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Abstract— For years, there has been interest in approximation
methods for solving dynamic programming problems, because
of the inherent complexity in computing optimal solutions
characterized by Bellman’s principle of optimality. A wide range
of approximate dynamic programming (ADP) methods now
exists. It is of great interest to guarantee that the performance
of an ADP scheme be at least some known fraction, say
B, of optimal. This paper introduces a general approach to
bounding the performance of ADP methods, in this sense, in
the stochastic setting. The approach is based on new results
for bounding greedy solutions in string optimization problems,
where one has to choose a string (ordered set) of actions to
maximize an objective function. This bounding technique is
inspired by submodularity theory, but submodularity is not
required for establishing bounds. Instead, the bounding is based
on quantifying certain notions of curvature of string functions;
the smaller the curvatures the better the bound. The key insight
is that any ADP scheme is a greedy scheme for some surrogate
string objective function that coincides in its optimal solution and
value with those of the original optimal control problem. The
ADP scheme then yields to the bounding technique mentioned
above, and the curvatures of the surrogate objective determine
the value (5 of the bound. The surrogate objective and its
curvatures depend on the specific ADP.

I. INTRODUCTION

In sequential decision making, adaptive sensing, and opti-
mal control, we are frequently faced with optimally choosing
a string (finite sequence) of actions over a finite horizon to
maximize an objective function. In stochastic settings, these
problems are often formulated as stochastic optimal control
problems in the form of Markov decision processes (MDPs)
or partially observable Markov decision processes (POMDPs)
[11, [2], [3]- A general approach to is to use dynamic program-
ming via Bellman’s principle of optimality (see, e.g., [1], [2],
[3]). However, the computational complexity of this approach
grows exponentially with the size of the action space and
the decision horizon. Because of this inherent complexity,
for years there has been interest in developing approximation
methods for solving dynamic programming problems, leading
to a wide range of approximate dynamic programming (ADP)
schemes. These techniques all aim to replace the expected-
value-to-go (EVTG) term in Bellman’s principle, whose com-
putation is intractable, with computationally tractable approx-
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imations. Examples of ADP schemes include myopic and
rollout policies, reinforcement learning with neural networks,
hindsight optimization, foresight optimization, and model-
predictive control (see, e.g., [1], [3], [4], [5]). Although a
wide range of ADP methods have been developed, in general
it is difficult to tell, without doing extensive simulation and
testing, if a given ADP scheme has good performance, and
even then it is hard to say how far from optimal it is.

Here, we develop a general framework for bounding the
performance of ADP methods relative to the optimal policy
in the stochastic setting. By a bound we specifically mean
a guarantee that the objective value of the ADP scheme is
at least a known fraction [ of the optimal objective value,
where [ depends on the ADP scheme. A general framework
for deriving such bounds for ADP schemes has remained
elusive. We note that there are previous results on general
performance bounds for ADP schemes, but not of the kind
that we seek here. For example, [4, Props. 3.1 & 3.2] provides
bounds on the difference between the optimal objective value
and the one from ADP for the infinite-horizon case, under
certain assumptions on the approximation. Another example
is [5], which bounds the difference in the performance be-
tween model-predictive controllers and the optimal infinite-
horizon controller in the deterministic setting. These absolute-
difference bounds can be converted into a bound on the
absolute difference normalized by the optimal value [5].
However, in general, it is impossible to convert a bound for
the normalized difference between two quantities to a bound
for their ratio.

Our contribution is different from prior work in several
key aspects: (1) We consider finite horizon discrete stochastic
optimal control problems; (2) We have a specific notion
of bounding that determines what fraction of the optimal
performance an ADP scheme is guaranteed to achieve; (3)
Our bounding approach is based on specific notions of cur-
vature for the ADP scheme. The practical significance of our
contribution is twofold. First, our method provides bounds for
an ADP scheme relative to the true optimal performance even
though the latter cannot be computed for real-world problems.
Second, the bound is also useful for comparing different ADP
schemes without having to do extensive simulation.

We first derive general lower bounds on the performance
of greedy solutions to string optimization problems relative
to their optimal solutions. By a string optimization problem,
we mean a problem in which the objective function is a map
from a feasible set of strings (ordered sets) of actions to the
real line—the decision variable of the problem is a string.
The goal is to select a string of actions to maximize the
objective function, subject to a length constraint on the strings



(finite decision horizon). This problem is combinatorial; the
complexity of finding the optimal string of actions is generally
exponential in the cardinality of the action space and the
size of the decision horizon. The greedy solution is easy to
compute but provides only an approximate solution to the
problem. The greedy scheme starts with the empty string
and picks at each stage of the optimization an action that
maximizes the step-wise (marginal) gain in the objective
function. Our bounds, established in Section III, show that
any greedy solution is guaranteed to achieve at least a factor
B = (1 — e "1=9)) /n of the optimal objective value, where
n and o denote specific notions of curvature of the objective
function. The smaller the curvatures the larger the bound.

The form of the bound discussed above is reminiscent of
bounds in submodular optimization problems (see, e.g., [6],
[7]). Our results are indeed inspired by our prior work [8] on
string submodularity—an extension of submodularity theory
from functions of sets to functions of strings. However, here
we do not need submodularity in deriving our bounds. When-
ever submodularity holds the curvature values are generally
smaller and the bound becomes larger (better).

Our main idea is, given an ADP scheme, to formulate a
surrogate string optimization problem for the optimal control
problem with two properties: (1) The optimal solution and
the optimal objective value of the surrogate problem coincide
with those of the optimal control problem; (2) The greedy
solution to the surrogate problem is the given ADP scheme
for the optimal control problem. Then, our framework for
bounding greedy solutions of string optimization problems
applies to bounding ADP schemes, where the value of the
bound depends only on the curvatures of the surrogate ob-
jective function. Of course the surrogate objective function
and its curvatures depend on the reward function of the
optimal control problem and the specific ADP scheme used.
In Section IV, we describe how this can be done.

II. STOCHASTIC OPTIMAL CONTROL AND ADP
A. Stochastic Optimal Control

In this section, we introduce a general stochastic optimal
control problem and explain what approximate dynamic pro-
gramming (ADP) is. Our discussion here follows [3].

We begin with describing a deterministic optimal control
problem to establish our notation and then move to describing
a stochastic optimal control problem, which is our focus. Let
X denote a finite set of states and A a finite set of control
actions. Given x; € X and functions h : X x A — X and
g: X% x AKX — R, consider the optimization problem

glaxg(uezﬁ g(z1, ..., TK;a1,. .., 0K) W
s. t. Tp41 = h(xg,ar), k=1,..., K — 1.

Think of ay, as the control action applied at time k and z, the
state visited at time k. The function & represents the state-
transition law. The real number g(z1,...,Zk;a1,...,a5) is
the total reward accrued by applying the string of actions
(a1,...,ax) along the state path (trajectory) (z1,...,Tk).
Problem (1) is called a (deterministic) optimal control prob-
lem and the total reward is typically constructed as

K
g(xh...,xK;ah...,aK):Zr(mk7ak)7 2)

k=1
where r : X x A - R, for k =1,..., K is the immediate
reward accrued at time k by applying action aj at state xy.
From here on, we assume that g has the additive form in (2).
We could have made g, h, and r explicitly time dependent.
However, time can always be incorporated into the state, and
so our formulation is without loss of generality.

We now turn our attention to a stochastic version of
problem (1). The key difference is that the state evolves
randomly over time in response to actions. The distribution
of states is specified by the state transition law xj4; =
hzxg,ar,€k), K = 1,...,K — 1, where x; is a given
initial state and {£;,}4 ' is an i.i.d. random sequence. With
this modification, we need to change the objective function
to E[g(z1,...,2K;5a1,...,ak)|z1], involving expectation,
where E[-|z1] represents conditional expectation given the
initial state x;. With this specification, the sequence of states
{xk}szl has a “Markovian” property in the usual sense.
This reduces the problem to one of finding, for each time
k and each reachable state x7, an optimal action w;(xZ),
corresponding to a state-feedback control law. This defines a
mapping 7y, often called a policy (or, sometimes, a Markovian
policy). But the chosen action 7} (z}) is a random variable
adapted to {€;_1}, meaning it is measurable with respect
to &1,...,&—1. This type of policy is called a randomized
policy in the stochastic optimal control literature. Henceforth,
we will use the term policy to mean randomized policy.

For k =1,..., K, let m; be a policy. For convenience, we
will also refer to the entire string (my,...,7x) as simply
a policy. The stochastic optimal control problem can be
formulated in the following form:

maximize E[g(zq,..
Tl TK

S. t. Tp41 = h(xk,wk(:ck),fk), k=1,..

Srrs (), TR (TK)) |2]

LJK—1, (3

where E[g(x1,...,xx;m(21),..., Tk (xK))|z1] equals
K
> Efr(zy, mi (@),
k=1

the conditional expected cumulative reward over a time hori-
zon of length K given the initial state x;. In the stochastic
control problem, (7, ..., 7k ) is the decision variable.

The stochastic optimal control problem (3) also goes by the
name Markov decision problem (MDP) (or Markov decision
process), and arises in a wide variety of areas, including
sensor resource management, congestion control, UAV guid-
ance, and the game of Go (see, e.g., [1], [2], [3], [9]). In
problems where the state is only partially observable we will
also have an observation law yi, = c(z, mp—1(Tk—1), k) as
a constraint, where vy, is the measurement noise at time k. In
such a setting the state x;, will be replaced with the belief-state
b, which is the posterior distribution of the underlying state
xj, given the history of observations and actions. The problem
is then called a belief-state MDP or a partially observable
MDP (POMDP) [1], [2], [3]. From here on we will develop
our approach for bounding approximate solutions to MDPs,



but all of our results also apply to bounding approximate
solutions to POMDPs.

B. Dynamic Programming

A scheme or policy I}, = (n},...,7}%) is optimal if

I}, € argmax Elg(x1,...,zx;m (1), ..., 7 (TK)|21],

T, TK
where xx11 = h(zg, mr(zr), &) for 1 < k < K — 1 and
argmax is the set of policies that maximize the objective func-
tion (there might be multiple possible such optimal policies,
hence the notation “€ argmax”). The optimal policy defined
above is characterized by Bellman’s principle of optimality
(also called the dynamic programming principle). To explain,
for each £k = 1,..., K, let Py denote the set of all strings
(g, - .., 7K ). Next, define functions Vj, : X x P, — R, by
Vie(@p, Thy - Tx) = Sore Blr(w, mi(w:))|2x], where for
k = 1,...,K, Tit1 = h(xi,m(:vi),fi), i = k,...,K — 1.
The objective function of problem (3) can be written as
Vi(zy,m1,...,7K), Where xp11 = h(zg, mr(2g), &), k =
1,...,K — 1. Given z;, define ] = z; and x’,gH =
h(zy, mi(x5), &) B = 1,..., K — 1. Then, Bellman’s prin-
ciple states that
i (xy) € argmax Q(ay,a), k=1,..., K, 4)
acA

constitute an optimal policy, where Q(z;,a) = r(z},a) +
EVir1(2f 1, i1y T )2y, al is the Q-value of state
xy and action a, and zj,, = h(z},a,&) and 2f,, =
h(xd, m(x?),&;) fori = k+1, ..., K—1, with the convention
that Vi 41(-) = 0. Moreover, any policy satisfying (4) above
is optimal. The second term on the right-hand-side of the
Q-value, E[Viy1(2f 1, Tiyqs -5 Ti)|Tk,al, is called the
expected value-to-go (EVTQG). If the problem were a POMDP,
the state x; would be replaced by the belief-state b; (the
posterior distribution of xj given the past observations and
actions). In a POMDP, a policy is a (randomized) mapping
on the space B of belief-states and takes values in .A.

Bellman’s principle provides a method to compute an
optimal solution: We use (4) to iterate backwards over the
time indices £k = K, K — 1,...,1, keeping the states as
variables, working all the way back to £k = 1. This is
the familiar dynamic programming algorithm. However, the
procedure suffers from the curse of dimensionality and is
therefore impractical for many problems of interest.

C. Approximate Dynamic Programming

An ADP scheme replaces the EVTG term in Bellman’s
principle, whose computation is intractable, with a compu-
tationally tractable approximation Wy 1(Zg,a). We start at
time £k = 1, at state £ = x1, and foreach k =1,..., K, we
compute the subsequent control actions and states using

7 (2) € argn;ax{r(i:k, a) + Wi (Zg,a)} (5)
ac

and 1 = h(&k, 7x(2k),&). The EVTG approximation
term Wjy41(@g,a) can be based on a number of meth-
ods, including myopic [3], rollout [10], reinforcement learn-
ing [11], hindsight/foresight optimization [3], and model-
predictive control [5]. In each of these ADP schemes, the

approximation Wj,_; has a specific form. For example, in the
myopic scheme, W41 (Zx,a) = 0 and the EVTG is simply
ignored. In contrast, reinforcement learning uses a parametric
function approximator for the EVTG or equivalently the Q-
value function. The parametric approximator typically is of
the form Q(r,a) = 60(a)T¢(x), where ¢(x) is a feature
vector or basis function (often constructed by a domain expert)
associated with state x and the coefficients 6(a) are learned
from training data. The usual practice is to use a neural
network. Having learned 6(a), actions are computed according
to argmax, f(a) ¢(z). The reader is referred to [3] for
expressions of Wp 1 associated with different ADP schemes.
Our main goal is to develop a general framework for
bounding the performance of any ADP scheme relative to the
optimal solution. The next section provides the tool that we
will use in Section IV to develop our bounding framework.

III. BOUNDING GREEDY SOLUTIONS

In this section, we consider string optimization problems,

where we wish to maximize an objective function over strings
(ordered sets) of actions. We present performance bounds for
the greedy solutions to such problems, in terms of certain
notions of curvature for the string objective function. Again,
by a bound we mean a guarantee that the objective value of
the greedy solution is at least a constant factor of the objective
value of the optimal solution, where the constant factor is only
a function of the curvatures. This discussion is inspired by our
prior work on string submodularity [8], where we extended the
concept of submodularity, notions of curvature, and associated
bounds for greedy solutions, from functions defined on sets
to functions defined on strings. But the bounding framework
we present here does not require submodularity.
String Optimization: Let A be a set of possible actions. Let
A = (ay,as,...,a;) denote a string of actions taken over k
consecutive stages, where a; € A for i =1,2,... k. Let A*
denote the set of all possible strings of actions (of arbitrary
length, including the empty string () and f : A* — R, be an
objective function. The goal is to find a string M € A*, with
a length |[M| < K (K prespecified), to maximize f:

maximize f(M)
subject to M € A*, |[M| < K. (6)

Monotoneity and Diminishing Return: Consider two arbitrary
strings M = (a1,az2,...,a,,) and N = (by,bs,...,b,) in
A*. We define (M, N) = (a1,a2,...,am,b1,ba,...,b,), as
the concatenation of M and N. For M, N € A*, we write
M =< N if we have N = (M, L) for some L € A*. In this
case, we say that M is a prefix of N. The function f is said
to have the prefix-monotone property if for any M < N € A*
with |[N| < K, f(N) > f(M). Without loss of generality, we
assume that f(0) = 0. Then f(M) > 0 holds for any M € A*
if f is prefix-monotone. Prefix-monotoneity guarantees that
the objective function does not decrease by adding a new
action. The function f is said to have the diminishing-return
property if for any M < N € A* with |[N| < K and a € A,
F((M,a)) = f(M) > f((N,a)) — f(N). This property says
that the marginal gain of taking any action a early on in the



decision horizon is greater than or equal to that of taking
the same action later in the decision horizon. It is akin to
concavity for functions on the real line.

Optimal strategy: Any solution to (6) is called an optimal
strategy. If f is prefix-monotone, then there exists an optimal
strategy with length K, denoted O = (01,...,0K).

Greedy strategy: A string G = (b1, ba,...,bk) is called a
greedy strategy if forall i =1,2,... )k,

b; € argmaxf((bl, bg, ey bi—la b))

beA

Curvatures: In [8] and [12], we introduced various notions of
curvature, which measure the extent to which a string function
has the diminishing return property, either along particular
trajectories in the action space or along all trajectories. The
smaller the curvature the greater the extent of diminishing
returns. These notions are called curvature for two reasons:
one is the analogy between the diminishing return property for
string functions and concavity for functions on R; the other
is that their expressions are akin to second-order differences.
Here we present two specific notions of curvature, which are
particularly convenient for our bounding framework.

For any string M = (mi,mo,...,mg) € A*, let M;.; =

(mg,...,m;) for 1 < i < j < K We define the total
curvature n of f from the greedy trajectory as
T ONEE K=
1<i<K—1
J((Griiy Mit1:K)) — K;f(M)} )
f(Glz)

Adding —f(@) = 0 to the denominator and completing
the fraction reveals that n is in fact akin to a second-
order difference. Also, if there exists M;yi.x such that
f((Gri, Miy1.x)) — f(Gri) < (K —i)/Kf(Ok), then
n > 0.

Let M;,1.; = (). We define the forward curvature of f from
the greedy trajectory as

{1_

(G, my)) — f(Gra) } ®)
f(Gris Mig1) = F((Gray Miy1:5-1)) |

Remark 1: If f: A* — R, is prefix-monotone, then 0 <
o < 1. If f has the diminishing-return property, then o = 0.
The derivations of these results are straightforward and are
omitted due to a lack of space.

The following theorem gives a general performance bound
for the greedy solution G, relative to that of the optimal
solution O, in terms of curvatures 7 and o.

Theorem 1: If f: A* — R is prefix-monotone, then

f(Gk) _ 1 ( B 1—0>K
FOx) = 1 (1 ) )
Proof. See Appendix A.

The bound above is tight [12] and as K — oo converges
to (1 —e"1=9)) /n from above.

g = max

M; 1€A™
0<i<K—1
i+1<j<K

\Y

Connection to Submodularity: The celebrated result of
Nembhauser et al. [6] states that for maximizing a monotone
submodular function over a uniform matroid, the objective
value of the greedy strategy is no less than a factor (1 —e™1)
of that of the optimal strategy. Sharper bounds of the form
(I—e=7)/v, with 0 < 4 < 1, involving a notion of curvature
~ for set submodular functions were established in [7]. The
concept of submodularity was extended to functions defined
over strings in [8], [13], leading to similar bounds (with and
without curvature) in sequential optimization problems. For a
survey of bounds involving submodularity, see [14].

The bounds in Theorem 1 are similar to those from sub-
modularity theory. But submodularity is in fact not needed for
deriving them, as we have shown in Theorem 1. Such bounds,
in terms of properly defined notions of curvature and subject
to a monotoneity condition, always hold. When » = 1 and
o = 0, the second bound in Theorem 1 is (1 —e™1) ~ 0.63,
coinciding with the Nemhauser bound. When submodularity
holds (7 < 1 and o = 0) the bound is better than (1 — e~ 1),
with practical impact [15]. A difference between our notions
of curvature and other notions used in submodularity literature
is that the values of our curvatures, and therefore the bounds,
do not depend on the behavior of the objective function on
strings longer than K (the decision horizon), whereas other
curvatures do depend on the values of the set/string function
on larger sets/strings. This is a subtle but important difference,
because performance bounds for an optimization problem over
a horizon of size K should not depend on what the objective
function does beyond the decision horizon.

IV. BOUNDING ADP SCHEMES

Our idea is to formulate a surrogate string optimization
problem over the set of policy strings such that (1) its greedy
solution coincides with the ADP scheme, and (2) its optimal
solution and optimal objective value coincide with those of the
stochastic optimal control problem. This enables us to bound
the performance of the ADP scheme relative to the optimal
scheme, in terms of the curvatures of the surrogate objective
function. This surrogate function of course must depend on
both the immediate reward function r and the approximation
W to the EVTG. The key to establishing this result is a
fundamental connection between two classes of approximate
solutions to general stochastic control problems.

A. PDAO Schemes and GPS Schemes

Let X* = X UX?U--- denote the collection of all strings
of states and A* = AU.A?U--- the collection of all strings
of actions. Let g : X* x A* — R be an objective function.
Consider the stochastic control problem

maximize E[g(zq,..
TLse ey TK

S Tr (X)), TR (TER))| 1]
S. t. Tp41 = h(xk,wk(xk),fk), k=1,...,.K—1. (9

We are distinguishing between the objective function g of
(3), which is a function of K states and K actions, and
the function g above, which can take arguments with state
and action strings that are of arbitrary length. Later on,
we connect g to the optimal control objective g and the



ADP approximation W in a very specific way to establish
our bounding technique for ADPs. Below, we introduce two
classes of approximate solutions to (9). We assume throughout
that z; € X is given.

Given 2 = x4, the policy I}, = (n},... 7)) is called
a path-dependent action optimization (PDAO) scheme if for
k=1,...,K,

xﬁﬂrzlo(le))v s 77r]l:—1(x£—1)7a)a

(10)

mp(2¥) € argmax g(zf, .. .,
acA

where x}, | = h(z}, 7} (2),&) for 1 <i <k — 1.
Given z{ = x1, the pohcy oy, = («f,...,7%) is called a
greedy policy-selection (GPS) scheme if for k =1,...,K,

g

my € argmax E[g(zf, ..., a7;

Tk

Y

w1 (@) m g (@) e ()],

where 7, | = h(zf, 7] (2}),&) for 1 <i <k —1.

Ateach time k, a PDAO scheme chooses an action based on
the sample path &, . . ., &x—1, and the chosen action is adapted
to {€x—1}. In contrast, a GPS scheme chooses a policy at each
time k based on the expected reward. Nonetheless, a PDAO
scheme still defines a particular policy. A key result for our
approach is the following.

Theorem 2: Any PDAO scheme is also a GPS scheme:
Given a PDAO policy 117, = (n¥,...,7k.), satisfying (10),
there exists a GPS policy II%, = (7{,...,7%) such that
wﬁ?:wfforlgjgk.

Proof: See Appendix B.

B. Bounding PDAO Schemes

Let P* be the set of all strings of policies (1, ...,7Tx)
with £ =0,1,2,...; the case k = 0 corresponds to the empty
string. Given 1, define g.,, : P* — R by

=E[g(z1, ...,

It is clear that Javg(71, ..., 7K ), With k = K, is the objective
function in (9). So we can convert (9) to the following
optimization problem, where the objective function is simply
a function of policy strings:

gavg(’”l;"'aﬂ—k) l’k;ﬁl(xl),.-.,’/Tk(l’k-))|l’1].

maximize Guyg (M)

subject to M € P*, | M| < K. (12)

Naturally, optimal solutions for the two problems are identical.
Moreover, the GPS scheme for (9) coincides with the greedy
solution to (12). Therefore, provided gayvg is prefix-monotone,
the GPS scheme II%; can be bounded as in Theorem 1 in terms
of the curvatures 1) and o of g,y. At the same time, Theorem 2
established that any PDAO scheme is a GPS scheme. Hence,
we have the following.

Theorem 3: Let I = (7},...,7%) denote an optimal
solution to (9). If g,.e is prefix-monotone, then any PDAO
scheme IIh. = (n},...,7%.) for problem (9) achieves the
following bound:

M 1 1_(1_771_0)K >Ln(1—a)7
Javg (L) — 1 K U

where 7 and o are curvatures of g,vs : P* — R as defined in
(7) and (8), respectively.

C. Bounding ADP Schemes

What does bounding PDAO schemes have to do with
bounding ADP schemes? We show here that any ADP scheme
is the PDAO scheme for a surrogate function g, whose
expected value .y, given 1, is equal to the objective
function of our stochastic optimal control problem in (3).
Therefore, Theorem 3 applies to bounding the ADP scheme.
Indeed, define the function §: X* x A* — R, by,

(@1, Hi(z1:8)) ZT x4, m(x3)) + Wipa (@, m(2k))
=1

(13)
for k = 1,..., K, where x1.5 = (z1,...,2), Hx(x1.1) =
(m(@1), .- me(@k))s Togr = hwl(zr, me(2k), &), and
Wgk41(-) = 0 by convention. For this g, we have an

associated PDAO scheme. At the terminal stage k£ = K,
by the definition of Ga,, We have Gao((m1,...,7K)) =
E[§(21.c, i (w1:10))[01] = 2/, Elr(@i, mi(wi)|z1]. This
is equal to the objective function for the original stochastic
optimal problem (3), and is also the function to be max-
imized at the final stage of the GPS scheme. By Theo-
rem 2, the PDAO scheme associated with the above surro-
gate g is the GPS scheme for the optimal control problem
(3). Next, notice that the PDAO scheme, denoted here by
(71(Z1)y .+, Tk—1(Zg—1), is given by

7 (Tr) € argmax g(&q, ...
acA

sy Tk—1, Tk

7%1(531), e ,ﬁ'kfl(.’f}kfl),a).

Substituting for g from (13) and dropping the term
Zf 11 r(&;,7;(2;)), which does not depend on a, we have
that 7, (Z1,) = argmax,c 4{r(Zx, a)+Wiy1(Zr, a)}. But this
is simply the ADP scheme in (5).

Proposition 1: The ADP scheme in (5) is a PDAO scheme
for the optimization problem defined above.

Finally, it remains to establish a sufficient condition
for gae to be prefix-monotone. A simple calculation
using (13) shows that g, is prefix-monotone if, for
any (m1,...,7m) <X (m1,...,m,) € P* with 1 <
m < n < K’ we have E[Wrrb+1(x7na77'rn(xm)) -
Wit (20, ()] < S0y Elr(ei mi(2,)) ). Mono-
toneity holds if the marginal reduction in the approximation
to the EVTG over any n — m consecutive steps is no
greater than the cumulative expected reward over those steps.
This condition is trivially satisfied for the myopic heuristic
(W41 = 0 for all m), if all immediate rewards are chosen
to be non-negative (which can always be achieved). For
other ADP schemes, the condition sets a constraint on the
relation between values of immediate reward and those of the
approximation to the EVTG.

Having established a condition for monotoneity and that
any ADP scheme is a PDAO scheme, Theorem 3 can be
used to bound the performance of any ADP scheme. This
bounding framework also guides the design of good ADP
schemes, namely by designing the approximate EVTG term



W41 such that the corresponding gaye has small curvatures.
This is a subject for our immediate future work, along with
establishing ways to compute or bound the curvatures 7 and
o with polynomial number of function evaluations.

V. APPENDIX A: PROOF OF THEOREM 1

For simplicity let G; = G1.;, O; = Oq.;. First, we prove

f(Ok). (14)

K

By the definition of ¢ and the prefix-monotone property of
f, we have, for j = 2,..., K, f((0;)) > (1 —o)(f(O;) —
f(O;-1)). This is obtained from (8) by observing that ¢ is a
max over the set of all strings M; 1.5, 1 <i+1 <7 < K. So
M;11.; = O; with ¢ = 0, is an element of that set. Summing
over j gives 21, £((0;)) +(1—0)f((01)) > (1-0) f(O).
By Remark 1, we have that ¢ > 0, which implies that 1 —
o < 1. By definition of the greedy strategy, we have that
f(G1) > f((0;)) for 2 < j < K. Combining this with the
previous inequality and 1 — o < 1 gives (14).

Second, we prove that for 1 < < K — 1,

l1—0

FGonn) = 2100 + (1= 01 LT ) 16 a9

Again from the definition of o (with a similar max argument),
due to the prefix-monotone property of f, for a fixed 7 with
2 <i+1<j <K, we have that f((G;,m;)) — f(G;) >
(1=0)(f((Gi; Miy1:5)) = f((Gi; Miy1:j—1))). Summing this
over j from i +1 to K results in } ., ., (f((Giymy)) —
F(G3)) > (1= ) (F((Gi, Miy1.)) — F(Gs))- For the greedy
strategy, we have f(Giy1) — f(Gi) = f((Gi,my)) — f(G)).
Combining this with the previous inequality yields

1—0

[(Giy1) = f(Gi) >

- (f((Gi, Miv1:x))) — f(Gi)).
(16)
Using the definition of the curvature n in (7), letting
M = Ok (and hence M; 1.x = O;y1.x) and noting the
max operation, we obtain

=

£l on)

Combining (16) and (17), observing that (16) holds for any
M, 1.5 € A* (including M;, 1. = Oiy1.x), yields (15).
Applying (15) successively from i = K — 1 to i = 1 gives

l-o\1l-0
K K

f((Gla Oi+1:K)) - f(GZ) Z

—nf(Gi)). (A7)

(Ok)

(18)

Applying (14) to the right hand side of (18) yields

1—0

A T

f(GK>>% 1—(1—n

VI. APPENDIX B: PROOF OF THEOREM 2

Suppose that we are given a PDAO policy (77,..., 7% )
(i.e., satisfying (10)). We will show that there exists a
GPS policy (7f,...,7%) such that the two policies are
equal, ie., ’7'(';) = 7T;-J for 1 < j < k. We show this
by induction on k. For £ = 1, by (10), we have that
for any my, g(z¥, 77 (2})) > g(z¥, w1 (2})), which implies
that E[g(a}, 7} (a]))|x1] > E[g(ml,m(xl)ﬂxl] Because
x} = z1, this shows that 77 = 7¥. For the induction step,
assume that there exists (7{,...,7}) satisfying (11) such
that wf = 7r]g for 1 < j < k. To complete the proof,
it suffices to show that 7}, satisfies (11) By definition,

P41 = by (@, 72 (00).) and 28, = by(af (2. &) for
1<j5< k By the assumptlon that 7rj = 7r for 1 <j<k
and 2§ = :17‘17, we have that 2%, = x+1 for 1 < j <
k. Thus, $k+1 = ka For m_ ,, by (10), we have that

for any w1, g(xll)7...,xﬁH,wf(xf),...,wiﬂ(m‘iﬂ)) >

g, .. w) ,my (@), ... g1 (2] ), This implies that
E[(g('leja e aszrl? Tr;f(‘r;ll))v e ,7T£+1(l'[];+1))|l‘1] Z
E[g(xﬁ), e 7xZ+1> Wf(xlf)? S m+1($i+1))|$1]-

Because x}_ , = x]_,, this means that 7, satisfies (11).
This completes our induction argument.
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