
Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse

Seismic Data

JIAYUAN HUANG
1 and ROBERT L. NOWACK

1

Abstract—Machine learning using convolutional neural net-

works (CNNs) is investigated for the imaging of sparsely sampled

seismic reflection data. A limitation of traditional imaging methods

is that they often require seismic data with sufficient spatial sam-

pling. Using CNNs for imaging, even if the spatial sampling of the

data is sparse, good imaging results can still be obtained. There-

fore, CNNs applied to seismic imaging have the potential of

producing improved imaging results when spatial sampling of the

data is sparse. The imaged model can then be used to generate more

densely sampled data and in this way be used to interpolate either

regularly or irregularly sampled data. Although there are many

approaches for the interpolation of seismic data, here seismic

imaging is performed directly with sparse seismic data once the

CNN model has been trained. The CNN model is found to be

relatively robust to small variations from the training dataset. For

greater deviations, a larger training dataset would likely be

required. If the CNN is trained with a sufficient amount of data, it

has the potential of imaging more complex seismic profiles.

Keywords: Seismic imaging, Machine learning, Convolu-

tional neural networks, Interpolation of seismic data.

1. Introduction

In this study, machine learning using convolu-

tional neural networks (CNNs) is applied for the

imaging of seismic reflection data. CNNs have had a

number of successful applications for image analysis

in different fields (LeCun et al. 2015), and are mod-

eled after the structure of visual systems (Hubel and

Wiesel 1962). Fukushima and Miyake (1982) pro-

posed a neural network with a multi-layer structure as

a predecessor of CNNs (Bhandare et al. 2016). An

early example of CNNs was given by LeCun et al.

(1998) and used to classify handwritten letters from

patterns of digital pixels. It was however limited by

the speed of computing at that time. With the

development of machine learning algorithms and the

availability of sufficient computational resources in

recent years, CNNs have become increasingly popu-

lar and more accessible for image analysis. Efficient

ways to train CNNs using GPU computing has also

been developed (Chellapilla et al. 2006; Hinton et al.

2006; Bengio et al. 2007). In 2015, the Google Brain

Team implemented an open-source math library

called TensorFlow for machine learning applications,

including the use of CNNs (Abadi et al. 2016). Keras,

a high-level open source neural network library

written in Python, was also released in 2015 (Chollet

2015). The Keras library provides a user-friendly set

of tools for the building and training of neural net-

work and has been fully integrated into the

TensorFlow framework. Here we apply CNNs with

Keras using GPU computing.

There have been many successful applications of

CNNs in the science and engineering. For example, a

common application in computer vision is for facial

recognition. CNNs can extract features at different

locations of the face as an input image and then

output a number of feature maps (Bhandare et al.

2016). In the medical fields, researchers have been

successful in detecting skin cancer using CNNs

(Esteva et al. 2017). CNNs have also been applied to

the game of Go (Maddison et al. 2014; Clark et al.

2015) and has beaten many of the Go masters in the

world since 2015.

Given the successful applications of CNNs in

other scientific fields, they are becoming increasingly

popular for solving problems in the geosciences.

CNNs provide new ways for high-performance

1 Department of Earth, Atmospheric, and Planetary Sciences,

Purdue University, West Lafayette, IN 47907, USA. E-mail:

yyorvictor@gmail.com; nowack@purdue.edu

Pure Appl. Geophys.

� 2020 Springer Nature Switzerland AG

https://doi.org/10.1007/s00024-019-02412-z Pure and Applied Geophysics

http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-019-02412-z&domain=pdf
https://doi.org/10.1007/s00024-019-02412-z

automatic interpretation, complex relationship mod-

eling and data-driven information extraction of

geoscience data (Bergen et al. 2019) Convolutional

neural network have been designed for earthquake

identification which is faster and more sensitive than

traditional methods for detecting induced seismicity

(Perol et al. 2018). Neural networks have also been

trained to automatically identify seismic waveforms

and identify first breaks of seismic data (Yuan et al.

2018).

CNNs are also showing potential for solving

inverse problems in imaging such as for image

denoising, reconstruction and interpolation (McCann

et al. 2017). However, CNNs have only recently been

used in seismic data processing. Support vector

regression (SVR) has been applied to reconstruct

sparsely sampled seismic data by Jia et al. (2017). Li

et al. (2019) successfully built deep neural networks

(DNNs) seismic data inversion for time-series. Wang

et al. (2018) interpolated seismic data for missing

traces by developing a CNN-based residual learning

network.

In the energy industry, an important problem is

the identification of salt bodies in the subsurface. The

TGS Salt Identification Challenge was a Kaggle

competition to identify the boundaries of salt deposits

based on selected seismic images (TGS Salt Identi-

fication Challenge 2018). The traditional

interpretation of seismic data is an important and

time-consuming part of the exploration workflow, but

it is greatly dependent on experienced interpreters. It

also relies on high-performance computational

resources (Waldeland et al. 2018; Araya-Polo et al.

2018). In addition, manual interpretation is highly

time-consuming and subject to human bias (Di et al.

2018).

In this paper, we first generate synthetic zero-

offset seismic reflection data from simple subsurface

interface models. A CNN model is then built based

on the U-net architecture to automatically image the

seismic data. The input images are the seismic

reflection data and the goal is to output the imaged

subsurface models. The trained CNN is robust to

small variations from the training dataset, but for

larger deviations a larger training dataset would

likely be required. If the CNN is trained with a suf-

ficient amount of data, it should potentially be

capable of imaging more complex data. Here we also

use CNNs to image sparsely regularly and irregularly

sampled seismic data. Although there are many

approaches for the interpolation of seismic data, here

seismic imaging is performed directly with sparse

seismic data using a CNN model.

2. The U-net Architecture

The CNN architecture used in this study is the

U-net which is a fully convolutional network devel-

oped earlier for biomedical image segmentation

problems (Ronneberger et al. 2015a, b). This con-

volutional network can work with fewer training

images but still produce accurate image segmenta-

tions (Ronneberger et al. 2015a, b). The U-net is an

encoder-decoder neural network architecture con-

sisting mainly of two paths, the contracting path

(encoder) and expanding path (decoder). Each block

in the two paths contains different sub-layers (Fig. 1).

The contracting path consists of repeated application

of convolutions, activation functions, max pooling

and dropout operations which capture important

features from the input images. The expanding path

constructs the high-resolution feature maps by com-

bining low-resolution feature maps and spatial

information from the contracting path and includes

several repeated layers of transposed convolution,

concatenation, dropout and convolution operations.

2.1. The Contracting Path

The contracting path is typical of convolutional

neural networks. Here we use four blocks in the

contracting path where each block contains four

layers (Fig. 1). The first two layers in each block are

convolutional layers, where the kernels (filters) are

3 9 3. The stride (the steps to skip in the convolution

operation) is 1. Each convolutional layer includes an

activation function called a rectified linear unit

(ReLU). This layer serves the purpose of extracting

the features from the input images. For all the 3 9 3

convolutional layers in this architecture, each edge of

the input images is zero-padded by one pixel so that

the output feature map size is the same as the input

size. The weights and the bias are two important sets

J. Huang and R. L. Nowack Pure Appl. Geophys.

The Contracting Block 1

The Contracting Block 2

The Contracting Block 3

The Expanding Block 1

The Expanding Block 2

The Expanding Block 3
Concatenate

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

Conv2D 3x3

Conv2D 3x3

Max pooling 2x2

Dropout 50%
Deconv2D 3x3

Concatenation

Dropout 50%

Conv2D 3x3

Conv2D 3x3

(a)

(b) (c)
Contracting Path

Ex
pa

nd
in

g P
ath

Conv2D 1x1

The Contracting Block 4

The Expanding Block 4

12
8x

12
8x

1

12
8x

12
8x

8
64

x6
4x

16
32

x3
2x

32

16
x1

6x
64

8x
8x

12
8

16x16x64
32x32x32

64x64x16
128x128x8

128x128x1

Se
is

m
ic

 p
ro

fil
e Im

aged m
odel

Figure 1
a The architecture of the U-Net Convolutional Neural network in this study. The architecture contains two paths, the contracting path and the

expanding path. The contracting path has four blocks each with several layers. The size of the feature maps halves after each block, and the

number of feature maps doubles. There are then two convolution layers each with 3 9 3 kernels (filters) between the contracting path and the

expanding path. The expanding path also has four blocks. The size of the feature maps now double and the number of feature maps halves

after each block. There is then a final 1 9 1 convolutional layer that maps the feature maps from 8 to 1. b Each contracting block has two

convolutional layers with 3 9 3 kernels, a 2 9 2 max pooling layer and a dropout layer with 50% dropout rate. c An expanding block contains

a transposed convolutional (deconvolutional) layer with 3 9 3 kernels, a concatenation layer that gets the spatial information from contracting

blocks, a dropout layer with a 50% dropout rate and two convolutional layers with 3 9 3 kernels

Machine Learning Using U-Net Convolutional Neural Networks

of learnable parameters from the convolutional

layers. The weights are the values of the kernels.

The bias is a parameter added after a convolution

output before passing it to the nonlinear activation

function (a ReLU). Figure 2 shows how each convo-

lutional layer is configured. The third layer of each

block is a 2 9 2 max pooling layer which halves the

matrix size in order to reduce the number of

parameters in the layer. For example, the original

figure size is 128 9 128 and after the first max

pooling layer is reduced to 64 9 64. The fourth layer

of each block is a dropout layer. It is designed to

randomly drop out nodes during the training process

and serves the purpose of reducing overfitting for

deep neural networks. The dropout rate that we use

here is 0.5 which means it will randomly drop out

50% of the nodes for this step.

After the first contracting block extraction, the

parameters are sent to the next contracting block and

the process is repeated for each block. At the same

time, the number of kernels after each block doubles

so that the architecture can learn the complex image

features effectively. After the contracting path, there

are two padded convolutional layers with 3 9 3

kernels following the fourth contracting block. Each

is followed by an activation function-ReLU and these

mediate between the contracting path and expanding

path (Fig. 1).

2.2. The Expanding Path

The expanding path has four blocks, and each

expanding block has five layers (Fig. 1). For each

block in the expanding block, the first layer is a

transposed convolutional layer (a deconvolution

layer) and is designed to up-sample the feature maps

from low resolution to higher resolution. The kernel

(filter) sizes are 3 9 3, and the stride is 2. The

transposed convolutional layers with 3 9 3 kernels

are zero-padded by one pixel. The input size is 8 9 8

in the first transposed convolutional layer and the

output size is 16 9 16. The second layer of each

expanding block is a concatenate layer which

concatenates the feature maps from the contracting

path to the expanding path at the same level. This

action can get localization information from the

contracting path and help to reconstruct high resolu-

tion feature maps in the expanding path. For example,

the first block in the expanding path concatenates

with the fourth block in the contracting path. The

third layer of each expanding block is a dropout layer

and the dropout rate is set to 0.5. The fourth and fifth

layers of each expanding block are padded convolu-

tional layers. The kernels are 3 9 3 and the stride is

1. The activation function for each convolutional

layer is a ReLU. The number of kernels after each

expanding block now halves in contrast to the

contracting blocks. After the first block expansion,

the parameters are sent to the next block and the

process is repeated. After four expansion blocks, the

figure size is 128 9 128 which is the same as the

original image size (Fig. 1).

The last layer after the expanding path is the

output layer which is a 1 9 1 padded convolutional

layer with a 1 9 1 kernel and a stride of 1 and this

maps the feature maps from 8 to 1. The activation

Figure 2
An example showing how a single convolutional layer with 3 9 3 kernels (filters) is configured. The MxMx1 size input image is zero padded

by one pixel on each edge and is then convolved with N 3 9 3 kernels. These convolution operations result in N M 9 M convolution outputs.

After the addition of a bias parameter, convolution outputs are input into an activation function (ReLU) resulting in N MxM feature maps for

this layer

J. Huang and R. L. Nowack Pure Appl. Geophys.

function here is a sigmoid (Han and Moraga 1995),

and the output of the sigmoid function is between 0

and 1 and can be interpreted as a probability.

The neural network then computes the loss

function which measures the average difference

between the predicted values and the true subsurface

interface models. The lower the value of the loss

function, the more correct the prediction is. An

optimizer (optimization algorithm) is then applied to

estimate the model parameters (kernel weights and

biases) that minimizes the loss function. The param-

eters of the neural network are then iteratively

updated using a backpropagation algorithm (Rumel-

hart et al. 1986). The iterations are repeated until the

loss function reaches a global minimum.

3. Synthetic Data

We first build subsurface models and compute

synthetic zero-offset synthetic seismic reflection data.

The synthetic seismic reflection data are generated

using the Gaussian beam modeling code Triseis in the

Seismic Un*x package (Stockwell 1999).

3.1. Subsurface Interface Models and Reflection

Seismic Profiles

For the simple interface models considered here,

we set the horizontal distance of the subsurface

interface model from - 1 to 5 km, and from 0 to

4 km to compute the corresponding reflection pro-

files. The depth range of the subsurface interface

models is from 0 to 3 km. In order to create models

with different interface shapes, there are 5 interface

control points with horizontal distance intervals from

0 to 4 km and 2 fixed points at - 1 and 5 km. Each

control point can move up and down at depths of 1.1,

1.3, 1.5, 1.7, 1.9 km and the two fixed points at the

beginning and the end are at the depth of 1.5 km.

Therefore, there are 55 or 3125 subsurface interface

models and 3125 corresponding synthetic seismic

reflection profiles (Fig. 3). The upper layer ‘‘sloth’’

(inverse of the velocity squared) is 0.25 s2/km2 (or a

velocity equal to 2 km/s) and the lower layer sloth is

0.1 s2/km2 (or a velocity equal to 3.16 km/s).

When computing the zero-offset seismic reflec-

tion profiles, the horizontal range is from 0 to 4 km

along the surface, including 101 traces with a

horizontal distance interval of 0.04 km. Each trace

has 101 time samples with a time sampling interval of

0.03 s. For the Gaussian beam modeling, the first ray

takeoff angle is set at - 55� and the last ray takeoff

angle is 55�. To avoid possible aliasing, the peak

frequency of the Ricker wavelet is set to 4 Hz. For

the 3125 subsurface interface models, corresponding

seismic reflection profiles are generated in this way.

3.2. Dataset Preprocessing

The subsurface interface model used in the

Gaussian beam modeling code is converted to a

Interface control points

Coincident sources and receivers

Subsurface interface between two
homogeneous layers

D
ep

th
 (k

m
)

Distance (km)

Interface fixed points

Figure 3
A diagram for the building of the subsurface interface models. The triangles show the zero-offset location of the sources and receivers at the

surface. For each subsurface interface model, there are five interface control points and two fixed points at the beginning and the end distance.

Each control point can move up and down with depths of 1.1, 1.3, 1.5, 1.7, 1.9 km and each fixed point is at a depth of 1.5 km. Therefore,

there are 55 or 3125 interface models and 3125 corresponding computed seismic reflection profiles

Machine Learning Using U-Net Convolutional Neural Networks

gridded model using the code tri2uni in Seismic Un*x

and the gridded subsurface interface models are then

stored as binary files. The seismic data generated

from Seismic Un*x are also stored as binary files.

The models and computed seismic reflection data are

then randomly divided into 1875 (60%) for the

training dataset, 625 (20%) for the validation dataset

and 625 (20%) for the test dataset. The training

dataset is initially used to estimate the parameters of

the neural network model. The validation dataset is

then used to evaluate the performance of the neural

network model fit from the training dataset and can

be used as an indicator if the neural network model is

being overfit by the training dataset. The test dataset

is then used for evaluating the final neural network

model, where these data have not been used in the

training process.

Since data normalization can accelerate neural

network training and avoid local minima of the loss

function (Ioffe and Szegedy 2015), the sloth values of

the subsurface models are normalized to 0 (for 0.1 s2/

km2) and 1 (for 0.25 s2/km2) and the amplitude data

which contain positive and negative values are scaled

to a range from - 1 to 1 by dividing by the maximum

absolute value of the seismogram datasets. For the

imaging here, the velocities are assumed to be known

from earlier processing steps of the data, and here we

are only imaging the structure aspects of the model.

This is similar to classical seismic migration imaging

where the velocity model is given prior to imaging

for the structure.

4. Model Training

4.1. Loss Function and Metrics

The performance of CNNs in this study is

measured and correspondingly optimized by using a

binary cross entropy loss function. For each pixel in

the predicted model, the values are interpreted as a

probability from 0 to 1. For this example, 1 represents

the upper layer and 0 represents the lower layer. The

binary cross entropy loss function is given by:

L ¼ �½ylog pð Þ þ 1� yð Þlog 1� pð Þ�

where y is the true value (true distribution) and p is

the predicted distribution. In our case, y is 1 and p is

the predicted probability of upper layer. (1 - y) is

equal to 0 which is the true value of lower layer and

(1 - p) is its predicted probability. The binary cross

entropy loss function as used in the image segmen-

tation is the average evaluation of the class prediction

for each pixel in the predicted models and is used to

optimize the neural network.

Metric functions are used to evaluate the perfor-

mance of the neural network. Although these can also

be used as loss functions, the evaluation results of the

metric functions are not used to train the neural

network. Here we choose binary accuracy and the

dice coefficient as metric functions (Dice 1945;

Sørensen 1948).

The binary accuracy gives the percentage of

correctly classified pixels in the images and is given

by:

Binary accuracy ¼ ðTPþ TNÞ
ðTPþ TNþ FPþ FNÞ

where TP (true positive) is the number of pixels that

successfully predict the upper layer, TN (true nega-

tive) is the number of pixels that correctly predict the

lower layer. FP (false positive) is the number of

pixels that wrongly recognize the upper layer as

lower layer and FN (false negative) is the number of

pixels which fail to predict the lower layer.

The dice coefficient, also known as the dice score

or F1-score, measures the overlap of the true binary

subsurface interface models and the predicted mod-

els. The dice coefficient is given by:

Dice coefficient ¼ 2TP

2TPþ FPþ FN

where the TP, FP, FN are the same as for the binary

accuracy.

4.2. Starting Kernels (Filters)

Kernels work as feature extractors in the neural

network. Their weights are initially random and then

updated after each iteration of the training process.

As mentioned previously, the number of kernels in

the first contracting block need to be set first and the

number of kernels after each block then doubles.

Here we choose 2, 4, 8, 16, 32 for starting numbers of

kernels. We then use an Adam optimizer to train the

J. Huang and R. L. Nowack Pure Appl. Geophys.

model (Kingma and Ba 2014). Figure 4a–c shows

examples of the binary accuracy, dice coefficient and

binary cross entropy loss function for different

numbers of starting kernels. The results show that

the convergence of binary accuracy, dice coefficient

and binary cross entropy loss function are the fastest

when the number of starting kernels is 8.

Figure 4
The experiment scores of the CNN models for 10 epochs. Subplots a, b, c are binary accuracy, dice coefficient and binary cross entropy loss

function of the CNN models with a different number of starting kernels (filters) optimized using an Adam optimizer. The numbers of starting

kernels are set in the first contracting block and double after each contracting block. They then gradually halve after each expanding block.

Subplots b, e, f are the binary accuracy, dice coefficient and binary cross entropy loss function of the CNN models with eight starting kernels

optimized using different optimizers

Machine Learning Using U-Net Convolutional Neural Networks

4.3. Optimizers

The optimizers are designed to minimize the loss

function in the training process. We compare several

optimization algorithms in the model training:

Adadelta (Zeiler 2012), Adagrad (Duchi et al.

2011), Adam (Kingma and Ba 2014) and Rmsprop

(Hinton et al. 2012). We use the default parameter

values for each optimization algorithm in the Keras

deep learning library. Here we set eight starting

kernels (filters) for the first block. Figure 4d–f

compare the binary accuracy, dice coefficient and

binary cross entropy loss functions where the starting

kernels are set to 8 for the first block. The results

show that the Adam algorithm has the fastest

convergence for the binary accuracy, dice coefficient

and binary cross entropy loss function and is used for

our study.

5. Results

In the model training process, we set eight starting

kernels (filters) in the first block of the contracting

path and choose an Adam optimizer to minimize the

loss function since the accuracy of this combination

converges faster than other combinations according

to our tests. The binary accuracy, dice coefficient and

binary cross entropy loss function for our model are

shown in the Fig. 5. The triangles are for the training

dataset and the squares are for the validation dataset.

The neural network model is implemented in

Keras and is trained using a NVIDA RTX 2070

graphics card on a single workstation. The batch size

(the number of training samples used to train the

neural network in a single batch) is set to 32 and the

epoch (the number of times that the entire training

dataset is used to train the neural network) is set to

40. Since the neural network cannot pass through the

entire training dataset all at once, the training dataset

is randomly divided into several batches by the

defined batch size, and all the batches pass through

the neural network for one epoch. The training

dataset is then randomly separated again, and the

process is repeated in the next epoch. In Fig. 5, we

see that the model only needs five epochs to get a

high accuracy and after that the accuracy increases

slowly. The training process stops at 35 epochs after

applying an early stopping regularization with a

patience (the number of epochs before stopping the

training process if the model hasn’t improved) of 10.

This means that the binary accuracy and the binary

cross entropy loss function do not improve after 25

epochs. The total training process takes approxi-

mately 2 min for a NVIDA RTX 2070 GPU on single

workstation. We performed similar computations on

Figure 5
The binary accuracy, dice coefficient and binary cross entropy loss

function of CNN models with 8 starting kernels (filters) optimized

by an Adam optimizer

J. Huang and R. L. Nowack Pure Appl. Geophys.

the larger Purdue Gilbreth GPU Cluster with NVIDA

Tesla V100 GPUs. Although the results were faster,

they were limited by the user allocation limits on the

larger machine.

Figure 6 shows several examples for the imaged

models using the trained neural network. For the

given seismic profiles shown on the left, the true

models are shown in the middle and the imaged

models are shown on the right. As can be seen, the

trained neural network does an excellent job of esti-

mating the imaged models from the seismic profiles.

Figure 7a shows a seismic profile where the upper

layer velocity of the model is 10% higher than the

models used to generate the seismic profiles in the

training dataset. Figure 7b shows the true subsurface

interface model with the correct velocity model and

Fig. 7c shows the CNN imaged model resulting in a

slightly elevated interface from the true model.

Figure 7d shows a seismic profile with 10%

Gaussian noise added which is not included in the

training dataset. Figure 7e shows the true subsurface

interface model and Fig. 7f shows the CNN imaged

model from the noisy seismic data in Fig. 7d. In this

case the model is well imaged by the CNN.

Figure 7g shows a seismic profile from a model

not included in the training dataset by adding a depth

of 0.7 km to the interface depths. The true model is

shown in Fig. 7h) and the CNN imaged model is

shown in Fig. 7i. In this case the average depth of the

interface is correct, but the details of the imaged

interface have some discrepancies with the true

model in Fig. 7b. Nevertheless, the overall shape and

Seismic Profiles True Models CNN Imaged Models

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

Ti
m

e
(s

)

1.5

0

3.0

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

Ti
m

e
(s

)

1.5

0

(a) (b) (c)

(d) (e) (f)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

40

40

40

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

Ti
m

e
(s

)

1.5

0
(g) (h) (i)

0 4
Distance (km)

2

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

Figure 6
Imaged models from the trained neural network. Subplots a, d, g give seismic profiles with 101 seismic traces. Subplots b, e, h are true

subsurface interface models and subplots c, f, i are the corresponding imaged models from the CNN imaging given the input seismic profiles

Machine Learning Using U-Net Convolutional Neural Networks

depth of the CNN imaged model is similar to the true

model.

From these examples it can been seen that the

CNN model is relatively robust for small variations

from the training dataset. However, larger deviations

from the training dataset would likely require a larger

training dataset.

Traditional migration methods are sensitive to the

spatial sampling of the data. In order to get the best

resolution of the subsurface images, the seismic data

needs to be sufficiently sampled prior to migration

imaging. Here we use the migration code Sustolt in

Seismic Un*x and show several examples of the

migration of seismic profiles with a different number

of traces (Fig. 8). For these examples, when using 51

and 101 traces, accurate migration images can be

obtained. However, for fewer traces, aliasing effects

substantially degrade the images.

In order to see how the convolutional neural

networks (CNNs) perform for a different number of

traces, we input seismic profiles with 5, 9, 17, 26 and

51 traces with larger station spacings to the trained

CNN model based on the seismic profiles with 101

traces. Figure 9 shows the seismic profiles with a

Ti
m

e
(s

)

1.5

0
(d)

0 4
3.0

Distance (km)
2

0 4
3.0

2

1.5

0
(f)

0 4
3.0

Distance (km)
2

0 4
3.0

2

D
ep

th
 (k

m
)

1.5

0

0 4
3.0

Distance (km)
2

1.5

0

0 4
3.0

Distance (km)
2

(g) (i)

Ti
m

e
(s

)

D
ep

th
 (k

m
)

1.51.5

(a) (c)
Seismic Profiles True Models

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(b)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(e)

CNN Imaged Models

Noise added

Distance (km) Distance (km)

Ti
m

e
(s

)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(h)Outside dataset

Inaccurate velocity model

Figure 7
Imaged models from the trained neural network using seismic profiles with different effects not included in the training dataset. a The seismic

profile when velocity model is inaccurately estimated, the upper layer velocity of the model is 10% higher than model used for the training

dataset. d The seismic profile with 10% Gaussian noise to the data. g The seismic profile of a model that is outside the training dataset with an

interface 0.7 km deeper than the training dataset. For each case b, e, h are true subsurface interface models. For each case c, f, i are the

corresponding imaged models from the CNN given the input seismic profiles in a, d and g

J. Huang and R. L. Nowack Pure Appl. Geophys.

different number of seismic traces, 9, 17 and 26. The

corresponding imaged interfaces comparing with true

interfaces are given in the Fig. 10. The comparisons

show that when there are just nine traces, the CNN

results are fair but are still better than the results from

seismic migration. When the number of traces is 17,

the CNN results are improved but still have slight

differences with the true interfaces. When the number

of traces is 26, the CNN results are now very good

and almost the same as the true models. The evalu-

ation of the results of how well the CNN model

trained using the 101 traces dataset performs on

datasets with a different number of traces is given in

Table 1.

The imaged models from the trained CNN model

when the number of regularly or irregularly sampled

seismic traces is 26 are then used to create new more

densely sampled seismic reflection profiles in Fig. 11.

Figure 11a, d, g show sparse seismic profiles where

the number of regularly sampled seismic traces is 26.

Figure 11j shows sparse seismic data when the traces

are irregularly sampled. Figure 11b, e, h, k are the

interpolated seismic data from the CNN imaged

models and Fig. 11c, f, i, l are the true seismic data

when the number of seismic traces is 101. As can be

seen, the CNN provides interpolation capabilities

which can prove useful in cases without a sufficient

spatial sampling needed for traditional migration

Seismic Profile Interface Model

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2
Ti

m
e

(s
)

1.5

0

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(a) (b)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

40

40

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

Trace=5 Trace=9 Trace=17

Trace=26 Trace=51 Trace=101

(c) (d) (e)

(f) (g) (h)

0 4
3.0

Distance (km)
2

Figure 8
Migration imaging results for seismic profiles with a different number of traces. Subplot a is the seismic profile with 101 traces. Subplot b is

the corresponding subsurface interface model. Subplots c, d, e, f, g, h are the migration imaging results where the numbers of seismic traces

are 5, 9, 17, 26, 51 and 101, respectively

Machine Learning Using U-Net Convolutional Neural Networks

imaging methods. Although there are a number of

approaches for the interpolation of seismic data (for a

survey see Chen et al. 2019), for the approach fol-

lowed here the CNN model is used to directly image

the sparse seismic data. Although the training process

requires some computational and data resources, once

the CNN is trained the imaging and interpolation

processes are very fast.

6. Discussion and Conclusions

We have shown that machine learning with a

CNN U-net architecture works well for the seismic

imaging test cases given here. A limitation of

traditional migration imaging methods is that they

often require sufficient spatial sampling of the data.

Although there are a number of approaches for the

interpolation of seismic data (Chen et al. 2019), a

novelty of the approach used here is that imaging can

be performed directly on sparse regularly or irregu-

larly sampled data once the CNN has been trained.

Even when the spatial sampling of the seismic pro-

files is large, the CNN can still obtain good imaging

results. Convolutional neural networks therefore have

the potential of providing improved imaging results

compared with traditional migration imaging meth-

ods when the spatial sampling is sparse. The CNN

model is robust to the small variations from the

training dataset. However, for larger deviations a

Trace number = 9

Ti
m

e
(s

)

1.5

0
Ti

m
e

(s
)

1.5

0

(a)

(d)

Ti
m

e
(s

)

1.5

0
(g)

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

Ti
m

e
(s

)

1.5

0

Ti
m

e
(s

)
1.5

0

(b)

(e)

Ti
m

e
(s

)

1.5

0
(h)

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

Ti
m

e
(s

)

1.5

0

Ti
m

e
(s

)

1.5

0

(c)

(f)

Ti
m

e
(s

)
1.5

0
(i)

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

0 4
3.0

Distance (km)
2

Trace number = 17 Trace number = 26

Figure 9
Several seismic profiles with a different number of seismic traces. Subplots a, d, g are seismic profiles when the number of seismic traces is 9.

Subplots b, e, h are seismic profiles when the number of seismic traces is 17. Subplots c, f, i are seismic profiles when the number of seismic

traces is 26

J. Huang and R. L. Nowack Pure Appl. Geophys.

larger training dataset would likely be required. Since

CNN is a kind of supervised learning, the parameters

of CNN model are trained based on the most

important features from training dataset. If the CNN

is trained with a sufficient amount of data, the CNN

has the potential of imaging more complex seismic

profiles.

There are several possible approaches in applying

CNN to real seismic data. If enough data for a given

region are available that have been previously

imaged, then these data can be used for training and

validation to obtain the parameters of the CNN

model. The trained CNN can then be used for the

imaging of new observed data. However, this

assumes that the training data are obtained from

Trace number = 17

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(b)

(e)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(h)

Trace number = 26

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(c)

(f)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(i)

Trace number = 9

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(a)

(d)

0 4

1.5

3.0

0

Distance (km)

D
ep

th
 (k

m
)

2

(g)

Figure 10
The CNN imaged interfaces when the number of seismic traces is 9, 17 and 26, respectively, comparing with the true interfaces. The solid

lines are CNN imaged interfaces and the dashed lines are the true interfaces. Subplots a, d, g are comparisons of interfaces when the number

of seismic traces is 9. Subplots b, e, h are comparisons of interfaces when the number of seismic traces is 17. Subplots c, f, i are comparisons

of interfaces when the number of seismic traces is 26

Table 1

Performance evaluation results of the model trained using a 101

trace dataset and applied to datasets with a different number of

traces

Traces Score

Binary cross

entropy

Binary

accuracy

Dice

coefficient

5 0.756 0.905 0.911

9 0.257 0.953 0.965

17 0.059 0.973 0.986

26 0.027 0.977 0.990

51 0.011 0.980 0.993

101 (from the test

dataset)

0.009 0.981 0.994

For the binary cross entropy lower is better and for the binary

accuracy and dice coefficient higher is better

Machine Learning Using U-Net Convolutional Neural Networks

regions that are sufficiently similar to that of the new

observed data.

A second alternative is to use synthetic data for

the training and validation of the CNN. If fast for-

ward modeling codes are used for the training and

validation, as is done here using asymptotic beam

codes, then this would result in an efficient approach

for generating the parameters of the CNN for the

imaging of the observed data. However, the synthetic

data needs to be generated for models that are

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

(d) (e)

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

(g) (h)

0 4

1.5

3.0

0

Distance (km)
2

0 4

1.5

3.0

0

Distance (km)
2

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)
Ti

m
e

(s
)

Ti
m

e
(s

)

1.5

3.0

0

Distance (km)
2

1.5

3.0

0

Distance (km)
2

(f)

1.5

3.0

0

Distance (km)
2

(i)

Ti
m

e
(s

)
Ti

m
e

(s
)

Ti
m

e
(s

)

True Seismic Data(a) (b) (c)Sparse Seismic Data Interpolated Seismic Data

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

0 4

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

40

40

40

40

1.5

3.0

0

Distance (km)
2

Ti
m

e
(s

)

(j) (k) (l)

Figure 11
Interpolated seismic data obtained using the CNN imaged results from the trained CNN model when the number of regular and irregular

seismic traces is 26. a, d, g Sparse seismic data when the number of regularly sampled seismic traces is 26. j The sparse seismic data when the

number of irregularly sampled seismic traces is 26. b, e, h, k The interpolated seismic data from the CNN imaged models, and c, f, i, l True

seismic data when the number of traces is 101

J. Huang and R. L. Nowack Pure Appl. Geophys.

sufficiently similar to the real subsurface structures

that result in the observed data.

For either alternative, if the CNN model can still

perform well for real seismic data, which are much

more complex, then once the training and validation

have been performed, then very fast seismic imaging

can be performed. It can also potentially reduce the

amount of data required for seismic imaging and at

the same time be used to interpolate sparse data to a

finer grid.

Acknowledgements

The authors would like to thank the Editor and the

reviewers for their constructive comments on the

manuscript. The authors also thank Abdullah Khan

Zehady for providing advice on CNN coding and

model testing. This study was partially supported by

NSF/EAR 1839322.

Publisher’s Note Springer Nature remains neutral

with regard to jurisdictional claims in published maps

and institutional affiliations.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.

et al. (2016). TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. arXiv:1603.04467 [cs.DC].

Accessed 25 June 2019.

Araya-Polo, M., Jennings, J., Adler, A., & Dahlke, T. (2018).

Deep-learning tomography. The Leading. Edge, 37(1), 58–66.

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007).

Greedy layer-wise training of deep networks. In J.D. Cowan, G.

Tesauro, J. Alspector (Eds.), Advances in Neural Information

Processing Systems, vol.19 (NIPS), (pp. 153–160). MIT Press.

Bergen, K.J., Johnson, P.A., Hoop, M.V. de, Beroza, G.C. (2019).

Machine learning for data-driven discovery in solid Earth geo-

science. Science, 363(6433), eaau0323.

Bhandare, A., Bhide, M., Gokhale, P., & Chandavarkar, R. (2016).

Applications of convolutional neural networks. International

Journal of Computer Science and Information Technologies,

7(5), 2206–2215.

Chellapilla, K., Puri, S., Simard, P. (2006). High performance

convolutional neural networks for document processing. In Tenth

International Workshop on Frontiers in Handwriting Recogni-

tion, Université de Rennes 1, La Baule, France, October 23–26

2006 (inria-00112631).

Chen, Y., Chen, X., Wang, Y., & Zu, S. (2019). The interpolation

of sparse geophysical data. Surveys in Geophysics, 40(1),

73–105.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

Accessed 1 Jun 2019.

Clark, C., Storkey, A. (2015). Training deep convolutional neural

networks to play go. In 32nd International Conference on

Machine Learning, vol. 37 (pp. 1766–1774). Lille (06–11 Jul

2015).

Di, H., Wang, Z., AlRegib, G. (2018). Deep convolutional neural

networks for seismic salt-body delineation. AAPG 2018 Annual

Convention and Exhibition. Salt Lake City (20–23 May 2018).

Dice, L. R. (1945). Measures of the amount of ecologic association

between species. Ecology, 26(3), 297–302.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient

methods for online learning and stochastic optimization. Journal

of Machine Learning Research, 12, 2121–2159.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau,

H. M., et al. (2017). Dermatologist-level classification of skin

cancer with deep neural networks. Nature, 542, 115–118.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A Self-Or-

ganizing Neural Network Model for a Mechanism of Visual

Pattern Recognition. In S. Amari & M. A. Arbib (Eds.), Com-

petition and Cooperation in Neural Nets. Lecture Notes in

Biomathematics (Vol. 45, pp. 267–285). Berlin: Springer.

Han, J., & Moraga, C. (1995). The influence of the sigmoid func-

tion parameters on the speed of backpropagation learning. In J.

Mira & F. Sandoval (Eds.), International Workshop on Artificial

Neural Networks. Lecture Notes in Computer Science (Vol. 930,

pp. 195–201). Berlin: Springer.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Computation, 18(7),

1527–1554.

Hinton, G., Srivastava, N., Swersky, K. (2012). Neural networks

for machine learning Lecture 6a Overview of mini-batch gradient

descent. https://www.cs.toronto.edu/*hinton/coursera/lecture6/

lec6.pdf. Accessed 3 May 2019.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular

interaction and functional architecture in the cat’s visual cortex.

The Journal of physiology, 160(1), 106–154.

Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv:1502.03167 [cs.LG]. Accessed 25 Jun 2019.

Jia, Y., & Ma, J. (2017). What can machine learning do for seismic

data processing? An interpolation application. Geophysics, 82(3),

V163–V177.

Kingma, D.P., Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv:1412.6980 [cs.LG]. Accessed 25 Jul 2019.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & Others., (1998).

Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Na-

ture, 521, 436–444.

Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., Jiang, P.

(2019). Deep learning inversion of seismic data.

arXiv:1901.07733 [cs.CV]. Accessed 25 Jul 2019.

Maddison, C.J., Huang, A., Sutskever, I., Silver, D. (2014). Move

evaluation in go using deep convolutional neural networks.

arXiv:1412.6564 [cs.LG]. Accessed 24 Jun 2019.

Machine Learning Using U-Net Convolutional Neural Networks

https://github.com/fchollet/keras
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional

neural networks for inverse problems in imaging: A review.

IEEE Signal Processing Magazine, 34(6), 85–95.

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural

network for earthquake detection and location. Science Advan-

ces, 4(2), e1700578.

Ronneberger, O., Fischer, P., & Brox, T. (2015a). Dental X-ray

image segmentation using a U-shaped Deep Convolutional net-

work. International Symposium on Biomedical Imaging-ISBI

2015.

Ronneberger, O., Fischer, P., & Brox, T. (2015b). U-Net: Convo-

lutional Networks for Biomedical Image Segmentation. In N.

Navab, J. Hornegger, W. Wells, & A. Frangi (Eds.), Interna-

tional Conference on Medical image computing and computer-

assisted intervention-MICCAI 2015. Lecture Notes in Computer

Science (Vol. 9351, pp. 234–241). Cham: Springer.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature, 323,

533–536.

TGS Salt Identification Challenge. (2018). https://www.kaggle.

com/c/tgs-salt-identification-challenge. Accessed 5 May 2019.

Sørensen, T. J. (1948). A method of establishing groups of equal

amplitude in plant sociology based on similarity of species

content and its application to analyses of the vegetation on

Danish commons. Det Kongelige Danske Videnskabers Selskab

Biologiske Skrifter, 5, 1–34.

Stockwell, J. W., Jr. (1999). The CWP/SU: seismic Un*x package.

Computers & Geosciences, 25(4), 415–419.

Waldeland, A. U., Jensen, A. C., Gelius, L.-J., & Schistad Solberg,

A. H. (2018). Convolutional neural networks for automated

seismic interpretation. The Leading Edge, 37(7), 529–537.

Wang, B., Zhang, N., Lu, W., & Wang, J. (2018). Deep-learning-

based seismic data interpolation: A preliminary result. Geo-

physics, 84(1), V11–V20.

Yuan, S., Liu, J., Wang, S., Wang, T., & Shi, P. (2018). Seismic

waveform classification and first-break picking using convolu-

tion neural networks. IEEE Geoscience and Remote Sensing

Letters, 15(2), 272–276.

Zeiler, M.D. (2012). ADADELTA: an adaptive learning rate

method. arXiv:1212.5701 [cs.LG]. Accessed 4 Jun 2019.

(Received August 12, 2019, revised December 26, 2019, accepted December 27, 2019)

J. Huang and R. L. Nowack Pure Appl. Geophys.

https://www.kaggle.com/c/tgs-salt-identification-challenge
https://www.kaggle.com/c/tgs-salt-identification-challenge

	Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data
	Abstract
	 Introduction
	 The U-net Architecture
	The Contracting Path
	The Expanding Path

	 Synthetic Data
	Subsurface Interface Models and Reflection Seismic Profiles
	Dataset Preprocessing

	 Model Training
	Loss Function and Metrics
	Starting Kernels (Filters)
	Optimizers

	 Results
	 Discussion and Conclusions
	Acknowledgements
	References

