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Producing flow in racetrack atom circuits by stirring
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We present a study of how macroscopic flow can be produced in Bose-Einstein condensates confined in
a “racetrack” potential by stirring with a wide rectangular barrier. This potential consists of two half-circle
channels separated by straight channels of length L and reduces to a ring potential if L = 0. We present the results
of a flow-production study where racetrack condensates were stirred with a barrier under varying conditions of
barrier height, stir speed, racetrack geometry, and temperature. The result was that stirring was readily able to
produce flow in ring and nonring geometries but that the exact amount of flow produced depended on all of the
study parameters. We therefore investigated the mechanism by which flow was produced in the stirring process.
The basic mechanism that we discovered was that when the sweeping barrier potential height reached a critical
value a series of phase slip (i.e., a sudden change in the phase winding around the condensate midtrack) events
occurred. Phase slipping stopped when the flow produced overtook the speed of the stirring barrier. Disturbances
generated at each phase slip circulated around the channel and served to convert the initially localized velocity
distribution into smooth macroscopic flow. This picture of the mechanism for making flow should facilitate the
design of closed-channel atom circuits for creating a desired amount of quantized smooth flow on demand.
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I. INTRODUCTION

Recent advances in the optical manipulation of neutral
atoms [1-4] have sparked experimental and theoretical in-
terest in systems of Bose-Einstein-condensed (BEC) atomic
gases confined to a thin sheet in a horizontal plane. Cases
where the BEC is confined within this plane to a closed-
loop channel potential can be roughly analogous to electronic
circuits. The difference is that the current in such ultracold-
atom systems refers to the motion of neutral atoms rather
than electrons. These systems are sometimes referred to as
“atom circuits” and their study is part of the emergent field of
atomtronics [5].

Interest in atom circuits derives in part from their poten-
tial for use in devices such as rotation sensors [5] suitable
for precision navigation. Proposed examples include devices
that sense rotation via Sagnac interferometry [6,7] and those
that act as analogs of superconducting quantum interference
devices (SQUIDs) where rotation takes the place of magnetic
flux [8—11]. Some implementations of these types of interfer-
ometer include a Bose-Einstein-condensed gas confined in a
ring geometry [12-21].

All atom circuits require neutral-atom current for their
operation. Atom circuits suitable for applications such as ro-
tation sensing, mentioned above, will need to be able to make
repeated measurements over time. Such devices will need to
step through a cycle where the measurement is made and then
reset for the next measurement. One possible cycle is shown
in Fig. 1 for a SQUID-like rotation sensor [8,22]. In general
terms, the cycle consists of making a BEC, creating flow,
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modifying the potential to create circuit elements so that the
measurement can be made, and then resetting so that the cycle
can repeat. Clearly it will be advantageous to be able to create
a given amount of smooth flow in the condensate on demand.

In order to design these types of atom circuits for appli-
cations, a detailed understanding of how to produce smooth
flow will be essential. Furthermore, the channel potential that
confines the condensate will be modified in each cycle and this
will likely require channels that differ from a ring shape. This
idea motivates our consideration of a “racetrack” potential.
The elongated racetrack shape provides extra room for circuit
elements to come and go during the cycle. This potential also
has the advantage that the ring shape is a special case.

Finally, if a quantum sensor is to make sensitive mea-
surements, it needs the ability to react to small changes in
the environment. However, these changes may be magni-
fied by the nonlinear behavior of a near-zero temperature
condensate (as might happen if the condensate obeyed the
Gross-Pitaevksii equation). If these changes cause large oscil-
lations in the sensor response, its measurement output may be
unreliable. Such oscillations might be controlled by running
the sensor at a nonzero temperature. Thus, it is of interest to
investigate sensor behavior at nonzero temperature.

In this paper, we investigate the flow-production step of this
imagined atom-SQUID sequence by studying how current can
be produced in a particular class of atom circuits by stirring.
The atomtronic systems that we will focus on consist of a
BEC confined to a horizontal plane in which an arbitrary
two-dimensional potential can be created.

©2020 American Physical Society
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FIG. 1. Diagram for an imagined cycle of a SQUID-type atom
circuit rotation sensor. The cycle is as follows: (1) a condensate is
formed in a channel potential, (2) smooth flow is produced by some
mechanism, e.g., stirring, (3) the result is a condensate with smooth
flow, (4) the potential is then modified to add an inner ring plus
Josephson barriers, (5) the difference in the local chemical potential
(Ap) is measured, and (6) the system is then reset.

We only considered two-dimensional (2D) potentials that
take the form of a closed channel in the shape of a racetrack.
The racetrack channel consists of two semicircular end caps
separated by straight sections of length L, as illustrated in
Fig. 2 and described more fully below. We also assume that
the condensate fills the closed-loop channel entirely. This
differs significantly from some other studies [23,24] where the
available volume afforded by the potential was much larger
than the size of the condensate so that the potential acts as a
waveguide.

Several methods have been used to create flow in BECs
confined in ring potentials. These include transferring orbital
angular momentum from a Laguerre-Gauss laser beam to the
trapped atoms [25] and imprinting a phase on the gas atoms
using a light pulse with a tailored intensity pattern [26]. The
most popular method to date for producing flow has been
stirring the gas with a blue-detuned laser [13,18-21,27,28].
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FIG. 2. A plot of Vrr(x, y), which defines the racetrack geometry.
The parameter L sets the length of the straight channels that connect
the two semicircular end caps; depicted here is the L = 30 um case.
The outer and inner radii parameters, R, = 36 um and R; = 12 um,
control the width of the channel. A ring BEC is the L = 0 special
case of the racetrack.

Here we present a study of the amount of, nature of, and
mechanism for creating quantized flow in racetrack BECs by
stirring. In Sec. II, we present the results of a systematic flow-
production study where racetrack BECs were stirred under
different sets of conditions. In these simulations, we varied
the racetrack lengths, stirring speeds, maximum barrier energy
heights, and temperatures. In Sec. III, we present a detailed ac-
count of how stirring produces flow. In particular, we discuss
how a single phase slip (i.e., a sudden change in the phase
winding around the condensate midtrack) occurs and the time
sequence of multiple phase slips induced by the stirring. Fur-
thermore, we describe how the localized circulation, present
just after a phase slip, becomes delocalized macroscopic flow
around the ring. We summarize the results in Sec. I'V.

II. SURVEY STUDY OF FLOW PRODUCTION
BY STIRRING

We conducted a survey study of how much flow was pro-
duced by stirring a Bose-Einstein condensate, confined in
a racetrack channel potential, with a weak-link, rectangular
barrier potential. The parameters that were varied in the study
were the length, L, of the racetrack channel; the thermal-
equilibrium temperature, 7', of the initial state; the stir speed,
vp, of the barrier; and the maximum energy height of the
barrier, V, max. Each simulation in the series was uniquely
specified by these parameters: T, L, vp, and V), max. Except for
these parameters, the conditions in all of the simulations were
the same. In this section, we describe the full set of conditions
present in the simulations and then the flow-production results
obtained.

A. Survey study characteristics

Here we describe the details of the ultracold-atom system
modeled in the simulation, the zero- and finite-temperature
models assumed to govern system behavior, the common
characteristics of each simulation, and the ranges of the
parameters that were varied. We begin with the system char-
acteristics.

The initial state of the condensate was assumed to be
a stationary thermal-equilibrium system of condensate plus
noncondensate held at temperature, 7. The confining potential
present in the initial state was assumed to be strong harmonic
confinement in the vertical (z axis) direction plus a “racetrack”
potential in the horizontal plane. This potential takes the math-
ematical form

Vo(r) = AM@?2 + Vi (x, y), ()

where M is the mass of a condensate atom (sodium in this
study), w,/2m = 320 Hz is the frequency of the vertical har-
monic confinement, and Vir(x, y) is the racetrack potential.

The mathematical form for the racetrack potential is given
by

1 p(x,y) —R
Ver(x, y) = vn{z tanh <+)

1 Ri — N R, — Ri
+ — tanh Ri—p.) + tanh (0—) },
2 o 20

2)
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TABLE 1. Parameter set for the flow—production study. An individual simulation is uniquely identified by the four parameters:
(T, L, v, Vp max)- Each cell containing the label “V,, n./u = .50, .52, ..., 2.0” refers to a unique set of the parameters (7', L, v;,). This label
refers to a set of simulations in which V;, ./ varies from 0.50 up to 2.00 in steps of 0.02, where u is the chemical potential of the initial

condensate.

L — L =0, 30,60 um L =0,30,60um L =0,30,60m L =0,30,60um
vl T — T = 000 nK T = 100 nK T =150 nK T =200 nK
113.1um/s  Vyma/m=.50,.52,...,20  Vpma/pt =.50,.52,...,2.0  Vymax/p =.50,.52,...,2.0  Vpma/® =.50,.52,...,2.0
2262 um/s  Vomax/p =.50,.52,...,2.0  Vyma/p =.50,.52,...,2.0  Vyma/p =.50,.52,...,2.0  Vpma/p =.50,.52,...,2.0
3393 um/s  Vpma /i =.50,.52,...,2.0  Vyma/m =.50,.52,...,2.0 Vyma/p =.50,.52,...,2.0  Vpma/pm =.50,.52,...,2.0
4524 pm/s  Vpma/m =.50,.52,...,2.0  Vyma/p =.50,.52,...,2.0  Vpmu/p =.50,.52,...,2.0  V,ma/p =.50,.52,...,2.0

where the factor p(x, y) defines the edges of the condensate in
the horizontal plane and is given by

Va=L/2?*4+y> x>LJ2
px,y)=3/(x+L/22+y2 x<—-L/J2 3

Iyl x| < L/2.

As illustrated in Fig. 2, the racetrack potential consists of two
half-circular annuli having inner radius R; and outer radius
R,, and parallel straight sections of length L. In the simula-
tion study, the radii were kept fixed at R; = 12 um and R, =
36 um while L was one of the parameters that was varied in
the simulations. We chose the racetrack potential because it
allows room for adding elements to the atom circuit potential
but also enables the well-studied ring case to be recovered for
L=0.

In each simulation, the condensate was stirred by a weak-
link rectangular barrier potential, Vg (x,y,t), that swept
around the racetrack at constant linear speed, v,. The full
potential in all simulations had the form

Vext (X, 1) = 1M@22 + Ve (2, ) + Vi (x, 3. 1), (4)

The barrier orientation was always perpendicular to the mid-
track and the perpendicular barrier width was always twice
that of the channel. Full mathematical details of the racetrack
and barrier potentials can be found in Appendix A.

The height of the barrier was time dependent. In all simu-
lations, the energy height of the barrier was varied in the same
way. Between times t = 0 and + = 500 ms, the barrier energy
height was increased linearly from zero to Vj max; between
times t = 500 ms and ¢ = 1000 ms, the energy height was
held constant; and between times ¢t = 1000 ms and ¢t = 1500
ms, the barrier was decreased linearly to zero. For all simu-
lation times ¢ > 1500 ms, the barrier energy height was zero.
We note that the barrier potential height vs time is plotted in
Figs. 7(a) and 7(b).

In each simulation, we allowed the system to evolve for
a time after the barrier was turned off. We did this partly to
assess how persistent any flow produced would be and also to
be able to implement adding additional elements to the atom
circuit. In this work, we only report on the stirring aspect
of this sequence. For the zero-temperature simulations, the
system was allowed to evolve after the barrier was turned
off for a further 2500 ms. For the nonzero-temperature sim-
ulations, the system was allowed to evolve only for a further
500 ms. This reason for this difference was that the nonzero-

temperature simulation took much more computer time than
the zero-temperature ones. Since the flow-production study
required many simulations, for practical reasons we shortened
the system evolution time after the barrier was fully off.

Our choice of barrier stirring protocol is one that has
been commonly used in recent experiments [18-20,27,29,30]
where flow is produced in ring BECs by stirring. Our choice
was guided by the goal of making smooth flow and so
stirring slowly would minimize unwanted excitations of the
condensate. The stirring speeds in our simulations ranged
from v, = 113.1 to 452.4 um/s while bulk sound speeds
ranged from vy, = 3400 to 4600 wm/s. Thus, with our proto-
col, smooth flow can be produced by stirring at speeds that
are a few percent of the bulk sound speed. Other types of bar-
rier motion such as accelerating barriers where shock waves
might be produced [10,31] would be less likely to create
smooth flow.

The ranges of parameters (T, L, vy, V), max) that were varied
in the flow-production study are displayed in Table I. This
set of parameters uniquely identifies an individual simulation.
Each cell of the table labeled “Vj, max/u = .50, .52, ...,2.0”
corresponds to specific a value of the temperature, 7, found at
the top of the column, one of the three racetrack length values
that also appear at the top of the column, and a specific value
of the barrier stirring speed, vj,, found at the beginning of the
row. The cell label “V, max/1 = .50, .52, ..., 2.0” refers to a
series of 76 simulations where the parameters (7, L, v,) were
the same but V;, nax ranged from 0.50x up to 2.00u in steps of
0.02u where p is the chemical potential of the initial state.

The behavior of the condensate in zero-temperature simu-
lations was assumed to follow the Gross-Pitaevskii equation
(GPE) [32-34]. For nonzero-temperature simulations, we
used the Zaremba-Nikuni-Griffin (ZNG) model [35].

In the ZNG model, the system is assumed to have a con-
densate and a noncondensate. The behavior of the condensate
is described by a condensate wave function, ®(r, t), and the
noncondensate is assumed to be an interacting gas described
by a single-particle distribution function, f(p, r, t).

The single-particle distribution function is defined so that
f(p,r,)d’rd*p/(2mh)? is the number of particles at time
t having position, r, and momentum, p. The noncondensate
density, 7i(r, t ), can thus be calculated as

d3
A(r.1) = f i@, 5)
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The condensate wave function follows a generalized
Gross-Pitaevskii equation (GGPE) [35]

ih%cb(r, 1) = [Hy + 2gi(r, t) — iR(x, )] ®(r, 1).  (6)

The term Hy = ;—EVZ + Vo (r, 1) + gn.(r,t) is the GPE
Hamiltonian, g defines the strength of condensate atom-atom
interactions, n.(r,t) = |®(r, t)|* is the condensate density,
fi(r, t) is the noncondensate density, and R(r,t) is a local
source-sink term that describes particle exchange between
condensate and noncondensate.

The single-particle distribution function evolves according
to a quantum Boltzmann equation (QBE)

af

o= Vil - Vof + % Vef = Cialf, @]+ Cnlf]l, (1)

where Ueg(r, 1) = Vipap(r, 1) + 2g(n(r, t) +7i(r, 1)) is an ef-
fective potential felt by the noncondensate atoms. The
Cpo(p, r,t) term is roughly the rate of collisions between
condensate and noncondensate atoms with momentum p at
position r and time ¢. These collisions can lead to gain or loss
of atoms in the condensate. The Cx (p, r,t) term describes
collisions between two noncondensate atoms at (p, r, ¢). To-
gether these terms describe how collisions affect the rate of
change of f(p,r, ) [35].

The ZNG model allows for the noncondensate density to
influence the condensate dynamics at the mean-field level
and for the noncondensate density dynamics to couple to the
condensate density. Additionally it allows for particle ex-
change between condensate and noncondensate via collisions.

In our simulations, we neglected the effect of collisions.
Stirring the condensate at nonzero temperature is most likely
to reduce the amount of flow produced if all other conditions
are the same. Including collisions would only reduce the
amount of flow produced even more and thus we have ignored
them. The reader should, therefore, consider our collision-free
ZNG results for the amount of flow produced to be an upper
bound. The approximate ZNG model should be regarded as
an estimate of finite-temperature effects on the amount of flow
produced by stirring.

The ZNG model for dynamics works best in the middle
of the range 0 < T < T,. It has been successfully applied to
the damping of collective excitations [36] and the decay of
an off-center vortex in a simply connected condensate [37].
It describes both mean-field-dominated regimes and hydrody-
namic regimes, except at very low temperatures or in the case
of large fluctuations [38,39]. The temperatures used in our
simulations were chosen by using the ZNG model to com-
pute the condensate fraction versus temperature for a fixed
total number of atoms and for the three racetrack lengths as
described in Ref. [35]. These curves were fitted using the

function
N, T\*
—=1—-=, 8
N (Tc> ®)

with 7; and a as fitting parameters [40], and this was used to
select temperatures so that the condensate fractions covered a
reasonable range and to ensure the validity of the ZNG model.
These fits yielded critical temperature of 7, & 250 nK. Thus,
at the chosen temperatures, 7 = 100, 150, 200 nK correspond

toT/T. =~ 0.4, 0.6, 0.8, respectively. Details of how the initial
states were calculated along with plots of the condensate
fractions versus T can be found in Appendix B.

B. Survey study results

Typical results of flow production in the BEC by stirring
are shown in Fig. 3. This figure shows plots of the flow
winding number, n,,, at the end of the simulation versus the
maximum energy height of the barrier expressed in units of the
chemical potential, &, of the initial condensate. The winding
number is found by computing the phase accumulated around
a path along the midtrack of the channel. Due to the single-
valuedness of the condensate wave function, this accumulated
phase must equal an integer multiple of 2 and this multiple
is the winding number.

Figure 3 contains four plots. Each plot refers to specific
values of the racetrack length, L, and barrier stirring speed, vp.
Appearing in each plot are four curves showing the winding
number versus V}, max/ 14, one for each of the four temperatures
(T =0, 100, 150, 200 nK) considered in the flow-production
study. Note that these four curves have been vertically offset
for clarity and all winding-number results are integer values.
Each plot also shows a solid (no symbols) black line indicating
the stirring speed of the barrier in units of the winding number
equivalent to the speed of the stirring barrier.

There are several features that are common to all four plots.
First, it is clearly possible to make flow by stirring. The second
notable feature is that no flow is produced until V}, yax reaches
a critical value and flow is almost always produced for values
of Vj, max larger than the critical value. We note that this critical
value decreases for increasing initial-state temperature. This
is probably because the total number of atoms in the system
is held fixed, causing condensate numbers to decrease as T
increases. Finally we see that above the critical value of Vj, max.,
the winding number rises rapidly to a plateau after which it
oscillates around an average value that is close to the barrier
stir speed.

This average value can be estimated by determining the
number of units of flow speed needed to reach the speed of the
stirrer. One unit of average flow speed can be approximated as
h/M times the phase gradient around the channel midtrack:

h 27 ©)
v =——),
flow =y \27R + 2L

where R = (R; + R,)/2 is the average radius of the racetrack
endcaps. The stir speed in units of the flow speed, vy/vgow
appears as the solid black line in Figs. 3(a)-3(d). This ratio
provides a rough estimate of the amount of flow that can be
produced by stirring.

Another important question is whether the flow produced
by the stirring protocol we have considered here is smooth.
The velocity distribution of the condensate is proportional to
the gradient of the phase of the condensate wave function. The
signature of smooth flow along a particular direction is that this
spatial rate of change of the phase should be nearly constant.
We can get an indication of whether the flow induced along the
channel is smooth by plotting the spatial phase distribution.

Figure 4 displays typical final-state phase distributions for
ring and nonring cases. If we follow the circular midtrack of
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FIG. 3. Flow produced vs V, ma/p in two different racetrack geometries stirring at two different stirring speeds. (a) L =0 um, v, =
113.1 pm/s, (b) L = 0 um, vy, = 339.3 um/s, (c) L = 30 um, v, = 113.1 um/s, and (d) L = 30 um, v, = 339.3 um/s. Each panel shows the
flow produced at four different temperatures: 7 = 0, 100, 150, and 200 nK. Note: The four different temperature curves have been vertically
offset for clarity. The actual value of all flows is the largest integer less than or equal to the values indicated on the curve. The solid black line
indicates the stir speed in units of the flow speed around the midtrack. The red circle in panel (d) identifies the racetrack case displayed later in

Fig. 7(b).

the ring, see Fig. 4(a), we find that the accumulated phase
around this path is 3 x 27 and each 27 winding takes up
very nearly 1/3 of the circumference of this path. The same is

+TT

(a W

ey
b g
en” .

FIG. 4. Condensate phase distribution in the final state for two
stirring cases illustrating the smooth flow obtained by stirring.
The rectangles measure 150 um horizontally and 75 pum verti-
cally. (a) Ring case: parameters are L =0um, T =0 nK, v, =
339.3 um/s, Vp max/m = 0.98. (b) Racetrack case: parameters are
L=30um,T =0nK, v, =339.3 um/s, V, max/ 10 = 1.14.

true for the racetrack case, Fig. 4(b), where the phase winding
divides the midtrack circumference into five approximately
equal parts. From this, we infer that the final flow is reason-
ably smooth.

The full story of the amount of flow produced is more com-
plicated and depends on the details of the time dependence of
the barrier turning on and the shape of the racetrack. These
things can be understood by studying the mechanism of how
stirring produces flow within the Gross-Pitaevskii model. We
discuss this in the next section.

III. HOW STIRRING PRODUCES FLOW

Here we describe how stirring the condensate with a
constant-speed barrier whose energy height is increasing pro-
duces smooth flow within the Gross-Pitaevskii model. The
basic process is that when the energy height of the barrier
exceeds a critical value, it triggers a series of phase-slip
events, causing the accumulated phase around the closed-loop
channel to increase. Phase slipping stops when the number
of slips times the unit of quantized velocity for the channel,
Vfiow, 15 closest to the stirring speed of the barrier (see the solid
black lines in the plots in Fig. 3). We note that the details of
when and how vortices form at a phase slip has been well
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FIG. 5. Spacetime map of the density and velocity tangential component along the the midtrack of the condensate. (a) The arc length, s,
is measured from the bottom of the ring and increases in the counterclockwise (ccw) direction. The barrier also stirs the condensate in the
ccw direction. (b) Spacetime map of the condensate density distribution around the midtrack versus time. The horizontal axis is time and the
vertical axis is arc length, s, along the midtrack as shown in panel (a). (c) Spacetime map of the component of the condensate velocity tangent
to the midtrack of the condensate. Note that the arc length, s, increases from top to bottom in panels (b) and (c).

studied [17,18,41,42]. Here we are more concerned with the
aftermath of the phase slip and how it contributes to the final
macroscopic flow produced.

When the phase slips stop, the tangential component of
the condensate velocity is unevenly distributed around the
track. This component is large near the vortices created during
phase-slip events and small elsewhere. This uneven distribu-
tion of velocity is converted into even, smooth flow around
the channel during the stirring by pairs of countercirculating
disturbances where each pair is generated at a phase slip.

Hereafter, we present the evidence for this narrative of how
flow is produced by stirring. We begin by considering how
flow is produced in the ring-channel case. First we describe
what happens in a phase-slip event, including the nature of
the two disturbances generated. Next, we present the time
sequence of phase slips during the full stirring process. We
also show that the countercirculating disturbances smooth out
fluctuations in the condensate velocity around the channel
during the stirring. Finally, we return to the racetrack case and
describe the effects of a nonring geometry.

A. Single phase-slip events

A single phase slip consists of three steps: (1) vortex for-
mation in the barrier near the outer edge of the channel due to
condensate backflow inside the barrier region, (2) a vortex-
antivortex swap, and (3) generation of two disturbances: a
vortex-antivortex pair moving in the antistir direction and a
compression wave moving in the stir direction. Both distur-
bances move at the average speed of sound, which is much
larger than the stir speed of the barrier. In what follows, we
shall take the term “vortex” to mean a general vortex that
circulates in the same direction as the stir and “antivortex”
to mean one that circulates the opposite way.

These steps are illustrated in Figs. 5 and 6. Figures 5(b)
and 5(c) show the spacetime distribution of the condensate
density, p(s, t), at points around the midtrack of the ring and
the tangential component of the condensate velocity, vy(s, 1),
around the midtrack, respectively. The horizontal axis is the
time, ¢, elapsed since the beginning of stirring and the vertical
axis is the arc length, s, along the midtrack. The value of
the quantity plotted, p or vy, is represented at each point,
(t,s), with a color that can be found in the color bar at the

right. As shown in Fig. 5(a), the arc length, s, increases in
the counterclockwise direction as measured from the bottom
of the ring. The time interval depicted, 250 ms < ¢ < 500 ms,
encompasses the initial series of phase—slips.

The large, mostly blue, stripe running from upper left to
lower right and labeled “barrier track” in Fig. 5(b) is the
track of the stirring barrier during this time interval. The stir
direction is counterclockwise and so the barrier moves in the
positive arc-length direction (top to bottom in the figure).

The barrier stripe also appears in Fig. 5(c) where the tan-
gential velocity is plotted. At times before the phase slips
begin (labeled by “backflow” in the figure), the stripe is
deep blue, indicating a negative tangential velocity component
along the midtrack or backflow in the barrier region.

When the height of the barrier reaches a critical value,
the vortex formed on the outer edge of the channel begins to
migrate from the outside to the inside of the channel. This
can be seen in Fig. 6. This figure shows a series of phase
distribution snapshots during the time interval from just before
[see Fig. 5(b)] until just after the first phase slip. The color
of each point in the plot denotes the value of the phase at
that point. Phase values range from —m (blue) up to +m
(red). Points encircling a vortex core will run through the full
spectrum of colors shown in the color bar at the far right of
Fig. 6. The direction around the circle [clockwise (cw) or
counterclockwise (ccw)] going blue to red is the circulation
sense of the vortex.

Figures 6(a) and 6(e) show the beginning of the migra-
tion of the vortex from the outside. Vortex locations are
identified with a circle. Black circles indicate vortices (i.e.,
those that circulate in the same sense as the stir) and white
circles indicate antivortices. Figures 6(a) and 6(e) show the
inward migration of the vortex. Figures 6(b) and 6(f) show
the appearance of an antivortex (white circle). Figures 6(c)
and 6(g) show that the vortex is now on the inner edge and
the antivortex is on the outer edge. The vortex and antivortex
“swap” places, although it is not clear from our simulations
exactly where the antivortex comes from. It is clear that just
after the phase slip the vortex and antivortex pair up and move
off together in the antistir direction.

Shortly after this vortex-antivortex swap, two disturbances
are generated. The first is the vortex-antivortex pair, located on
the inside and outside of the channel respectively, that moves
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FIG. 6. Phase distributions for the ring condensate [L = 0 um, v, = 339.3 um/s, V, max = 56.9 nK and 7 = 0 nK, same as in Fig. 7(a)] at
times just before and after the first phase slip in Fig. 7(a). The top row of panels, (a)—(d), show the full condensate while panels in the bottom
row, (e)—(h), show a closeup of the lower left quadrant of the of the panel just above it. The large black circles appearing in the top row demark
the condensate edges. Small circles indicate the locations of vortices. The dotted white lines in the upper row show the approximate position
of the stirring barrier. The wedges marked off by dotted black lines show the approximate position of the compression wave. Vortices that
circulate in the same direction as the stirring (i.e., counterclockwise) are drawn in black. White circles indicate antistir circulation. The times
that appear at the top of each picture indicate the time elapsed since the beginning of the stir.

away from the barrier in the antistir direction. This can be seen
by comparing Figs. 6(c) and 6(g) with of Figs. 6(d) and 6(h).
They show that the vortex-antivortex pair has started to move
in the antistir direction. This vortex pair causes atoms on the
antistir side of the barrier to flow in the stir direction.

The second disturbance is a compression wave that propa-
gates away from barrier region in the stir direction. Evidence
for these two disturbances can be seen in Fig. 5. In Fig. 5(b),
the annotation “first phase slip” points to the location of the
barrier when the first phase slip occurs. Two stripes, a light
brown stripe annotated “vortex-antivortex pair” and a dark
brown stripe annotated “compression wave,” emanate from
the barrier track at the first phase slip point.

The darker brown color of the compression wave stripe
indicates that it is a region of increased density relative to the
rest of the condensate. The light brown color of the vortex-
antivortex pair stripe shows it to be a region of lower density.
Corresponding stripes for these two disturbances also appear
in the tangential velocity plot in Fig. 5(c). We note that both
of these are yellow, indicating that they are both regions of
positive (stir direction) tangential velocity while the green re-
gions denote zero tangential velocity. Thus both disturbances
promote condensate flow in the stir direction. The slopes of
the disturbance stripes can be used to determine their speeds.
We found that both disturbances move at a speed that is

approximately the local speed of sound [c(r) = /gn.(r)/m]
averaged over the cross section of the condensate.

B. Final flow production: Ring case

Here we describe the overall dynamics of flow production
for the ring case. The stirred ring flow dynamics are simpler

than for the racetrack and considering the ring case first will
enable us to separate effects common to both ring and nonring
cases from those unique to the nonring geometry. We will take
up the racetrack case in a later section.

The typical time sequence for phase slips when the ring
condensate is stirred is illustrated in Fig. 7(a) where the blue
curve shows the winding number around the midtrack as a
function of time during the stirring. The case shown is L =
Opum, vy, =339.3 um/s, Vpmax =56.9 nK, and T =0 nK
and is the same case as that depicted in Figs. 5 and 6. The
vertical axis on the left side of the graph is measured in units
of the quantized flow speed, vgow-

The red dotted curve indicates the barrier height normal-
ized to its maximum value and the vertical axis on the right
side of the graph is the barrier energy height normalized to its
maximum value. The cyan dashed curve depicts the speed of
the stirring barrier in units of vgow-

The behavior of the circulation depicted here is simple:
Below a critical value of the barrier height, V,, there is no cir-
culation, whereas at the critical value three phase slips occur
in rapid succession. With each new phase slip, the velocity of
the stirring barrier relative to the flowing condensate decreases
by one unit of flow speed. The figure shows that the speed of
the flowing condensate overtakes or nearly matches the speed
of the barrier. In this case, the backflow that developed when
stirring a stationary condensate becomes a forward flow. Thus,
the behavior described earlier that led to the creation of the
new units of flow can be reversed and units flow of can be
lost.

We found that the critical barrier height, V., for the on-
set of phase slips occurs at the same barrier height as long
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FIG. 7. (a) Condensate flow speed (blue, solid curve) in units of the quantized flow speed (vgew = 114.6 um/s for the L = 0 um racetrack)
vs time. The horizontal cyan dashed curve shows the stir speed of the barrier in the same units. The red dotted curve depicts the energy height
of the barrier vs time in units of Vj, max. The case displayed is L = 0 um, v, = 339.3 um/s, V; max = 56.9 nK, and T = 0 nK. (b) Same plot as
in panel (a), except that L = 30 um. The black solid parts of the barrier energy-height curve denote times during the stirring when the barrier
is on the straight sections while the red dotted parts denote times when the barrier is on the CURVED sections.

as Vpmax > Vc. Thus, the value of V. (in units of w) can
be inferred from Fig. 3 since V. is the same as the lowest
value of Vj, max for which maximum flow is obtained. From
Figs. 3(a) and 3(c), which show different geometries (L) but
the same stirring speeds (vp), we see that all of the values
of V. are between 0.75 p and 0.85 p. Comparing Figs. 3(b)
and 3(d) (again same L, different v,), we see onset barrier
heights between 0.55 w and 0.65 w. Thus, V, has only a weak
dependence on racetrack geometry.

Comparing onset values from Figs. 3(a) and 3(b) (same L,
different v,), we see that faster stirring results in a marked
reduction in the onset barrier height V... The same is true when
comparing Figs. 3(c) and 3(d). Finally, in each panel of Fig. 3
we can see that V. decreases as the temperature increases.
However, this may be because we have fixed the total number
of particles in the system so that the number of condensate
atoms decreases as T increases.

We note that the question of phase-slip production as a
function of stirring barrier height has been addressed in the
literature [41,42]. Our findings for critical barrier height are
in line with this previous work. There has also been previous
experimental work on vortex shedding due to a barrier moving
through a condensate [43]. However, that work considered a
simply connected condensate rather than a multiply connected
one. Furthermore, their barrier width was much narrower than
their condensate. In contrast, our barrier was twice the width
of the condensate. Finally, the barrier speed as a fraction of
the bulk sound speed was much higher (>30%) than in this
work, where it was less than 10%.

The three phase slips generate three vortex-antivortex pairs
traveling in the antistir direction and three compression waves
traveling in the stir direction. The behavior of these distur-
bances during the stirring is depicted in Fig. 8. This figure
shows the spacetime maps for the condensate density (top
panel) and tangential velocity component (bottom panel) for
the full duration of the stirring process for the case where
L=0um, vy =3393 um/s, Vpmax =569 nK, and T =0
nK. The same quantities were also shown for a shorter time
interval in Figs. 5(b) and 5(c). The phase-slip behavior for this
case is shown in Fig. 7(a).

In Fig. 8, both the density and the tangential velocity panel
show three pairs of stripes emanating from the barrier track at
the times where the series of three phase slips are occurring in
Fig. 7(a). The density and tangential velocity panels in Fig. 8
show how these three pairs of disturbances evolve over the
duration of the stirring process. The disturbances continue to
circulate around the ring and thereby cause the initially lo-
calized velocity distribution to smooth out during the stirring
process.

This is easy to see by looking at the vy (s, #) plot in bottom
panel of Fig. 8. Looking at this plot as a whole, we can see
that it essentially changes color from green to yellow just at
the onset of the phase slips at around t = 320 ms. However, if
we compare this plot for the time interval 350 s < ¢ < 600 s,
with the time interval 1250 s <t < 1500 s at the end of the
stirring, we can see that the distribution of velocities around
the midtrack is much smoother by the end.

The GPE mechanism for flow production in the ring by
stirring with a rectangular barrier can thus be summarized
as follows. The stirring barrier both moves and increases in
strength. This generates a backflow in the region of depressed
density in the barrier region. The backflow causes a vortex to
form at the outer edge. Eventually this vortex migrates inward
toward the inner edge of the barrier and a phase slip occurs.
This coincides with the appearance of a vortex-antivortex pair
with the vortex on the inside and antivortex on the outside.
This disturbance moves away from the barrier in the antistir
direction. At the same time, a compression wave disturbance
is generated that moves away from the barrier in the stir
direction. These disturbances both move at the average speed
of sound.

Phase slips occur in rapid succession until the flow gener-
ated overtakes the speed of the stirring barrier. Each phase
slip generates the vortex-antivortex and compression-wave
disturbances. These disturbances cycle rapidly around the ring
and thereby convert the uneven localized circulation around
the ring into evenly distributed flow. If the generated flow
is larger than the barrier speed, the backflow in the barrier
region becomes a forward flow and this can cause loss of a unit
of flow. Thus the circulation can oscillate during the stirring
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FIG. 8. Topographic spacetime plots of the density (top) and the tangential velocity component along the channel midtrack (bottom) of
the L = 0 um (ring) racetrack BEC during the stirring process for the case shown in Fig. 7(a). The large, dark stripe labeled “barrier track”
appearing in both panels is the track of the stirring barrier. The stripes labeled as “vortex-antivortex pairs” show motion in the antistir direction,
while the stripes labeled as “compression waves” show motion in the stir direction. These disturbances convert circulation confined near a

localized vortex into into macroscopic flow around the racetrack.

period and the final flow amount will depend on how long the
stirring period lasts. We found that oscillations rarely occurred
in the ring case.

All of these features are present when flow is created in
the nonring racetrack case. However, there are some features
which only take place for L # 0 racetrack potentials. We
consider this case next.

C. Final flow production: Racetrack case

Many of the features of flow production in the ring con-
densate are also seen in the racetrack case. In the racetrack
case, however, we find features of flow production not present
in the ring case. These are (1) that flow oscillations readily
occur during the stirring and (2) phase slips seem to take
place whenever the barrier moves from curved-to-straight or
straight-to-curved parts of the racetrack. We discuss these
features below.

Comparing the racetrack plot in Fig. 7(b) with the one
for the ring in Fig. 7(a), we first see that both plots show a
sudden onset of phase slips when the barrier potential reaches
a critical value and both show phase slipping continuing until
the flow speed overtakes the barrier speed (cyan dashed curve
in both plots).

There is also a striking difference between these two plots:
the racetrack plot exhibits oscillations in the flow during the
stirring while the ring plot has hardly any. Most of these
oscillations can be understood as the inverse of the phase-slip
process described earlier. Instead of backflow in the barrier
causing a vortex to form on the outside, migrating inward and
causing a phase slip, a forward flow can develop, causing an
antivortex to develop on the outside, migrating inward and
causing a negative phase slip.

Figure 9 shows how such a forward flow can develop.
This annotated figure shows the backflow in the barrier region

that causes the phase slips as well as the five pairs of coun-
tercirculating disturbances that are generated. These many
disturbances sweep around the racetrack and occasionally
intersect each other at the site of the slowly moving barrier.
When this happens, the backflow (blue color) in the barrier
region can turn into forward flow (red color) since the dis-
turbances generated in the initial phase slips tend to promote
flow in the stir direction. Two sites of such an intersection are
shown in the figure and annotated as “forward flow” appear at
times ¢ ~ 370 ms and ¢ ~ 400 ms. These times correlate with
flow drops appearing in Fig. 7(b). Flow can increase because,
once the disturbances pass, the backflow reasserts itself and
flow-increasing phase slips can occur. This causes the flow to
oscillate during the stir.
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FIG. 9. Spacetime plot of the tangential component of the con-
densate velocity along the midtrack for the racetrack case. The
conditions are L = 30 um, v, = 339.3 um/s, V; max = 56.9 nK, and
T = 0 nK. The time duration depicted here is during the middle of
the stirring sequence.
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Another circulation-changing mechanism that is only
present in the nonring racetrack case occurs when the moving
barrier crosses from straight parts of the racetrack channel to
curved parts or vice versa. The times when the barrier is on
straight or curved parts are indicated in Fig. 7(b) by the red
dotted and black solid curves that depict the barrier height.
This graph is a red dotted line for times when the barrier is on
the curved parts of the racetrack and is black solid when it is
on the straight section.

Careful examination of the circulation graph shows that
when the barrier transitions from curved to straight (red dotted
to black solid) racetrack parts, the circulation increases by
one unit. When the barrier transitions from straight to curved
(black solid to red dotted) parts, the circulation decreases by
one unit. We also note that this only happens when the barrier
height is above a certain strength.

It is this mechanism that seems to lead to the final flow
value for the case shown in Fig. 7(b). The very last flow
change appearing in this figure is a jump up to five units of
flow. This last jump occurs at t &~ 1050 ms just as the barrier
moves from the curved end cap to the straightaway as the
stirring barrier is beginning to be turned off. It seems that,
by the next transition, the decreasing barrier is too weak to
cause any more phase slips. This particular case differs from
other simulations having similar conditions, as can be seen
by looking at Fig. 3(d). The racetrack case discussed here is
identified there by the red circle. Note how the final flow for
this case is different from those near it on that graph where the
only difference is Vj, max-

It might be possible to avoid this phase slip at the tran-
sitions between straight and curved parts of the channel.
Recent work on transport in condensate waveguides, where
the available volume was much larger than the condensate,
found that condensates incident on circular bends suffered
collective excitations after exiting the bend. They found that
these excitations could be minimized by having a bend in the
shape of an “Euler spiral” [23,24]. The system we considered
here is not a “waveguide” in the sense that our condensate
occupies the full volume of the channel. However, modifying
the shape of the end caps might eliminate the phase-slip events
that occur at the transitions between straight and curved parts
of the channel.

IV. SUMMARY

We have presented a study of flow production by stirring
Bose-Einstein condensates confined in atomtronic racetrack
potentials. We performed a series of simulations under
conditions in which the racetrack geometry, initial-state tem-
perature, stir speed, and maximum barrier height were varied.
The study also included an investigation into the mechanism
of how flow is produced under the Gross-Pitaevskii model.

We found that stirring is an effective way of creating flow
and that there is no difficulty in creating smooth flow in a
condensate confined in a nonring potential. We also found
that flow was readily created when stirring systems initially
at finite temperature.

Flow is precipitated by a series of phase slips that appears
once the barrier potential reaches a critical height. Each phase
slip occurs because a vortex forms on the outside edge of the

barrier region due to the buildup of backflow inside the barrier.
This vortex migrates to the inner edge of the condensate where
it is joined by an antivortex.

Two disturbances are generated at each phase slip: (1)
The vortex-antivortex pair moves off in the antistir direction
and (2) a compression wave moves in the stir direction. Just
after the appearance of the phase slips which generate these
disturbances, there is a large variation in the distribution of
the tangential component of the velocity around the midtrack
of the condensate. This can be seen in the bottom panel of
Fig. 8. The vortex-antivortex and compression-wave distur-
bances together promote the formation of smooth flow in
the stir direction and facilitate the conversion of localized
circulation into macroscopic smooth flow.

The circulation around the racetrack can oscillate because,
when one or more of these disturbances simultaneously en-
counter the barrier region, backflow can be converted into
forward flow. In this case, it is possible to have a phase slip in
the opposite sense as described above and the total circulation
can be decreased by one.

Overall, our results seem to indicate that a user-specified
number of units of quantized smooth flow can be generated by
stirring on demand. To make such flow, one only has to match
the barrier stirring speed to the number of units of vgey given
in Eq. (9). The value of vgoy can be designed by changing the
ring or racetrack geometry. In the nonring case, one should
be careful not be near a curved-straight or straight-curved
transition near the time when the barrier height decreases
below the critical value for causing a phase slip.
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APPENDIX A: RACETRACK AND BARRIER POTENTIALS

The full potential used in simulating the stirring of a race-
track Bose-Einstein condensate is given by

Ve (r, 1) = M@z + Ver(x, y) + Vair(x, . 1). (A1)

The first term represents the vertical harmonic confinement
used to restrict the gas to a quasi-two-dimensional horizontal
plane. The second term is the racetrack potential that con-
fines the condensate to a racetrack-shaped channel within this
plane. The last term is the potential of the stirring barrier.
We assume that only the first two terms are present for the
purposes of defining the initial state.

The racetrack potential is written as a sum of step-up and
step-down functions using hyperbolic tangents as follows:

p(x,y) — Ro)

1
Wrr(x,y) = Vn[— tanh (
2 o

o

1 R; — , _Rr
+ 3 tanh <M> + tanh (%)}

(A2)
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where R; = 12 um and R, = 36 um are the inner and outer
radii of the semicircular endcaps. The factor o = 24 um mea-
sures the steepness of the step functions. The last hyperbolic
tangent term is present above so that the minimum value of
the potential is zero.

The factor p(x, y) places the jump-up and jump-down sites
of the potential, thus defining the location of the channel. It is

defined as
Vax—=L/2 +y* x>1LJ2
px,y) =13/ (x+L/22+y? x<—-L/2, (A3)

Iy] x| < L/2

where L is the length of the straight sections.

The stir potential is a 2D rectangular barrier whose center
coordinates, orientation, and energy height can all have arbi-
trary time dependence. The actual potential is most expressed
in terms of step-up and step-down functions defined as

1 X — Xyp
Vip (X, Xup, 0) = 5[1 +tanh( )]’

o

=]
-1

where x,, and x4, denote the places where the step functions
equal one-half and o is the steepness of the step.
Using these functions, we can write the stir potential as

Viiir (x, y, 1) = V() Vip (5 (x, y, 1), —Lp/2, 0)
X Van(xp(x, ¥, 1), Ly/2, 0)
X Vupp(x, y, 1), =Wp /2, 0)
X Van (yp(x, y, 1), W, /2, o)},
where x,, and y,, are barrier coordinates
Xp(x, y, Xc(1), ye (1), 0,(1))
= (x —xc(t)) cos (0,(1)) + (v — ye (1)) sin (6,(1)),
Yp(x, ¥, X (1), ye(t), Op(1))
= —(x = xc () sin (6,(1)) + (y — ye (1)) cos (6,(1)).

Here x.(¢) and y.(¢) are the time-dependent barrier center
coordinates and 6,(¢) is the time-dependent angle that the
long dimension of the rectangle makes with the x axis. The
parameters L, = 48 um and W, = 3 um are the length and
width of the barrier, respectively. The barrier steepness is
o =0.3 um.

The barrier center coordinates follow the midtrack of the
racetrack and are parameterized using the arc length, s, which
is measured from the left end of the bottom straight section:

(AS5)

1
Vi (%, Xdn, 0) = 5[1 + tanh (

(A4)

s(t) =50+ vpt mod Syotal,

where vy, is the stir speed, so = L + mR/2 is the start point of
the barrier stirring, and sy = 2L + 27 R is total arc length of
the channel midtrack and where R = (R, + R;)/2.
The center coordinates are written in terms of the arc length
as
L

s—3 0<s<L

—+Rsm(R) L<s<s
*els) = —+ TR —s s1<s <8

—= —Rsm (M) §2 < 8 < Stotal

and
—R 0<s<L
—Rcos (£ L<s<s
Yels) = (%) DA,
R S1<s <85

Rcos (S2at2R) 50 s < Sional-

Here s; = Siora1/2 and 55 = Siota1 — TR.
The time dependence of the orientation angle is given by

_% 0<s<L
St Leies

9,7(5)2 % SIS <8
%_‘_w 82 LS < Sotal -

This dependence orients the barrier so that it is always per-
pendicular to the midtrack of the channel.

Finally, the dependence of the energy height of the barrier
on time is written as

/Ty )meax 0<tr<T

V() = Vomax T <t < sz
B=t/T1)Vomax DL <t <Dy
0 t>T;

where T} = 500 ms, 7> = 1000 ms, and 75 = 1500 ms. This
ramps the barrier linearly up to its maximum value, Vpmax,
over a time 77, keeps it constant at this value for another time
interval 77, and ramps it down linearly to zero over yet another
time 7, after which it is zero.

APPENDIX B: ZNG INITIAL STATES

Initial states for the ZNG model are thermal equilibrium
states defined by the temperature, 7', the total number of atoms
in the system, N, the external potential, Vi (r) (here verti-
cal harmonic plus racetrack), and the atom-atom interaction
strength, g. The result of the calculation of the ZNG initial
state is a condensate wave function, ®y(r), and a noncon-
densate density, 7ip(r). From these, the number of condensate
atoms, N, and the chemical potential, (¢, can be obtained.

The iterative method we used to compute these quantities
was to start with an initial guess that the noncondensate den-
sity was zero, so that N, = N, and solve Eq. (6) with R and
it set to zero. This yielded a condensate wave function. This
wave function was then used to construct a first guess at the
single-particle distribution function.

In thermal equilibrium, this function has the form [35]

1

0 _
S Pn) = i e =1 (BI)
where, in general,
Up(r) = Vexe(r) + 28[| @ (r)|* + (1)) (B2)

The single-particle distribution function is used to compute
a new guess for the noncondensate density using Eq. (5).
This density is integrated over all position space to obtain
a new guess at the number of noncondensate atoms. This is
subtracted from the total number of atoms in the system, N, to
obtain a new guess at the number of condensate atoms. This
procedure then repeats alternately, finding a new condensate
wave function and then a new noncondensate density until
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FIG. 10. ZNG condensate fraction vs temperature for three different racetrack geometries. The blue 4+ symbols indicate initial-state
condensate fraction as computed by the ZNG model while the solid red line is a fit to the function N./N =1 — (T /T.)*. (a) L = 0 um,
T. =264.4 0K, @ = 2.697; (b) L = 30 um, T, = 249.3 nK, o = 2.558; and (¢c) L = 60 um, 7, = 235.8 nK, o = 2.464.

convergence is achieved. This procedure is described in more
detail in Ref. [35].

This procedure was carried out for the three racetrack
geometries L = 0um, L =30 um, and L = 60 um for the
three different temperatures considered in the survey simula-

tion study, T = 100 nK, T = 150 nK, and T = 200 nK. The
results of these calculations for the condensate fraction versus
temperature are shown in Fig. 10. The data calculated from
the ZNG were fit to the function given in Eq. (8) and these
curves are shown in red.
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