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Producing flow in racetrack atom circuits by stirring
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We present a study of how macroscopic flow can be produced in Bose-Einstein condensates confined in

a “racetrack” potential by stirring with a wide rectangular barrier. This potential consists of two half-circle

channels separated by straight channels of length L and reduces to a ring potential if L = 0. We present the results

of a flow-production study where racetrack condensates were stirred with a barrier under varying conditions of

barrier height, stir speed, racetrack geometry, and temperature. The result was that stirring was readily able to

produce flow in ring and nonring geometries but that the exact amount of flow produced depended on all of the

study parameters. We therefore investigated the mechanism by which flow was produced in the stirring process.

The basic mechanism that we discovered was that when the sweeping barrier potential height reached a critical

value a series of phase slip (i.e., a sudden change in the phase winding around the condensate midtrack) events

occurred. Phase slipping stopped when the flow produced overtook the speed of the stirring barrier. Disturbances

generated at each phase slip circulated around the channel and served to convert the initially localized velocity

distribution into smooth macroscopic flow. This picture of the mechanism for making flow should facilitate the

design of closed-channel atom circuits for creating a desired amount of quantized smooth flow on demand.

DOI: 10.1103/PhysRevA.102.063324

I. INTRODUCTION

Recent advances in the optical manipulation of neutral

atoms [1–4] have sparked experimental and theoretical in-

terest in systems of Bose-Einstein-condensed (BEC) atomic

gases confined to a thin sheet in a horizontal plane. Cases

where the BEC is confined within this plane to a closed-

loop channel potential can be roughly analogous to electronic

circuits. The difference is that the current in such ultracold-

atom systems refers to the motion of neutral atoms rather

than electrons. These systems are sometimes referred to as

“atom circuits” and their study is part of the emergent field of

atomtronics [5].

Interest in atom circuits derives in part from their poten-

tial for use in devices such as rotation sensors [5] suitable

for precision navigation. Proposed examples include devices

that sense rotation via Sagnac interferometry [6,7] and those

that act as analogs of superconducting quantum interference

devices (SQUIDs) where rotation takes the place of magnetic

flux [8–11]. Some implementations of these types of interfer-

ometer include a Bose-Einstein-condensed gas confined in a

ring geometry [12–21].

All atom circuits require neutral-atom current for their

operation. Atom circuits suitable for applications such as ro-

tation sensing, mentioned above, will need to be able to make

repeated measurements over time. Such devices will need to

step through a cycle where the measurement is made and then

reset for the next measurement. One possible cycle is shown

in Fig. 1 for a SQUID-like rotation sensor [8,22]. In general

terms, the cycle consists of making a BEC, creating flow,

modifying the potential to create circuit elements so that the

measurement can be made, and then resetting so that the cycle

can repeat. Clearly it will be advantageous to be able to create

a given amount of smooth flow in the condensate on demand.

In order to design these types of atom circuits for appli-

cations, a detailed understanding of how to produce smooth

flow will be essential. Furthermore, the channel potential that

confines the condensate will be modified in each cycle and this

will likely require channels that differ from a ring shape. This

idea motivates our consideration of a “racetrack” potential.

The elongated racetrack shape provides extra room for circuit

elements to come and go during the cycle. This potential also

has the advantage that the ring shape is a special case.

Finally, if a quantum sensor is to make sensitive mea-

surements, it needs the ability to react to small changes in

the environment. However, these changes may be magni-

fied by the nonlinear behavior of a near-zero temperature

condensate (as might happen if the condensate obeyed the

Gross-Pitaevksii equation). If these changes cause large oscil-

lations in the sensor response, its measurement output may be

unreliable. Such oscillations might be controlled by running

the sensor at a nonzero temperature. Thus, it is of interest to

investigate sensor behavior at nonzero temperature.

In this paper, we investigate the flow-production step of this

imagined atom-SQUID sequence by studying how current can

be produced in a particular class of atom circuits by stirring.

The atomtronic systems that we will focus on consist of a

BEC confined to a horizontal plane in which an arbitrary

two-dimensional potential can be created.
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FIG. 1. Diagram for an imagined cycle of a SQUID-type atom

circuit rotation sensor. The cycle is as follows: (1) a condensate is

formed in a channel potential, (2) smooth flow is produced by some

mechanism, e.g., stirring, (3) the result is a condensate with smooth

flow, (4) the potential is then modified to add an inner ring plus

Josephson barriers, (5) the difference in the local chemical potential

(�µ) is measured, and (6) the system is then reset.

We only considered two-dimensional (2D) potentials that

take the form of a closed channel in the shape of a racetrack.

The racetrack channel consists of two semicircular end caps

separated by straight sections of length L, as illustrated in

Fig. 2 and described more fully below. We also assume that

the condensate fills the closed-loop channel entirely. This

differs significantly from some other studies [23,24] where the

available volume afforded by the potential was much larger

than the size of the condensate so that the potential acts as a

waveguide.

Several methods have been used to create flow in BECs

confined in ring potentials. These include transferring orbital

angular momentum from a Laguerre-Gauss laser beam to the

trapped atoms [25] and imprinting a phase on the gas atoms

using a light pulse with a tailored intensity pattern [26]. The

most popular method to date for producing flow has been

stirring the gas with a blue-detuned laser [13,18–21,27,28].

FIG. 2. A plot of VRT(x, y), which defines the racetrack geometry.

The parameter L sets the length of the straight channels that connect

the two semicircular end caps; depicted here is the L = 30 µm case.

The outer and inner radii parameters, Ro = 36 µm and Ri = 12 µm,

control the width of the channel. A ring BEC is the L = 0 special

case of the racetrack.

Here we present a study of the amount of, nature of, and

mechanism for creating quantized flow in racetrack BECs by

stirring. In Sec. II, we present the results of a systematic flow-

production study where racetrack BECs were stirred under

different sets of conditions. In these simulations, we varied

the racetrack lengths, stirring speeds, maximum barrier energy

heights, and temperatures. In Sec. III, we present a detailed ac-

count of how stirring produces flow. In particular, we discuss

how a single phase slip (i.e., a sudden change in the phase

winding around the condensate midtrack) occurs and the time

sequence of multiple phase slips induced by the stirring. Fur-

thermore, we describe how the localized circulation, present

just after a phase slip, becomes delocalized macroscopic flow

around the ring. We summarize the results in Sec. IV.

II. SURVEY STUDY OF FLOW PRODUCTION

BY STIRRING

We conducted a survey study of how much flow was pro-

duced by stirring a Bose-Einstein condensate, confined in

a racetrack channel potential, with a weak-link, rectangular

barrier potential. The parameters that were varied in the study

were the length, L, of the racetrack channel; the thermal-

equilibrium temperature, T , of the initial state; the stir speed,

vb, of the barrier; and the maximum energy height of the

barrier, Vp,max. Each simulation in the series was uniquely

specified by these parameters: T , L, vb, and Vp,max. Except for

these parameters, the conditions in all of the simulations were

the same. In this section, we describe the full set of conditions

present in the simulations and then the flow-production results

obtained.

A. Survey study characteristics

Here we describe the details of the ultracold-atom system

modeled in the simulation, the zero- and finite-temperature

models assumed to govern system behavior, the common

characteristics of each simulation, and the ranges of the

parameters that were varied. We begin with the system char-

acteristics.

The initial state of the condensate was assumed to be

a stationary thermal-equilibrium system of condensate plus

noncondensate held at temperature, T . The confining potential

present in the initial state was assumed to be strong harmonic

confinement in the vertical (z axis) direction plus a “racetrack”

potential in the horizontal plane. This potential takes the math-

ematical form

V0(r) = 1
2
Mω2

z z2 + VRT(x, y), (1)

where M is the mass of a condensate atom (sodium in this

study), ωz/2π = 320 Hz is the frequency of the vertical har-

monic confinement, and VRT(x, y) is the racetrack potential.

The mathematical form for the racetrack potential is given

by

VRT(x, y) = Vrt

{1

2
tanh

(

ρ(x, y) − Ro

σ

)

+
1

2
tanh

(

Ri − ρ(x, y)

σ

)

+ tanh
(Ro − Ri

2σ

)}

,

(2)
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TABLE I. Parameter set for the flow–production study. An individual simulation is uniquely identified by the four parameters:

(T, L, vb,Vp,max ). Each cell containing the label “Vp,max/µ = .50, .52, . . . , 2.0” refers to a unique set of the parameters (T, L, vb). This label

refers to a set of simulations in which Vp,max/µ varies from 0.50 up to 2.00 in steps of 0.02, where µ is the chemical potential of the initial

condensate.

L → L = 0, 30, 60 µm L = 0, 30, 60 µm L = 0, 30, 60 µm L = 0, 30, 60 µm

vb ↓ T → T = 000 nK T = 100 nK T = 150 nK T = 200 nK

113.1 µm/s Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0

226.2 µm/s Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0

339.3 µm/s Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0

452.4 µm/s Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0 Vp,max/µ = .50, .52, . . . , 2.0

where the factor ρ(x, y) defines the edges of the condensate in

the horizontal plane and is given by

ρ(x, y) =















√

(x − L/2)2 + y2 x > L/2
√

(x + L/2)2 + y2 x < −L/2

|y| |x| � L/2.

(3)

As illustrated in Fig. 2, the racetrack potential consists of two

half-circular annuli having inner radius Ri and outer radius

Ro, and parallel straight sections of length L. In the simula-

tion study, the radii were kept fixed at Ri = 12 µm and Ro =
36 µm while L was one of the parameters that was varied in

the simulations. We chose the racetrack potential because it

allows room for adding elements to the atom circuit potential

but also enables the well-studied ring case to be recovered for

L = 0.

In each simulation, the condensate was stirred by a weak-

link rectangular barrier potential, Vstir(x, y, t ), that swept

around the racetrack at constant linear speed, vb. The full

potential in all simulations had the form

Vext(r, t ) = 1
2
Mω2

z z2 + VRT(x, y) + Vstir(x, y, t ). (4)

The barrier orientation was always perpendicular to the mid-

track and the perpendicular barrier width was always twice

that of the channel. Full mathematical details of the racetrack

and barrier potentials can be found in Appendix A.

The height of the barrier was time dependent. In all simu-

lations, the energy height of the barrier was varied in the same

way. Between times t = 0 and t = 500 ms, the barrier energy

height was increased linearly from zero to Vp,max; between

times t = 500 ms and t = 1000 ms, the energy height was

held constant; and between times t = 1000 ms and t = 1500

ms, the barrier was decreased linearly to zero. For all simu-

lation times t � 1500 ms, the barrier energy height was zero.

We note that the barrier potential height vs time is plotted in

Figs. 7(a) and 7(b).

In each simulation, we allowed the system to evolve for

a time after the barrier was turned off. We did this partly to

assess how persistent any flow produced would be and also to

be able to implement adding additional elements to the atom

circuit. In this work, we only report on the stirring aspect

of this sequence. For the zero-temperature simulations, the

system was allowed to evolve after the barrier was turned

off for a further 2500 ms. For the nonzero-temperature sim-

ulations, the system was allowed to evolve only for a further

500 ms. This reason for this difference was that the nonzero-

temperature simulation took much more computer time than

the zero-temperature ones. Since the flow-production study

required many simulations, for practical reasons we shortened

the system evolution time after the barrier was fully off.

Our choice of barrier stirring protocol is one that has

been commonly used in recent experiments [18–20,27,29,30]

where flow is produced in ring BECs by stirring. Our choice

was guided by the goal of making smooth flow and so

stirring slowly would minimize unwanted excitations of the

condensate. The stirring speeds in our simulations ranged

from vb = 113.1 to 452.4 µm/s while bulk sound speeds

ranged from vs = 3400 to 4600 µm/s. Thus, with our proto-

col, smooth flow can be produced by stirring at speeds that

are a few percent of the bulk sound speed. Other types of bar-

rier motion such as accelerating barriers where shock waves

might be produced [10,31] would be less likely to create

smooth flow.

The ranges of parameters (T, L, vb,Vp,max) that were varied

in the flow-production study are displayed in Table I. This

set of parameters uniquely identifies an individual simulation.

Each cell of the table labeled “Vp,max/µ = .50, .52, . . . , 2.0”

corresponds to specific a value of the temperature, T , found at

the top of the column, one of the three racetrack length values

that also appear at the top of the column, and a specific value

of the barrier stirring speed, vb, found at the beginning of the

row. The cell label “Vp,max/µ = .50, .52, . . . , 2.0” refers to a

series of 76 simulations where the parameters (T, L, vb) were

the same but Vp,max ranged from 0.50µ up to 2.00µ in steps of

0.02µ where µ is the chemical potential of the initial state.

The behavior of the condensate in zero-temperature simu-

lations was assumed to follow the Gross-Pitaevskii equation

(GPE) [32–34]. For nonzero-temperature simulations, we

used the Zaremba-Nikuni-Griffin (ZNG) model [35].

In the ZNG model, the system is assumed to have a con-

densate and a noncondensate. The behavior of the condensate

is described by a condensate wave function, �(r, t ), and the

noncondensate is assumed to be an interacting gas described

by a single-particle distribution function, f (p, r, t ).

The single-particle distribution function is defined so that

f (p, r, t )d3r d3 p/(2π h̄)3 is the number of particles at time

t having position, r, and momentum, p. The noncondensate

density, ñ(r, t ), can thus be calculated as

ñ(r, t ) =
∫

d3 p

(2π h̄)3
f (p, r, t ). (5)
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The condensate wave function follows a generalized

Gross-Pitaevskii equation (GGPE) [35]

ih̄
∂

∂t
�(r, t ) = [Ĥ0 + 2gñ(r, t ) − iR(r, t )]�(r, t ). (6)

The term Ĥ0 = −h̄2

2M
∇2 + Vext(r, t ) + gnc(r, t ) is the GPE

Hamiltonian, g defines the strength of condensate atom-atom

interactions, nc(r, t ) = |�(r, t )|2 is the condensate density,

ñ(r, t ) is the noncondensate density, and R(r, t ) is a local

source-sink term that describes particle exchange between

condensate and noncondensate.

The single-particle distribution function evolves according

to a quantum Boltzmann equation (QBE)

∂ f

∂t
− ∇rUeff · ∇p f +

p

M
· ∇r f = C12[ f ,�] + C22[ f ], (7)

where Ueff (r, t ) = Vtrap(r, t ) + 2g(nc(r, t ) + ñ(r, t )) is an ef-

fective potential felt by the noncondensate atoms. The

C12(p, r, t ) term is roughly the rate of collisions between

condensate and noncondensate atoms with momentum p at

position r and time t . These collisions can lead to gain or loss

of atoms in the condensate. The C22(p, r, t ) term describes

collisions between two noncondensate atoms at (p, r, t ). To-

gether these terms describe how collisions affect the rate of

change of f (p, r, t ) [35].

The ZNG model allows for the noncondensate density to

influence the condensate dynamics at the mean-field level

and for the noncondensate density dynamics to couple to the

condensate density. Additionally it allows for particle ex-

change between condensate and noncondensate via collisions.

In our simulations, we neglected the effect of collisions.

Stirring the condensate at nonzero temperature is most likely

to reduce the amount of flow produced if all other conditions

are the same. Including collisions would only reduce the

amount of flow produced even more and thus we have ignored

them. The reader should, therefore, consider our collision-free

ZNG results for the amount of flow produced to be an upper

bound. The approximate ZNG model should be regarded as

an estimate of finite-temperature effects on the amount of flow

produced by stirring.

The ZNG model for dynamics works best in the middle

of the range 0 < T < Tc. It has been successfully applied to

the damping of collective excitations [36] and the decay of

an off-center vortex in a simply connected condensate [37].

It describes both mean-field-dominated regimes and hydrody-

namic regimes, except at very low temperatures or in the case

of large fluctuations [38,39]. The temperatures used in our

simulations were chosen by using the ZNG model to com-

pute the condensate fraction versus temperature for a fixed

total number of atoms and for the three racetrack lengths as

described in Ref. [35]. These curves were fitted using the

function

Nc

N
= 1 −

(

T

Tc

)a

, (8)

with Tc and a as fitting parameters [40], and this was used to

select temperatures so that the condensate fractions covered a

reasonable range and to ensure the validity of the ZNG model.

These fits yielded critical temperature of Tc ≈ 250 nK. Thus,

at the chosen temperatures, T = 100, 150, 200 nK correspond

to T/Tc ≈ 0.4, 0.6, 0.8, respectively. Details of how the initial

states were calculated along with plots of the condensate

fractions versus T can be found in Appendix B.

B. Survey study results

Typical results of flow production in the BEC by stirring

are shown in Fig. 3. This figure shows plots of the flow

winding number, nw, at the end of the simulation versus the

maximum energy height of the barrier expressed in units of the

chemical potential, µ, of the initial condensate. The winding

number is found by computing the phase accumulated around

a path along the midtrack of the channel. Due to the single-

valuedness of the condensate wave function, this accumulated

phase must equal an integer multiple of 2π and this multiple

is the winding number.

Figure 3 contains four plots. Each plot refers to specific

values of the racetrack length, L, and barrier stirring speed, vb.

Appearing in each plot are four curves showing the winding

number versus Vp,max/µ, one for each of the four temperatures

(T = 0, 100, 150, 200 nK) considered in the flow-production

study. Note that these four curves have been vertically offset

for clarity and all winding-number results are integer values.

Each plot also shows a solid (no symbols) black line indicating

the stirring speed of the barrier in units of the winding number

equivalent to the speed of the stirring barrier.

There are several features that are common to all four plots.

First, it is clearly possible to make flow by stirring. The second

notable feature is that no flow is produced until Vp,max reaches

a critical value and flow is almost always produced for values

of Vp,max larger than the critical value. We note that this critical

value decreases for increasing initial-state temperature. This

is probably because the total number of atoms in the system

is held fixed, causing condensate numbers to decrease as T

increases. Finally we see that above the critical value of Vp,max,

the winding number rises rapidly to a plateau after which it

oscillates around an average value that is close to the barrier

stir speed.

This average value can be estimated by determining the

number of units of flow speed needed to reach the speed of the

stirrer. One unit of average flow speed can be approximated as

h̄/M times the phase gradient around the channel midtrack:

vflow =
h̄

M

(

2π

2πR + 2L

)

, (9)

where R = (Ri + Ro)/2 is the average radius of the racetrack

endcaps. The stir speed in units of the flow speed, vb/vflow

appears as the solid black line in Figs. 3(a)–3(d). This ratio

provides a rough estimate of the amount of flow that can be

produced by stirring.

Another important question is whether the flow produced

by the stirring protocol we have considered here is smooth.

The velocity distribution of the condensate is proportional to

the gradient of the phase of the condensate wave function. The

signature of smooth flow along a particular direction is that this

spatial rate of change of the phase should be nearly constant.

We can get an indication of whether the flow induced along the

channel is smooth by plotting the spatial phase distribution.

Figure 4 displays typical final-state phase distributions for

ring and nonring cases. If we follow the circular midtrack of
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FIG. 3. Flow produced vs Vp,max/µ in two different racetrack geometries stirring at two different stirring speeds. (a) L = 0 µm, vb =
113.1 µm/s, (b) L = 0 µm, vb = 339.3 µm/s, (c) L = 30 µm, vb = 113.1 µm/s, and (d) L = 30 µm, vb = 339.3 µm/s. Each panel shows the

flow produced at four different temperatures: T = 0, 100, 150, and 200 nK. Note: The four different temperature curves have been vertically

offset for clarity. The actual value of all flows is the largest integer less than or equal to the values indicated on the curve. The solid black line

indicates the stir speed in units of the flow speed around the midtrack. The red circle in panel (d) identifies the racetrack case displayed later in

Fig. 7(b).

the ring, see Fig. 4(a), we find that the accumulated phase

around this path is 3 × 2π and each 2π winding takes up

very nearly 1/3 of the circumference of this path. The same is

FIG. 4. Condensate phase distribution in the final state for two

stirring cases illustrating the smooth flow obtained by stirring.

The rectangles measure 150 µm horizontally and 75 µm verti-

cally. (a) Ring case: parameters are L = 0 µm, T = 0 nK, vb =
339.3 µm/s, Vp,max/µ = 0.98. (b) Racetrack case: parameters are

L = 30 µm, T = 0 nK, vb = 339.3 µm/s, Vp,max/µ = 1.14.

true for the racetrack case, Fig. 4(b), where the phase winding

divides the midtrack circumference into five approximately

equal parts. From this, we infer that the final flow is reason-

ably smooth.

The full story of the amount of flow produced is more com-

plicated and depends on the details of the time dependence of

the barrier turning on and the shape of the racetrack. These

things can be understood by studying the mechanism of how

stirring produces flow within the Gross-Pitaevskii model. We

discuss this in the next section.

III. HOW STIRRING PRODUCES FLOW

Here we describe how stirring the condensate with a

constant-speed barrier whose energy height is increasing pro-

duces smooth flow within the Gross-Pitaevskii model. The

basic process is that when the energy height of the barrier

exceeds a critical value, it triggers a series of phase-slip

events, causing the accumulated phase around the closed-loop

channel to increase. Phase slipping stops when the number

of slips times the unit of quantized velocity for the channel,

vflow, is closest to the stirring speed of the barrier (see the solid

black lines in the plots in Fig. 3). We note that the details of

when and how vortices form at a phase slip has been well
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FIG. 5. Spacetime map of the density and velocity tangential component along the the midtrack of the condensate. (a) The arc length, s,

is measured from the bottom of the ring and increases in the counterclockwise (ccw) direction. The barrier also stirs the condensate in the

ccw direction. (b) Spacetime map of the condensate density distribution around the midtrack versus time. The horizontal axis is time and the

vertical axis is arc length, s, along the midtrack as shown in panel (a). (c) Spacetime map of the component of the condensate velocity tangent

to the midtrack of the condensate. Note that the arc length, s, increases from top to bottom in panels (b) and (c).

studied [17,18,41,42]. Here we are more concerned with the

aftermath of the phase slip and how it contributes to the final

macroscopic flow produced.

When the phase slips stop, the tangential component of

the condensate velocity is unevenly distributed around the

track. This component is large near the vortices created during

phase-slip events and small elsewhere. This uneven distribu-

tion of velocity is converted into even, smooth flow around

the channel during the stirring by pairs of countercirculating

disturbances where each pair is generated at a phase slip.

Hereafter, we present the evidence for this narrative of how

flow is produced by stirring. We begin by considering how

flow is produced in the ring-channel case. First we describe

what happens in a phase-slip event, including the nature of

the two disturbances generated. Next, we present the time

sequence of phase slips during the full stirring process. We

also show that the countercirculating disturbances smooth out

fluctuations in the condensate velocity around the channel

during the stirring. Finally, we return to the racetrack case and

describe the effects of a nonring geometry.

A. Single phase-slip events

A single phase slip consists of three steps: (1) vortex for-

mation in the barrier near the outer edge of the channel due to

condensate backflow inside the barrier region, (2) a vortex-

antivortex swap, and (3) generation of two disturbances: a

vortex-antivortex pair moving in the antistir direction and a

compression wave moving in the stir direction. Both distur-

bances move at the average speed of sound, which is much

larger than the stir speed of the barrier. In what follows, we

shall take the term “vortex” to mean a general vortex that

circulates in the same direction as the stir and “antivortex”

to mean one that circulates the opposite way.

These steps are illustrated in Figs. 5 and 6. Figures 5(b)

and 5(c) show the spacetime distribution of the condensate

density, ρ(s, t ), at points around the midtrack of the ring and

the tangential component of the condensate velocity, vθ (s, t ),

around the midtrack, respectively. The horizontal axis is the

time, t , elapsed since the beginning of stirring and the vertical

axis is the arc length, s, along the midtrack. The value of

the quantity plotted, ρ or vθ , is represented at each point,

(t, s), with a color that can be found in the color bar at the

right. As shown in Fig. 5(a), the arc length, s, increases in

the counterclockwise direction as measured from the bottom

of the ring. The time interval depicted, 250 ms � t � 500 ms,

encompasses the initial series of phase–slips.

The large, mostly blue, stripe running from upper left to

lower right and labeled “barrier track” in Fig. 5(b) is the

track of the stirring barrier during this time interval. The stir

direction is counterclockwise and so the barrier moves in the

positive arc-length direction (top to bottom in the figure).

The barrier stripe also appears in Fig. 5(c) where the tan-

gential velocity is plotted. At times before the phase slips

begin (labeled by “backflow” in the figure), the stripe is

deep blue, indicating a negative tangential velocity component

along the midtrack or backflow in the barrier region.

When the height of the barrier reaches a critical value,

the vortex formed on the outer edge of the channel begins to

migrate from the outside to the inside of the channel. This

can be seen in Fig. 6. This figure shows a series of phase

distribution snapshots during the time interval from just before

[see Fig. 5(b)] until just after the first phase slip. The color

of each point in the plot denotes the value of the phase at

that point. Phase values range from −π (blue) up to +π

(red). Points encircling a vortex core will run through the full

spectrum of colors shown in the color bar at the far right of

Fig. 6. The direction around the circle [clockwise (cw) or

counterclockwise (ccw)] going blue to red is the circulation

sense of the vortex.

Figures 6(a) and 6(e) show the beginning of the migra-

tion of the vortex from the outside. Vortex locations are

identified with a circle. Black circles indicate vortices (i.e.,

those that circulate in the same sense as the stir) and white

circles indicate antivortices. Figures 6(a) and 6(e) show the

inward migration of the vortex. Figures 6(b) and 6(f) show

the appearance of an antivortex (white circle). Figures 6(c)

and 6(g) show that the vortex is now on the inner edge and

the antivortex is on the outer edge. The vortex and antivortex

“swap” places, although it is not clear from our simulations

exactly where the antivortex comes from. It is clear that just

after the phase slip the vortex and antivortex pair up and move

off together in the antistir direction.

Shortly after this vortex-antivortex swap, two disturbances

are generated. The first is the vortex-antivortex pair, located on

the inside and outside of the channel respectively, that moves
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FIG. 6. Phase distributions for the ring condensate [L = 0 µm, vb = 339.3 µm/s, Vp,max = 56.9 nK and T = 0 nK, same as in Fig. 7(a)] at

times just before and after the first phase slip in Fig. 7(a). The top row of panels, (a)–(d), show the full condensate while panels in the bottom

row, (e)–(h), show a closeup of the lower left quadrant of the of the panel just above it. The large black circles appearing in the top row demark

the condensate edges. Small circles indicate the locations of vortices. The dotted white lines in the upper row show the approximate position

of the stirring barrier. The wedges marked off by dotted black lines show the approximate position of the compression wave. Vortices that

circulate in the same direction as the stirring (i.e., counterclockwise) are drawn in black. White circles indicate antistir circulation. The times

that appear at the top of each picture indicate the time elapsed since the beginning of the stir.

away from the barrier in the antistir direction. This can be seen

by comparing Figs. 6(c) and 6(g) with of Figs. 6(d) and 6(h).

They show that the vortex-antivortex pair has started to move

in the antistir direction. This vortex pair causes atoms on the

antistir side of the barrier to flow in the stir direction.

The second disturbance is a compression wave that propa-

gates away from barrier region in the stir direction. Evidence

for these two disturbances can be seen in Fig. 5. In Fig. 5(b),

the annotation “first phase slip” points to the location of the

barrier when the first phase slip occurs. Two stripes, a light

brown stripe annotated “vortex-antivortex pair” and a dark

brown stripe annotated “compression wave,” emanate from

the barrier track at the first phase slip point.

The darker brown color of the compression wave stripe

indicates that it is a region of increased density relative to the

rest of the condensate. The light brown color of the vortex-

antivortex pair stripe shows it to be a region of lower density.

Corresponding stripes for these two disturbances also appear

in the tangential velocity plot in Fig. 5(c). We note that both

of these are yellow, indicating that they are both regions of

positive (stir direction) tangential velocity while the green re-

gions denote zero tangential velocity. Thus both disturbances

promote condensate flow in the stir direction. The slopes of

the disturbance stripes can be used to determine their speeds.

We found that both disturbances move at a speed that is

approximately the local speed of sound [c(r) =
√

gnc(r)/m]

averaged over the cross section of the condensate.

B. Final flow production: Ring case

Here we describe the overall dynamics of flow production

for the ring case. The stirred ring flow dynamics are simpler

than for the racetrack and considering the ring case first will

enable us to separate effects common to both ring and nonring

cases from those unique to the nonring geometry. We will take

up the racetrack case in a later section.

The typical time sequence for phase slips when the ring

condensate is stirred is illustrated in Fig. 7(a) where the blue

curve shows the winding number around the midtrack as a

function of time during the stirring. The case shown is L =
0 µm, vb = 339.3 µm/s, Vp,max = 56.9 nK, and T = 0 nK

and is the same case as that depicted in Figs. 5 and 6. The

vertical axis on the left side of the graph is measured in units

of the quantized flow speed, vflow.

The red dotted curve indicates the barrier height normal-

ized to its maximum value and the vertical axis on the right

side of the graph is the barrier energy height normalized to its

maximum value. The cyan dashed curve depicts the speed of

the stirring barrier in units of vflow.

The behavior of the circulation depicted here is simple:

Below a critical value of the barrier height, Vc, there is no cir-

culation, whereas at the critical value three phase slips occur

in rapid succession. With each new phase slip, the velocity of

the stirring barrier relative to the flowing condensate decreases

by one unit of flow speed. The figure shows that the speed of

the flowing condensate overtakes or nearly matches the speed

of the barrier. In this case, the backflow that developed when

stirring a stationary condensate becomes a forward flow. Thus,

the behavior described earlier that led to the creation of the

new units of flow can be reversed and units flow of can be

lost.

We found that the critical barrier height, Vc, for the on-

set of phase slips occurs at the same barrier height as long
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FIG. 7. (a) Condensate flow speed (blue, solid curve) in units of the quantized flow speed (vflow = 114.6 µm/s for the L = 0 µm racetrack)

vs time. The horizontal cyan dashed curve shows the stir speed of the barrier in the same units. The red dotted curve depicts the energy height

of the barrier vs time in units of Vp,max. The case displayed is L = 0 µm, vb = 339.3 µm/s, Vp,max = 56.9 nK, and T = 0 nK. (b) Same plot as

in panel (a), except that L = 30 µm. The black solid parts of the barrier energy-height curve denote times during the stirring when the barrier

is on the straight sections while the red dotted parts denote times when the barrier is on the CURVED sections.

as Vp,max > Vc. Thus, the value of Vc (in units of µ) can

be inferred from Fig. 3 since Vc is the same as the lowest

value of Vp,max for which maximum flow is obtained. From

Figs. 3(a) and 3(c), which show different geometries (L) but

the same stirring speeds (vb), we see that all of the values

of Vc are between 0.75 µ and 0.85 µ. Comparing Figs. 3(b)

and 3(d) (again same L, different vb), we see onset barrier

heights between 0.55 µ and 0.65 µ. Thus, Vc has only a weak

dependence on racetrack geometry.

Comparing onset values from Figs. 3(a) and 3(b) (same L,

different vb), we see that faster stirring results in a marked

reduction in the onset barrier height Vc. The same is true when

comparing Figs. 3(c) and 3(d). Finally, in each panel of Fig. 3

we can see that Vc decreases as the temperature increases.

However, this may be because we have fixed the total number

of particles in the system so that the number of condensate

atoms decreases as T increases.

We note that the question of phase-slip production as a

function of stirring barrier height has been addressed in the

literature [41,42]. Our findings for critical barrier height are

in line with this previous work. There has also been previous

experimental work on vortex shedding due to a barrier moving

through a condensate [43]. However, that work considered a

simply connected condensate rather than a multiply connected

one. Furthermore, their barrier width was much narrower than

their condensate. In contrast, our barrier was twice the width

of the condensate. Finally, the barrier speed as a fraction of

the bulk sound speed was much higher (>30%) than in this

work, where it was less than 10%.

The three phase slips generate three vortex-antivortex pairs

traveling in the antistir direction and three compression waves

traveling in the stir direction. The behavior of these distur-

bances during the stirring is depicted in Fig. 8. This figure

shows the spacetime maps for the condensate density (top

panel) and tangential velocity component (bottom panel) for

the full duration of the stirring process for the case where

L = 0 µm, vb = 339.3 µm/s, Vp,max = 56.9 nK, and T = 0

nK. The same quantities were also shown for a shorter time

interval in Figs. 5(b) and 5(c). The phase-slip behavior for this

case is shown in Fig. 7(a).

In Fig. 8, both the density and the tangential velocity panel

show three pairs of stripes emanating from the barrier track at

the times where the series of three phase slips are occurring in

Fig. 7(a). The density and tangential velocity panels in Fig. 8

show how these three pairs of disturbances evolve over the

duration of the stirring process. The disturbances continue to

circulate around the ring and thereby cause the initially lo-

calized velocity distribution to smooth out during the stirring

process.

This is easy to see by looking at the vθ (s, t ) plot in bottom

panel of Fig. 8. Looking at this plot as a whole, we can see

that it essentially changes color from green to yellow just at

the onset of the phase slips at around t = 320 ms. However, if

we compare this plot for the time interval 350 s � t � 600 s,

with the time interval 1250 s � t � 1500 s at the end of the

stirring, we can see that the distribution of velocities around

the midtrack is much smoother by the end.

The GPE mechanism for flow production in the ring by

stirring with a rectangular barrier can thus be summarized

as follows. The stirring barrier both moves and increases in

strength. This generates a backflow in the region of depressed

density in the barrier region. The backflow causes a vortex to

form at the outer edge. Eventually this vortex migrates inward

toward the inner edge of the barrier and a phase slip occurs.

This coincides with the appearance of a vortex-antivortex pair

with the vortex on the inside and antivortex on the outside.

This disturbance moves away from the barrier in the antistir

direction. At the same time, a compression wave disturbance

is generated that moves away from the barrier in the stir

direction. These disturbances both move at the average speed

of sound.

Phase slips occur in rapid succession until the flow gener-

ated overtakes the speed of the stirring barrier. Each phase

slip generates the vortex-antivortex and compression-wave

disturbances. These disturbances cycle rapidly around the ring

and thereby convert the uneven localized circulation around

the ring into evenly distributed flow. If the generated flow

is larger than the barrier speed, the backflow in the barrier

region becomes a forward flow and this can cause loss of a unit

of flow. Thus the circulation can oscillate during the stirring
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FIG. 8. Topographic spacetime plots of the density (top) and the tangential velocity component along the channel midtrack (bottom) of

the L = 0 µm (ring) racetrack BEC during the stirring process for the case shown in Fig. 7(a). The large, dark stripe labeled “barrier track”

appearing in both panels is the track of the stirring barrier. The stripes labeled as “vortex-antivortex pairs” show motion in the antistir direction,

while the stripes labeled as “compression waves” show motion in the stir direction. These disturbances convert circulation confined near a

localized vortex into into macroscopic flow around the racetrack.

period and the final flow amount will depend on how long the

stirring period lasts. We found that oscillations rarely occurred

in the ring case.

All of these features are present when flow is created in

the nonring racetrack case. However, there are some features

which only take place for L �= 0 racetrack potentials. We

consider this case next.

C. Final flow production: Racetrack case

Many of the features of flow production in the ring con-

densate are also seen in the racetrack case. In the racetrack

case, however, we find features of flow production not present

in the ring case. These are (1) that flow oscillations readily

occur during the stirring and (2) phase slips seem to take

place whenever the barrier moves from curved-to-straight or

straight-to-curved parts of the racetrack. We discuss these

features below.

Comparing the racetrack plot in Fig. 7(b) with the one

for the ring in Fig. 7(a), we first see that both plots show a

sudden onset of phase slips when the barrier potential reaches

a critical value and both show phase slipping continuing until

the flow speed overtakes the barrier speed (cyan dashed curve

in both plots).

There is also a striking difference between these two plots:

the racetrack plot exhibits oscillations in the flow during the

stirring while the ring plot has hardly any. Most of these

oscillations can be understood as the inverse of the phase-slip

process described earlier. Instead of backflow in the barrier

causing a vortex to form on the outside, migrating inward and

causing a phase slip, a forward flow can develop, causing an

antivortex to develop on the outside, migrating inward and

causing a negative phase slip.

Figure 9 shows how such a forward flow can develop.

This annotated figure shows the backflow in the barrier region

that causes the phase slips as well as the five pairs of coun-

tercirculating disturbances that are generated. These many

disturbances sweep around the racetrack and occasionally

intersect each other at the site of the slowly moving barrier.

When this happens, the backflow (blue color) in the barrier

region can turn into forward flow (red color) since the dis-

turbances generated in the initial phase slips tend to promote

flow in the stir direction. Two sites of such an intersection are

shown in the figure and annotated as “forward flow” appear at

times t ≈ 370 ms and t ≈ 400 ms. These times correlate with

flow drops appearing in Fig. 7(b). Flow can increase because,

once the disturbances pass, the backflow reasserts itself and

flow-increasing phase slips can occur. This causes the flow to

oscillate during the stir.

FIG. 9. Spacetime plot of the tangential component of the con-

densate velocity along the midtrack for the racetrack case. The

conditions are L = 30 µm, vb = 339.3 µm/s, Vp,max = 56.9 nK, and

T = 0 nK. The time duration depicted here is during the middle of

the stirring sequence.

063324-9



BENJAMIN ELLER et al. PHYSICAL REVIEW A 102, 063324 (2020)

Another circulation-changing mechanism that is only

present in the nonring racetrack case occurs when the moving

barrier crosses from straight parts of the racetrack channel to

curved parts or vice versa. The times when the barrier is on

straight or curved parts are indicated in Fig. 7(b) by the red

dotted and black solid curves that depict the barrier height.

This graph is a red dotted line for times when the barrier is on

the curved parts of the racetrack and is black solid when it is

on the straight section.

Careful examination of the circulation graph shows that

when the barrier transitions from curved to straight (red dotted

to black solid) racetrack parts, the circulation increases by

one unit. When the barrier transitions from straight to curved

(black solid to red dotted) parts, the circulation decreases by

one unit. We also note that this only happens when the barrier

height is above a certain strength.

It is this mechanism that seems to lead to the final flow

value for the case shown in Fig. 7(b). The very last flow

change appearing in this figure is a jump up to five units of

flow. This last jump occurs at t ≈ 1050 ms just as the barrier

moves from the curved end cap to the straightaway as the

stirring barrier is beginning to be turned off. It seems that,

by the next transition, the decreasing barrier is too weak to

cause any more phase slips. This particular case differs from

other simulations having similar conditions, as can be seen

by looking at Fig. 3(d). The racetrack case discussed here is

identified there by the red circle. Note how the final flow for

this case is different from those near it on that graph where the

only difference is Vp,max.

It might be possible to avoid this phase slip at the tran-

sitions between straight and curved parts of the channel.

Recent work on transport in condensate waveguides, where

the available volume was much larger than the condensate,

found that condensates incident on circular bends suffered

collective excitations after exiting the bend. They found that

these excitations could be minimized by having a bend in the

shape of an “Euler spiral” [23,24]. The system we considered

here is not a “waveguide” in the sense that our condensate

occupies the full volume of the channel. However, modifying

the shape of the end caps might eliminate the phase-slip events

that occur at the transitions between straight and curved parts

of the channel.

IV. SUMMARY

We have presented a study of flow production by stirring

Bose-Einstein condensates confined in atomtronic racetrack

potentials. We performed a series of simulations under

conditions in which the racetrack geometry, initial-state tem-

perature, stir speed, and maximum barrier height were varied.

The study also included an investigation into the mechanism

of how flow is produced under the Gross-Pitaevskii model.

We found that stirring is an effective way of creating flow

and that there is no difficulty in creating smooth flow in a

condensate confined in a nonring potential. We also found

that flow was readily created when stirring systems initially

at finite temperature.

Flow is precipitated by a series of phase slips that appears

once the barrier potential reaches a critical height. Each phase

slip occurs because a vortex forms on the outside edge of the

barrier region due to the buildup of backflow inside the barrier.

This vortex migrates to the inner edge of the condensate where

it is joined by an antivortex.

Two disturbances are generated at each phase slip: (1)

The vortex-antivortex pair moves off in the antistir direction

and (2) a compression wave moves in the stir direction. Just

after the appearance of the phase slips which generate these

disturbances, there is a large variation in the distribution of

the tangential component of the velocity around the midtrack

of the condensate. This can be seen in the bottom panel of

Fig. 8. The vortex-antivortex and compression-wave distur-

bances together promote the formation of smooth flow in

the stir direction and facilitate the conversion of localized

circulation into macroscopic smooth flow.

The circulation around the racetrack can oscillate because,

when one or more of these disturbances simultaneously en-

counter the barrier region, backflow can be converted into

forward flow. In this case, it is possible to have a phase slip in

the opposite sense as described above and the total circulation

can be decreased by one.

Overall, our results seem to indicate that a user-specified

number of units of quantized smooth flow can be generated by

stirring on demand. To make such flow, one only has to match

the barrier stirring speed to the number of units of vflow given

in Eq. (9). The value of vflow can be designed by changing the

ring or racetrack geometry. In the nonring case, one should

be careful not be near a curved-straight or straight-curved

transition near the time when the barrier height decreases

below the critical value for causing a phase slip.
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APPENDIX A: RACETRACK AND BARRIER POTENTIALS

The full potential used in simulating the stirring of a race-

track Bose-Einstein condensate is given by

Vext(r, t ) = 1
2
Mω2

z z2 + VRT(x, y) + Vstir(x, y, t ). (A1)

The first term represents the vertical harmonic confinement

used to restrict the gas to a quasi-two-dimensional horizontal

plane. The second term is the racetrack potential that con-

fines the condensate to a racetrack-shaped channel within this

plane. The last term is the potential of the stirring barrier.

We assume that only the first two terms are present for the

purposes of defining the initial state.

The racetrack potential is written as a sum of step-up and

step-down functions using hyperbolic tangents as follows:

VRT(x, y) = Vrt

{

1

2
tanh

(

ρ(x, y) − Ro

σ

)

+
1

2
tanh

(

Ri − ρ(x, y)

σ

)

+ tanh
(

Ro−Ri

2σ

)

}

(A2)
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where Ri = 12 µm and Ro = 36 µm are the inner and outer

radii of the semicircular endcaps. The factor σ = 24 µm mea-

sures the steepness of the step functions. The last hyperbolic

tangent term is present above so that the minimum value of

the potential is zero.

The factor ρ(x, y) places the jump-up and jump-down sites

of the potential, thus defining the location of the channel. It is

defined as

ρ(x, y) =







√

(x − L/2)2 + y2 x > L/2
√

(x + L/2)2 + y2 x < −L/2

|y| |x| � L/2

, (A3)

where L is the length of the straight sections.

The stir potential is a 2D rectangular barrier whose center

coordinates, orientation, and energy height can all have arbi-

trary time dependence. The actual potential is most expressed

in terms of step-up and step-down functions defined as

Vup(x, xup, σ ) ≡
1

2

[

1 + tanh
(x − xup

σ

)]

,

Vdn(x, xdn, σ ) ≡
1

2

[

1 + tanh
(xdn − x

σ

)]

,

where xup and xdn denote the places where the step functions

equal one-half and σ is the steepness of the step.

Using these functions, we can write the stir potential as

Vstir(x, y, t ) = Vp(t ){Vup(xp(x, y, t ),−Lp/2, σ )

×Vdn(xp(x, y, t ), Lp/2, σ )

×Vup(yp(x, y, t ),−Wp/2, σ )

×Vdn(yp(x, y, t ),Wp/2, σ )}, (A4)

where xp and yp are barrier coordinates

xp(x, y, xc(t ), yc(t ), θp(t ))

= (x − xc(t )) cos (θp(t )) + (y − yc(t )) sin (θp(t )),

yp(x, y, xc(t ), yc(t ), θp(t ))

= −(x − xc(t )) sin (θp(t )) + (y − yc(t )) cos (θp(t )).

Here xc(t ) and yc(t ) are the time-dependent barrier center

coordinates and θp(t ) is the time-dependent angle that the

long dimension of the rectangle makes with the x axis. The

parameters Lp = 48 µm and Wp = 3 µm are the length and

width of the barrier, respectively. The barrier steepness is

σ = 0.3 µm.

The barrier center coordinates follow the midtrack of the

racetrack and are parameterized using the arc length, s, which

is measured from the left end of the bottom straight section:

s(t ) = s0 + vbt mod stotal, (A5)

where vb is the stir speed, s0 = L + πR/2 is the start point of

the barrier stirring, and stotal = 2L + 2πR is total arc length of

the channel midtrack and where R = (Ro + Ri)/2.

The center coordinates are written in terms of the arc length

as

xc(s) =



















s − L
2

0 � s < L
L
2

+ R sin
(

s−L
R

)

L � s < s1

3L
2

+ πR − s s1 � s < s2

− L
2

− R sin
(

s−stotal+πR
R

)

s2 � s < stotal

and

yc(s) =















−R 0 � s < L

−R cos
(

s−L
R

)

L � s < s1

R s1 � s < s2

R cos
(

s−stotal+πR
R

)

s2 � s < stotal.

Here s1 = stotal/2 and s2 = stotal − πR.

The time dependence of the orientation angle is given by

θp(s) =



















−π
2

0 � s < L

−π
2

+ s−L
R

L � s < s1

π
2

s1 � s < s2

π
2

+ s−stotal+πR
R

s2 � s < stotal.

This dependence orients the barrier so that it is always per-

pendicular to the midtrack of the channel.

Finally, the dependence of the energy height of the barrier

on time is written as

Vp(t ) =



















(t/T1)Vpmax 0 � t < T1

Vpmax T1 � t < T2

(3 − t/T1)Vpmax T2 � t < T3

0 t � T3

,

where T1 = 500 ms, T2 = 1000 ms, and T3 = 1500 ms. This

ramps the barrier linearly up to its maximum value, Vpmax,

over a time T1, keeps it constant at this value for another time

interval T1, and ramps it down linearly to zero over yet another

time T1, after which it is zero.

APPENDIX B: ZNG INITIAL STATES

Initial states for the ZNG model are thermal equilibrium

states defined by the temperature, T , the total number of atoms

in the system, N , the external potential, Vext(r) (here verti-

cal harmonic plus racetrack), and the atom-atom interaction

strength, g. The result of the calculation of the ZNG initial

state is a condensate wave function, �0(r), and a noncon-

densate density, ñ0(r). From these, the number of condensate

atoms, Nc, and the chemical potential, µ0, can be obtained.

The iterative method we used to compute these quantities

was to start with an initial guess that the noncondensate den-

sity was zero, so that Nc = N , and solve Eq. (6) with R and

ñ set to zero. This yielded a condensate wave function. This

wave function was then used to construct a first guess at the

single-particle distribution function.

In thermal equilibrium, this function has the form [35]

f 0(p, r) =
1

eβ0[p2/2m+U0 (r)−µ0] − 1
, (B1)

where, in general,

U0(r) = Vext(r) + 2g[|�(r)|2 + ñ(r)]. (B2)

The single-particle distribution function is used to compute

a new guess for the noncondensate density using Eq. (5).

This density is integrated over all position space to obtain

a new guess at the number of noncondensate atoms. This is

subtracted from the total number of atoms in the system, N , to

obtain a new guess at the number of condensate atoms. This

procedure then repeats alternately, finding a new condensate

wave function and then a new noncondensate density until
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FIG. 10. ZNG condensate fraction vs temperature for three different racetrack geometries. The blue + symbols indicate initial-state

condensate fraction as computed by the ZNG model while the solid red line is a fit to the function Nc/N = 1 − (T/Tc )α . (a) L = 0 µm,

Tc = 264.4 nK, α = 2.697; (b) L = 30 µm, Tc = 249.3 nK, α = 2.558; and (c) L = 60 µm, Tc = 235.8 nK, α = 2.464.

convergence is achieved. This procedure is described in more

detail in Ref. [35].

This procedure was carried out for the three racetrack

geometries L = 0 µm, L = 30 µm, and L = 60 µm for the

three different temperatures considered in the survey simula-

tion study, T = 100 nK, T = 150 nK, and T = 200 nK. The

results of these calculations for the condensate fraction versus

temperature are shown in Fig. 10. The data calculated from

the ZNG were fit to the function given in Eq. (8) and these

curves are shown in red.
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