Shared+Chunk and DynEB normalized to their respective pri-
vate L1 baseline. The notation in the figure is (number of cores, num-
ber of memory partitions). We observe a similar trend to what we
observed with the 36-node system. In particular, Shared+Chunk sig-
nificantly boosts performance of shared-friendly applications while
falling short for non-shared-friendly applications. On the other
hand, DynEB matches the performance boost of the Shared+Chunk
for shared-friendly applications and maintains the private perfor-
mance for non-shared-friendly applications. Additionally, similar
to our observation in Section 5.3, performance improvement under
the 56-core system is higher compared to the 48-core system. This
is because our proposed shared L1 organization benefits more in
the presence of more L1 caches.

Figure 18: Crossbar-
based system scalability.

6 RELATED WORK

To our knowledge, this is the first work to make a case for using
shared L1 caches in GPUs. In this section, we briefly discuss works
that are most relevant to this study.

Intra-core Locality in GPUs. There is a large body of work that
focuses on exploiting the locality that exists within a private local
L1 cache in GPUs [27, 29, 42, 54, 55, 58]. In this work, we specifically
focus on the locality that exists across L1 caches. Multiple prior
CTA schedulers [3, 38, 62] have used different heuristics to exploit
the locality across CTAs. However, they are not ideal [26, 40, 66],
and the fundamental problem of cache line replication across pri-
vate L1 caches remains. While the goal of these schedulers is to
improve cache performance, our approach 1) is not dependent on
any scheduling algorithm, 2) does not require any software support
to determine private and shared data, and 3) does not only reduce
replication but can eliminate it. In general, prior L1 cache capacity
management works based on bypassing [34, 62], sectoring [53],
or compression [4] do not ensure zero data replication across L1s.
However, they can continue to improve the performance of local L1
caches while our shared L1 organization can facilitate coordination
across L1s for their better utilization.

Inter-core Locality in GPUs. Prior works proposed mechanisms
to exploit inter-core locality in GPUs by allowing communica-
tion between multiple L1s via connecting L1s through a ring net-
work [15], using the L2 cache to forward inter-core traffic [74], or
coherence-like mechanisms [64]. Recently, Ibrahim et al. [23] aimed
to further optimize inter-core communication using data sharing
prediction and parallel probing/searching schemes. Although these

works identified and exploited inter-core locality via inter-core com-
munication, they do not provide a way to reduce or eliminate data
replication across L1 caches as we do. Our shared L1 organization
utilizes inter-core communication to eliminate the L1 cache wastage
without the need for searching or prediction. Zhao et al.[73] boost
performance of applications with high degrees of data sharing be-
tween cores by replicating the shared cache lines across different L2
slices. This is complementary to our work as ours improves the L1
bandwidth utilization while their work improves the L2 bandwidth.
Replication Control in CPUs. Many works have investigated
the trade-offs between shared and private caches in the context
of CPUs. These works use a flavor of replication control [7, 11,
21, 35, 43, 65, 71], cooperative capacity management mechanisms
across cores [9, 14, 20, 36, 51, 56], hybridized shared/private de-
signs [37, 72], OS-level techniques [12, 19], or focus on different
architectures/components [8, 59]. Our work differs from those in
multiple aspects. First, most of the replication management works
in the CPU context consider latency as an important metric for
controlling replication. We show that using a latency metric (i.e.,
AMAT) performs poorly in GPUs as it does not consider the latency-
tolerance property of applications. Therefore, we investigate a GPU-
oriented metric (i.e., EB) to gauge an application’s affinity towards
a private or shared L1 organization. Second, all works in the CPU
context investigate the aforementioned approaches for the last-
level caches as L1 caches always aim to reduce latency. Due to
the latency-tolerant and throughput-oriented behavior of GPUs,
optimizing for hit rate (and hence bandwidth) is usually more im-
portant than optimizing for latency, so we consider using a shared
cache organization for L1 caches. Finally, our mechanism is entirely
locally managed, and no coordinated mechanisms are needed to
make a decision.

7 CONCLUSIONS

In this work, we show that using a shared L1 cache organization
in GPUs is attractive in terms of performance for many applica-
tions. We also address the challenges related to applications that
lose performance from such an organization with low-overhead
communication optimization techniques and a lightweight dynamic
mechanism that gauges an application’s affinity towards a private
or shared L1 organization and configures the L1 caches accordingly.
We show that our techniques can boost performance and can be
even more beneficial for future large GPUs with many cores. We
hope that this work will open up new research directions in sharing
other resources in the GPU (e.g., software-managed caches).

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers, Nuwan Jayasena, and
members of the Insight Computer Architecture Lab at William &
Mary for their feedback. This material is based upon work sup-
ported by the National Science Foundation (NSF) CAREER award
(#1750667). This work was performed in part using computing fa-
cilities at William & Mary. ©2020 Advanced Micro Devices, Inc.
All rights reserved. AMD, the AMD Arrow logo, and combinations
thereof are trademarks of Advanced Micro Devices, Inc. Other prod-
uct names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

(1]

(2]

=

=
20,

[10

(1]

[12

[13

[14]

[15]

[16

[17]

(18

=
X0

[20]

[21]

[22

[23]

[24

Ashwin M. Aji, Mayank Daga, and Wu-chun Feng. 2011. Bounding the Effect of
Partition Camping in GPU Kernels. In Proceedings of the International Conference
on Computing Frontiers (CF).

AMD. 2019. AMD RDNA Architecture White Paper. (August 2019). https:
//www.amd.com/system/files/documents/rdna-whitepaper.pdf

Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

Akhil Arunkumar, Shin-Ying Lee, Vignesh Soundararajan, and Carole-Jean Wu.
2018. LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Man-
agement for Energy Efficient GPUs. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA).

Ali Bakhoda, John Kim, and Tor M Aamodt. 2010. Throughput-Effective On-
Chip Networks for Manycore Accelerators. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

A. Bakhoda, G.L. Yuan, WW.L. Fung, H. Wong, and T.M. Aamodt. 2009. An-
alyzing CUDA Workloads Using a Detailed GPU Simulator. In Proceedings of
the International Symposium on Performance Analysis of Systems and Software
(ISPASS).

Bradford M Beckmann, Michael R Marty, and David A Wood. 2006. ASR: Adap-
tive Selective Replication for CMP Caches. In Proceedings of the International
Symposium on Microarchitecture (MICRO).

Srikant Bharadwaj, Guilherme Cox, Tushar Krishna, and Abhishek Bhattacharjee.
2018. Scalable Distributed Last-level TLBs Using Low-latency Interconnects. In
Proceedings of the International Symposium on Microarchitecture (MICRO).
Jichuan Chang and Gurindar S. Sohi. 2006. Cooperative Caching for Chip Multi-
processors. In Proceedings of the International Symposium on Computer Architec-
ture (ISCA).

Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, JW. Sheaffer, Sang-Ha Lee, and K.
Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous Computing. In
Proceedings of the International Symposium on Workload Characterization (IISWC).
Zeshan Chishti, Michael D Powell, and TN Vijaykumar. 2005. Optimizing Repli-
cation, Communication, and Capacity Allocation in CMPs. In Proceedings of the
International Symposium on Computer Architecture (ISCA).

Sangyeun Cho and Lei Jin. 2006. Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation. In Proceedings of the International Symposium
on Microarchitecture (MICRO).

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable Het-
erOgeneous Computing (SHOC) Benchmark Suite. In Proceedings of the Workshop
on General Purpose Processing Using GPU (GPGPU).

R. G. Dreslinski, D. Fick, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy, Y. Lee,
D. Kim, Nurrachman Liu, M. Wieckowski, Gregory Chen, T. Mudge, D. Sylvester,
and D. Blaauw. 2012. Centip3De: A 64-Core, 3D Stacked, Near-Threshold System.
In Proceedings of the Symposium on High Performance Chips (Hot Chips).
Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2016. Cooperative Caching
for GPUs. ACM Transactions on Architecture and Code Optimization (TACO)
(2016).

Matthew Eldridge, Homan Igehy, and Pat Hanrahan. 2000. Pomegranate: A Fully
Scalable Graphics Architecture. In Proceedings of the International Conference on
Computer Graphics and Interactive Techniques (SSGGRAPH).

GPGPU-Sim v3.x. 2017. Address Mapping. (June 2017). http://gpgpu-sim.org/
manual/index.php5/GPGPU-Sim_3.x_Manual#Memory_Partition

Ayub A. Gubran and Tor M. Aamodt. 2019. Emerald: Graphics Modeling for SoC
Systems. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2009.
Reactive NUCA: Near-optimal Block Placement and Replication in Distributed
Caches. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

H. Hossain, S. Dwarkadas, and M. C. Huang. 2008. Improving Support for Locality
and Fine-grain Sharing in Chip Multiprocessors. In Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques (PACT).

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. 2007. A NUCA
Substrate for Flexible CMP Cache Sharing. IEEE Transactions on Parallel and
Distributed Systems (TPDS) (2007).

Hynix. 2009. Hynix GDDR5 SGRAM Part H5SGQ1H24AFR Revision 1.0. (2009).
http://www.hynix.com/datasheet/pdf/graphics/H5SGQ1H24AFR(Rev1.0).pdf
Mohamed Assem Ibrahim, Hongyuan Liu, Onur Kayiran, and Adwait Jog. 2019.
Analyzing and Leveraging Remote-core Bandwidth for Enhanced Performance
in GPUs. In Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques (PACT).

W. Jia, K. A. Shaw, and M. Martonosi. 2014. MRPB: Memory Request Prioritization
for Massively Parallel Processors. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA).

[25

[26

[27

[28

[29

(30]

w
—

[32

[33

[34

[35

&
2

(37]

(38]

[39

[40

[41

[42]

[43

S
&

[45]

[46

Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny Bolotin,
Nilardish Chatterjee, Steve Keckler, Mahmut T. Kandemir, and Chita R. Das.
2015. Anatomy of GPU Memory System for Multi-Application Execution. In
Proceedings of the International Symposium on Memory Systems (MEMSYS).
Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R. Das. 2013. Orchestrated Scheduling and Prefetch-
ing for GPGPUs. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

Adwait Jog, Onur Kayiran, Nachiappan C. Nachiappan, Asit K. Mishra, Mah-
mut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. OWL:
Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU
Performance. In Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).

Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar, Joshua
Skow, Goutam Madhukeshwar Hegde, and Hyeran Jeon. 2019. Detailed Charac-
terization of Deep Neural Networks on GPUs and FPGAs. In Proceedings of the
Workshop on General Purpose Processing Using GPU (GPGPU).

Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das. 2013. Neither
More Nor Less: Optimizing Thread-level Parallelism for GPGPUs. In Proceedings
of the International Conference on Parallel Architecture and Compilation Techniques
(PACT).

Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, and Chita R.
Das. 2014. Managing GPU Concurrency in Heterogeneous Architectures. In
Proceedings of the International Symposium on Microarchitecture (MICRO).
Mahmoud Khairy, Akshay Jain, Tor M. Aamodt, and Timothy G. Rogers. 2018.
Exploring Modern GPU Memory System Design Challenges through Accurate
Modeling. arXiv (October 2018).

Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa,
Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve. 2015.
Stash: Have Your Scratchpad and Cache It Too. In Proceedings of the International
Symposium on Computer Architecture (ISCA).

G. Koo, H. Jeon, and M. Annavaram. 2015. Revealing Critical Loads and Hid-
den Data Locality in GPGPU Applications. In Proceedings of the International
Symposium on Workload Characterization (IISWC).

Gunjae Koo, Yunho Oh, Won Woo Ro, and Murali Annavaram. 2017. Access
Pattern-Aware Cache Management for Improving Data Utilization in GPU. In
Proceedings of the International Symposium on Computer Architecture (ISCA).
George Kurian, Srinivas Devadas, and Omer Khan. 2014. Locality-Aware Data
Replication in the Last-Level Cache. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA).

George Kurian, Omer Khan, and Srinivas Devadas. 2013. The Locality-aware
Adaptive Cache Coherence Protocol. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA).

Woo-Cheol Kwon, Tushar Krishna, and Li-Shiuan Peh. 2014. Locality-oblivious
Cache Organization Leveraging Single-cycle Multi-hop NoCs. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. 2014. Improving
GPGPU Resource Utilization Through Alternative Thread Block Scheduling.
In Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA).

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In Proceedings of the International Symposium
on Computer Architecture (ISCA).

Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk Cor-
poraal. 2017. Locality-Aware CTA Clustering for Modern GPUs. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

D. Li and T. M. Aamodt. 2016. Inter-Core Locality Aware Memory Scheduling.
IEEE Computer Architecture Letters (CAL) (2016).

Dong Li, Minsoo Rhu, Daniel R Johnson, O Mike, Mattan Erez, Doug Burger,
Donald S Fussell, and Stephen W Redder. 2015. Priority-Based Cache Allocation
in Throughput Processors. In Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA).

Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. 2004. Organizing the
Last Line of Defense before Hitting the Memory Wall for CMPs. In Proceedings of
the International Symposium on High-Performance Computer Architecture (HPCA).
Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proceedings of the International Symposium on Microarchitecture
(MICRO).

C. Nugteren, G. van den Braak, H. Corporaal, and H. Bal. 2014. A Detailed GPU
Cache Model Based on Reuse Distance Theory. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA).

NVIDIA. 2011. CUDA C/C++ SDK Code Samples. (2011). http://developer.nvidia.
com/cuda-cc-sdk-code-samples

[47]
[48]

[49

[50

[51]

[52]

[53

[54]

[55

[56]

[57]

[58

[59]

NVIDIA. 2019. CUDA C++ Programming Guide. (November 2019). https:
//docs.nvidia.com/cuda/cuda-c-programming- guide/index.html

NVIDIA. 2019. Parallel Thread Execution ISA Version 6.5. (November 2019).
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2019. Opportunistic
Computing in GPU Architectures. In Proceedings of the International Symposium
on Computer Architecture (ISCA).

Louis-Noél Pouchet. 2012. Polybench: The Polyhedral Benchmark Suite. (2012).
http://web.cs.ucla.edu/~pouchet/software/polybench/

Moinuddin K Qureshi. 2009. Adaptive Spill-Receive for Robust High-Performance
Caching in CMPs. In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA).

X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans. 2020. HMG:
Extending Cache Coherence Protocols Across Modern Hierarchical Multi-GPU
Systems. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA).

Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. 2013. A Locality-
aware Memory Hierarchy for Energy-efficient GPU Architectures. In Proceedings
of the International Symposium on Microarchitecture (MICRO).

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-Conscious
Wavefront Scheduling. In Proceedings of the International Symposium on Microar-
chitecture (MICRO).

Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013. Divergence-Aware
Warp Scheduling. In Proceedings of the International Symposium on Microarchi-
tecture (MICRO).

Dyer Rolan, Basilio B Fraguela, and Ramon Doallo. 2012. Adaptive Set-Granular
Cooperative Caching. In Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA).

D. Sanchez and C. Kozyrakis. 2011. Vantage: Scalable and Efficient Fine-Grain
Cache Partitioning. In Proceedings of the International Symposium on Computer
Architecture (ISCA).

Ankit Sethia and Scott Mahlke. 2014. Equalizer: Dynamic Tuning of GPU Re-
sources for Efficient Execution. In Proceedings of the International Symposium on
Microarchitecture (MICRO).

Amna Shahab, Mingcan Zhu, Artemiy Margaritov, and Boris Grot. 2018. Farewell
My Shared LLC!: A Case for Private Die-stacked DRAM Caches for Servers. In
Proceedings of the International Symposium on Microarchitecture (MICRO).
Inderpreet Singh, Arrvindh Shriraman, Wilson WL Fung, Mike O’Connor, and
Tor M Aamodt. 2013. Cache Coherence for GPU Architectures. In Proceedings of
the International Symposium on High-Performance Computer Architecture (HPCA).
C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh, and
V. Stojanovic. 2012. DSENT - A Tool Connecting Emerging Photonics with

[62

(63

[64]

[65

[66

(67

(68

[70

[71

[72

[73

[74

]

]

]

Electronics for Opto-Electronic Networks-on-Chip Modeling. In Proceedings of
the International Symposium on Networks-on-Chip (NOCS).

Abdulaziz Tabbakh, Murali Annavaram, and Xuehai Qian. 2017. Power Efficient
Sharing-Aware GPU Data Management. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS).

A. Tabbakh, X. Qian, and M. Annavaram. 2018. G-TSC: Timestamp Based Coher-
ence for GPUs. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA).

David Tarjan and Kevin Skadron. 2010. The Sharing Tracker: Using Ideas from
Cache Coherence Hardware to Reduce Off-Chip Memory Traffic with Non-
Coherent Caches. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC).

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Nexus: A New Ap-
proach to Replication in Distributed Shared Caches. In Proceedings of the Interna-
tional Conference on Parallel Architecture and Compilation Techniques (PACT).
N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu. 2018. The
Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality
In GPUs. In Proceedings of the International Symposium on Computer Architecture
(ISCA).

Haonan Wang, Fan Luo, Mohamed Ibrahim, Onur Kayiran, and Adwait Jog.
2018. Efficient and Fair Multi-programming in GPUs via Effective Bandwidth
Management. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA).

Wm A Wulf and Sally A McKee. 1995. Hitting the Memory Wall: Implications of
the Obvious. ACM SIGARCH Computer Architecture News (1995).

V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa. 2019. Combin-
ing HW/SW Mechanisms to Improve NUMA Performance of Multi-GPU Systems.
In Proceedings of the International Symposium on Microarchitecture (MICRO).

J. Zhan, O. Kayiran, G. H. Loh, C. R. Das, and Y. Xie. 2016. OSCAR: Orches-
trating STT-RAM Cache Traffic for Heterogeneous CPU-GPU Architectures. In
Proceedings of the International Symposium on Microarchitecture (MICRO).
Michael Zhang and Krste Asanovic. 2005. Victim Replication: Maximizing Ca-
pacity while Hiding Wire Delay in Tiled Chip Multiprocessors. In Proceedings of

the International Symposium on Comfuter Architecture (ISCA).
Li Zhao, Ravi Iyer, Mike Upton, and Don Newell. 2008. Towards Hybrid Last

Level Caches for Chip-Multiprocessors. ACM SIGARCH Computer Architecture
News (2008).

Xia Zhao, Almutaz Adileh, Zhibin Yu, Zhiying Wang, Aamer Jaleel, and Lieven
Eeckhout. 2019. Adaptive Memory-Side Last-Level GPU Caching. In Proceedings
of the International Symposium on Computer Architecture (ISCA).

X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout. 2017. LA-LLC: Inter-Core Locality-
Aware Last-Level Cache to Exploit Many-to-Many Traffic in GPGPUs. IEEE
Computer Architecture Letters (CAL) (2017).

	Abstract
	1 Introduction
	2 Motivation and Analysis
	2.1 Analysis of Wasted L1 Cache Space
	2.2 A Case for Shared L1 Caches

	3 Shared L1 Caches: Design, Analysis, and Optimizations
	3.1 Terminology and Address Mapping
	3.2 Shared L1 Caches Design
	3.3 Performance Analysis and Optimizations

	4 A Dynamic Mechanism for Handling Private-friendly Applications
	4.1 Sampling Methodology
	4.2 Sampled Metrics
	4.3 Hardware Overhead

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Sensitivity Studies
	5.4 Case Study: Deep-Learning Applications
	5.5 Case Study: Crossbar-based Shared L1 Cache Design

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

