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ABSTRACT

Graphics Processing Units (GPUs) concurrently execute thousands

of threads, which makes them effective for achieving high through-

put for a wide range of applications. However, the memory wall

often limits peak throughput. GPUs use caches to address this limi-

tation, and hence several prior works have focused on improving

cache hit rates, which in turn can improve throughput for memory-

intensive applications. However, almost all of the prior works as-

sume a conventional cache hierarchy where each GPU core has a

private local L1 cache and all cores share the L2 cache. Our analy-

sis shows that this canonical organization does not allow optimal

utilization of caches because the private nature of L1 caches allows

multiple copies of the same cache line to get replicated across cores.

We introduce a new shared L1 cache organization, where all

cores collectively cache a single copy of the data at only one lo-

cation (core), leading to zero data replication. We achieve this by

allowing each core to cache only a non-overlapping slice of the

entire address range. Such a design is useful for significantly im-

proving the collective L1 hit rates but incurs latency overheads from

additional communications when a core requests data not allowed

to be present in its own cache. While many workloads can toler-

ate this additional latency, several workloads show performance

sensitivities. Therefore, we develop lightweight communication

optimization techniques and a run-time mechanism that consid-

ers the latency-tolerance characteristics of applications to decide

which applications should execute in private versus shared L1 cache

organization and reconfigures the caches accordingly. In effect, we

achieve significant performance and energy efficiency improve-

ments, at a modest hardware cost, for applications that prefer the

shared organization, with little to no impact on other applications.

CCS CONCEPTS

•Computer systems organization→ Single instruction, mul-

tiple data.
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1 INTRODUCTION

Graphics Processing Units (GPUs) have emerged as very effective

general-purpose accelerators for a wide range of applications. They

have been successful because they provide very high throughput at

a competitive power budget. High-bandwidthmemories provide the

foundation for supporting the fine-grain multithreading that GPUs

rely upon for achieving high throughput. However, the well-known

memory wall [68] is often the performance-limiting factor for GPUs.

Traditionally, a popular approach to address the memory wall prob-

lem has been to employ on-chip memories such as caches. In CPUs,

caches have been very effective in cutting down memory latencies.

In GPUs, however, latency is not often the first-order challenge for

many applications because of the high level of multithreading. Still,

GPUs are equipped with both software-managed (scratchpad) and

hardware-managed on-chip memories (caches) to reduce traffic to

the lower levels of the memory hierarchy. An increase in on-chip

memory hit rate can lead to a proportional decrease in memory

traffic, translating into performance improvements for memory-

intensive programs [45, 67]. Therefore, researchers in the past have

invested significant efforts in improving cache performance via

hardware and software methods [24, 26, 27, 29, 32, 54, 73].

GPUs typically employ a two-level cache hierarchy, where each

core is associated with a private local L1 cache, and all cores in the

GPU share a banked L2 cache. An interconnect connects all cores to

the L2 caches and memory partitions. The L1 caches are responsible

for reducing traffic to the interconnect and L2 cache, while the L2

cache helps to reduce memory traffic. This paper challenges such a

conventional cache organization and reveals inefficiencies in the

existing cache hierarchy in the context of GPUs. In particular, we

focus on addressing the inefficiencies associated with GPUs’ private

local L1 caches. Specifically, because of the private nature of the

L1 caches, the same cache lines can be requested by different cores,

leading to high inter-core locality [15, 23, 33, 40, 41]. This data

(cache line) replication reduces the effective aggregate capacity of

the L1 caches across all cores, leading to their lower bandwidth

utilization as we will show in Section 2.

To address these challenges, we propose and evaluate shared

local L1 caches in GPUs. The key idea is to ensure only one copy of

data exists across L1 caches, thereby eliminating data replication



and making better use of the finite cache capacity. We propose to

realize the shared L1 caches by making minimal changes to the

existing L1 cache controller and address mapping policies, with no

changes to the L1 caches. Normally, each core can cache any data

from the entire address range. Instead, our shared L1 cache design

restricts each core to cache only a unique slice of the address range.

Consequently, each core caches data from non-overlapping address

ranges, which eliminates data replication across local caches.

Although such a design is attractive for GPUs, it requires inter-

core communication if one core requests data that is not mapped

to its allocated address range. In such situations, additional latency

will be incurred to fetch the data from the L1 cache of a remote

core. Fortunately, thanks to the latency-tolerance of many GPGPU

applications, an increase in latency often has a negligible impact

on performance. However, not all applications a) can tolerate long

memory latencies, b) exhibit data replication, or c) are sensitive to

cache capacity (i.e., their working sets fit in L1 cache or they stream

with little-to-no locality). Consequently, shared local caches can

have negative or no effect on such applications’ performance. To

address these concerns, we develop lightweight mechanisms to a)

reduce the inter-core communication overhead and b) identify ap-

plications that prefer the private L1 organization and hence execute

them accordingly.

Contributions: This paper contributes the following:

• We propose shared L1 caches in GPUs. To the best of our

knowledge, this is the first paper that performs a thorough char-

acterization of shared L1 caches in GPUs and shows that they can

significantly improve the collective L1 hit rates and reduce the

bandwidth pressure to the lower levels of the memory hierarchy.

•We develop GPU-specific optimizations to reduce inter-core

communication overheads. These optimizations are vital for maxi-

mizing the benefits of the shared L1 cache organization.

•We develop a GPU-specific lightweight dynamic scheme that

classifies application phases and reconfigures the L1 cache organi-

zation (shared or private) based on the phase behavior.

• We extensively evaluate our proposal across 28 GPGPU appli-

cations. Our dynamic scheme boosts performance by 22% (up to

52%) and energy efficiency by 49% for the applications that exhibit

high data replication and cache sensitivity without degrading the

performance of the other applications. This is achieved at a modest

area overhead of 0.09mm2/core.

• We make a case to employ our dynamic scheme for deep-

learning applications to boost their performance by 2.3×.

2 MOTIVATION AND ANALYSIS

In this section, we first quantify the data replication problem as-

sociated with private L1s in GPUs (as described in Section 1) and

then make a case for shared L1s to address this inefficiency.

2.1 Analysis of Wasted L1 Cache Space

Figure 1 shows the cache line replication ratio under the baseline

private L1 organization for the evaluated applications (methodology

detailed in Section 5.1). The cache line replication ratio is defined

as the ratio of L1 misses that can be found in other L1 caches to

total L1 misses. We observe that the replication ratio varies across

the applications. Specifically, some applications have no replication
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Figure 1: Performance of the evaluated applications in terms

of L1miss rate, cache line replication ratio, and IPC improve-

ment under 16× the L1 cache size (normalized to baseline).

The left-hand y-axis represents cache line replication ratio

and raw L1 miss rate.

(e.g., C-BLK) or low replication (e.g., C-RAY), while others have high

replication (e.g., C-BFS).

Identifying Target Applications. The waste due to data replica-

tion may not affect all applications. Only the applications that are

sensitive to larger cache space are expected to benefit if the wasted

cache space is reduced/eliminated. Therefore, we study their perfor-

mance under a 16× larger L1 cache in Figure 1. We observe that 13

applications are both capacity-sensitive and possess high data repli-

cation. To identify the subset of the capacity-sensitive applications

that are sensitive to data replication, we study their L1 miss rates.

Applications with low L1 miss rates (e.g., C-NN and S-SpMV) may

not suffer under private L1 caches because the majority of their

requests can be satisfied locally. These applications tend to have

working sets smaller than the baseline L1 cache capacity. In general,

we consider an application to be sensitive to data replication if it

1) has a replication ratio of >10%, 2) has an L1 miss rate of >50%,

and 3) observes a speedup of >5% with 16× capacity.1 Based on

these criteria, we observe that 11 applications are sensitive to data

replication (marked by the blue boxes in Figure 1). These are our

target applications.

2.2 A Case for Shared L1 Caches

One way to eliminate data replication is to enable a shared cache

organization across the local L1 caches. Under a private L1 organiza-

tion, each core can cache any line. For example, given four different

address ranges represented by different shades in Figure 3a, a pri-

vate L1 cache can store any cache line from all four address ranges.

However, under a shared L1 organization, the entire address range

is interleaved across all cores and such mapping is fixed. In other

words, each core caches data from a non-overlapping address range.

For example, as shown in Figure 3b, the address range represented

by white can be cached by only L1-0, and the address range repre-

sented by black can be cached by only L1-3. Because an exclusive

slice of the address range maps to a single L1, the shared L1 orga-

nization ensures no cache line replication across L1s. However, to

fully unlock the potential of the shared L1 organization, the cores

need to communicate to fetch the data that do not belong to their

assigned address ranges.

Sources of Benefits. To understand the scope of potential perfor-

mance benefits of the shared L1 organization, we set up a hypo-

thetical design where all cores can communicate with each other

1This criteria is empirical and is not used by our proposed scheme in Section 4.









Concurrent Evaluation of Private and Shared L1 Organiza-

tion. Our scheme concurrently evaluates both a shared and a pri-

vate L1 organization using the local L1 cache during the sampling

phase. We accomplish such simultaneous evaluation by treating

half of the L1 cache sets as shared and the other half as private. We

assign the even sets and the odd sets to be treated as private and

shared, respectively A . We interleave the set indexing between pri-

vate and shared at a fine granularity to decrease the bias of requests

focusing on a subset of the cache sets. Note that this approach is

not a dynamic cache partitioning scheme, thus we do not have the

associated overheads [57]. We do not change the indexing of the

cache as the set bits are the same. We use the least significant bit

(LSB) of the set bits to determine if the required set is even (to be

treated as private) or odd (to be treated as shared) B .

Sampling Phase. During the sampling phase, we use counters

to gather information that is crucial for classifying the running

application C . For example, we count the number of accesses and

misses to the local L1 cache to estimate the L1 miss rate at the end

of the sampling phase. Because we evaluate both shared and private

cache organizations concurrently, we use two groups of counters

for each option, and only the corresponding counters are updated

based on the LSB of the set bits. For example, if a core receives a

read reply from L2 to install in an odd set, then the replies from L2

counter for the sets that are treated as shared is incremented D . The

sampling phase continues until both the shared and private groups

each process at least RS local L1 accesses (RS = 512 requests) E ,

where a local L1 access occurs when a core generates a request that

is destined to its local L1 cache (i.e., requester = home). This makes

the time interval for the sampling phase variable. Also, this ensures

that each group observes enough requests to have a fair evaluation

between the two options.

Execution Phase. Once the sampling phase ends, the counters

from each group are used to evaluate which cache organization

to use F . The evaluation is based on the metrics discussed in Sec-

tion 4.2. After evaluation, the execution phase starts under the

desired L1 organization. The next sampling phase starts after pro-

cessing REx local L1 accesses (REX = 16384 requests).4

Selecting the Home Core. Due to the self-paced nature of our

dynamic scheme, a given core may be in either sampling or exe-

cution phase. Additionally, a core locally chooses the preferred L1

organization. Nevertheless, as discussed in Section 3.1, a core under

a shared L1 organization (during sampling or execution) still uses

the core bits to determine the home core, even if the home core is

under private L1 organization or in a sampling phase.

Handling Coherence. The coherence protocol utilized in the pri-

vate L1 baseline is used in our dynamic mechanism. Specifically,

both the private L1 baseline and our dynamic scheme employ

flushing-based software coherence [2, 47, 48, 52, 60, 63, 69].5 This

is ensured by the usage of 1) a write-through L1 cache that is inval-

idated and flushed at every kernel boundary or at synchronization

points, and 2) a shared L2 cache that is inherently coherent. Such

system-wide flushing of the L1 caches does not differentiate be-

tween a core that is under execution phase (private or shared) or

4RS and REx values are empirically chosen based on the insight to have longer
execution phases to minimize any sampling overheads.
5If a hardware-based coherence protocol is used, the directory at L2 will correctly keep
track of the list of sharer cores and the invalidations will only be sent to the sharers.

sampling phase. In other words, all L1 caches in the system will

be invalidated and flushed indiscriminately at kernel boundary or

synchronization points to ensure coherence.

Handling Private-to-Shared Transition. In case shared L1 or-

ganization is desired for the execution phase, then some leftover

cache lines may exist in the cache. A leftover line is a cache line

that was cached during sampling in the sets treated as private but

does not belong to the assigned address range of the core. However,

if a leftover line is requested, then the core will skip its local L1

cache (as requester , home) and forward the request to the home

core. Thus, these leftovers lines are not utilized by the requester

core during the execution phase. Additionally, a request destined to

a cache set storing a leftover line will always lead to a tag mismatch

with the leftover line as the core bits are different. We employ a

lazy invalidation scheme instead of migrating the leftover lines or

flushing the L1 cache because of its simplicity. However, the cache

replacement policy may be updated to consider the leftover lines for

victim-selection. These lines can be identified by using either the

core bits or by setting an extra 1-bit per cache line during sampling.

Such a policy should replace the leftover lines sooner leading to

better cache utilization.

4.2 Sampled Metrics

In this section, we assess the effectiveness of two possible metrics

that can be used in classifying an application to be either shared-

friendly or private-friendly. A good metric should clearly distin-

guish between shared-friendly and private-friendly applications

with minimum overhead in terms of the sampled information.

Metric I: Average Memory Access Time (AMAT ) is a well-

known metric used to analyze memory system performance in

the CPU domain. AMAT is a good candidate for evaluation as it

covers the cache capacity aspect (via the miss rate) and reports the

average overall latency. For our scheme, AMAT is defined as:

AMAT = L1HitLatency + (
L

L + R
× L1LocalMissRate

× L2AccessLatency ) + (
R

L + R
×AMATHome )

(1)

AMATHome = HomeAccessLatency

+ (L1RemoteMissRate × L2AccessLatency )
(2)

where L is the number of a core’s own local L1 accesses, and R is the

number of a core’s own remote L1 accesses. L/(L + R) represents a

fraction of the given core’s own requests that belong to its assigned

address range. Similarly, R/(L+R) represents a fraction of the core’s

own requests that do not belong to its assigned address range.

At the end of the sampling phase, we evaluate AMAT for both

shared and private L1 organizations and choose the option with the

lower AMAT. Figure 9a shows the effectiveness of AMAT to choose

between shared and private L1 organization using four non-shared-

friendly applications (one insensitive and three private-friendly)

and four shared-friendly applications. We observe that for the non-

shared-friendly applications, AMAT (DynAMAT ) performs as well

as the baseline by clearly identifying the insensitive and private-

friendly applications. It also performs better than Shared++ for

C-TRA, C-NN, and S-SpMV. However, DynAMAT performs poorly
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Figure 9: Effect of different metrics on the dynamic scheme.

with the shared-friendly applications, losing the performance ben-

efits gained by using the shared L1 organization. This is because

AMAT is oblivious to latency tolerance in GPUs. Thus, even with

the latency overhead imposed by the shared L1 organization to ac-

cess remote home cores, GPUs may be able to hide such an increase

in latency due to their huge parallelism. This makes a case for using

another metric.

Metric II: Effective Bandwidth (EB) is defined as the ratio of

bandwidth to miss rate and is calculated based on the level of

memory hierarchy under consideration. At a given core, EB is

computed as BW /CMR, where CMR = L1MissRate × L2MissRate .

EB is a good candidate for the following reasons. First, Wang et

al. [67] showed that IPC ∝ EB. Thus by optimizing for a higher

EB, we aim for a higher IPC as well. Second, EB is sensitive to

the change in the L1 effective capacity as it has an L1 miss rate

aspect. Third, EB accounts for latency tolerance in GPUs as well by

considering bandwidth. In other words, even if some requests end

up incurring high latency, more requests may be processed within

the same time interval, increasing the overall received bandwidth.

Finally, using EB, we can distinguish the performance impact of

requests being cached using a shared or a private organization.

However, doing so by using a direct performance metric (e.g., IPC)

would be difficult because our scheme deals with requests, not

instructions. Furthermore, performance metrics might vary due to

reasons other than L1 performance (e.g., bandwidth obtained from

software-managed caches [25]), which can lead to an inaccurate

classification of applications during runtime. In our scheme, our

proxy EB is defined as:

EB =
L2Replies

L1MissRate
+ HomeReplies (3)

where L2Replies and HomeReplies are the number of read/write

replies from L2 and home core(s), respectively.

At the end of the sampling phase, we evaluate EB for both shared

and private L1 organizations and choose the option with higher

EB. Figure 9b shows the effectiveness of EB in choosing between

shared and private L1 organizations. We observe that EB (DynEB)

achieves the performance improvement of a shared L1 organization

for the shared-friendly applications. As for the non-shared-friendly

applications, EB performs as well as private for C-BLK and C-TRA.

However, for C-NN and S-SpMV, EB falls behind the private L1 orga-

nization by up to 33%. To remedy that, we utilize our observation

(Section 3.3) that such applications have significantly low L1 miss

rates (< 10%) and low latency tolerance.

Optimization. We augment our DynEB by checking if the sets

treated as private have an L1 miss rate lower than L1MRThreshold
(= 10% in our evaluation). DynEB+L1MRpr denotes the updated

DynEB in Figure 9b. DynEB+L1MRpr performs as well as the pri-

vate L1 organization for the non-shared-friendly applications while

maintaining the IPC improvement for the shared-friendly applica-

tions. We also updated the AMAT-based metric with the L1 miss

rate optimization and, as shown in Figure 9a, DynAMAT+L1MRpr

is still not effective with the shared-friendly applications.

4.3 Hardware Overhead

As discussed in Section 3.2 and Section 4.1, our optimized shared L1

organization and DynEB do not change the L1 caches or the NoC.

We only update the request handling architecture to manage the

remote accesses. We synthesized the RTL design of the hardware

required for our optimized shared L1 organization using the 65nm

TSMC libraries in the Synopsys Design Compiler and estimated

the area overhead to be 0.085 mm2 per core. DynEB leads to an

additional area overhead of 0.005mm2 per core.

5 EXPERIMENTAL EVALUATION

In this section, we first describe our experimental setup and then

evaluate our proposed solutions.

5.1 Experimental Setup

Our baseline architecture assumes a generic GPU, consisting of mul-

tiple cores (also called Compute Units, or CUs) that have private

local L1 caches. These caches are connected to multiple address-

sliced L2 cache banks via a NoC. We use two separate networks:

request and reply networks to avoid protocol deadlocks [6]. We

faithfully model our shared L1 cache organization, inter-core com-

munication, and other mechanisms using a cycle-level simulator ś

GPGPU-Sim v.3 [6]. A detailed platform configuration is described

in Table 1.We evaluate 28 benchmarks from four suites (CUDA-SDK

(C) [46], Rodinia (R) [10], SHOC (S) [13], and PolyBench (P) [50]).

Table 1: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 28 cores (CUs), SIMD width = 32 (16 × 2)

Resources / Core
48KB scratchpad, 32KB register file, Max.

1536 workitems (48 wavefronts, 32 workitems/wavefront)

L1 Caches / Core

16KB 4-way Write-through L1 data cache - Latency = 28 cycles [31]

12KB 24-way texture cache, 8KB 2-way constant cache,

2KB 4-way I-cache, 128B cache block size

L2 Cache
8-way 128 KB/memory channel (1MB in total)

128B cache block size - Latency = 120 cycles

Memory Model

8 GDDR5 Memory Controllers (MCs)

FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,

924 MHz memory clock, Global linear address space is

interleaved among partitions in chunks of 256 bytes [17]

Hynix GDDR5 Timing [22]

Interconnect

6 × 6 mesh topology, 700MHz interconnect clock,

32B flit size, 4 VCs per port, 4 flits/VC,

iSLIP VC and switch allocators

5.2 Experimental Results

In this section, we evaluate and compare the following against a

private L1 organization baseline:

• Shared++: Our shared L1 organization augmented with the

optimizations in Section 3.3.

• DynEB: Our EB-based dynamic scheme, augmented with the

L1MRpr optimization (Section 4.2), to classify applications either as

shared-friendly or private-friendly.
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