Pure Appl. Geophys.
© 2020 Springer Nature Switzerland AG
https://doi.org/10.1007/s00024-019-02412-z

[Pure and Applied Geophysics

t')

Check for
updates

Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse
Seismic Data

Jiayuan Huang! and RoserT L. Nowack!

Abstract—Machine learning using convolutional neural net-
works (CNNs) is investigated for the imaging of sparsely sampled
seismic reflection data. A limitation of traditional imaging methods
is that they often require seismic data with sufficient spatial sam-
pling. Using CNNs for imaging, even if the spatial sampling of the
data is sparse, good imaging results can still be obtained. There-
fore, CNNs applied to seismic imaging have the potential of
producing improved imaging results when spatial sampling of the
data is sparse. The imaged model can then be used to generate more
densely sampled data and in this way be used to interpolate either
regularly or irregularly sampled data. Although there are many
approaches for the interpolation of seismic data, here seismic
imaging is performed directly with sparse seismic data once the
CNN model has been trained. The CNN model is found to be
relatively robust to small variations from the training dataset. For
greater deviations, a larger training dataset would likely be
required. If the CNN is trained with a sufficient amount of data, it
has the potential of imaging more complex seismic profiles.

Keywords: Seismic imaging, Machine learning, Convolu-
tional neural networks, Interpolation of seismic data.

1. Introduction

In this study, machine learning using convolu-
tional neural networks (CNNs) is applied for the
imaging of seismic reflection data. CNNs have had a
number of successful applications for image analysis
in different fields (LeCun et al. 2015), and are mod-
eled after the structure of visual systems (Hubel and
Wiesel 1962). Fukushima and Miyake (1982) pro-
posed a neural network with a multi-layer structure as
a predecessor of CNNs (Bhandare et al. 2016). An
early example of CNNs was given by LeCun et al.

' Department of Earth, Atmospheric, and Planetary Sciences,

Purdue University, West Lafayette, IN 47907, USA. E-mail:
yyorvictor@gmail.com; nowack @purdue.edu

Published online: 15 January 2020

(1998) and used to classify handwritten letters from
patterns of digital pixels. It was however limited by
the speed of computing at that time. With the
development of machine learning algorithms and the
availability of sufficient computational resources in
recent years, CNNs have become increasingly popu-
lar and more accessible for image analysis. Efficient
ways to train CNNs using GPU computing has also
been developed (Chellapilla et al. 2006; Hinton et al.
2006; Bengio et al. 2007). In 2015, the Google Brain
Team implemented an open-source math library
called TensorFlow for machine learning applications,
including the use of CNNs (Abadi et al. 2016). Keras,
a high-level open source neural network library
written in Python, was also released in 2015 (Chollet
2015). The Keras library provides a user-friendly set
of tools for the building and training of neural net-
work and has been fully integrated into the
TensorFlow framework. Here we apply CNNs with
Keras using GPU computing.

There have been many successful applications of
CNN s in the science and engineering. For example, a
common application in computer vision is for facial
recognition. CNNs can extract features at different
locations of the face as an input image and then
output a number of feature maps (Bhandare et al.
2016). In the medical fields, researchers have been
successful in detecting skin cancer using CNNs
(Esteva et al. 2017). CNNs have also been applied to
the game of Go (Maddison et al. 2014; Clark et al.
2015) and has beaten many of the Go masters in the
world since 2015.

Given the successful applications of CNNs in
other scientific fields, they are becoming increasingly
popular for solving problems in the geosciences.
CNNs provide new ways for high-performance

X Birkhauser

http://crossmark.crossref.org/dialog/?doi=10.1007/s00024-019-02412-z&domain=pdf
https://doi.org/10.1007/s00024-019-02412-z

J. Huang and R. L. Nowack

automatic interpretation, complex relationship mod-
eling and data-driven information extraction of
geoscience data (Bergen et al. 2019) Convolutional
neural network have been designed for earthquake
identification which is faster and more sensitive than
traditional methods for detecting induced seismicity
(Perol et al. 2018). Neural networks have also been
trained to automatically identify seismic waveforms
and identify first breaks of seismic data (Yuan et al.
2018).

CNNs are also showing potential for solving
inverse problems in imaging such as for image
denoising, reconstruction and interpolation (McCann
et al. 2017). However, CNNs have only recently been
used in seismic data processing. Support vector
regression (SVR) has been applied to reconstruct
sparsely sampled seismic data by Jia et al. (2017). Li
et al. (2019) successfully built deep neural networks
(DNNs) seismic data inversion for time-series. Wang
et al. (2018) interpolated seismic data for missing
traces by developing a CNN-based residual learning
network.

In the energy industry, an important problem is
the identification of salt bodies in the subsurface. The
TGS Salt Identification Challenge was a Kaggle
competition to identify the boundaries of salt deposits
based on selected seismic images (TGS Salt Identi-
Challenge 2018). The
interpretation of seismic data is an important and
time-consuming part of the exploration workflow, but
it is greatly dependent on experienced interpreters. It
also relies on high-performance computational
resources (Waldeland et al. 2018; Araya-Polo et al.
2018). In addition, manual interpretation is highly
time-consuming and subject to human bias (Di et al.
2018).

In this paper, we first generate synthetic zero-
offset seismic reflection data from simple subsurface
interface models. A CNN model is then built based
on the U-net architecture to automatically image the
seismic data. The input images are the seismic
reflection data and the goal is to output the imaged
subsurface models. The trained CNN is robust to
small variations from the training dataset, but for
larger deviations a larger training dataset would
likely be required. If the CNN is trained with a suf-
ficient amount of data, it should potentially be

fication traditional

Pure Appl. Geophys.

capable of imaging more complex data. Here we also
use CNNs to image sparsely regularly and irregularly
sampled seismic data. Although there are many
approaches for the interpolation of seismic data, here
seismic imaging is performed directly with sparse
seismic data using a CNN model.

2. The U-net Architecture

The CNN architecture used in this study is the
U-net which is a fully convolutional network devel-
oped earlier for biomedical image segmentation
problems (Ronneberger et al. 2015a, b). This con-
volutional network can work with fewer training
images but still produce accurate image segmenta-
tions (Ronneberger et al. 2015a, b). The U-net is an
encoder-decoder neural network architecture con-
sisting mainly of two paths, the contracting path
(encoder) and expanding path (decoder). Each block
in the two paths contains different sub-layers (Fig. 1).
The contracting path consists of repeated application
of convolutions, activation functions, max pooling
and dropout operations which capture important
features from the input images. The expanding path
constructs the high-resolution feature maps by com-
bining low-resolution feature maps and spatial
information from the contracting path and includes
several repeated layers of transposed convolution,
concatenation, dropout and convolution operations.

2.1. The Contracting Path

The contracting path is typical of convolutional
neural networks. Here we use four blocks in the
contracting path where each block contains four
layers (Fig. 1). The first two layers in each block are
convolutional layers, where the kernels (filters) are
3 x 3. The stride (the steps to skip in the convolution
operation) is 1. Each convolutional layer includes an
activation function called a rectified linear unit
(ReLU). This layer serves the purpose of extracting
the features from the input images. For all the 3 x 3
convolutional layers in this architecture, each edge of
the input images is zero-padded by one pixel so that
the output feature map size is the same as the input
size. The weights and the bias are two important sets

Machine Learning Using U-Net Convolutional Neural Networks

(a

Seismic profile =~
128x128x1

[X8CTIX8TI
[opowt pagew]

Conv2D 1x1
: E FP= === =< = — — — = 1 T § A
1 2 The Contracting Block 1 : The Expanding Block4 5 !
L . Z !
___________ I
|| - f l C T i]
w oncatenate Z
“ § The Contracting Block 2 The Expanding Block 3 &
v 3 1r >
\\ % ° § l’
‘\ %m: The Contracting Block 3 The Expanding Block 2 § I’
\ C(:l') A S /
\\ g v
' & The Contracting Block 4
Q@ &
9 T
NN
% .
& I
9}& N N -
&
&
b F— = === - "
()I t 1 1 1
1 1 1 1
1 1 1 1
I 1 1 I
1 1 I A I
I I 1 Dropout 50% !
1 I 1 \ I
: ¥ : : Concatenation :
i Dropout 50% I A I
I ‘ | I Deconv2D 3x3 |
1 1 1 1

Figure 1
a The architecture of the U-Net Convolutional Neural network in this study. The architecture contains two paths, the contracting path and the
expanding path. The contracting path has four blocks each with several layers. The size of the feature maps halves after each block, and the
number of feature maps doubles. There are then two convolution layers each with 3 x 3 kernels (filters) between the contracting path and the
expanding path. The expanding path also has four blocks. The size of the feature maps now double and the number of feature maps halves
after each block. There is then a final 1 x 1 convolutional layer that maps the feature maps from 8 to 1. b Each contracting block has two
convolutional layers with 3 x 3 kernels, a2 x 2 max pooling layer and a dropout layer with 50% dropout rate. ¢ An expanding block contains
a transposed convolutional (deconvolutional) layer with 3 x 3 kernels, a concatenation layer that gets the spatial information from contracting
blocks, a dropout layer with a 50% dropout rate and two convolutional layers with 3 x 3 kernels

J. Huang and R. L. Nowack

HH

(=] E=] K= (=] K=1 (=] (=] (=)

(=] k=] k=] k=] (=) k=] =) (=)
*

0]0]0]0]0]0

Pure Appl. Geophys.

. y max(0,x)
-+ Bias —» >

Input image: MxMx1 Filters: 3x3xN Convolution outputs: MXxMxN Activation function: Feature maps: MxMxN

(padded with 0) (with weights)

ReLU

Figure 2
An example showing how a single convolutional layer with 3 x 3 kernels (filters) is configured. The MxMx1 size input image is zero padded
by one pixel on each edge and is then convolved with N 3 x 3 kernels. These convolution operations result in N M x M convolution outputs.
After the addition of a bias parameter, convolution outputs are input into an activation function (ReLU) resulting in N MxM feature maps for
this layer

of learnable parameters from the convolutional
layers. The weights are the values of the kernels.
The bias is a parameter added after a convolution
output before passing it to the nonlinear activation
function (a ReLU). Figure 2 shows how each convo-
lutional layer is configured. The third layer of each
block is a 2 x 2 max pooling layer which halves the
matrix size in order to reduce the number of
parameters in the layer. For example, the original
figure size is 128 x 128 and after the first max
pooling layer is reduced to 64 x 64. The fourth layer
of each block is a dropout layer. It is designed to
randomly drop out nodes during the training process
and serves the purpose of reducing overfitting for
deep neural networks. The dropout rate that we use
here is 0.5 which means it will randomly drop out
50% of the nodes for this step.

After the first contracting block extraction, the
parameters are sent to the next contracting block and
the process is repeated for each block. At the same
time, the number of kernels after each block doubles
so that the architecture can learn the complex image
features effectively. After the contracting path, there
are two padded convolutional layers with 3 x 3
kernels following the fourth contracting block. Each
is followed by an activation function-ReLU and these
mediate between the contracting path and expanding
path (Fig. 1).

2.2. The Expanding Path

The expanding path has four blocks, and each
expanding block has five layers (Fig. 1). For each

block in the expanding block, the first layer is a
transposed convolutional layer (a deconvolution
layer) and is designed to up-sample the feature maps
from low resolution to higher resolution. The kernel
(filter) sizes are 3 x 3, and the stride is 2. The
transposed convolutional layers with 3 x 3 kernels
are zero-padded by one pixel. The input size is 8 x 8
in the first transposed convolutional layer and the
output size is 16 x 16. The second layer of each
expanding block is a concatenate layer which
concatenates the feature maps from the contracting
path to the expanding path at the same level. This
action can get localization information from the
contracting path and help to reconstruct high resolu-
tion feature maps in the expanding path. For example,
the first block in the expanding path concatenates
with the fourth block in the contracting path. The
third layer of each expanding block is a dropout layer
and the dropout rate is set to 0.5. The fourth and fifth
layers of each expanding block are padded convolu-
tional layers. The kernels are 3 x 3 and the stride is
1. The activation function for each convolutional
layer is a ReLU. The number of kernels after each
expanding block now halves in contrast to the
contracting blocks. After the first block expansion,
the parameters are sent to the next block and the
process is repeated. After four expansion blocks, the
figure size is 128 x 128 which is the same as the
original image size (Fig. 1).

The last layer after the expanding path is the
output layer which is a 1 x 1 padded convolutional
layer with a 1 x 1 kernel and a stride of 1 and this
maps the feature maps from 8 to 1. The activation

Machine Learning Using U-Net Convolutional Neural Networks

Depth (km)

Distance (km)

Coincident sources and receivers
Interface control points

Interface fixed points

Subsurface interface between two
homogeneous layers

Figure 3
A diagram for the building of the subsurface interface models. The t%iangles show the zero-offset location of the sources and receivers at the
surface. For each subsurface interface model, there are five interface control points and two fixed points at the beginning and the end distance.
Each control point can move up and down with depths of 1.1, 1.3, 1.5, 1.7, 1.9 km and each fixed point is at a depth of 1.5 km. Therefore,
there are 5° or 3125 interface models and 3125 corresponding computed seismic reflection profiles

function here is a sigmoid (Han and Moraga 1995),
and the output of the sigmoid function is between 0
and 1 and can be interpreted as a probability.

The neural network then computes the loss
function which measures the average difference
between the predicted values and the true subsurface
interface models. The lower the value of the loss
function, the more correct the prediction is. An
optimizer (optimization algorithm) is then applied to
estimate the model parameters (kernel weights and
biases) that minimizes the loss function. The param-
eters of the neural network are then iteratively
updated using a backpropagation algorithm (Rumel-
hart et al. 1986). The iterations are repeated until the
loss function reaches a global minimum.

3. Synthetic Data

We first build subsurface models and compute
synthetic zero-offset synthetic seismic reflection data.
The synthetic seismic reflection data are generated
using the Gaussian beam modeling code Triseis in the
Seismic Un*x package (Stockwell 1999).

3.1. Subsurface Interface Models and Reflection
Seismic Profiles

For the simple interface models considered here,
we set the horizontal distance of the subsurface
interface model from — 1 to 5 km, and from 0O to

4 km to compute the corresponding reflection pro-
files. The depth range of the subsurface interface
models is from 0 to 3 km. In order to create models
with different interface shapes, there are 5 interface
control points with horizontal distance intervals from
0 to 4 km and 2 fixed points at — 1 and 5 km. Each
control point can move up and down at depths of 1.1,
1.3, 1.5, 1.7, 1.9 km and the two fixed points at the
beginning and the end are at the depth of 1.5 km.
Therefore, there are 5% or 3125 subsurface interface
models and 3125 corresponding synthetic seismic
reflection profiles (Fig. 3). The upper layer “sloth”
(inverse of the velocity squared) is 0.25 s*/km? (or a
velocity equal to 2 km/s) and the lower layer sloth is
0.1 s*/km” (or a velocity equal to 3.16 km/s).

When computing the zero-offset seismic reflec-
tion profiles, the horizontal range is from O to 4 km
along the surface, including 101 traces with a
horizontal distance interval of 0.04 km. Each trace
has 101 time samples with a time sampling interval of
0.03 s. For the Gaussian beam modeling, the first ray
takeoff angle is set at — 55° and the last ray takeoff
angle is 55°. To avoid possible aliasing, the peak
frequency of the Ricker wavelet is set to 4 Hz. For
the 3125 subsurface interface models, corresponding
seismic reflection profiles are generated in this way.

3.2. Dataset Preprocessing

The subsurface interface model used in the
Gaussian beam modeling code is converted to a

J. Huang and R. L. Nowack

gridded model using the code tri2uni in Seismic Un*x
and the gridded subsurface interface models are then
stored as binary files. The seismic data generated
from Seismic Un*x are also stored as binary files.
The models and computed seismic reflection data are
then randomly divided into 1875 (60%) for the
training dataset, 625 (20%) for the validation dataset
and 625 (20%) for the test dataset. The training
dataset is initially used to estimate the parameters of
the neural network model. The validation dataset is
then used to evaluate the performance of the neural
network model fit from the training dataset and can
be used as an indicator if the neural network model is
being overfit by the training dataset. The test dataset
is then used for evaluating the final neural network
model, where these data have not been used in the
training process.

Since data normalization can accelerate neural
network training and avoid local minima of the loss
function (Ioffe and Szegedy 2015), the sloth values of
the subsurface models are normalized to 0 (for 0.1 s*/
km?) and 1 (for 0.25 s*/km?) and the amplitude data
which contain positive and negative values are scaled
to arange from — 1 to 1 by dividing by the maximum
absolute value of the seismogram datasets. For the
imaging here, the velocities are assumed to be known
from earlier processing steps of the data, and here we
are only imaging the structure aspects of the model.
This is similar to classical seismic migration imaging
where the velocity model is given prior to imaging
for the structure.

4. Model Training

4.1. Loss Function and Metrics

The performance of CNNs in this study is
measured and correspondingly optimized by using a
binary cross entropy loss function. For each pixel in
the predicted model, the values are interpreted as a
probability from O to 1. For this example, 1 represents
the upper layer and O represents the lower layer. The
binary cross entropy loss function is given by:

L = —[ylog(p) + (1 — y)log(1 —p)]

where y is the true value (true distribution) and p is
the predicted distribution. In our case, y is 1 and p is

Pure Appl. Geophys.

the predicted probability of upper layer. (1 — y) is
equal to O which is the true value of lower layer and
(1 — p) is its predicted probability. The binary cross
entropy loss function as used in the image segmen-
tation is the average evaluation of the class prediction
for each pixel in the predicted models and is used to
optimize the neural network.

Metric functions are used to evaluate the perfor-
mance of the neural network. Although these can also
be used as loss functions, the evaluation results of the
metric functions are not used to train the neural
network. Here we choose binary accuracy and the
dice coefficient as metric functions (Dice 1945;
Sgrensen 1948).

The binary accuracy gives the percentage of
correctly classified pixels in the images and is given
by:

(TP + TN)
(TP + TN + FP + FN)

Binary accuracy =

where TP (true positive) is the number of pixels that
successfully predict the upper layer, TN (true nega-
tive) is the number of pixels that correctly predict the
lower layer. FP (false positive) is the number of
pixels that wrongly recognize the upper layer as
lower layer and FN (false negative) is the number of
pixels which fail to predict the lower layer.

The dice coefficient, also known as the dice score
or Fl-score, measures the overlap of the true binary
subsurface interface models and the predicted mod-
els. The dice coefficient is given by:

2TP

Dice coefficient = ———————
2TP + FP + FN

where the TP, FP, FN are the same as for the binary
accuracy.

4.2. Starting Kernels (Filters)

Kernels work as feature extractors in the neural
network. Their weights are initially random and then
updated after each iteration of the training process.
As mentioned previously, the number of kernels in
the first contracting block need to be set first and the
number of kernels after each block then doubles.
Here we choose 2, 4, 8, 16, 32 for starting numbers of
kernels. We then use an Adam optimizer to train the

Machine Learning Using U-Net Convolutional Neural Networks

(a)

1
z
£0.8
=
b
g. ~%- Adadelta
EO.6 —+- Adagrad
A b - Adam

—& -Rmsprop
0.4 T T T T 1
0 2 4 6 8 10

(e)
/ 0.8
= j R AL
£o08 1 / P -4 5
= < AT %) 0
b= 7 +7 R & =
2 ae = AT —+2 3
: & -A -4 9 0.4 ~%- Adadelta
20.6 ’ g
=) P =8 a —+- Adagrad
- --16 0.2 —=-Adam
—--32 — -Rmsprop
0.4 T T T T 1 O T T 1
0 2 6 10 2 10
Epoch Epoch
©, ® 4
P —+2 g
=] -
= 0.8 & 4 =08 .
- < R X
fc:' & - _._\ =8 §0 . ‘x ‘ > o
=0.6 -\ - 16 = 0.
= = \ -
] B N -3 s “ - Adadelta
£o. * £04 \ -+~ Adagrad
E‘ E ‘x -~ Adam
g 0.2
=0. = -+ Rmspro
& & prop
0
2 2 4 6 8 10
0 - 4 Epoch 6 10 Epoch
Figure 4

The experiment scores of the CNN models for 10 epochs. Subplots a, b, ¢ are binary accuracy, dice coefficient and binary cross entropy loss

function of the CNN models with a different number of starting kernels (filters) optimized using an Adam optimizer. The numbers of starting

kernels are set in the first contracting block and double after each contracting block. They then gradually halve after each expanding block.

Subplots b, e, f are the binary accuracy, dice coefficient and binary cross entropy loss function of the CNN models with eight starting kernels
optimized using different optimizers

model (Kingma and Ba 2014). Figure 4a—c shows
examples of the binary accuracy, dice coefficient and
binary cross entropy loss function for different
numbers of starting kernels. The results show that

the convergence of binary accuracy, dice coefficient
and binary cross entropy loss function are the fastest
when the number of starting kernels is 8.

J. Huang and R. L. Nowack

4.3. Optimizers

The optimizers are designed to minimize the loss
function in the training process. We compare several
optimization algorithms in the model training:
Adadelta (Zeiler 2012), Adagrad (Duchi et al.
2011), Adam (Kingma and Ba 2014) and Rmsprop
(Hinton et al. 2012). We use the default parameter
values for each optimization algorithm in the Keras
deep learning library. Here we set eight starting
kernels (filters) for the first block. Figure 4d—f
compare the binary accuracy, dice coefficient and
binary cross entropy loss functions where the starting
kernels are set to 8 for the first block. The results
show that the Adam algorithm has the fastest
convergence for the binary accuracy, dice coefficient
and binary cross entropy loss function and is used for
our study.

5. Results

In the model training process, we set eight starting
kernels (filters) in the first block of the contracting
path and choose an Adam optimizer to minimize the
loss function since the accuracy of this combination
converges faster than other combinations according
to our tests. The binary accuracy, dice coefficient and
binary cross entropy loss function for our model are
shown in the Fig. 5. The triangles are for the training
dataset and the squares are for the validation dataset.

The neural network model is implemented in
Keras and is trained using a NVIDA RTX 2070
graphics card on a single workstation. The batch size
(the number of training samples used to train the
neural network in a single batch) is set to 32 and the
epoch (the number of times that the entire training
dataset is used to train the neural network) is set to
40. Since the neural network cannot pass through the
entire training dataset all at once, the training dataset
is randomly divided into several batches by the
defined batch size, and all the batches pass through
the neural network for one epoch. The training
dataset is then randomly separated again, and the
process is repeated in the next epoch. In Fig. 5, we
see that the model only needs five epochs to get a
high accuracy and after that the accuracy increases

Pure Appl. Geophys.

(@ -
0.95 -
z
E 0.9
3 a — Training binary accuracy
20.85 1 |
E‘ e / -=-Validation binary accuracy
=
& 08 4/
{
0.75 T ‘ T T)
0 2 Epoch 8 10

E
2
20.8
% / —& Training dice coefficient
s 08/
8 / -=-Validation dice coefficient
=0.75 -
= /

0.7 4

0-65 T T T T 1

0 2 4 8 10
Epoch

(Y
(c) s
2 04
& \
£03)
g \ -
e — -Training loss
202\
- * \ . .
9 —=—Validation loss
g
=
=]

4 Epoch 6

Figure 5
The binary accuracy, dice coefficient and binary cross entropy loss
function of CNN models with 8 starting kernels (filters) optimized
by an Adam optimizer

slowly. The training process stops at 35 epochs after
applying an early stopping regularization with a
patience (the number of epochs before stopping the
training process if the model hasn’t improved) of 10.
This means that the binary accuracy and the binary
cross entropy loss function do not improve after 25
epochs. The total training process takes approxi-
mately 2 min for a NVIDA RTX 2070 GPU on single
workstation. We performed similar computations on

Machine Learning Using U-Net Convolutional Neural Networks

(a) Seismic Profiles (b) True Models (¢) CNN Imaged Models
0 0
g g
= =15
2. 2.
O)
A A

g
=]

2

2 4
Distance (km) Distance (km)

(e (®

0 0
Bl Bl
< <
= 1. 15
o, o
] [
o A

g
=]
o

g
=3

0
Distance (km)

2 4
Distance (km)

Distance (km) Distance (km)
(h) (@
0
Bl Bl
< <
= 1. S15
))
[A

g
=]
o

Distance (km)

Figure 6
Imaged models from the trained neural network. Subplots a, d, g give seismic profiles with 101 seismic traces. Subplots b, e, h are true

subsurface interface models and subplots ¢, f, i are the corresponding imaged models from the CNN imaging given the input seismic profiles

the larger Purdue Gilbreth GPU Cluster with NVIDA
Tesla V100 GPUs. Although the results were faster,
they were limited by the user allocation limits on the
larger machine.

Figure 6 shows several examples for the imaged
models using the trained neural network. For the
given seismic profiles shown on the left, the true
models are shown in the middle and the imaged
models are shown on the right. As can be seen, the
trained neural network does an excellent job of esti-
mating the imaged models from the seismic profiles.

Figure 7a shows a seismic profile where the upper
layer velocity of the model is 10% higher than the
models used to generate the seismic profiles in the
training dataset. Figure 7b shows the true subsurface
interface model with the correct velocity model and

Fig. 7c shows the CNN imaged model resulting in a
slightly elevated interface from the true model.

Figure 7d shows a seismic profile with 10%
Gaussian noise added which is not included in the
training dataset. Figure 7e shows the true subsurface
interface model and Fig. 7f shows the CNN imaged
model from the noisy seismic data in Fig. 7d. In this
case the model is well imaged by the CNN.

Figure 7g shows a seismic profile from a model
not included in the training dataset by adding a depth
of 0.7 km to the interface depths. The true model is
shown in Fig. 7h) and the CNN imaged model is
shown in Fig. 7i. In this case the average depth of the
interface is correct, but the details of the imaged
interface have some discrepancies with the true
model in Fig. 7b. Nevertheless, the overall shape and

J. Huang and R. L. Nowack

Seismic Profiles

True Models

Pure Appl. Geophys.

CNN Imaged Models

~_~
(<]
~

(a) Inaccurate velocity model (b)
0

Depth (km)

e
=

<

2
Distance (km)

(

(¢

Noise added

2
Distance (km)

Depth (km)
&

g
(e}
oL

2
Distance (km)

Depth (km)

»

2
Distance (km)

2
Distance (km)

2
Distance (km)

(2) Outside dataset (h))]

0 0 0
g)

= 1. =15

g g

3.0 3.0

) 2 4 0 2 4
Distance (km) Distance (km) Distance (km)

Figure 7
Imaged models from the trained neural network using seismic profiles with different effects not included in the training dataset. a The seismic
profile when velocity model is inaccurately estimated, the upper layer velocity of the model is 10% higher than model used for the training
dataset. d The seismic profile with 10% Gaussian noise to the data. g The seismic profile of a model that is outside the training dataset with an

interface 0.7 km deeper than the training dataset. For each case b, e, h
corresponding imaged models from the CNN giv

depth of the CNN imaged model is similar to the true
model.

From these examples it can been seen that the
CNN model is relatively robust for small variations
from the training dataset. However, larger deviations
from the training dataset would likely require a larger
training dataset.

Traditional migration methods are sensitive to the
spatial sampling of the data. In order to get the best
resolution of the subsurface images, the seismic data
needs to be sufficiently sampled prior to migration
imaging. Here we use the migration code Sustolt in

are true subsurface interface models. For each case ¢, f, i are the
en the input seismic profiles in a, d and g

Seismic Un*x and show several examples of the
migration of seismic profiles with a different number
of traces (Fig. 8). For these examples, when using 51
and 101 traces, accurate migration images can be
obtained. However, for fewer traces, aliasing effects
substantially degrade the images.

In order to see how the convolutional neural
networks (CNNs) perform for a different number of
traces, we input seismic profiles with 5, 9, 17, 26 and
51 traces with larger station spacings to the trained
CNN model based on the seismic profiles with 101
traces. Figure 9 shows the seismic profiles with a

Machine Learning Using U-Net Convolutional Neural Networks

Seismic Profile

(a)
0

(b) Interface Model

0
=1
,
()
@)
4 2 4
Distance (km) Distance (km)
(o Trace=5 (d) Trace=9 (e) Trace=17
0 0 0
@) " ,g E\
-~ L U v =
= — E i = - - - =
S 15— M T S SN 15 ot -
o Sy e S e o N T o = -
) - — 5)) - -
8 A A
3.0 ; 3.0 : 3.0
o2 4 2 4 4
Distance (km) Distance (km) Distance (km)
® 0 Trace=26 (g) Trace=51 (h) Trace=101
0 0
£ g £
S L5 N “ =15 RN =15 ~ -
) A A
3.0 : 3.0 : 3.0
0 2 4 0 2 4 0 2 4

Distance (km)

Distance (km)

Distance (km)

Figure 8
Migration imaging results for seismic profiles with a different number of traces. Subplot a is the seismic profile with 101 traces. Subplot b is
the corresponding subsurface interface model. Subplots ¢, d, e, f, g, h are the migration imaging results where the numbers of seismic traces
are 5,9, 17, 26, 51 and 101, respectively

different number of seismic traces, 9, 17 and 26. The
corresponding imaged interfaces comparing with true
interfaces are given in the Fig. 10. The comparisons
show that when there are just nine traces, the CNN
results are fair but are still better than the results from
seismic migration. When the number of traces is 17,
the CNN results are improved but still have slight
differences with the true interfaces. When the number
of traces is 26, the CNN results are now very good
and almost the same as the true models. The evalu-
ation of the results of how well the CNN model
trained using the 101 traces dataset performs on
datasets with a different number of traces is given in
Table 1.

The imaged models from the trained CNN model
when the number of regularly or irregularly sampled
seismic traces is 26 are then used to create new more
densely sampled seismic reflection profiles in Fig. 11.
Figure 11a, d, g show sparse seismic profiles where
the number of regularly sampled seismic traces is 26.
Figure 11j shows sparse seismic data when the traces
are irregularly sampled. Figure 11b, e, h, k are the
interpolated seismic data from the CNN imaged
models and Fig. 11c, f, i, 1 are the true seismic data
when the number of seismic traces is 101. As can be
seen, the CNN provides interpolation capabilities
which can prove useful in cases without a sufficient
spatial sampling needed for traditional migration

J. Huang and R. L. Nowack

(a) Trace number =9 (b)

2
Distance (km)

2
Distance (km)

Distance (km)

Trace number = 17

Distance (km)

Distance (km)

Pure Appl. Geophys.

(¢c) Trace number =26

2 ' 2
Distance (km)

2

2
Distance (km)

(@
0

2
Distance (km)

2
Distance (km)

Figure 9
Several seismic profiles with a different number of seismic traces. Subplots a, d, g are seismic profiles when the number of seismic traces is 9.
Subplots b, e, h are seismic profiles when the number of seismic traces is 17. Subplots ¢, f, i are seismic profiles when the number of seismic
traces is 26

imaging methods. Although there are a number of
approaches for the interpolation of seismic data (for a
survey see Chen et al. 2019), for the approach fol-
lowed here the CNN model is used to directly image
the sparse seismic data. Although the training process
requires some computational and data resources, once
the CNN is trained the imaging and interpolation
processes are very fast.

6. Discussion and Conclusions
We have shown that machine learning with a

CNN U-net architecture works well for the seismic
imaging test cases given here. A limitation of

traditional migration imaging methods is that they
often require sufficient spatial sampling of the data.
Although there are a number of approaches for the
interpolation of seismic data (Chen et al. 2019), a
novelty of the approach used here is that imaging can
be performed directly on sparse regularly or irregu-
larly sampled data once the CNN has been trained.
Even when the spatial sampling of the seismic pro-
files is large, the CNN can still obtain good imaging
results. Convolutional neural networks therefore have
the potential of providing improved imaging results
compared with traditional migration imaging meth-
ods when the spatial sampling is sparse. The CNN
model is robust to the small variations from the
training dataset. However, for larger deviations a

Machine Learning Using U-Net Convolutional Neural Networks

(a) Trace number =9 (b) Trace number = 17 (©) Trace number = 26
0 0 0
g g g
2] 7N SN NS NN
‘. o
a) 2 a
3.0 T 3.0 3.0 T
2 4 4 2 4
Distance (km) Distance (km) Distance (km)
(d) (e) (®)
0 0
g E g
S1.5 7 =1 &\/\' < 1.5—\/\
o Ad a o
5]]
A aQ @)
3.0 - 3.0 3.0 T
0 2 4 4 2 4

Distance (km)

~~
4]
~
—_
=2
o~

Distance (km)

Distance (km)

~_
i
(=)

w

Depth (km)
i
Depth (km)
0

»
=

g
=)

_,,——“"*../

w

Depth (km)
i

(95}
(==}

2 4
Distance (km)

2 4 2 4
Distance (km)

Distance (km)

Figure 10
The CNN imaged interfaces when the number of seismic traces is 9, 17 and 26, respectively, comparing with the true interfaces. The solid
lines are CNN imaged interfaces and the dashed lines are the true interfaces. Subplots a, d, g are comparisons of interfaces when the number
of seismic traces is 9. Subplots b, e, h are comparisons of interfaces when the number of seismic traces is 17. Subplots ¢, f, i are comparisons
of interfaces when the number of seismic traces is 26

Table 1

Performance evaluation results of the model trained using a 101
trace dataset and applied to datasets with a different number of
traces

Traces Score
Binary cross Binary Dice
entropy accuracy coefficient

5 0.756 0.905 0.911

9 0.257 0.953 0.965

17 0.059 0.973 0.986

26 0.027 0.977 0.990

51 0.011 0.980 0.993

101 (from the test 0.009 0.981 0.994

dataset)

For the binary cross entropy lower is better and for the binary
accuracy and dice coefficient higher is better

larger training dataset would likely be required. Since
CNN is a kind of supervised learning, the parameters
of CNN model are trained based on the most
important features from training dataset. If the CNN
is trained with a sufficient amount of data, the CNN
has the potential of imaging more complex seismic
profiles.

There are several possible approaches in applying
CNN to real seismic data. If enough data for a given
region are available that have been previously
imaged, then these data can be used for training and
validation to obtain the parameters of the CNN
model. The trained CNN can then be used for the
imaging of new observed data. However, this
assumes that the training data are obtained from

J. Huang and R. L. Nowack Pure Appl. Geophys.

(a) Sparse Seismic Data (b) Interpolated Seismic Data ()

g

Time (s)

True Seismic Data

Distance (km)

Distance (km)

Distance (km)

Distance (km) Distance (km) Distance (km)

Figure 11
Interpolated seismic data obtained using the CNN imaged results %rom the trained CNN model when the number of regular and irregular
seismic traces is 26. a, d, g Sparse seismic data when the number of regularly sampled seismic traces is 26. j The sparse seismic data when the
number of irregularly sampled seismic traces is 26. b, e, h, k The interpolated seismic data from the CNN imaged models, and ¢, f, i, 1 True
seismic data when the number of traces is 101

regions that are sufficiently similar to that of the new
observed data.

A second alternative is to use synthetic data for
the training and validation of the CNN. If fast for-
ward modeling codes are used for the training and

validation, as is done here using asymptotic beam
codes, then this would result in an efficient approach
for generating the parameters of the CNN for the
imaging of the observed data. However, the synthetic
data needs to be generated for models that are

Machine Learning Using U-Net Convolutional Neural Networks

sufficiently similar to the real subsurface structures
that result in the observed data.

For either alternative, if the CNN model can still
perform well for real seismic data, which are much
more complex, then once the training and validation
have been performed, then very fast seismic imaging
can be performed. It can also potentially reduce the
amount of data required for seismic imaging and at
the same time be used to interpolate sparse data to a
finer grid.

Acknowledgements

The authors would like to thank the Editor and the
reviewers for their constructive comments on the
manuscript. The authors also thank Abdullah Khan
Zehady for providing advice on CNN coding and
model testing. This study was partially supported by
NSF/EAR 1839322.

Publisher’s Note Springer Nature remains neutral
with regard to jurisdictional claims in published maps
and institutional affiliations.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.
et al. (2016). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv:1603.04467 [cs.DC].
Accessed 25 June 2019.

Araya-Polo, M., Jennings, J., Adler, A., & Dahlke, T. (2018).
Deep-learning tomography. The Leading. Edge, 37(1), 58—66.
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007).
Greedy layer-wise training of deep networks. In J.D. Cowan, G.
Tesauro, J. Alspector (Eds.), Advances in Neural Information
Processing Systems, vol.19 (NIPS), (pp. 153-160). MIT Press.

Bergen, K.J., Johnson, P.A., Hoop, M.V. de, Beroza, G.C. (2019).
Machine learning for data-driven discovery in solid Earth geo-
science. Science, 363(6433), eaau0323.

Bhandare, A., Bhide, M., Gokhale, P., & Chandavarkar, R. (2016).
Applications of convolutional neural networks. International
Journal of Computer Science and Information Technologies,
7(5), 2206-2215.

Chellapilla, K., Puri, S., Simard, P. (2006). High performance
convolutional neural networks for document processing. In Tenth
International Workshop on Frontiers in Handwriting Recogni-
tion, Université de Rennes 1, La Baule, France, October 23-26
2006 (inria-00112631).

Chen, Y., Chen, X., Wang, Y., & Zu, S. (2019). The interpolation
of sparse geophysical data. Surveys in Geophysics, 40(1),
73-105.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
Accessed 1 Jun 2019.

Clark, C., Storkey, A. (2015). Training deep convolutional neural
networks to play go. In 32nd International Conference on
Machine Learning, vol. 37 (pp. 1766-1774). Lille (06-11 Jul
2015).

Di, H., Wang, Z., AlRegib, G. (2018). Deep convolutional neural
networks for seismic salt-body delineation. AAPG 2018 Annual
Convention and Exhibition. Salt Lake City (20-23 May 2018).

Dice, L. R. (1945). Measures of the amount of ecologic association
between species. Ecology, 26(3), 297-302.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient
methods for online learning and stochastic optimization. Journal
of Machine Learning Research, 12, 2121-2159.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau,
H. M., et al. (2017). Dermatologist-level classification of skin
cancer with deep neural networks. Nature, 542, 115-118.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A Self-Or-
ganizing Neural Network Model for a Mechanism of Visual
Pattern Recognition. In S. Amari & M. A. Arbib (Eds.), Com-
petition and Cooperation in Neural Nets. Lecture Notes in
Biomathematics (Vol. 45, pp. 267-285). Berlin: Springer.

Han, J., & Moraga, C. (1995). The influence of the sigmoid func-
tion parameters on the speed of backpropagation learning. In J.
Mira & F. Sandoval (Eds.), International Workshop on Artificial
Neural Networks. Lecture Notes in Computer Science (Vol. 930,
pp. 195-201). Berlin: Springer.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18(7),
1527-1554.

Hinton, G., Srivastava, N., Swersky, K. (2012). Neural networks
for machine learning Lecture 6a Overview of mini-batch gradient
descent. https://www.cs.toronto.edu/ ~ hinton/coursera/lecture6/
lec6.pdf. Accessed 3 May 2019.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex.
The Journal of physiology, 160(1), 106—154.

Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167 [cs.LG]. Accessed 25 Jun 2019.

Jia, Y., & Ma, J. (2017). What can machine learning do for seismic
data processing? An interpolation application. Geophysics, 82(3),
V163-V177.

Kingma, D.P., Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv:1412.6980 [cs.LG]. Accessed 25 Jul 2019.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & Others., (1998).
Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Na-
ture, 521, 436-444.

Li, S., Liu, B, Ren, Y., Chen, Y., Yang, S., Wang, Y., Jiang, P.
(2019). Deep learning inversion of seismic data.
arXiv:1901.07733 [cs.CV]. Accessed 25 Jul 2019.

Maddison, C.J., Huang, A., Sutskever, L., Silver, D. (2014). Move
evaluation in go using deep convolutional neural networks.
arXiv:1412.6564 [cs.LG]. Accessed 24 Jun 2019.

https://github.com/fchollet/keras
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

J. Huang and R. L. Nowack

McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional
neural networks for inverse problems in imaging: A review.
IEEE Signal Processing Magazine, 34(6), 85-95.

Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural
network for earthquake detection and location. Science Advan-
ces, 4(2), e1700578.

Ronneberger, O., Fischer, P., & Brox, T. (2015a). Dental X-ray
image segmentation using a U-shaped Deep Convolutional net-
work. International Symposium on Biomedical Imaging-I1SBI
2015.

Ronneberger, O., Fischer, P., & Brox, T. (2015b). U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. In N.
Navab, J. Hornegger, W. Wells, & A. Frangi (Eds.), Interna-
tional Conference on Medical image computing and computer-
assisted intervention-MICCAI 2015. Lecture Notes in Computer
Science (Vol. 9351, pp. 234-241). Cham: Springer.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature, 323,
533-536.

TGS Salt Identification Challenge. (2018). https://www.kaggle.
com/c/tgs-salt-identification-challenge. Accessed 5 May 2019.

Pure Appl. Geophys.

Serensen, T. J. (1948). A method of establishing groups of equal
amplitude in plant sociology based on similarity of species
content and its application to analyses of the vegetation on
Danish commons. Det Kongelige Danske Videnskabers Selskab
Biologiske Skrifter, 5, 1-34.

Stockwell, J. W, Jr. (1999). The CWP/SU: seismic Un*x package.
Computers & Geosciences, 25(4), 415-419.

Waldeland, A. U., Jensen, A. C., Gelius, L.-J., & Schistad Solberg,
A. H. (2018). Convolutional neural networks for automated
seismic interpretation. The Leading Edge, 37(7), 529-5317.

Wang, B., Zhang, N., Lu, W., & Wang, J. (2018). Deep-learning-
based seismic data interpolation: A preliminary result. Geo-
physics, 84(1), V11-V20.

Yuan, S., Liu, J.,, Wang, S., Wang, T., & Shi, P. (2018). Seismic
waveform classification and first-break picking using convolu-
tion neural networks. IEEE Geoscience and Remote Sensing
Letters, 15(2), 272-276.

Zeiler, M.D. (2012). ADADELTA: an adaptive learning rate
method. arXiv:1212.5701 [cs.LG]. Accessed 4 Jun 2019.

(Received August 12, 2019, revised December 26, 2019, accepted December 27, 2019)

https://www.kaggle.com/c/tgs-salt-identification-challenge
https://www.kaggle.com/c/tgs-salt-identification-challenge

	Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data
	Abstract
	 Introduction
	 The U-net Architecture
	The Contracting Path
	The Expanding Path

	 Synthetic Data
	Subsurface Interface Models and Reflection Seismic Profiles
	Dataset Preprocessing

	 Model Training
	Loss Function and Metrics
	Starting Kernels (Filters)
	Optimizers

	 Results
	 Discussion and Conclusions
	Acknowledgements
	References

