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Abstract 1 

Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long 2 

been viewed by scientists and environmental policymakers as early successional plant 3 

communities of low conservation value. Challenging this view, emerging research 4 

suggests that old-growth grasslands support substantial biodiversity and are slow to 5 

recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But 6 

despite growing interest in grassland conservation, there has been no global test of 7 

whether old-growth grasslands support greater plant species diversity than secondary 8 

grasslands (i.e., herbaceous communities that assemble after destruction of old-growth 9 

grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found 10 

that secondary grasslands supported 37% fewer plant species than old-growth grasslands 11 

(log response ratio = -0.46), and that secondary grasslands typically require at least a 12 

century, and more often millennia (projected mean 1400 yr), to recover their former 13 

richness. Young (< 29 yr) secondary grasslands were composed of weedy species, and 14 

even as their richness increased over decades to centuries, secondary grasslands were still 15 

missing characteristic old-growth grassland species (e.g., long-lived perennials). In light 16 

of these results, the view that all grasslands are weedy communities, trapped by fire and 17 

large herbivores in a state of arrested succession, is untenable. Moving forward, we 18 

suggest that ecologists should explicitly consider grassland assembly time and 19 

endogenous disturbance regimes in studies of plant community structure and function. 20 

We encourage environmental policymakers to prioritize old-growth grassland 21 
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conservation and work to elevate the status of old-growth grasslands, alongside old-22 

growth forests, in the public consciousness.                                                                                                                                                            23 

 24 

Significance Statement  25 

The idea that grasslands can be ancient, particularly in climates that also support forests, 26 

is not widely recognized. Consequently, scientists and conservation planners often 27 

misinterpret old-growth grasslands to be low-diversity, successional vegetation, from 28 

which little is lost through conversion to tillage agriculture or tree plantations. We used a 29 

global analysis of herbaceous plant communities to show that after old-growth grasslands 30 

are destroyed, the recovery of plant diversity requires hundreds to thousands of years. 31 

Such slow rates of recovery underscore the need to replace outdated models of forest 32 

succession with models that emphasize the importance of fire, herbivory, and long 33 

periods of time to grassland biodiversity. This study offers evidence that old-growth 34 

grasslands, like old-growth forests, should be prioritized for conservation. 35 

Main Text: Introduction 36 

Grasslands (broadly defined, including savannas and open-canopy grassy woodlands) 37 

occupy 28% of the terrestrial biosphere (1), house a significant proportion of global 38 

biodiversity (2), and support the livelihoods of at least a billion people via multitude of 39 

ecosystem services (e.g. provisioning of water and carbon storage; 3). Given the global 40 

importance of grasslands, it is critical that we accurately conceptualize grassland 41 

ecological dynamics to advance our understanding of plant community responses to 42 

environmental change. Hindering such advances, the idea of climate-determined 43 
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succession (4), one of the dominant ecological paradigms of the past century, 44 

underemphasizes two ubiquitous aspects of grassland ecology and evolution: fires and 45 

large herbivores (5).  46 

Fire and herbivores shaped the ecology and evolution of Earth’s grasslands for 47 

millions of years before the existence of humans (6). Through consumption of 48 

aboveground plant biomass, these two agents of endogenous disturbance (7, 8) maintain 49 

grasslands in places where the climate and soils are suitable for the development of 50 

forests (9). When interpreted through the lens of climatic determinism, with a focus on 51 

trees rather than herbaceous plant community dynamics, frequent fire and herbivory can 52 

appear to reset, or arrest, ecological succession (10, 11). This successional narrative has 53 

contributed to a crisis in grassland conservation: around the world disturbance-dependent 54 

grasslands are widely misclassified as degraded forests (12, 13), overlooked for their 55 

conservation value (14), targeted for agricultural conversion (15), and viewed as 56 

opportunities for carbon sequestration through tree planting and fire exclusion (i.e., 57 

afforestation and woody encroachment) (16, 17). 58 

The old-growth grassland concept (18)—modelled on parallel ideas in forest ecology 59 

and conservation (19)—is a direct challenge to the narrative that most of earth’s 60 

grasslands are successional communities that ought to become forests (11; 20). Of 61 

primary importance, the concept posits that old-growth grasslands are ecologically 62 

distinct from recently formed (secondary) grasslands (18). It is also important to note that 63 

fire and megafaunal herbivory—the endogenous disturbances that maintain old-growth 64 

grassland diversity (8)—are detrimental to many old-growth forests (e.g., 21). Further, 65 
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readily visible indicators of old-growth forests, such as trees with large girths, are 66 

inapplicable to old-growth grasslands, where signs of antiquity are often underground 67 

(18). Indeed, old-growth grasslands are characterized by slow-growing, long-lived 68 

herbaceous plants, with a suite of traits, including underground storage organs, bud 69 

banks, and rhizomes, which enable resprouting and clonal growth after fire and herbivory 70 

(22, 23).  71 

Although old-growth grasslands include some of the most biodiverse terrestrial 72 

ecosystems, there has been no global-scale test of whether old-growth grasslands are, in 73 

fact, more species-rich than secondary grasslands. Several examples suggest that high 74 

species richness is characteristic of old-growth grasslands. The savannas of the South 75 

American Cerrado support 4800 endemic plant and vertebrate species (24). The Shola 76 

grasslands of India, home to endangered Asian elephants and Bengal tigers, are rich with 77 

herbaceous plants (278 species) (25). The world record for local-scale plant species 78 

richness (89 vascular species/ m2) is held by a montane grassland in Argentina (26). At 79 

the 100 to 1000-m2 scales, fire-dependent grasslands of the North American Coastal Plain 80 

can be as rich in vascular plant species as tropical forests (14). While illustrative of the 81 

potential diversity of grassland plant communities, these examples do not tell us how 82 

quickly old-growth grassland plant diversity recovers after intensive land-use change, 83 

such as agriculture or afforestation.  84 

To test the relevance of the old-growth grassland concept to our understanding of 85 

global patterns of herbaceous plant diversity, we conducted a meta-analysis of 31 pairs of 86 

old-growth grasslands and secondary grasslands on six continents (Fig. 1). Because the 87 
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application of the term ‘old growth’ to grasslands is recent, we included studies that used 88 

a variety of synonymous adjectives, including: ancient, intact, native, natural, pristine, 89 

reference, remnant, semi-natural, and undisturbed (SI Appendix, Fig. S1). For our 90 

analysis, we compared species richness between pairs of old-growth and secondary 91 

grasslands using a random effects model of the log response ratio [lnRR, calculated as 92 

loge(secondary grassland richness/old-growth grassland richness)] (27). To determine the 93 

rate at which secondary grasslands recover the species richness of old-growth grasslands, 94 

we conducted a mixed-effects linear meta-regression (27) of 92 secondary grassland ages 95 

(range 1 to 251 years) extracted from the 31 studies. As is standard in meta-analyses (27), 96 

we weighted each study by the inverse of the associated variance and evaluated the 97 

robustness of our findings through assessments for publication bias and sensitivity (see 98 

Methods).  99 

Following the core meta-analysis, we used data from a subset of studies to better 100 

understand how variation in species richness and grassland age relate to plant community 101 

composition. We first assessed the relationship between total species richness in 102 

secondary grasslands and the recovery of old-growth grassland community composition 103 

(n = 10 studies). We then assessed the relationship between grassland age and the number 104 

of weedy species (including ruderals and exotics; n =11 studies with 29 timepoints). In 105 

combination, we expect these analyses of grassland species richness, assembly time, and 106 

community composition to validate patterns that many grassland ecologists have 107 

recognized in specific ecosystems around the world (e.g., 28, 29). Through global meta-108 

analysis, we hope to expand recognition of the high species diversity and slow assembly 109 
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of old-growth grasslands more broadly among ecologists, environmental policymakers, 110 

and the public.       111 

Results 112 

Our results showed that secondary grasslands support 63% of the species richness of 113 

old-growth grasslands (95% CI: 53%, 76%; global weighted mean lnRR: -0.46, 95% CI: -114 

0.64, -0.28; Fig. 2). For individual studies, lnRR ranged from -1.8 to 0.4, with only 2 of 115 

31 studies reporting secondary grasslands to be richer than old-growth grasslands (Fig. 116 

2). The weighted mean lnRR was associated with a high level of between-study 117 

heterogeneity (Q = 230, I2 = 90%, P < 0.0001), which is typical of ecological meta-118 

analyses (30). Post-hoc assessments suggested that our estimate of the global weighted 119 

mean (i.e., lnRR = -0.46) is robust (SI Appendix, Table S1, SI Appendix, Fig. S2-S5). 120 

Tests for publication bias (26) were negative (SI Appendix, Table S2, SI Appendix, Fig. 121 

S6-S7). 122 

Secondary grassland age was weakly, but positively, related to the recovery of plant 123 

species richness (Fig. 3, P = 0.0001, R2 = 0.041). The upper bound of the 95% confidence 124 

interval for the meta-regression model yielded a minimum global recovery time (to lnRR 125 

= 0) for plant species richness of ~160 years. Extrapolation of the regression equation, 126 

which should be interpreted cautiously, projected a mean time of ~1400 years for 127 

richness to recover. At the last time point for which we have data (i.e., 251 years, which 128 

is the oldest value permitting interpolation), the regression equation predicted secondary 129 

grasslands to recover 84% of the richness of old-growth grasslands (lnRR = -0.17). 130 
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Even as richness increased with time, the communities of plants recolonizing 131 

secondary grasslands remained distinct from those of old-growth grasslands. Based on 132 

regression of the subset of ten studies that reported community similarity indices (Fig. 133 

4A), we projected that recovery of species richness (i.e., to lnRR = 0) would equate to just 134 

43% (95% CI: 31%, 56%) compositional similarity between old-growth and secondary 135 

grasslands. These persistent differences in community composition can be explained in 136 

part by a preponderance of weedy species in secondary grasslands. Regression of 29 137 

timepoints from 11 sites indicated that in the initial 29 to 130 yr of recovery (range based 138 

on lower 95% CI and mean regression equation for lnRR=0; Fig. 4B) secondary 139 

grasslands supported more weedy species than did old-growth grasslands.  140 

Discussion 141 

By demonstrating that secondary grasslands support just 63%, and are missing 37%, of 142 

the herbaceous plant species richness of old-growth grasslands (Fig. 2), this meta-analysis 143 

provides support for the applicability of the old-growth grassland concept at the global 144 

scale (18). Evidence of the slow assembly of old-growth grasslands (Fig. 3) underscores 145 

recent calls to move away from the view of most grasslands as a successional stage (11), 146 

toward recognition that endogenous disturbances can sustain species-diverse grasslands 147 

for very long periods of time in climatic zones that can also support forests (5, 9, 10, 17, 148 

22). Compared to old-growth forests, which are widely recognized and intensively 149 

studied (31, 32), we still know relatively little about old-growth grasslands. We hope that 150 

these results will motivate future studies, analogous to research on secondary forests (31), 151 

to better understand the recovery rates of secondary grasslands with different land-use 152 
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histories (SI Appendix, Fig. S8), and to compare grasslands of the tropics to those of 153 

temperate latitudes (SI Appendix, Fig. S9) (22). 154 

In our analysis, we focused on one aspect of plant diversity—species richness—a 155 

community metric available from the modest number of 31 grassland studies that 156 

included both old-growth and secondary grasslands. Because species richness figures 157 

prominently in the application of community ecology to questions of global change [e.g., 158 

(33)], we suggest that recognizing old-growth grasslands as distinct from secondary 159 

grasslands will improve our understanding of the relationships among plant diversity, 160 

community assembly time, and ecosystem functioning (18, 34). Doing so would pull 161 

together disparate, but clearly related, lines of research, such as those framed around 162 

agricultural legacies (29), fire exclusion (17), declines of native megafauna (35), woody 163 

encroachment (36), and nutrient pollution (37), to help clarify the distinct ecological 164 

consequences of human activities for old-growth versus secondary grasslands. 165 

Our results show that old-growth grasslands, once destroyed, require at least a century, 166 

and more typically millennia, to recover their plant species richness (Fig. 3); full recovery 167 

of plant community composition will take even longer (Fig. 4A). To be clear, the 168 

recovery of species richness is not the same as the recovery of community composition; 169 

two communities can have the same number of species, while the identity of those 170 

species can be quite different (38). For the subset of sites that provided compositional 171 

data, recovery of species richness equated to just 43% similarity in community 172 

composition between secondary and old-growth grasslands (Fig. 4A). Thus, our estimate 173 

of the time required for secondary grasslands to attain the richness of old-growth 174 
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grasslands (160 to 1400 yr; Fig. 3) is certainly less than the time required for secondary 175 

grasslands to recover the community composition (i.e., the full suite of species and 176 

abundances) of old-growth grasslands. This echoes research on secondary tropical 177 

forests, where tree species richness typically rebounds within 50 yr, but recovery of the 178 

composition of old-growth forests requires many centuries or longer (39).  179 

One reason that richness is thought to recover more rapidly than community 180 

composition is because weedy species are quick to colonize secondary grasslands (e.g., 181 

40). Consistent with this idea, and based on the 11 studies that reported data on weedy 182 

plants (including, ruderal and non-native species), we found that compared to old-growth 183 

grasslands, young secondary grasslands supported more weedy species. Evidence that 184 

elevated numbers of weedy species persisted for 29 to 130 yr in secondary grasslands 185 

(Fig. 4B) underscores recent calls for grassland experiments to consider compositional 186 

changes over longer periods of time [i.e., >10 yr (41)]. From our analysis, it appears that 187 

while weedy species partially compensated for reduced species richness in secondary 188 

grasslands, certain species characteristic of old-growth grasslands remained missing even 189 

after many decades to centuries (Fig. 3, Fig. 4A, B). 190 

Why are certain old-growth grassland species missing in secondary grasslands? A 191 

plausible explanation is that above-ground disturbances (i.e., fire and herbivory), which  192 

select for persistence in old-growth species, are fundamentally different from the 193 

anthropogenic disturbances, like tillage agriculture, that destroy underground organs and 194 

select for secondary grassland species with high colonization ability (18). To explore this 195 

possibility, we revisited the results and discussions of the 31 studies included in the meta-196 
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analysis and found that the missing species most frequently described by authors (SI 197 

Appendix, Dataset 1) were native perennial grasses (typically with C4 photosynthesis) and 198 

native perennial forbs (often species with underground storage organs). Missing species 199 

were also described as fire-promoting and shade-intolerant, with high capacity to 200 

resprout. Authors further described missing species as being stress-tolerant with poor 201 

colonization ability, producing seeds dispersed by gravity or ants, forming limited seed 202 

banks, and relying on clonal growth or asexual reproduction. In addition, authors noted 203 

missing species that were of conservation concern in specific regions. These included: 204 

medicinally important species in Africa; annual hemiparasites in Asia; composites 205 

(Asteraceae) and legumes (Fabaceae) in North and South America; perennial sedges and 206 

orchids, and threatened IUCN Red-list species in Europe; woody sub-shrubs 207 

(underground trees) in South America, and endemic grasses in Australia (SI Appendix, 208 

Dataset 1). These descriptions match the key functional types of old-growth grassland 209 

species that are thought to be most vulnerable to anthropogenic environmental change 210 

(22).  211 

In addition to functional traits (e.g., persistence-colonization trade-off; 42, 43), a 212 

multitude of ecological mechanisms likely contribute to the lower richness and slow 213 

recovery of secondary grasslands relative to old-growth grasslands. Indeed, a central 214 

focus of grassland restoration ecology is to identify these mechanisms and overcome the 215 

limitations to old-growth grassland community assembly (44). In some ecosystems, 216 

landscape effects, such as spatial isolation (45) or limited habitat connectivity (46), 217 

restrict the arrival of plant propagules. In others, site-level conditions, such as severely 218 
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altered soil conditions (47) and species interactions (e.g., priority effects and plant-soil 219 

feedbacks; 48) limit the establishment of old-growth grassland species. Also important, 220 

but often overlooked in grassland restoration studies (49), is the role of vegetation-221 

disturbance feedbacks (e.g., 50; 51). Plant communities determine the quantity and 222 

quality of biomass available for fire and herbivores to consume, and in turn fire and 223 

herbivores influence grassland community composition via selection on plant traits (52). 224 

Given their differences in species composition (Fig.4A, B), we should expect pairs of old-225 

growth and secondary grasslands to also differ in aspects of their disturbance regime, 226 

such as frequency, seasonality, and intensity, even if they experience the same 227 

disturbance type (i.e., fire, grazing, or haying). In sum, altered disturbance regimes, 228 

reinforced by vegetation-disturbance feedbacks (53), should be considered among the 229 

probable mechanisms for reduced species richness and slow compositional recovery of 230 

secondary grassland communities (8). 231 

Conclusion 232 

In light of the high diversity of old-growth grasslands (Fig. 2) and the many 233 

documented challenges to their restoration (8), we encourage environmental 234 

policymakers to give old-growth grasslands equal consideration as old-growth forests 235 

(32) in efforts to conserve earth’s biodiversity. We are particularly concerned that recent 236 

research and emerging land-use policies, meant promote tree-planting for carbon 237 

sequestration, are a threat to undervalued grassland biodiversity and ecosystem services 238 

(16, 17). Fundamental to these afforestation efforts has been the assumption that old-239 

growth grasslands that occur where climate-vegetation models suggest forest as the 240 
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potential vegetation must be degraded. Our analysis shows that the reality on the ground 241 

is much more complicated. Indeed, most of the species-rich old-growth grasslands in this 242 

analysis occur in climates that can support forests [Fig. 1; (5)]. We urge conservation 243 

initiatives to safeguard against the conversion of old-growth grasslands for tree planting 244 

or tillage agriculture, to maintain biodiverse grasslands with frequent fires and 245 

megafaunal herbivores, and to emphasize the recovery of grassland plant communities in 246 

efforts to restore Earth’s biodiversity. 247 

Materials and Methods 248 

Literature search and screening 249 

To identify studies that compared species richness in old-growth grasslands and 250 

secondary grasslands, we conducted a literature search of peer-reviewed journal articles 251 

in the Web of Science database (27, 54). This initial Web of Science search yielded a 252 

total of 8336 articles. We examined the titles of these 8336 articles for relevance and 253 

retained 745 articles. We then screened the abstract (and methods in some cases) of these 254 

745 articles to arrive at a shortlist of 99 articles for detailed examination. We then 255 

examined in detail the full texts of these 99 articles, which resulted in a final set of 31 256 

articles that met our eligibility criteria (described below) for inclusion in the analyses (SI 257 

Appendix, Fig. S1) (55).  258 

For the initial search, we used the advanced search function in Web of Science to identify 259 

articles published from 1 January 1900 to 14 November 2018 that fit the following topic 260 

search (TS) criteria (i.e., terms found in titles, abstracts, and key words):   261 
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TS = (savanna* OR grassland* OR woodland* OR pine OR pinus OR eucalypt* OR 262 

cerrado OR prairie OR veld* OR steppe) AND TS=(herb* OR grass* OR forb* OR 263 

understor*) AND TS=(richness OR diversity) AND TS=("old growth" OR secondary 264 

OR succession* OR remnant* OR "old field" OR restor* OR reference OR abandon* 265 

OR "post agric*" OR "woody encroach*" OR mine OR mining OR degrad* OR 266 

pasture OR plantation OR afforest*) 267 

We subsequently scrutinized the articles to ensure that they met the following criteria. 1) 268 

Study sites were grasslands, broadly defined to include savannas and open-canopy grassy 269 

woodlands (22). As such, the studies in our analysis encompass herbaceous-dominated 270 

ecosystems with scattered trees that are often called ‘forests’ or ‘woodlands’ (12). 2) 271 

Studies included old-growth grasslands (18) that were either clearly described in the 272 

article or that we were able to verify through correspondence with the authors. Because 273 

there is a wide range of synonymous terminology for old-growth grasslands in the 274 

literature, we screened studies to ensure that there were no major human-induced 275 

structural or functional alterations to the historical herbaceous plant communities, and 276 

that current ecosystem management closely resembled historical, endogenous disturbance 277 

regimes (8). As such, we included study sites that supported large herbivores (domestic 278 

livestock and/or native megafauna), were burned with prescribed fire or wildfire, or 279 

where other regular aboveground disturbance (i.e., mowing or haying) served as a 280 

surrogate for fire and herbivory (18). 3) Studies included secondary grasslands (11) on 281 

sites previously occupied by old-growth grasslands that had been destroyed by tillage 282 

agriculture, tree plantations, or other intensive land uses. 4) Studies reported data for 283 

herbaceous plant species richness for both old-growth and secondary grasslands. 5) Study 284 
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plots were not treated with nutrient additions (e.g., nitrogen or phosphorous fertilizers). 6) 285 

Studies were conducted in a unique location; where multiple papers provided data for the 286 

same study location, we excluded all but the most complete (i.e., best replicated, longest 287 

duration) paper for that location. 7) We only included studies on ‘actively restored’ 288 

grasslands (i.e., restoration treatments such as sowing seed mixtures, soil or hay transfer) 289 

if the study included a control treatment of ‘passive restoration’ (i.e., secondary grassland 290 

communities assembling without propagule additions). For such studies, we only 291 

extracted data from the passively restored secondary grasslands and the paired old-growth 292 

grasslands. 293 

Data extraction 294 

Response variables 295 

Total species richness: We extracted the mean total species richness per unit area for the 296 

old-growth grasslands and secondary grasslands in each study. For studies that only 297 

presented richness in figures (n = 20), we calculated the mean richness using the image 298 

analysis software ImageJ (56). For studies (n = 2) that reported median richness but not 299 

mean, we used the median, since these studies had either non-normal data (as verified 300 

from figures) or a large (>25) sample size (57). In cases where studies appeared to have 301 

measured richness, but did not report richness, we contacted the authors (n = 4). 302 

Weedy species richness: For each study, we determined whether the authors presented 303 

data on weedy species. We included any group of species that the authors identified using 304 

one, or a combination of, the following terms: ruderals (including annuals, perennials or 305 

both), weedy species, arable weeds, alien species, exotic species, or invasive species. 306 
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Using the same approaches as for total species richness (described above), we were able 307 

to extract weedy species richness from 11 studies, yielding 29 time points.  308 

Compositional similarity: 10 out of the 31 studies reported the similarity of old-growth 309 

and secondary grassland plant communities as Jaccard’s (n = 4), Bray-Curtis (n = 3) and 310 

Sorensen’s (n = 3) indices. For studies that reported dissimilarity we converted the index 311 

to similarity (i.e., 1-dissimilarity). Because these indices range from 0 to 1, we analysed 312 

them without further transformation (58).  313 

Predictor and moderator variables 314 

Location: We used the latitude and longitude of the sites reported in the methods of each 315 

study to map study locations (Fig. 1A) using Q-GIS v 2.10.1 (59).  316 

 317 

Precipitation and temperature: We obtained mean annual precipitation and temperature 318 

for each location from the WorldClim2 database (60). In cases where the author-reported 319 

precipitation deviated more by more than 100 mm (n = 4 cases) from the WorldClim2 320 

data, we used the author-reported values. We plotted mean annual precipitation versus 321 

mean annual temperature (Fig. 1B) with Minitab (Minitab I.N.C., Pennsylvania State 322 

University, USA). 323 

 324 

Type of secondary grassland: We used authors’ descriptions of land-use history to 325 

classify secondary grasslands into one or more of the following categories for 326 

supplemental analyses: tree-plantations/woody encroachment; tillage agriculture; soil 327 

excavation; planted pasture; or other (SI Appendix, Table S3, SI Appendix, Fig. S8). 328 
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 329 

Age of secondary grassland: We determined the assembly time (in years) for each 330 

secondary grassland based on author-reported time since the last grassland-damaging 331 

[i.e., exogenous (8)] disturbance or time since land abandonment. If secondary grasslands 332 

were classified by a range of ages, we used the mean of the range. For open-ended 333 

classes, we approximated the value to get a conservative estimate of age [e.g. for Öster et 334 

al. (61), we considered the class “<10 years” to be 5 years and “>50 years” to be 55 335 

years]. In the one study with multiple sites of different ages (i.e., Brudvig et al. (62), with 336 

sites of age 90 years, 69 years, 58 years) we calculated a weighted mean age (weighted 337 

by sample size). For studies (n = 3) that provided a large number (>30) of data points 338 

across a range of secondary grassland ages, we extracted a subset of discrete time points 339 

to represented the range. For the two (of the 92 secondary grassland timepoints) that were 340 

sampled after one growing season, we coded their age as one year rather than as a 341 

fraction of a year, to avoid giving them undue weight in our log(time) regression (Fig. 2). 342 

Statistical analyses 343 

Effect size 344 

To compare the differences between old-growth and secondary grassland species 345 

richness, we calculated the log response ratio (lnRR) as the effect size (63). The lnRR has 346 

been widely used in ecology (64) and has several desirable properties. A major advantage 347 

of lnRR over other effect-size metrics is that it does not require variance data for 348 

computation (63). For our calculations, lnRR = loge (Ȳs/ Ȳo) where Ȳs = species richness 349 

for secondary grasslands, Ȳo = species richness for old-growth grasslands. Thus, values of 350 
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lnRR < 0 indicated old-growth grasslands have greater richness than secondary 351 

grasslands, whereas lnRR > 0 indicated secondary grasslands are richer than old-growth 352 

grasslands, and lnRR = 0 indicated both grassland classes are equally rich in species. For 353 

studies that provided more than one data point by time, we calculated the composite 354 

effect size per study (65). 355 

Variance and weights 356 

We calculated the variance of lnRR (VlnRR) based upon reported sample sizes (66) using 357 

VlnRR = (Ns + No)/(Ns × No), where Ns is the sample size for secondary grasslands and No 358 

is the sample size for old-growth grasslands. By calculating VlnRR in this manner, we 359 

were able to standardize the variance estimates across studies and obtain estimates for 360 

those studies that did not report variance, or that had pseudo-replicated or otherwise 361 

poorly described study designs (67, 68) (SI Appendix, Table S1). We weighted the lnRR 362 

for each study by the inverse variance, such that studies with higher variance were given 363 

lower weights (27). We used OpenMEE (69) to perform the meta-analysis (Fig. 2), 364 

including tests for heterogeneity, publication bias, and sensitivity. We considered meta-365 

analysis results to be statistically significant (at α = 0.05) if the 95% confidence intervals 366 

(CI) of the overall mean lnRR did not include zero. 367 

Handling non-independent observations 368 

Several studies reported multiple (non-independent) data points (n = 18), unbalanced 369 

study designs, or both. We calculated the variance of the composite lnRR for studies with 370 

unequal sample sizes (and thus unequal variances) as (1/n)2 (∑Vi, i = 1 to n + 2∑i,j (rij √Vi 371 

√Vj)), where n=number of observations in the study and rij = correlation coefficient 372 
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(covariance) between the pair of effect sizes under consideration (27, 65). If a study had 373 

equal sample sizes (and thus equal variances), the above formula was simplified to: (V/n) 374 

× Variance Inflation Factor (VIF) (27), where VIF = 1 + (n-1) × r. This formula thus 375 

takes into account the non-independence of multiple observations reported by a single 376 

study through the covariance factor. The possible values of ‘r’ range from 0 to 1 377 

(assuming the correlation is positive), but we cannot know the true value of r in the 378 

selected studies. To apply r = 0 would be to assume that observations are independent, 379 

and result in an underestimation of the variance. Conversely, to apply r = 1 would assume 380 

perfect (100%) correlation and certainly overestimate the variance (65). We chose to 381 

apply r = 0.5 as a plausible value for our analysis (65), and verified that other plausible 382 

values (i.e., r = 0.25 and 0.75), yielded similar results (SI Appendix, Table S1, SI 383 

Appendix, Fig. S2, S3).  384 

Between-study heterogeneity 385 

We calculated the weighted overall mean effect size (lnRR) for n = 31 studies using a 386 

random effects model, with between-study variance estimated using the restriction 387 

maximum likelihood (REML) approach (70). We also used REML to calculate effects by 388 

sub-groups using moderator variables (as in SI Appendix, Fig. S8). To test if there was 389 

significant heterogeneity associated with the effect sizes, we computed the Q statistic (a 390 

measure of between-study variance), and tested this against a X2 distribution [with n-1 391 

degrees of freedom (dof), n = number of studies] (27). Because the Q statistic has low 392 

power and is not intuitive by itself (27, 65), we also report heterogeneity with the I2 393 
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statistic [approximately equal to 100 × (Q-dof/Q)], which yields a more intuitive measure 394 

of heterogeneity, from 0 to 100% (65). 395 

Sensitivity analyses 396 

We performed several sensitivity analyses to verify that the meta-analysis results were 397 

robust. 1) To determine if using the pseudo-replicated (within-study) sample sizes 398 

affected our conclusions, we performed a post-hoc sensitivity analysis by repeating our 399 

meta-analysis without the two studies with highest sample sizes (and consequently 400 

highest weights) (SI Appendix, Table S1, SI Appendix, Fig. S5). Given the overall result 401 

did not change with exclusion of these highly weighted studies, this analysis supported 402 

our use of study sample sizes to estimate variances (71, 72). 2) To assess the sensitively 403 

of our results to our assumption of covariance of r = 0.5, we repeated the analysis using 404 

other plausible covariance values (r = 0.25, r = 0.75) and verified that results did not 405 

deviate substantially with changes in r [as in (73); SI Appendix, Table S1, SI Appendix, 406 

Fig. S2, S3]. 3) Given the high between-study heterogeneity obtained from the weighted 407 

model, and to further assess the sensitivity of the calculated overall mean lnRR to the 408 

weighting of studies, we calculated an unweighted mean lnRR (27) (SI Appendix, Fig. 409 

S4).  410 

Meta-regression of species richness and time 411 

We tested for the effect of secondary grassland age on lnRR using a meta-regression 412 

mixed-effect model that treated each study as a random effect [i.e., REML method; (27)]. 413 

To understand the proportion of variance explained by the regression model (27), we 414 

calculated R2 as QM /(QM + QE). We performed the meta-regression using the metafor 415 
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package (70) in R (v 3.6.3) (74). We created all the regression analyses figures using the 416 

ggplot2 package (75) in R (v 3.6.3) (74).  417 

Regression analyses of compositional similarity and weedy species 418 

To understand the relationship between the lnRR of total species richness and 419 

compositional similarity of secondary grasslands to old-growth grasslands, we performed 420 

fixed-effect linear regression in the R base package stats (v 3.6.3) (74) for the n = 10 421 

studies that reported compositional similarity data. To analyse how lnRR of weedy 422 

species richness changes with secondary grassland age, we constructed a linear mixed-423 

effect model to predict weedy species lnRR (with secondary grassland age as the fixed 424 

effect and study as the random effect) using the nlme package (76) in R (v 3.6.3) (74) for 425 

n = 11 studies (and 29 timepoints). For both these analyses, we chose not to weight the 426 

data points (as would be done in meta-regression) given that these studies represent a 427 

relatively small subset of the full meta-analysis dataset. 428 

Exploratory models of unexplained variance in lnRR 429 

Given the high between-study heterogeneity (I2 = 90%, Fig. 2), we explored whether 430 

unexplained variance in lnRR was attributable to variables that were not part of our core 431 

hypothesis [as in (77)]. We constructed linear mixed-effect models, with study as a 432 

random effect, to predict lnRR based on: continent, latitude, secondary grassland age, 433 

MAP, MAT, type of secondary grassland, and sample area (SI Appendix, Table S3).  434 

We generated a starting model using the nlme package (76) in R (v 3.6.3) (74). We then 435 

used a step backward selection method, based on Akaike Information Criteria (AIC), to 436 

identify the best model [MASS package (78)]. The marginal R2 value associated with each 437 
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model was calculated separately by using the PIECEWISESEM package (79). To 438 

visualize the relationships between lnRR and the continuous and categorical predictor 439 

variables retained in the top models (ΔAIC < 2 compared to the best model; SI Appendix, 440 

Table S3), we presented results by secondary grassland type (SI Appendix, Fig. S8) and 441 

conducted a meta-regression for latitude (SI Appendix, Fig. S9).   442 

Publication bias 443 

To assess publication bias, we first performed non-parametric correlation tests 444 

(Spearman’s rho and Kendall’s tau) between the standardized effect sizes and the 445 

composite variance as a substitute (27) (SI Appendix, Table S2). A significant positive or 446 

negative correlation would indicate publication bias (27). Second, we performed a 447 

Cumulative Meta-Analysis (CMA) to assess publication bias (SI Appendix, Fig. S6) with 448 

publications sorted by year and using a random-effects model (80). The CMA re-449 

calculates the cumulative effect size after adding studies, one by one (80). In the end, if 450 

the effect sizes do not converge with the calculated effect size, this would suggest bias 451 

(27). Lastly, to assess publication bias, we calculated the Rosenberg’s fail-safe number —452 

i.e., the number of studies with the same weight as the average of the current set of 453 

studies that would be needed to render the results non-significant at α=0.05 (81); results 454 

are considered unbiased if the number is high (> 5× n + 10) (65). We chose this metric 455 

because it uses a weighted approach, whereas alternative metrics (e.g., Rosenthal’s and 456 

Orwin’s) use an unweighted approach (27). To test if variation in sampling area affected 457 

lnRR, we conducted a regression between plot size in each study and lnRR (SI Appendix, 458 

Fig. S7). 459 
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Figure Captions: 651 

Figure 1. Geographic and climatic distribution of paired old-growth grassland and 652 

secondary grassland study sites. (A) Locations of the 31 studies included in the meta-653 

analysis. (B) Bi-variate plot of mean annual precipitation and mean annual temperature 654 

for each study location. 655 

 656 

Figure 2. Global comparison of species richness in old-growth grasslands and secondary 657 

grasslands. The 31 plant community studies (left column) are listed alphabetically by 658 

continent and author, and are marked by the type of aboveground disturbance that 659 

currently maintains old-growth grasslands at each site. For each study, boxes and solid 660 

lines display the natural logarithm of the response ratio [loge (secondary grassland 661 

richness/old-growth grassland richness)] and 95% confidence intervals, respectively. Box 662 

sizes are proportional to the weight of the study (see methods). Response ratios less than 663 

zero indicate that old-growth grasslands are more species-rich than secondary grasslands, 664 

whereas values greater than zero indicate secondary grasslands are richer. Displayed as a 665 

red diamond and red vertical line, the global weighted mean response ratio (-0.46, I2 = 666 

90%, P = 0.0001) equates to secondary grasslands supporting 63% of the richness of (or 667 

37% fewer species than) old-growth grasslands (ends of the diamond indicate the 95% 668 

CI: -0.64 to -0.28, equivalent to 53% and 76%). See SI Appendix, Dataset 1 for full study 669 

citations.  670 

 671 
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Figure 3. Relationship between secondary grassland age and the recovery of old-growth 672 

grassland species richness. Black circles represent secondary grassland age (n = 92, 673 

range: 1 to 251 years, extracted from n = 31 studies) and are scaled in proportion to their 674 

weight (see Methods; note age is represented on a log10 scale). The meta-regression 675 

model accounts for this weight and the random effect of each study location. The 676 

regression equation, lnRR = 0.2279 [log10(secondary grassland age)] - 0.7201 (R2 = 677 

0.041, P = 0.0001), is displayed as a solid black line; grey shading indicates the 95% 678 

confidence interval. The horizontal dashed line indicates the response ratio at which 679 

secondary and old-growth grassland species richness is equal (lnRR = 0). Response ratios 680 

less than zero indicate secondary grasslands that have fewer species compared to old-681 

growth grasslands. 682 

 683 

Figure 4. Indicators of plant community composition in relation to secondary grassland 684 

species richness and age. (A) Relationship between the log response ratio (lnRR) of total 685 

species richness and the compositional similarity between secondary and old-growth 686 

grassland communities. Data are from n = 10 studies that reported similarity indices. The 687 

regression equation, similarity = 0.2681(lnRR) + 0.4332 (R2 = 0.536, P = 0.016), is 688 

displayed as a solid black line; grey shading indicates the 95% confidence interval. The 689 

horizontal dashed line (similarity = 0.5) indicates the level at which secondary grasslands 690 

are 50% similar to old-growth grasslands in species composition. At lnRR = 0, secondary 691 

and old-growth grasslands are equal in total species richness. (B) Relationship between 692 

the lnRR of weedy species richness and age of secondary grasslands. The mixed-effect 693 
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regression model is based on the n = 11 studies (random effect) that reported weedy 694 

species richness for n = 29 timepoints (age as fixed effect). The regression equation, 695 

lnRR = -0.8597 [log10(secondary grassland age)] + 1.8164 (R2 = 0.274, P < 0.0001), is 696 

displayed as a solid black line; grey shading indicates the 95% confidence interval. At 697 

lnRR = 0, secondary and old-growth grasslands are equal in weedy species richness. 698 
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Table S1. Sensitivity analyses for the global meta-analysis comparing species richness of old-growth and secondary grasslands. 

Compared to the global meta-analysis (r = 0.5, lnRR = -0.46, Fig. 2), models with plausible covariances that were lower (r = 0.25) and 

higher (r = 0.75) yielded very similar results (lnRR = -0.46 and -0.45, respectively). An unweighted model (lnRR = -0.48) and a 

weighted model that excluded the two highest-weighted studies (lnRR = -0.46) confirmed that the global meta-analysis results were 

not driven by weighting. Columns in the table report: lnRR, the associated confidence intervals (CI), p-values for the heterogeneity 

test (P), the between-study heterogeneity (I2), and the number of studies included in the model (n). 

 

Model Purpose of Sensitivity Test LnRR 95% CI P I2 n 

Weighted mean lnRR, 

random effects model (r = 0.5) 
Global meta-analysis (Fig. 2) -0.458  -0.637, -0.278 < 0.0001 90% 31 

Weighted mean lnRR, 

random effects model (r = 

0.25) 

To determine the effect of low 

plausible covariance estimate on 

results (SI Appendix, Fig. S2) 

-0.463 -0.643, -0.284 < 0.0001 91% 31 

Weighted mean lnRR, 

random effects model (r = 

0.75) 

To determine the effect of high 

plausible covariance estimate  

(SI Appendix, Fig. S3) 

-0.450 -0.629, -0.272 < 0.0001 89% 31 

Unweighted mean lnRR 

To determine the effect of weighting 

on the global meta-analysis results  

(SI Appendix, Fig. S4) 

-0.484 -0.662, -0.305 < 0.0001 61% 31 

Weighted mean lnRR, 

random effects model (r = 

0.5), two highest-weighted 

studies excluded 

To determine whether results were 

heavily influenced by the two 

highest-weighted studies  

(SI Appendix, Fig. S5) 

-0.461 -0.656, -0.266 < 0.0001 85% 29 



 

 

3 
 

 

Table S2. Tests for bias. We performed three tests to assess publication bias (27, 80, 81), and one test for the influence of sample plot 

size on lnRR, all of which were negative. The rows describe the tests, associated statistics, test interpretations, and the result of the 

tests. 

 

TEST DESCRIPTION TEST STATISTICS INTERPRETATION RESULT 

Correlation between 

standardized effect sizes and 

standard errors (27) 

Spearman’s rho = -0.176, P= 0.343; 

Kendall’s tau = -0.1185, P= 0.349 
Correlations were not significant Negative 

Cumulative meta-analysis (80)  

(SI Appendix, Fig. S6) 
NA 

Over time (publication year), effect size 

became more negative, and converged 

with global mean lnRR 

Negative 

Rosenberg’s fail safe number 

(81) 
Fail-safe number: 2165 

Fail-safe number was greater than the 

minimum cut-off of 165 (i.e., 5× n+10; 

where n = number of studies) 

Negative 

Relationship between plot size 

and lnRR (SI Appendix,  

Fig. S7) 

Slope: -0.00076, R2 = 0.0021,  

P = 0.806 

Variation in sample area among studies 

did not influence global mean lnRR 
Negative 
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Table S3. Models to identify potential sources of unexplained variation in Log response ratio. 

We began by defining a linear mixed effect model of lnRR values, from n = 92 time points, with 

seven predictor variables as fixed effects, and study sites (n = 31) as random effects. We then 

used a step-backward selection method based on Akaike Information Criteria (AIC) to identify 

the best model. We calculated the ΔAIC for each model in relation to the best model. For 

predictor variables that appeared in models with ΔAIC < 2 (in bold), and were not part of the 

core hypotheses (i.e., secondary grassland type and latitude, as opposed to secondary grassland 

age, Fig. 3), we produced supplemental figures to visualize their relationships with lnRR (SI 

Appendix, Fig. S8, S9). Abbreviations are as follows: MAP, Mean annual precipitation; MAT, 

Mean annual temperature;  SG_type, type of secondary grassland; plot_area , size of the 

sampling unit in each study; Latitude, site location in degrees north or south of the equator; and 

log_time, base 10 logarithm of secondary grassland age. 

 

Model Parameters AIC ΔAIC R2 

LnRR~ Continent + Latitude + MAP + MAT 

+ log_time + SG_type+ plot_area 

7 85.61 7.38 0.399 

LnRR ~ Continent + Latitude + MAP + 

log_time + SG_type + plot_area 

6 83.65 5.42 0.399 

LnRR ~ Continent + Latitude + MAP + 

log_time + SG_type 

5 81.71 3.48 0.398 

LnRR ~ Continent + Latitude + log_time + 

SG_type 

4 80.34 2.11 0.379 

LnRR ~ Latitude + log_time + SG_type 3 78.85 0.62 0.356 

LnRR ~ Latitude + log_time 2 78.23 0 0.322 

LnRR ~ log_time 1 85.48 7.25 0.14 
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SUPPLEMENTARY INFORMATION (FIGURES) 

______________________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Flowchart of the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) for step-wise selection of studies (55). Identification: The Web of Science 

topic search yielded a total of 8336 articles (we were unable to identify additional records in 

recent review articles). Screening: We examined the titles of the 8336 articles to eliminate those 

that were obviously irrelevant (for ambigous titles, we further screened the abstract and 

methods), which resulted in 99 articles for the final screening: Lastly, we read the full texts of 

the 99 articles and determined that 31 articles met the eligibility criteria (see Methods) to be 

included in the analysis. 
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Figure S2. Sensitivity analysis using a plausible covariance of r = 0.25. Studies (n = 31) are 

listed alphabetically by continent and author. Boxes and error bars display the natural logarithm 

of the response ratio (lnRR) and 95% confidence intervals, respectively. Box sizes are 

proportional to the weight of the study. Log response ratios less than zero indicate that old-

growth grasslands are more species-rich than secondary grasslands, whereas values greater than 

zero indicates secondary grasslands are richer. Displayed as a red diamond and red vertical line, 

the global weighted mean (lnRR = -0.46, I2 = 91%, P < 0.0001) equates to secondary grasslands 

supporting 63% of the species richness of old-growth grasslands (SI Appendix, Table S1).   
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Figure S3. Sensitivity analysis using a plausible covariance of r = 0.75. Studies (n = 31) are 

listed alphabetically by continent and author. Boxes and error bars display the natural logarithm 

of the response ratio (lnRR) and 95% confidence intervals, respectively. Box sizes are 

proportional to the weight of the study. Log response ratios less than zero indicate that old-

growth grasslands are more species-rich than secondary grasslands, whereas values greater than 

zero indicate secondary grasslands are richer. Displayed as a red diamond and red vertical line, 

the global weighted mean (lnRR = -0.45, I2 = 89%, P < 0.0001) equates to secondary grasslands 

supporting 64% of the species richness of old-growth grasslands (SI Appendix, Table S1). 



 

 

8 
 

 
 

Figure S4. Sensitivity analysis with an unweighted mean lnRR. Studies (n = 31 are listed 

alphabetically by continent and author. Boxes and error bars display the natural logarithm of 

response ratio (lnRR) and 95% confidence intervals, respectively. Box sizes are proportional to 

the study weights, which are all equal for this unweighted sensitivity analysis. Log response 

ratios less than zero indicate that old-growth grasslands are more species-rich than secondary 

grasslands, whereas values greater than zero indicate secondary grasslands are richer. Displayed 

as a red diamond and red vertical line, the global unweighted mean (lnRR = -0.48, I2 = 61%, P < 

0.0001) equates to secondary grasslands supporting 62% of the species richness of old-growth 

grasslands (SI Appendix, Table S1).
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Figure S5. Sensitivity analysis with two highest-weighted studies excluded. Studies (n = 29 are 

listed alphabetically by continent and author. Boxes and error bars display the natural logarithm 

of the response ratio (lnRR) and 95% confidence intervals, respectively. Box sizes are 

proportional to the weight of the study. Log response ratios less than zero indicates that old-

growth grasslands are more species-rich than secondary grasslands, whereas values greater than 

zero indicate secondary grasslands are richer. Displayed as a red diamond and red vertical line, 

the global weighted mean (lnRR = -0.46, I2 = 85%, P < 0.0001) equates to secondary grasslands 

supporting 63% of the species richness of old-growth grasslands (SI Appendix, Table S1)
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Figure S6. Cumulative meta-analysis to assess publication bias. Studies were sorted by 

publication year (oldest to most recent) and added one by one to the analysis.  With each 

additional study, the effect size was recalculated using a random effects model. Boxes represent 

iteratively calculated effect-sizes and the bars represent 95% confidence intervals. The red 

dashed line represents the global mean (lnRR = -0.46, Fig. 2). Convergence of the iteratively 

calculated effect sizes with the global mean effect size indicates there is no publication bias. 
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Figure S7. Relationship between plot size and log response ratio (lnRR) of secondary 

grassland versus old-growth grassland species richness. Because species-area 

relationships can differ between ecosystems, we sought to determine if variation in 

sample area between studies influenced lnRR. We extracted information on plot size 

(which ranged from 0.009 to 100 m2) from each of the n = 31 studies and conducted a 

linear regression. The regression equation [lnRR = -0.00076(plot size) – 0.4688, (R2 = 

0.0021, P = 0.806)] is displayed as a solid black line; grey shading indicates the 95% 

confidence interval. Given that the slope is non-significant and the y-intercept (lnRR = 

0.47) is very close to the global weighted mean estimates (i.e., lnRR = 0.46, Fig. 2), we 

conclude that variation in plot size had no influence on overall results (Fig. 2, Fig. 3). 
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Figure S8. Comparison of old-growth grassland versus secondary grassland species 

richness based on type of secondary grasslands. Studies (n = 31) are listed by secondary 

grassland classification. Boxes and error bars display the natural logarithm of response 

ratio (lnRR) and 95% confidence intervals (CI), respectively. Box sizes are proportional 

to the weight of the study. Response ratios less than zero indicate that old-growth 

grasslands are more species rich than secondary grasslands, whereas values greater than 

zero indicate secondary grasslands are richer. Yellow diamonds represent the weighted 

subgroup mean and associated 95% CI. The global weighted mean is displayed as a red 

diamond and red vertical line. ‘Plantation/encroachment’ refers to tree plantations and 

woody encroachment; ‘agriculture’ refers to tillage agriculture. 

 



 

 

13 
 

 
 

Figure S9. Relationship between the log response ratio (lnRR) of species richness and 

the absolute latitude of studies. Points represent data from n = 31 studies, and are scaled 

in proportion to their weight (see methods). The regression equation [lnRR = 

0.0217(latitude) - 1.358, R2 = 0.24, P = 0.0026], is displayed as a solid black line; grey 

shading indicates the 95% confidence interval. The horizontal dashed line indicates the 

response ratio at which secondary and old-growth grassland species richness is equal 

(lnRR = 0). Response ratios less than zero indicate secondary grasslands that have fewer 

species compared to old-growth grasslands. The labels tropical (n = 4), subtropical (n = 

6), and temperate (n = 21) correspond to latitudes of < 23.5°, 23.5-35°, and > 35°, 

respectively. 
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Dataset S1 (separate file). Data used for the analyses.   

 

 


