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Abstract
The incorporation of histone variants into nucleosomes has important functional consequences in all aspects of eukaryotic 
chromatin biology. H2A.Z is a conserved histone variant found in all eukaryotes from yeast to mammals. Recent studies in 
yeast have shed light on the questions of where and how nucleosomes containing this variant are situated at promoters and 
in relation to genes, and what its specificity implies with regard to transcription. In yeast, H2A.Z appears to be primarily 
incorporated into the first nucleosome in the direction of transcription initiation, either of an mRNA transcript or a divergently 
transcribed upstream antisense non-coding RNA. This specificity of H2A.Z is due in part to the localization at promoters of 
SWR1, the ATP-dependent chromatin remodeler that incorporates H2A.Z into nucleosomes. Replacement of H2A.Z with 
canonical H2A is dependent on the function of the transcription pre-initiation complex. The recent studies summarized in this 
review reveal that the directionality of H2A.Z occupancy in relation to transcription thus reflects a balance of incorporation 
and eviction activities, which likely have varying contributions at distinct sets of genes across the genome.
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Introduction

The long and linear genomic DNA in eukaryotic chromo-
somes has to be systematically compacted to fit within the 
confines of the nucleus. The first level of compaction of 
the eukaryotic genome occurs by the wrapping of DNA in 
a left-handed superhelix around a histone octamer to form 
nucleosomes. Incorporation of histone variants, post-trans-
lational modifications of histones, and the positioning of 
nucleosomes along the DNA influence all processes that 
the genomic DNA participates in, including transcription, 
DNA replication, repair, and higher order chromosomal 
organization. The canonical histones H2A, H2B, H3, and 
H4 constitute the standard nucleosome octamer, which com-
prises an H3–H4 tetramer and two H2A–H2B dimers. The 

incorporation of non-allelic alternative versions of certain 
histones, or histone variants, is one mechanism by which the 
uniform nucleosomal structure of chromatin is altered, with 
important functional consequences. Many histone variants 
have been identified, but the centromere-specific H3 vari-
ants (CenH3) (Ichikawa and Kaufman 2019) and the H2A 
variant H2A.Z are considered to be universal histone vari-
ants given their presence in all domains of eukaryotes. The 
variant H2A.Z is found in virtually all eukaryotes from yeast 
and protozoa to plants and metazoans (Talbert and Henikoff 
2010). H2A.Z is essential in mouse and other organisms, 
whereas in yeast, its absence causes condition-specific 
growth phenotypes (Jackson and Gorovsky 2000; Santiste-
ban et al. 2000; Zlatanova and Thakar 2008). Given its con-
servation across the many organisms it is found in, and its 
incorporation into nucleosomes at yeast promoters, it is only 
natural that many recent insights into H2A.Z function and its 
relationship to transcription come from studies in yeast. This 
mini-review focuses on the mechanisms of incorporation of 
H2A.Z into RNA polymerase II (RNAPII) promoters in the 
yeast Saccharomyces cerevisiae and how H2A.Z occupancy 
of promoters relates to transcriptional activity.
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The H2A.Z histone variant in Saccharomyces 
cerevisiae

In yeast, H2A.Z is about 56% identical to canonical H2A at the 
protein level (Fig. 1a), whereas it is 65% identical to human 
H2A.Z. The overall structure of the nucleosome contain-
ing H2A.Z is similar to the canonical nucleosome (Fig. 1b), 
though the amino acid changes in the variant are thought to 
slightly destabilize interactions between the H2A.Z–H2B 
dimer and the H3–H4 tetramer (Suto et al. 2000). H2A.Z has 
been reported to have roles in transcription, DNA replication 
and repair, chromosome condensation, heterochromatin for-
mation and silencing, and mitosis (Giaimo et al. 2019; Long 
et al. 2020; Yamada et al. 2018; Zlatanova and Thakar 2008). 
Interestingly, the incorporation of H2A.Z has been reported to 
both stabilize as well as destabilize the resulting nucleosome, 
particularly with regard to how it affects transcription (Weber 
et al. 2014; Zlatanova and Thakar 2008). Deletion of the HTZ1 
gene in yeast, which encodes H2A.Z, does not lead to strong 
transcriptional effects. The relationship of H2A.Z with overall 
transcriptional activity of a gene could be either positive or 
negative, given that it has been reported to be associated with 
actively transcribed genes as well as repressed genes.

The locations of canonical nucleosomes as well as nucle-
osomes containing histone variants throughout the genome 
have been mapped at high resolution using methods that com-
bine micrococcal nuclease (MNase) digestion of linker DNA 
between nucleosomes, chromatin immunoprecipitation (ChIP) 
and the use of high-resolution microarrays or deep sequencing. 
In yeast, H2A.Z-containing nucleosomes are found at the pro-
moter, which typically contains a nucleosome-depleted region 
(NDR) where the transcription pre-initiation complex (PIC) 
can assemble (Yague-Sanz et al. 2017). The first nucleosome 
in the direction of transcription downstream of the NDR is 
typically referred to as the + 1 nucleosome, which contains 
the transcription start site (TSS), while the first nucleosome in 
the upstream direction is labeled the − 1 nucleosome (Fig. 1c). 
The TSS is generally 50–60 bases upstream of the + 1 nucleo-
some dyad (the midpoint), meaning that the RNA is initiated 
about 10 bp inside the + 1 nucleosome (Lee et al. 2007; Yuan 
et al. 2005). Genome-wide maps of H2A.Z localization in 
yeast showed that it occupies promoters and is incorporated 
into the flanking + 1 and − 1 nucleosomes (Albert et al. 2007; 
Guillemette et al. 2005; Li et al. 2005; Raisner et al. 2005; 
Zhang et al. 2005).

The role of SWR1 in H2A.Z incorporation

What is the mechanism of the remarkable specificity of 
H2A.Z incorporation at promoters in the yeast genome? To 
a considerable extent, it is dictated by the localized action of 

the SWR1 complex, the chromatin remodeler responsible for 
incorporating H2A.Z into the nucleosome. SWR1 belongs 
to the ATP-dependent chromatin remodeler family that 
includes SWI/SNF and other ATPases (Kobor et al. 2004; 
Krogan et al. 2003; Lin et al. 2020; Mizuguchi et al. 2004). 
In yeast, the key ATPase component of SWR1 is the protein 
Swr1, encoded by the SWR1 gene, and in this review, SWR1 
(the complex) and Swr1 (the protein) are used interchange-
ably. SWR1 is preferentially localized at the NDR which is 
adjacent to the + 1 nucleosome (Ranjan et al. 2013; Yen et al. 
2013). Here, it catalyzes a histone dimer exchange reaction 
in which each of the two H2A–H2B dimers in the adjacent 
nucleosome is sequentially replaced with an H2A.Z–H2B 
dimer (Luk et al. 2010; Sun et al. 2020). However, the pic-
ture is likely to be somewhat more complicated based on 
an analysis of the types of promoters H2A.Z is found at, 
the relationship of H2A.Z and SWR1 recruitment to one 
another, and the relationship of H2A.Z incorporation to 
transcription. A recent study (Bagchi et al. 2020) analyzed 
H2A.Z occupancy in relation to transcription initiation sites 
as measured by the technique of SMORE-seq, which is spe-
cific for transcripts with capped 5′ ends and thus defines 
TSS positions more accurately than standard RNA-seq. 
SMORE-seq is also more sensitive than standard RNA-seq 
in its ability to detect non-coding RNA that is transcribed in 
the opposite sense from a normal promoter—what may be 
termed upstream antisense non-coding RNAs (UAN RNAs) 
at promoters (Park et al. 2014).

At divergently transcribed genes (Fig. 1d), SWR1 is 
presumably recruited to the central NDR and incorporates 
H2A.Z into each of the two flanking nucleosomes which 
are both “+ 1”, with equal propensity as evidenced by the 
similar H2A.Z occupancy at the flanking nucleosomes. On 
the other hand, in tandemly oriented genes, the 5′ end of a 
gene and its promoter abuts the 3′ end of the adjacent gene 
(Fig. 1d). At these genes, H2A.Z is present at the + 1 nucleo-
some on the downstream gene, but at the upstream “− 1” 
nucleosome, the extent of H2A.Z occupancy is proportional 
to transcription of the UAN RNA. When there is little to no 
UAN RNA transcribed, there is little to no H2A.Z incorpo-
ration into the upstream − 1 nucleosome (Fig. 1d) (Bagchi 
et al. 2020). Thus, at tandem genes, the − 1 H2A.Z-contain-
ing nucleosome is in fact a + 1 nucleosome for an antisense 
non-coding transcript that is initiated in the opposite direc-
tion. At least in yeast, therefore, it is erroneous to consider 
H2A.Z as occupying a “− 1” nucleosome or flanking the 
NDR. This revised picture of H2A.Z occupancy is not fully 
explained by a simple model where SWR1 recruitment to 
an NDR results in H2A.Z incorporation into the nearest 
nucleosome, because there is a clear difference in H2A.Z 
occupancy depending upon whether transcription occurs in 
that direction. When there is no transcription in the upstream 
direction to a given gene’s TSS, as in case of a tandem gene 
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Fig. 1   H2A.Z nucleosome structure and occupancy at yeast promot-
ers. a Alignment of yeast H2A and H2A.Z protein sequences. The 
histone-fold domain and its α-helical segments are indicated by yel-
low and turquoise highlighting, respectively. Residues involved in 
interaction of H2A or H2A.Z with H2B are indicated by the bars 
above. b Structure of a nucleosome containing H2A.Z. This rep-
resentation of the crystal structure of the nucleosome core particle 
was obtained from PDBe (ebi.ac.uk/pdbe/entry/pdb/1f66) and is a 
composite structure containing mouse H2A.Z, canonical histones 
from Xenopus and a DNA sequence from human (Suto et al. 2000). 
The two H2A.Z polypeptide chains are highlighted in blue. c H2A.Z 

nucleosomes at the promoter of a gene being transcribed left to right. 
NDR is the nucleosome-depleted region, typically present upstream 
of the transcription start site. The H2A.Z-containing nucleosome is 
the + 1 nucleosome in the direction of transcription initiation, either 
of a divergent coding mRNA or a short upstream antisense non-
coding RNA (UAN RNA) (Bagchi et al. 2020). In this depiction, the 
UAN RNA is antisense relative to the gene on the right. d H2A.Z 
occupancy at the apparent − 1 nucleosome relative to the gene on the 
right depends on the arrangement of genes on the chromosome and 
whether a UAN RNA is transcribed
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without a UAN, there is no H2A.Z occupancy of the “− 1” 
nucleosome either. A few additional observations also com-
pel a reevaluation of the notion that simply recruiting SWR1 
to the NDR suffices to explain the occupancy of H2A.Z at 
the flanking nucleosomes (Bagchi et al. 2020). First, there is 
little quantitative correlation between the strength of Swr1 
binding to the NDR and the extent of H2A.Z occupancy of 
the + 1 nucleosome, as measured by the strength of their 
ChIP signals. Second, Swr1 binding at NDRs is indistin-
guishable between tandem and divergent genes, whereas 
H2A.Z incorporation at the upstream + 1 nucleosome is 
markedly higher for divergent genes. Finally, Swr1 binding 
to the NDR is itself dependent to a certain extent on H2A.Z; 
in the absence of H2A.Z in the genome, Swr1 binding at its 
most prominent sites is reduced (Bagchi et al. 2020). In par-
ticular, the strong directionality coinciding with transcrip-
tional activity in terms of H2A.Z incorporation into the + 1 
nucleosome suggests that a transcription-related process 
could contribute to this directionality.

Links between H2A.Z occupancy 
and transcription

What is the link between transcription and H2A.Z occu-
pancy? One potential link comes from the finding that 
replacement of H2A.Z at the + 1 nucleosome in  vivo 
seems to coincide with the assembly and function of the 
PIC (Ranjan et al. 2020; Tramantano et al. 2016; Zanton 
and Pugh 2006). Eviction of H2A.Z, namely, replacement 
of H2A.Z–H2B dimers by H2A–H2B dimers can be cata-
lyzed in vitro by the INO80 complex, also an ATP-depend-
ent chromatin remodeler which can, in effect, reverse the 
action of the SWR1 complex (Papamichos-Chronakis et al. 
2011; Watanabe et al. 2013). Experiments testing a genome-
wide role in vivo for INO80 in evicting H2A.Z from nucle-
osomes have, however, revealed conflicting results. While 
some studies have reported a requirement for either Ino80 
or Arp5, both key components of the INO80 complex, in 
regulating H2A.Z occupancy at promoters and its eviction 
(Papamichos-Chronakis et al. 2011; Yen et al. 2013), other 
studies have reported contrasting results (Jeronimo et al. 
2015; Tramantano et  al. 2016). Moreover, depletion of 
components of the general transcription machinery such as 
TBP (the TATA binding protein), RNAPII, or the RNAPII 
C-terminal domain kinase Kin28, results in accumulation of 
H2A.Z at + 1 nucleosomes or on chromatin, strongly sug-
gesting a role for the PIC or transcription initiation itself in 
evicting H2A.Z (Ranjan et al. 2020; Tramantano et al. 2016).

Another link between transcription and H2A.Z occupancy 
could arise from the fact that Bdf1, a bromodomain-con-
taining component of the SWR1 complex, is shared with 
TFIID, the member of the general transcription machinery 

that also contains TBP (Krogan et al. 2003; Matangkasom-
but et al. 2000; Schier and Taatjes 2020). Indeed, SWR1 
recruitment to promoters is facilitated by interaction of the 
Bdf1 bromodomain with acetylated histones H2A, H3, and 
H4 (Altaf et al. 2010; Koerber et al. 2009; Ladurner et al. 
2003; Matangkasombut and Buratowski 2003; Raisner et al. 
2005). Bdf1 occupancy is strongest at the + 1 and to a lesser 
extent, the + 2 nucleosome (Koerber et al. 2009). However, 
Bdf1 occupancy does not correlate well with SWR1 and 
H2A.Z at all genes, whereas it does correlate highly with 
Taf1, a component of TFIID (Joo et al. 2017). Bdf1 is part 
of the TAF (TBP associated factor) complex that is detect-
able downstream of the core promoter, where it serves to 
reinitiate transcription at strongly TAF-dependent genes. It 
has been proposed that in this manner, Bdf1 could be left 
behind after reinitiation and if so, it may serve to recruit the 
SWR1 complex and promote H2A.Z incorporation at the + 1 
nucleosome (Joo et al. 2017). Bdf1-dependent enhancement 
of SWR1 function at the + 1 nucleosome could thus contrib-
ute to the transcription-dependent directionality of H2A.Z 
incorporation at the promoter, although such a mechanism 
remains to be shown. H2A.Z could represent a signpost of 
transcription having occurred through a + 1 nucleosome at 
some point, while at the same time showing no strong corre-
lation with the extent of transcription as measured by steady-
state RNA levels or rates of transcription measured indi-
rectly by RNAPII Ser-5P occupancy (Bagchi et al. 2020).

Ribosomal protein gene promoters lack 
H2A.Z

The ribosomal protein (RP) genes in yeast call for special 
consideration. These genes are actively transcribed dur-
ing normal growth conditions and tend to have relatively 
long NDRs, which would make them ideal candidates for 
SWR1 occupancy and H2A.Z incorporation. However, 
although they show high levels of Bdf1 (and TAF) occu-
pancy, they show much lower levels of Swr1 at their NDR 
and virtually no H2A.Z at their clearly distinguishable + 1 
nucleosome, so much so that the RP genes are the clear 
outliers in the entire yeast genome with regard to Swr1 and 
H2A.Z occupancy (Bagchi et al. 2020; Rhee et al. 2014; 
Zhang et al. 2005). While the explanation for this is not 
entirely clear, it could reflect in part the fact that the extent 
of H2A.Z occupancy at a + 1 nucleosome is a function not 
just of its incorporation by SWR1, but also its eviction and 
replacement by H2A. At RP genes, the low levels of SWR1 
combined with rapid replacement due to highly active 
transcription could result in very low levels of steady-state 
H2A.Z occupancy. Interestingly, in the absence of H2A.Z, 
Ino80 accumulates specifically at RP genes which suggests 
that it might contribute to H2A.Z replacement there under 
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normal circumstances. Nevertheless, there is no accumula-
tion of H2A.Z at RP genes in the absence of Ino80 (Bagchi 
et al. 2020; Tramantano et al. 2016).

As noted above, depletion of TBP results in an increase 
of H2A.Z occupancy at + 1 nucleosomes at most genes. 
Depletion of Rpb1 (the large subunit of RNAPII) simi-
larly increases H2A.Z occupancy at most + 1 nucleosomes 
(Tramantano et al. 2016), and interestingly, also leads to 
increased downstream binding of the reinitiating form of 
the TAF complex that contains Bdf1 (Joo et al. 2017). 
Could the apparent requirement for the PIC for H2A.Z 
eviction reflect an increase in H2A.Z incorporation fol-
lowing PIC depletion due to additional Swr1 recruited 
by residual Bdf1 left behind after reinitiation by the TAF 
complex? At least at two promoters that were tested, SWR1 
itself and FUN12, which are sites of high Swr1 binding, 
depletion of TBP caused a decrease in Swr1 occupancy 
(Tramantano et al. 2016), suggesting that the PIC deple-
tion does not lead to increased H2A.Z incorporation. How-
ever, at the majority of the genes in the genome, it remains 
to be shown that there is no increase in SWR1 recruitment 
possibly mediated by Bdf1 upon PIC depletion. At RP 
genes, TBP depletion causes an increase in H2A.Z occu-
pancy but depletion of Rbp1 does not (Tramantano et al. 
2016). Notably, depletion of Rpb1 also does not cause an 
increase of Taf1 binding (and, one infers, Bdf1) but rather, 
leads to a decrease of Taf1 specifically at RP genes (Joo 
et al. 2017). Thus, the increase in H2A.Z occupancy at RP 
genes was seen only when TBP was depleted, but not when 
Rpb1 was depleted, again underscoring the possibility of 
distinct mechanisms prevailing at these promoters.

In summary, H2A.Z occupancy of nucleosomes at yeast 
promoters is observed primarily at the first nucleosome 
in the direction of transcription and reflects a balance 
between incorporation by the SWR1 complex and evic-
tion by transcriptional activity, possibly abetted by other 
chromatin remodelers or chaperones. The extent of H2A.Z 
at the + 1 nucleosome is not correlated with the amount of 
bound SWR1 or the extent of transcriptional activity, with 
ribosomal protein genes forming a distinct class showing 
strong transcriptional activity and low H2A.Z. Further 
studies that quantify the contributions of each of these 
factors to H2A.Z occupancy at different classes of pro-
moters and other locations will shed light on the role of 
this universal histone variant in the yeast genome and will 
undoubtedly guide similar studies and generate insights 
in other eukaryotes.
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