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ABSTRACT  
 
In this paper, we develop a new method to determine parameter values for high-integrity models of measurement error time 
correlation.  The method builds upon prior research on error correlation modeling, where an upper bound on the estimation 
error variance is derived given limits on the measurement error variance and correlation time constant.  In this paper, we provide 
the means to derive these limits from experimental data.  First, rather than working with autocorrelation functions, we consider 
“lagged products,” which are products of samples taken at different times in a data sequence:  we derive a closed form 
expression of the lagged products probability density function for first order Gauss Markov Processes (FOGMP).  These 
FOGMP models are then used to bound the sample cumulative distribution function (CDF), thereby providing bounds on the 
mean sample time correlation while accounting for all sample quantiles at all lag times.  We illustrate and analyze this approach 
using simulated and experimental data, and show that it applies even with sparse, unknown (non-GMP) time-correlated data.  
 
 

INTRODUCTION 
 
This paper describes the design and implementation of a new method to determine measurement error model parameter values 
for use in time-sequential estimation algorithms that require integrity.  Our method complements [1][2] where probabilistic 
measurement error models over time were derived to achieve high-integrity positioning.  In this paper, we provide a method 
for finding parameter values for these models.  We evaluate the method using simulated and experimental GNSS data, which 
are impacted by multipath errors with uncertain time correlation.  
 
This work is intended for safety-critical navigation operations in aircraft transportation.  In such applications, an upper bound 
on the integrity risk can be predicted to prevent hazardously misleading information (HMI) [3].  If sensor error models are 
optimistic, then the actual integrity risk is underestimated which can potentially cause HMI.  Overbounding theory addresses 
the measurement error modeling problem for snapshot, instantaneous estimators [4, 5, 6].  But, for Kalman filters or batch 
(fixed interval) estimators, the measurement error dynamics over time must also be conservatively accounted for.   
 
Over the past five years, approaches have emerged to account for measurement errors over time, which provide guaranteed 
upper bounds on the positioning error variance for batch estimators in [1] and for Kalman filters in [2].  Both [1] and [2] assume 
that unknown measurement error time-autocorrelation functions can be upper and lower bounded, for example using two first-
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order Gauss Markov Processes (GMP) with time constants 𝑇௠௜௡  and 𝑇௠௔௫  and variance 𝜎௠௜௡
ଶ  and 𝜎௠௔௫

ଶ .  GMPs are convenient 
bounding functions because they are compatible with Gaussian overbounding and can efficiently be incorporated in linear batch 
estimators and Kalman filters (e.g., by state augmentation).  But [1] and [2] do not address how to find the bounding GMP time 
constants 𝑇௠௜௡ and 𝑇௠௔௫ , and variance 𝜎௠௜௡

ଶ  and 𝜎௠௔௫
ଶ . 

 
A major issue appears when trying to find hard upper and lower-bounds on actual sensor data using a pair of GMPs:  the 
negative values of empirical autocorrelation functions cannot be lower-bounded by always-positive GMP autocorrelation 
functions, which are decaying exponentials.  For example, empirical autocorrelation functions reaching large negative values 
can be found for multipath errors in [7] and for orbit and clock ephemeris errors in [8].   
 
In response, in this work, we establish a new method to determine probabilistic upper and lower bounding functions on sample 
measurement error lagged-product distribution.  We show that cumulative distribution function (CDF)-bounding can provide 
upper and lower bounds on the mean sample lagged product distribution, which are the autocorrelation bounds needed in [1] 
and [2]. 
 
The paper is organized as follows.  The second section of this paper describes the context and motivation for this work on 
measurement error time-correlation modelling.  An illustrative example using a batch estimator is discussed.  We also explain 
why overbounding autocorrelation functions is sometimes insufficient, and why a new method is needed.  In the third section 
of this paper, we present a new approach to determine the parameters of bounding GMPs.  First, we consider time-lagged 
product samples, for which we provide a closed-form expression of the probability density function.  Then, we outline a step-
by-step procedure for finding the parameters of the bounding GMPs.  In the fourth section of the paper, the approach is 
evaluated using simulated sample error data.  Error samples are drawn from a single GMP, and then from two GMPs with 
distinct time constants to show that the proposed method applies to complex, composite error distributions.  In the fifth section 
of this paper, the method is evaluated using ionospheric error free code-minus-carrier data collected in a low multipath 
environment. This evaluation shows that the method can be applied for bounding the time correlation of actual measurement 
error data.  In the final section, the conclusion and the future work are presented. 
 
 

PRIOR WORK AND MOTIVATION 
 
The focus of this work is on measurement error time-correlation modelling for sequential, linear estimators used in high-
integrity applications.  Reference [2] develops a method to model this time-correlation while providing a guaranteed upper-
bound on the state estimation error variance.  This section gives an overview of the method and of modeling aspects that have 
yet to be addressed. 
 
Estimation Error Bounding in The Presence of Measurement Error with Uncertain Time-Correlation 
 
For both Kalman filters and batch (or fixed interval) estimators, reference [2] expresses the state estimate error as a linear 
combination of time-correlated measurement errors.  For clarity of explanation, we consider an illustrative example of a least-
squares batch estimator that uses a single measurement at time epochs 0 and 𝜏 to estimate a current-time state estimate.  The 
current-time state estimation error 𝜖ఛ can be expressed as: 
 

𝜖ఛ = 𝑎଴𝜈଴ + 𝑎ఛ𝜈ఛ (1) 
where, 

𝑎଴, 𝑎ఛ are (least squares) estimator coefficients for the current-time state estimate, for measurements at times 0 and 𝜏 
𝜈଴, 𝜈ఛ are time-correlated measurement errors at times 0 and 𝜏 

 
We further assume that the measurement errors 𝜈଴ and 𝜈ఛ, are outputs of a Markov process that can be written in the following 
form: 
 

𝜈ఛ = 𝜌ఛν଴ + 𝜂଴ (2) 
 
where, 

𝜂଴ is a white sequence of driving noise. 
τ is the lag time between the measurements. 
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𝜌ఛ is the unknown correlation coefficient over the lag time interval 𝜏. 
 
The actual time correlation between 𝜈଴ and 𝜈ఛ is unknown, and is equation (2) does not necessarily describe a GMP.   
 
For error modeling purposes, if equation (2) describes a first order Gauss Markov Process (FOGMP), then 𝜂଴ is zero mean with 
variance 𝜎ఎ

ଶ  The variance of the driving noise 𝜎ఎ
ଶ is related to that of the process output variance, noted 𝜎଴

ଶ, via the equation:  
𝜎ఎ

ଶ = 𝜎଴
ଶ(1 − 𝜌ఛ

ଶ).  Using equations (1) and (2), the variance 𝜎ఢ
ଶ of 𝜖ఛ can be derived by taking the expectation of 𝜖ఛ

ଶ in equation 
(1), and can be expressed as:  
 

𝜎ఢ
ଶ = (𝑎଴

ଶ + 𝑎ఛ
ଶ)𝜎଴

ଶ + 2𝑎଴𝑎ఛ  𝜎଴
ଶ𝜌ఛ (3) 

 
If the correlation coefficient 𝜌ఛ is zero, then an upper bound on 𝜎଴

ଶ guarantees an upper bound on 𝜎ఢ
ଶ because the coefficient 

(𝑎଴
ଶ + 𝑎ఛ

ଶ) is positive.  Overbounding theory can be used to determine an upper bound on 𝜎଴
ଶ [4, 5, 6]. If 𝜌ఛ is not zero and 

unknown, then upper bounding  𝜎ఢ
ଶ depends on whether the cross-product coefficient 𝑎ଵ𝑎ଶ is positive or negative.  The 𝜎ఢ

ଶ-
bound can then be expressed as: 
 

𝜎ఢ
ଶ ≤ ቊ

(𝑎଴
ଶ + 𝑎ఛ

ଶ)𝜎଴
ଶ + 2𝑎ఛ𝑎଴ 𝜎௠௜௡

ଶ 𝜌ఛ,௠௜௡   if,    𝑎ఛ𝑎଴ ≤ 0 

(𝑎଴
ଶ + 𝑎ఛ

ଶ)𝜎଴
ଶ + 2𝑎ఛ𝑎଴ 𝜎௠௔௫

ଶ 𝜌ఛ,௠௔௫   if,    𝑎ఛ𝑎଴ > 0 
(4) 

 
where 𝜎௠௜௡

ଶ 𝜌ఛ,௠௜௡ and 𝜎௠௔௫
ଶ 𝜌ఛ,௠௔௫  are the lower and upper bounds on the quantity 𝜎଴

ଶ𝜌ఛ. The method described in [2] guarantees 
an upper bound on 𝜎ఢ

ଶ by using an upper bound on 𝜎଴
ଶ𝜌ఛ (𝜎௠௔௫

ଶ 𝜌ఛ,௠௔௫) when 𝑎଴𝑎ఛ is positive, and a lower bound on 𝜎଴
ଶ𝜌ఛ 

(𝜎௠௜௡
ଶ 𝜌ఛ,௠௜௡  ) when 𝑎଴𝑎ఛ is negative.  Of course, a more generic example would involve many more terms corresponding to 

additional sensor measurements at additional sample intervals, with different correlation coefficients 𝜌ఛ depending on lag times, 
𝜏, and with cross product terms derived from estimator coefficient being either positive or negative [2].   
 
Reference [11] provides a practical, vectorized approach to implement this process for batch estimators.  The method in [2] is 
powerful because it is proved to work even if the correlation process is not a GMP.  FOGMP are used as bounds because they 
are compatible with overbounding theory, and because FOGMP can easily be incorporated in linear estimators (e.g., by state 
augmentation in Kalman filters). 
 

For a FOGMP the correlation coefficient can be written as: 𝜌ఛ = 𝑒ି
ഓ

೅, where, 𝑇 is the time constant of the process.  The upper 

and lower bounds on measurement error time correlation, 𝜎଴
ଶ𝜌ఛ, can respectively be written as 𝜎௠௔௫

ଶ 𝑒
ି

ഓ

೅೘ೌೣ and 𝜎௠௜௡
ଶ 𝑒

ି
ഓ

೅೘೔೙. 
Hence the bounds on the measurement error autocorrelation are parametrized using the four parameters: 𝜎௠௜௡, 𝑇௠௜௡ and 𝜎௠௔௫ , 
𝑇௠௔௫ . 
 

While it might be intuitive to assume that the 𝜎௠௔௫
ଶ 𝑒

ି
ഓ

೅೘ೌೣ produces the most conservative estimation variance, this is not true 
in general as shown in [1, 12].  Higher measurement correlation does not always mean that less new information is provided.  
For example, one may think of velocity estimation as a process of time-differencing position estimates over time; in this case, 
highly correlated positioning errors are differenced out, yielding more accurate velocity estimates than if errors were not 
correlated.  Therefore, considering an upper bound is insufficient, and a range of time correlation values must be found.  
Determining this range from data is not addressed in [2]. 
 
Limitations of Using Autocorrelation Functions to Bound Correlation Uncertainty 
 
In order determine the FOGMP bounding parameters, a sensible approach is to analyze the sample measurement error 
autocorrelation function.  Let, 𝜈଴ and 𝜈ఛ, the measurement errors at times 0 and 𝜏, be the output of a process described by 
equation (2).  The autocorrelation function, 𝑅ఔ(𝜏), for this process can be written as: 
 

𝑅ఔ(𝜏) = 𝐸[𝜈଴𝜈ఛ] = 𝜎଴
ଶ𝜌ఛ (5) 

 
where, 𝜏 is the lag time between two sample measurement errors, 𝐸[∙] is the expectation operator. The term 𝜎଴

ଶ𝜌ఛ is exactly the 
one we are trying to bound.  As described earlier, for a FOGMP, the autocorrelation function, 𝑅ఔ(𝜏), can be expressed as 
follows: 

191



 

𝑅ఔ(𝜏) = 𝐸[𝜈଴𝜈ఛ] = 𝜎଴
ଶ𝑒ି

ఛ
் (6) 

 
Parameters of the bounding FOGMP functions 𝜎௠௜௡, 𝑇௠௜௡  and 𝜎௠௔௫ , 𝑇௠௔௫ . may be determined by analyzing the sample 
autocorrelation [13].  Unfortunately, this approach does not work in all cases.  For example, sample ACFs are shown in [7] and 
[8] over long lag times for GNSS multipath errors and for satellite orbit and clock, respectively.  These ACF curves show 
negative values, which are impossible to lower bound using a strictly positive decaying exponential. 
 
Another illustration of this issue in given in Figure 1, where we plotted sample ACFs (in grey) obtained using a random number 
generator for a FOGMP with T = 20 s, and 𝜎௠௜௡

ଶ  = 𝜎௠௔௫
ଶ  =𝜎଴

ଶ = 1.  In parallel, theoretical unit-variance ACFs are shown for 
FOGMPs with 𝑇௠௜௡ = 5 s in red and 𝑇௠௔௫  = 100 s in blue.  Whereas a blue curve can be found to upper bound all sample ACFs, 
no red curve exists that lower bounds all grey curves because sample ACFs dip below zero for lag times as short as one GMP 
time constant T. 
 
In the next section, we develop a stochastic approach, not based on ACFs, to find 𝜎௠௜௡, 𝑇௠௜௡ and 𝜎௠௔௫ , 𝑇௠௔௫  while accounting 
for all data samples. 
 

 
Figure 1: Time correlation bounding example using autocorrelation function, with negative sample autocorrelation. 

 

A NEW MEASUREMENT ERROR TIME-CORRELATION MODELING METHOD 
 
This section aims at finding a range of FOGMP bonding parameters, that can be used to conservatively account for the time 
correlation affecting all samples in a data set.  Instead of working with ACFs, we develop a new method based on “lagged 
products”.  A lagged product is a product of sample measurement errors separated in time, which can be written as: 
 

𝑃ఔ(𝜏) ≡ 𝜈଴𝜈ఛ  (7) 
 

where 𝜏 is the time lag between two sample measurement errors at times 0 and 𝜏.  To facilitate derivations in this section, we 
define lagged products relative to some fixed initial time, 𝜈଴.  The relationship between the lagged product 𝑃ఔ and the ACF 𝑅ఔ 
is expressed in the following equation:  
 

𝑅ఔ = 𝐸[𝑃ఔ] (8) 
 

Figure 2 shows sample lagged products for 104 time series plotted as a function of lag time 𝜏, for a FOGMP with time constant 
T = 10 s and variance 𝜎଴

ଶ  =  1. 
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Figure 2: 10,000 time-series of lagged products for FOGMPs with unit variance and time constant T = 10 s. 

A key step towards determining FOGMP bonding parameters is to understand the distribution of lagged products 𝑃ఔ(𝜏).  We 
derived a closed-form expression for the probability density function (PDF) of 𝑃ఔ(𝜏) for FOGMP based on [9], which provides 
general solutions for products of correlated standard (zero-mean, unit-variance) Gaussian random variables.  For a given 𝜏, the 
PDF of 𝑃ఔ(𝜏) can be written as: 
 

𝑓௉ഌ
(𝑧) =

1

𝜋ට1 − 𝑒ିଶ
ఛ
்

exp ቌ
𝑧 𝑒ି

ఛ
் 

1 − 𝑒ିଶ
ఛ
் 

ቍ 𝐾଴ ቆ
|𝑧|

1 − 𝑒ିଶ
ఛ
்

ቇ (9) 

 
where 𝐾଴(∙) is the modified Bessel function of the second kind of order zero, and we employ the notation ‘exp (∙)’ for the 

exponential function to improve readability.  The term, 𝑒ି
ഓ

೅ is the FOGMP correlation coefficient, 𝜌ఛ, for time constant T.  It 
is worth noting that for the non-normalized case where 𝜎଴

ଶ ≠ 1, we can derive a PDF expression based on [10] as: 
 

𝑓௉ഌ
(𝑧) =

1

𝜋𝜎ఔ
ଶට1 − 𝑒ିଶ

ఛ
்

exp ቌ
𝑧 𝑒ି

ఛ
் 

𝜎ఔ
ଶ ቀ1 − 𝑒ିଶ

ఛ
்ቁ 

ቍ 
 

𝐾଴
ቌ

|𝑧|

𝜎ఔ
ଶ ቀ1 − 𝑒ିଶ

ఛ
்ቁ

ቍ (10) 

 
For the FOGMP used in Figure 2, we represent the PDF surface for lag times 𝜏 ranging from 0 to 100 s in Figure 3.  The figure 
points out that, at zero lag (𝜏 = 0 s), the products 𝑃ఔ(0)  follow a Chi-Squared distribution with one degree of freedom, which 
is what we expect for the square of a standard Gaussian random variable.  As 𝜏 increases, the distribution approaches a modified 
Bessel function of the second kind of order zero [10].  
 

 
 

Figure 3: Probability density function for lagged products of a FOGMP with unit variance and time constant T = 10 s. 

 

Modified Bessel 
Function 2nd Kind 

Chi-squared 
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Figure 4: CDF quantiles of lagged product for a FOGMP with unit variance and time constant T = 10 s. 

In addition, we can compute the cumulative distribution function (CDF) of lagged products by numerically integrating the PDF 
in equation (10). The PDF in (10) has an integrable singularity at zero. (In this work, we consider integration intervals with 
limits around 0+ and 0-. The numerical accuracy achieved with this method is on the order 10-16).  CDF quantiles are displayed 
in Figure 4 for the FOGMP in Figures 2 and 3.   
 
Based on the 𝑃ఔ(𝜏) CDF, we develop the following five steps procedure to determine 𝑇௠௜௡  and 𝑇௠௔௫ . 
 
Step 1.  Collecting and Partitioning Data  
 
To analyze the lagged product distribution, we need a set of product samples.  We consider the case where a time series of 
samples is collected.  For example, in order to evaluate the impact of multipath errors on GNSS signals, we can record 
ionosphere-free (IF) code minus carrier (CMC) data samples over long time periods [7, 14, 15, 16].   
 
In parallel, we must focus the analysis over a limited range of lag times 𝜏.  First, the correlation model only needs to be derived 
over lag times corresponding to the maximum operational time.  Second, if an estimator is used with a fading memory, then 
the correlation model only needs to be valid over a period where the current-time estimate retains significant knowledge of 
past-time data, e.g., over twice the smoothing time constant for smoothing filters [17].  Third, measurements separated by more 
than twice the average correlation time constant may be deemed uncorrelated [18], at which point, the correlation model no 
longer needs to be accurate.  A practical approach is to limit the analysis to 𝜏-values extending to the minimum of these three 
metrics.  To keep this paper generally applicable, we focus on the last criterion, and limit the range of 𝜏’s to twice the average 
correlation time constant. 
 

 
Figure 5: Time series of 6000 simulated samples of a time-correlated random process. 
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Figure 6: Time segments obtained from slicing up the time series in Figure 5 into 100 regular intervals of 60 samples each. 

Thus, if a single large time series is collected, we partition it by extracting time segments of length greater-or-equal to twice 
the average correlation time constant.  As an illustrative example used throughout this section, Figure 5 shows a time series of 
6000 samples collected at regular one-second intervals.  The time series is sliced in Figure 6 into 100 shorter time segments of 
60 seconds each.  
 
Step 2.  Determining the Overbounding Variance 
 
We use overbounding theory to find the measurement error model variance 𝜎଴

ଶ [4, 5, 6].  The process is illustrated in the 
quantile-to-quantile plot, or Q-Q plot, showing in Figure 7 the sample quantiles versus quantiles of a standard normal 
distribution.  Samples are from the original time series but are taken at twice the average correlation time constant to represent 
the distribution of uncorrelated samples.  Additional considerations to account for the finite number of effectively uncorrelated 
samples can be found in [8].  In Figure 7, the slope of the overbounding Gaussian CDF represented with a dashed line is 1.1.  
Thus, whereas the sample variance 𝜎଴

ଶ is 1 (in units the square of the measurement error’s unit), the overbounding variance is 
𝜎଴,ை஻

ଶ = 1.1ଶ. 
 

 
Figure 7: Determining the bounding GMP variance using overbounding theory. 
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Figure 8: Lagged products of measurements from time segments in Figure 6 as function of lag time 𝜏 

Step 4.  Evaluating Sample CDFs Over Lag Time 
 
As illustrated in Figure 9, we can evaluate sample CDFs for all values of 𝜏.  An alternative representation, not shown here to 
limit the length of the paper, is the quantile plot in Figure 4 where we can visualize quantiles over all 𝜏’s on a single chart.   

 
Figure 9: Cumulative distribution function (CDF) of sample lagged products in Figure 8 for four example lag times 

 
Step 5.  Upper and Lower-Bounding CDFs To Find Bounding Time Constants and Variances 
 
We can now use the theoretical results obtained in the first part of this section to find two FOGMP CDFs that respectively 
lower and upper bound all sample CDFs for all values of 𝜏.  The motivation for CDF-bounding the sample lagged products 
distribution using FOGMP models is to determine bounds on the mean of the lagged products, which is the autocorrelation as 
expressed in equation (5). We make the following statement: 
 

The mean of the CDF-upper-bounding distribution lower-bounds the mean of the actual distribution 𝐸[𝜈଴𝜈ఛ].  
We name it 𝜎௠௜௡

ଶ 𝜌ఛ,௠௜௡ .   
Similarly, the mean of the CDF-lower-bounding distribution upper-bounds 𝐸[𝜈଴𝜈ఛ]. We name it 𝜎௠௔௫

ଶ 𝜌ఛ,௠௔௫. 
 
The proof of this statement is given in Appendix A.   
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Figure 10 shows the sample CDF for an example lag time 𝜏, and the two theoretical FOGMP CDFs that lower and upper bound 
the sample CDF.  This must be repeated over all 𝜏 values and can be achieved quickly and precisely by switching between the 
quantile versus 𝜏 representation (Figure 4) and the CDFs (as illustrated again in Section 4 of this paper). 
 
Using the bounding parameter values 𝜎௠௜௡, 𝑇௠௜௡ and 𝜎௠௔௫ , 𝑇௠௔௫  in the algorithm described in [2] provides an estimation error 
variance 𝜎തఢ

ଶ that is guaranteed to upper bound the sample estimation variance 𝜎ఢ
ଶ for all time segments in Figure 6. 

 

 
Figure 10: FOGMP upper- and lower-bounding FOGMP lagged product CDFs as compared to sample product CDFs for 

lag time 𝜏 = 15s 

EVALUATION OF THE TIME CORRELATION MODELING METHOD USING SIMULATED DATA 
 
In this section, we simulate measurement error data to analyze the time-correlation modeling method derived in Section 3.  Two 
cases are considered. 
 

 Case 1: 1000 sample time segments from a FOGMP with T = 10 s, 𝜎଴
ଶ = 1. 

 
 Case 2: 1000 sample time segments from FOGMPs with two distinct time constants of T = 10 s and T = 3 sec, 𝜎଴

ଶ = 1.   
 

Case 1 illustrates the fact that our new method addresses the limitations of using autocorrelation functions to find 𝑇௠௜௡ and 
𝑇௠௔௫  as described in Section 2.  It shows that the method can be used even if a sparse set of data is available (which produces 
a wide range of 𝑇௠௜௡  to 𝑇௠௔௫).  Case 2 shows that the method can be used when the sample correlation process is complex and 
unknown, as will be the case using experimental data. The variance of the bounding functions 𝜎௠௔௫

ଶ  and 𝜎௠௜௡
ଶ  were taken to be 

the same in both Case 1 and Case 2. 
 
Case 1 – Modeling Data Drawn from A Single FOGMP 
 
For Case 1, Figure 11 shows the two GMP upper and lower bounding CDFs versus the sample CDF, for example lag times 𝜏 = 
1, 3, 5, 10, 15 and 20 s. The GMP upper and lower bounds were obtained for a scaled variance found using Step 2 and for 
theoretical FOGMP CDFs derived using Step 5 of Section 3.  In parallel, Figure 12 shows sample 95%, 68%, 32% and 5% 
quantiles versus the same quantiles for the upper-bounding FOGMP CDF, for 𝜏 values ranging from 0 to 25 s.  Figure 13 shows 
the same curves for the lower-bounding FOGMP CDF.   
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Figure 11: CDF comparison of sample versus FOGMP bounds for Case 1 

In Figure 11, the dash-dotted curve (lower-bounding FOGMP CDF) is always above the solid curve (sample CDF) for all 
values of 𝜏 while the dashed curve (upper-bounding FOGMP CDF) is always below.  In the representations of Figures 12 and 
13, the dashed upper-bounding quantile curves are above the solid sample curves for all quantiles and for all values of 𝜏, 
whereas the dash-dotted quantile curves are above the solid sample curves for all quantiles and for all values of 𝜏.  We used 
both of these representations to find a time correlation model with time constants ranging from 𝑇௠௜௡ = 1 s to 𝑇௠௔௫ = 50 s for 
Case 1 while setting the standard deviations 𝜎௠௜௡ = 𝜎௠௔௫ = 1.15 
 

 
Figure 12: Quantiles over lag time for sample lagged products versus upper-bounding FOGMP model for Case 1 
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Figure 13: Quantiles over lag time for sample lagged products versus lower-bounding FOGMP model for Case 1 

For these values of 𝑇௠௜௡  and 𝑇௠௔௫ , Figure 14 displays quantiles of both the lower and upper bounding FOGMP models with 
dash-dotted and solid lines, respectively, for quantiles ranging from 10% to 90% at regular 10% intervals.  The spacing between 
the dash-dotted and solid lines show the area where sample quantiles can live for these values of 𝑇௠௜௡  and 𝑇௠௔௫  to exist.  The 
method may encounter limitations when the spacing shrinks, i.e., for very small and very large values of 𝜏.  Step 1 of Section 
3 provides a rationale for limiting the maximum value of 𝜏 to twice the average correlation time constant, i.e., 20 s in this case.  
The models’ standard deviations 𝜎௠௜௡ and 𝜎௠௔௫  can be adjusted to address the tightening of the spacing between CDF bounds 
for small 𝜏’s.   
 
In addition, we verified that if we increased the number of samples, then the range of time constants tightens till we approach 
the values 𝑇௠௜௡ ≈ 𝑇௠௔௫ = 10s for the range of quantiles of interest (e.g., from 10-5 to 0.99999).   
 

 
Figure 14: Quantiles versus lag time for two FOGMP with two distinct time constants  

This shrinking of the available region for overbounding is the reason of the sample CDFs in Figure 11 and Figure 15 are close 
for certain quantiles. The lag time 20sec show depleted margins in certain cases. 
However, at very short lag times the, the 1 sec, the upper bound is not very effective because we are bounding a chi-squared 
distribution. The appropriate way to do this would be by inflation of the variance of the upper bounding GMP. The obvious 
trade-off of this is at large lags, as this would erode the margins at lower quantiles of the upper bound. 
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Case 2 – Modeling Data Drawn from Two FOGMP With Two Distinct Time Constants 
 
For Case 2, we follow the exact same steps, illustrated in Figures 15 to 17.  We found values of time constants ranging from 
𝑇௠௜௡ = 0.5 s to 𝑇௠௔௫ = 50 s, while setting the standard deviations 𝜎௠௜௡ = 𝜎௠௔௫ = 1.15.  This tends to support the fact that, 
when used in conjunction with the method in [2], the proposed approach can conservatively account for measurement error 
time-correlation, even when the measurement error correlation is complex (not GMP), and even when the available sample 
data set is sparse.   
 

 
Figure 15: CDF comparison of sample versus FOGMP bounds for Case 2 

 
 

 

Figure 16: Quantiles over lag time for sample lagged products versus upper-bounding FOGMP model for Case 2 
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Figure 17: Quantiles over lag time for sample lagged products versus lower-bounding FOGMP model for Case 2 

 
Table 1 summarizes the parameters found from simulated data to model the data sets in Cases 1 and 2.  Also, Figure 16 shows 
that, for the 68% quantile, the sample plot reaching close to the FOGMP bound.  Inflating the FOGMP variance would solve 
this problem, but would then cause the FOGMP 95% quantile in Figure 17 to exceed the sample quantile.  There are two 
elements that would mitigate this issue.  One is that we only used 1000 time series.  Using a larger number of time series would 
provide smoother sample quantile curves for quantiles of interest.  The other is to consider different variances for the lower 
and upper bounding FOGMP, as is alluded to in [2] and as is done in the next section.   
 

Table 1: FOGMP Model Parameters  

 
1st Order GMP Overbounding 

Parameter 
 𝑻𝒎𝒂𝒙 𝑻𝒎𝒊𝒏 𝝈𝒎𝒊𝒏

𝟐  & 𝝈𝒎𝒂𝒙
𝟐  

Case 1 
T=10 sec, 1000 series 

50 sec 1 sec 1.15 

Case 2 
T=3 sec & 10 sec, 1000 series 

50 sec 0.5 sec 1.15 

 
 
 

EVALUATION OF THE TIME CORRELATION MODELING METHOD USING EXPERIMENTAL DATA 
 
In this section, the method is evaluated for ionospheric error free code-minus-career (IF CMC) data collected in a low multipath 
environment in Tucson, Arizona, USA (32°13'36"N 110°56’49"W), on March 1st 2018. The data was collected for 30 GPS 
satellites over 24 hours. An elevation mask of 10 deg was considered for this data collection. Time-sequences of IF CMC for 
all 30 satellites are shown in Figure 18.  The color code identifies to different satellites.  The curves clearly show that the 
observed multipath error is time-correlated. 
 
The data was collected using a NovAtel ProPak6 GNSS receiver, with a Vexxis GNSS-802 antenna. The receiver was mounted 
on the roof of a car, which was parked on the roof-floor of a parking garage. Pictures of the equipment are shown in figure 19. 
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Figure 18: IF CMC data from 32 GPS satellites collected over 24 hours 

 

 
 

Figure 19: Testbed Overview:  Receiver and antenna are mounted on a parked car in an open-sky area. 

The data from each of the 30 satellites was divided into continuous uninterrupted intervals. For each interval, the first and last 
300 sec of data were trimmed to remove large variations occasionally observed on low elevation satellites at this location. 
 
The bounding method was then applied to determine the bounds on the time correlation of the IF CMC data. Example CDF 
bounds are shown in Figure 20 lag times of 𝜏 = 1𝑠 to 𝜏 = 100𝑠. The bounding FOGMP parameter are: 𝑇௠௔௫ = 1000𝑠, 𝜎௠௔௫ =
1.5  and 𝑇௠௜௡ = 5𝑠, 𝜎௠௜௡ = 0.8 .  Future work will seek to determine the limitations of the method, which is how sparse can 
the data be to still successfully determine FOGMP bounds on time correlation; the structure of the FOGMP sets limits on how 
much variation over lag-time can be accounted for. 
 
 

Vexxis 
GNSS-

802 
antenna  

NovAtel 
ProPak6 
GNSS 
receiver  

University of Arizona Stadium parking garage 
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Figure 15: CDF comparison of sample versus FOGMP bounds for IF CMC data 

 
 

CONCLUSION 
 
In this paper, we develop a new method to determine parameter values for high-integrity measurement error models with 
unknown time correlation.  The method complements prior work in [2], where an upper bound on the estimation error variance 
is achieved assuming that bounds on the autocorrelation function are given.   
 
This paper provides the means to find upper and lower bounds on the measurement error time correlation coefficients.  First, 
we show that, in general, first order Gauss Markov Process (FOGMP) autocorrelation functions (ACF) are insufficient to 
directly bound sample ACFs, which can have negative values.  Instead, we considered lagged products distributions over 
varying lag times.  We derived a closed form expression of the lagged products probability density function, which we 
integrated numerically.  We then used cumulative distribution function (CDF) bounding to find upper and lower bounds on 
correlation coefficients while accounting for all sample quantiles at all lag times. 
 
We used simulated data to show that the method could be used even for sparse, unknown (non-GMP) time-correlated data sets. 
The method was also implemented using experimental GPS data capturing time-correlated multipath errors. The next steps of 
the work are to derive a formal proof of the conjecture made in the paper, and to determine the limitations of the method when 
the data is sparse. 
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APPENDIX A: PROOF FOR CDF BOUNDING TO BOUND MEAN 
 
Lemma: 

The mean of the CDF-upper-bounding distribution lower-bounds the mean of the actual distribution 𝐸[𝜈଴𝜈ఛ].   
Similarly, the mean of the CDF-lower-bounding distribution upper-bounds 𝐸[𝜈଴𝜈ఛ]. 

 
Proof: 
A general definition of the expected value of a random variable, X, can be written as: 
 

𝐸[𝑋] = න 𝑥𝑑𝐹(𝑥)
ஶ

ିஶ

 (11) 

 
where 𝐹(𝑥) is the cumulative distribution function (CDF) of the random variable 𝑋, represented in Figure 16, and 𝐸[∙] is the 
expected value operator.  
 

 
Figure 16: Conventional CDF Representation 

 
Consider a CDF-lower-bounding distribution, 𝐹௅(𝑥), on a sample distribution, 𝐹஺(𝑥). This lower bound can be written as 
follows: 
 

𝐹஺(𝑥) ≥ 𝐹௅(𝑥), ∀ 𝑥 ∈ (−∞, ∞) (12) 
 

 
Figure 17: Representation of CDF-lower-bounding 

 
Consider an arbitrary probability value 𝑃 ∈ [0,1]. Let 𝑥௅ and 𝑥஺ respectively be the values of 𝑥 at which 𝐹௅(𝑥௅) = 𝑃 and 
𝐹஺(𝑥஺) = 𝑃. Because CDFs are monotonically increasing functions, we can write the following inequality: 
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𝑥௅(𝑃) ≥ 𝑥஺(𝑃), ∀ 𝑃 ∈ [0,1] (13) 
 
This is shown graphically in first chart of Figure 18.  To obtain Figure 18, we rotated the axes of the CDF curve in Fig. 17 
clockwise by 90deg and then flipped about the vertical axis to have positive values of x on top.  Using the property of definite 
integrals, we can integrate the inequality in equation (13) using 𝐹(𝑥) as a variable of integration. The following inequality can 
be written: 
 

න 𝑥௅(𝐹) 𝑑𝐹
ଵ

଴

≥ න 𝑥஺(𝐹) 𝑑𝐹
ଵ

଴

(14) 

 
By definition of the expected value in equation (11), we have shown that: 
 

𝐸[𝑋௅] ≥ 𝐸[𝑋஺] (15) 
 
where 𝐸[𝑋௅] is the mean of CDF-lower-bounding distribution and 𝐸[𝑋஺] is the expected value of the sample distribution. This 
proof can also be graphically represented as shown in Figure 18. The shaded regions are the areas under the curves 𝑥௅ and 𝑥஺, 
which are the expected values of the random variables 𝑋௅ and 𝑋஺.  The total area under the curve 𝑥௅ is more positive than that 
under  𝑥஺, and therefore  𝐸[𝑋௅] ≥ 𝐸[𝑋஺].   
 

 
Figure 18: Representation of expected values of CDF lower-bounding distribution and the sample distribution as area under 

the curves. 

We can use the exact same derivation for CDF-upper-bounds, 𝐹௎(𝑥), by substituting 𝐹௅ for 𝐹஺, and  𝐹஺ for  𝐹௎.  We can write 
that: 
 

if   𝐹௎(𝑥) ≥ 𝐹஺(𝑥), ∀ 𝑥 ∈ (−∞, ∞)

then   𝐸[𝑋஺] ≥ 𝐸[𝑋௎] ∎
 

 

 
Figure 19: Representation of CDF-upper-bounding 
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