PNAS

WWW.pnas.org

Main Manuscript for

High plant diversity and slow assembly of old-growth grasslands

Ashish N. Nerlekar!” and Joseph W. Veldman'*

"Department of Ecology and Conservation Biology, Texas A&M University, College
Station, TX 77843-2258, U.S.A. “e-mail: ashishnerlekar@tamu.edu (corresponding
author) fe-mail: veldman@tamu.edu

* Ashish N. Nerlekar

Email: ashishnerlekar@tamu.edu
Classification

Biological Sciences: Ecology
Keywords

biodiversity, disturbance, forest, grassland, land-use change, meta-analysis, restoration,
savanna, succession

Author Contributions

AN.N and J.W.V. conceived the study, conducted the literature review, and wrote the
manuscript. A.N.N. performed the statistical analyses.

This PDF file includes:

Main Text



10

11

12

13

14

15

16

17

18

19

20

21

Abstract

Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long
been viewed by scientists and environmental policymakers as early successional plant
communities of low conservation value. Challenging this view, emerging research
suggests that old-growth grasslands support substantial biodiversity and are slow to
recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But
despite growing interest in grassland conservation, there has been no global test of
whether old-growth grasslands support greater plant species diversity than secondary
grasslands (i.e., herbaceous communities that assemble after destruction of old-growth
grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found
that secondary grasslands supported 37% fewer plant species than old-growth grasslands
(log response ratio = -0.46), and that secondary grasslands typically require at least a
century, and more often millennia (projected mean 1400 yr), to recover their former
richness. Young (< 29 yr) secondary grasslands were composed of weedy species, and
even as their richness increased over decades to centuries, secondary grasslands were still
missing characteristic old-growth grassland species (e.g., long-lived perennials). In light
of these results, the view that all grasslands are weedy communities, trapped by fire and
large herbivores in a state of arrested succession, is untenable. Moving forward, we
suggest that ecologists should explicitly consider grassland assembly time and
endogenous disturbance regimes in studies of plant community structure and function.

We encourage environmental policymakers to prioritize old-growth grassland
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conservation and work to elevate the status of old-growth grasslands, alongside old-

growth forests, in the public consciousness.

Significance Statement

The idea that grasslands can be ancient, particularly in climates that also support forests,
is not widely recognized. Consequently, scientists and conservation planners often
misinterpret old-growth grasslands to be low-diversity, successional vegetation, from
which little is lost through conversion to tillage agriculture or tree plantations. We used a
global analysis of herbaceous plant communities to show that after old-growth grasslands
are destroyed, the recovery of plant diversity requires hundreds to thousands of years.
Such slow rates of recovery underscore the need to replace outdated models of forest
succession with models that emphasize the importance of fire, herbivory, and long
periods of time to grassland biodiversity. This study offers evidence that old-growth

grasslands, like old-growth forests, should be prioritized for conservation.

Main Text: Introduction

Grasslands (broadly defined, including savannas and open-canopy grassy woodlands)
occupy 28% of the terrestrial biosphere (1), house a significant proportion of global
biodiversity (2), and support the livelihoods of at least a billion people via multitude of
ecosystem services (e.g. provisioning of water and carbon storage; 3). Given the global
importance of grasslands, it is critical that we accurately conceptualize grassland
ecological dynamics to advance our understanding of plant community responses to

environmental change. Hindering such advances, the idea of climate-determined
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succession (4), one of the dominant ecological paradigms of the past century,
underemphasizes two ubiquitous aspects of grassland ecology and evolution: fires and

large herbivores (5).

Fire and herbivores shaped the ecology and evolution of Earth’s grasslands for
millions of years before the existence of humans (6). Through consumption of
aboveground plant biomass, these two agents of endogenous disturbance (7, 8) maintain
grasslands in places where the climate and soils are suitable for the development of
forests (9). When interpreted through the lens of climatic determinism, with a focus on
trees rather than herbaceous plant community dynamics, frequent fire and herbivory can
appear to reset, or arrest, ecological succession (10, 11). This successional narrative has
contributed to a crisis in grassland conservation: around the world disturbance-dependent
grasslands are widely misclassified as degraded forests (12, 13), overlooked for their
conservation value (14), targeted for agricultural conversion (15), and viewed as
opportunities for carbon sequestration through tree planting and fire exclusion (i.e.,

afforestation and woody encroachment) (16, 17).

The old-growth grassland concept (18)—modelled on parallel ideas in forest ecology
and conservation (19)—is a direct challenge to the narrative that most of earth’s
grasslands are successional communities that ought to become forests (11; 20). Of
primary importance, the concept posits that old-growth grasslands are ecologically
distinct from recently formed (secondary) grasslands (18). It is also important to note that
fire and megafaunal herbivory—the endogenous disturbances that maintain old-growth

grassland diversity (8)—are detrimental to many old-growth forests (e.g., 21). Further,
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readily visible indicators of old-growth forests, such as trees with large girths, are
inapplicable to old-growth grasslands, where signs of antiquity are often underground
(18). Indeed, old-growth grasslands are characterized by slow-growing, long-lived
herbaceous plants, with a suite of traits, including underground storage organs, bud
banks, and rhizomes, which enable resprouting and clonal growth after fire and herbivory

(22, 23).

Although old-growth grasslands include some of the most biodiverse terrestrial
ecosystems, there has been no global-scale test of whether old-growth grasslands are, in
fact, more species-rich than secondary grasslands. Several examples suggest that high
species richness is characteristic of old-growth grasslands. The savannas of the South
American Cerrado support 4800 endemic plant and vertebrate species (24). The Shola
grasslands of India, home to endangered Asian elephants and Bengal tigers, are rich with
herbaceous plants (278 species) (25). The world record for local-scale plant species
richness (89 vascular species/ m?) is held by a montane grassland in Argentina (26). At
the 100 to 1000-m? scales, fire-dependent grasslands of the North American Coastal Plain
can be as rich in vascular plant species as tropical forests (14). While illustrative of the
potential diversity of grassland plant communities, these examples do not tell us how
quickly old-growth grassland plant diversity recovers after intensive land-use change,

such as agriculture or afforestation.

To test the relevance of the old-growth grassland concept to our understanding of
global patterns of herbaceous plant diversity, we conducted a meta-analysis of 31 pairs of

old-growth grasslands and secondary grasslands on six continents (Fig. 1). Because the
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application of the term ‘old growth’ to grasslands is recent, we included studies that used
a variety of synonymous adjectives, including: ancient, intact, native, natural, pristine,
reference, remnant, semi-natural, and undisturbed (S Appendix, Fig. S1). For our
analysis, we compared species richness between pairs of old-growth and secondary
grasslands using a random effects model of the log response ratio [InRR, calculated as
loge(secondary grassland richness/old-growth grassland richness)] (27). To determine the
rate at which secondary grasslands recover the species richness of old-growth grasslands,
we conducted a mixed-effects linear meta-regression (27) of 92 secondary grassland ages
(range 1 to 251 years) extracted from the 31 studies. As is standard in meta-analyses (27),
we weighted each study by the inverse of the associated variance and evaluated the
robustness of our findings through assessments for publication bias and sensitivity (see

Methods).

Following the core meta-analysis, we used data from a subset of studies to better
understand how variation in species richness and grassland age relate to plant community
composition. We first assessed the relationship between total species richness in
secondary grasslands and the recovery of old-growth grassland community composition
(n =10 studies). We then assessed the relationship between grassland age and the number
of weedy species (including ruderals and exotics; n =11 studies with 29 timepoints). In
combination, we expect these analyses of grassland species richness, assembly time, and
community composition to validate patterns that many grassland ecologists have
recognized in specific ecosystems around the world (e.g., 28, 29). Through global meta-

analysis, we hope to expand recognition of the high species diversity and slow assembly
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of old-growth grasslands more broadly among ecologists, environmental policymakers,

and the public.

Results

Our results showed that secondary grasslands support 63% of the species richness of
old-growth grasslands (95% CI: 53%, 76%; global weighted mean InRR: -0.46, 95% CI: -
0.64, -0.28; Fig. 2). For individual studies, InRR ranged from -1.8 to 0.4, with only 2 of
31 studies reporting secondary grasslands to be richer than old-growth grasslands (Fig.
2). The weighted mean InRR was associated with a high level of between-study
heterogeneity (Q = 230, I = 90%, P < 0.0001), which is typical of ecological meta-
analyses (30). Post-hoc assessments suggested that our estimate of the global weighted
mean (i.e., InRR = -0.46) is robust (SI Appendix, Table S1, SI Appendix, Fig. S2-S5).
Tests for publication bias (26) were negative (S Appendix, Table S2, SI Appendix, Fig.

$6-S7).

Secondary grassland age was weakly, but positively, related to the recovery of plant
species richness (Fig. 3, P =0.0001, R’= 0.041). The upper bound of the 95% confidence
interval for the meta-regression model yielded a minimum global recovery time (to InRR
= 0) for plant species richness of ~160 years. Extrapolation of the regression equation,
which should be interpreted cautiously, projected a mean time of ~1400 years for
richness to recover. At the last time point for which we have data (i.e., 251 years, which
is the oldest value permitting interpolation), the regression equation predicted secondary

grasslands to recover 84% of the richness of old-growth grasslands (InRR =-0.17).
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Even as richness increased with time, the communities of plants recolonizing
secondary grasslands remained distinct from those of old-growth grasslands. Based on
regression of the subset of ten studies that reported community similarity indices (Fig.
44), we projected that recovery of species richness (i.e., to InRR = 0) would equate to just
43% (95% CI: 31%, 56%) compositional similarity between old-growth and secondary
grasslands. These persistent differences in community composition can be explained in
part by a preponderance of weedy species in secondary grasslands. Regression of 29
timepoints from 11 sites indicated that in the initial 29 to 130 yr of recovery (range based
on lower 95% CI and mean regression equation for InRR=0; Fig. 48) secondary

grasslands supported more weedy species than did old-growth grasslands.

Discussion

By demonstrating that secondary grasslands support just 63%, and are missing 37%, of
the herbaceous plant species richness of old-growth grasslands (Fig. 2), this meta-analysis
provides support for the applicability of the old-growth grassland concept at the global
scale (18). Evidence of the slow assembly of old-growth grasslands (Fig. 3) underscores
recent calls to move away from the view of most grasslands as a successional stage (11),
toward recognition that endogenous disturbances can sustain species-diverse grasslands
for very long periods of time in climatic zones that can also support forests (5, 9, 10, 17,
22). Compared to old-growth forests, which are widely recognized and intensively
studied (31, 32), we still know relatively little about old-growth grasslands. We hope that
these results will motivate future studies, analogous to research on secondary forests (31),

to better understand the recovery rates of secondary grasslands with different land-use
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histories (S Appendix, Fig. S8), and to compare grasslands of the tropics to those of

temperate latitudes (S/ Appendix, Fig. S9) (22).

In our analysis, we focused on one aspect of plant diversity—species richness—a
community metric available from the modest number of 31 grassland studies that
included both old-growth and secondary grasslands. Because species richness figures
prominently in the application of community ecology to questions of global change [e.g.,
(33)], we suggest that recognizing old-growth grasslands as distinct from secondary
grasslands will improve our understanding of the relationships among plant diversity,
community assembly time, and ecosystem functioning (18, 34). Doing so would pull
together disparate, but clearly related, lines of research, such as those framed around
agricultural legacies (29), fire exclusion (17), declines of native megafauna (35), woody
encroachment (36), and nutrient pollution (37), to help clarify the distinct ecological

consequences of human activities for old-growth versus secondary grasslands.

Our results show that old-growth grasslands, once destroyed, require at least a century,
and more typically millennia, to recover their plant species richness (Fig. 3); full recovery
of plant community composition will take even longer (Fig. 44). To be clear, the
recovery of species richness is not the same as the recovery of community composition;
two communities can have the same number of species, while the identity of those
species can be quite different (38). For the subset of sites that provided compositional
data, recovery of species richness equated to just 43% similarity in community
composition between secondary and old-growth grasslands (Fig. 44). Thus, our estimate

of the time required for secondary grasslands to attain the richness of old-growth
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grasslands (160 to 1400 yr; Fig. 3) is certainly less than the time required for secondary
grasslands to recover the community composition (i.e., the full suite of species and
abundances) of old-growth grasslands. This echoes research on secondary tropical
forests, where tree species richness typically rebounds within 50 yr, but recovery of the

composition of old-growth forests requires many centuries or longer (39).

One reason that richness is thought to recover more rapidly than community
composition is because weedy species are quick to colonize secondary grasslands (e.g.,
40). Consistent with this idea, and based on the 11 studies that reported data on weedy
plants (including, ruderal and non-native species), we found that compared to old-growth
grasslands, young secondary grasslands supported more weedy species. Evidence that
elevated numbers of weedy species persisted for 29 to 130 yr in secondary grasslands
(Fig. 4B) underscores recent calls for grassland experiments to consider compositional
changes over longer periods of time [i.e., >10 yr (41)]. From our analysis, it appears that
while weedy species partially compensated for reduced species richness in secondary
grasslands, certain species characteristic of old-growth grasslands remained missing even

after many decades to centuries (Fig. 3, Fig. 44, B).

Why are certain old-growth grassland species missing in secondary grasslands? A
plausible explanation is that above-ground disturbances (i.e., fire and herbivory), which
select for persistence in old-growth species, are fundamentally different from the
anthropogenic disturbances, like tillage agriculture, that destroy underground organs and
select for secondary grassland species with high colonization ability (18). To explore this
possibility, we revisited the results and discussions of the 31 studies included in the meta-

10
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analysis and found that the missing species most frequently described by authors (S7
Appendix, Dataset 1) were native perennial grasses (typically with C4 photosynthesis) and
native perennial forbs (often species with underground storage organs). Missing species
were also described as fire-promoting and shade-intolerant, with high capacity to
resprout. Authors further described missing species as being stress-tolerant with poor
colonization ability, producing seeds dispersed by gravity or ants, forming limited seed
banks, and relying on clonal growth or asexual reproduction. In addition, authors noted
missing species that were of conservation concern in specific regions. These included:
medicinally important species in Africa; annual hemiparasites in Asia; composites
(Asteraceae) and legumes (Fabaceae) in North and South America; perennial sedges and
orchids, and threatened IUCN Red-list species in Europe; woody sub-shrubs
(underground trees) in South America, and endemic grasses in Australia (S7 Appendix,
Dataset 1). These descriptions match the key functional types of old-growth grassland
species that are thought to be most vulnerable to anthropogenic environmental change

(22).

In addition to functional traits (e.g., persistence-colonization trade-off; 42, 43), a
multitude of ecological mechanisms likely contribute to the lower richness and slow
recovery of secondary grasslands relative to old-growth grasslands. Indeed, a central
focus of grassland restoration ecology is to identify these mechanisms and overcome the
limitations to old-growth grassland community assembly (44). In some ecosystems,
landscape effects, such as spatial isolation (45) or limited habitat connectivity (46),

restrict the arrival of plant propagules. In others, site-level conditions, such as severely

11
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altered soil conditions (47) and species interactions (e.g., priority effects and plant-soil
feedbacks; 48) limit the establishment of old-growth grassland species. Also important,
but often overlooked in grassland restoration studies (49), is the role of vegetation-
disturbance feedbacks (e.g., 50; 51). Plant communities determine the quantity and
quality of biomass available for fire and herbivores to consume, and in turn fire and
herbivores influence grassland community composition via selection on plant traits (52).
Given their differences in species composition (Fig.44, B), we should expect pairs of old-
growth and secondary grasslands to also differ in aspects of their disturbance regime,
such as frequency, seasonality, and intensity, even if they experience the same
disturbance type (i.e., fire, grazing, or haying). In sum, altered disturbance regimes,
reinforced by vegetation-disturbance feedbacks (53), should be considered among the
probable mechanisms for reduced species richness and slow compositional recovery of

secondary grassland communities (8).

Conclusion

In light of the high diversity of old-growth grasslands (Fig. 2) and the many
documented challenges to their restoration (8), we encourage environmental
policymakers to give old-growth grasslands equal consideration as old-growth forests
(32) in efforts to conserve earth’s biodiversity. We are particularly concerned that recent
research and emerging land-use policies, meant promote tree-planting for carbon
sequestration, are a threat to undervalued grassland biodiversity and ecosystem services
(16, 17). Fundamental to these afforestation efforts has been the assumption that old-
growth grasslands that occur where climate-vegetation models suggest forest as the

12
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potential vegetation must be degraded. Our analysis shows that the reality on the ground
is much more complicated. Indeed, most of the species-rich old-growth grasslands in this
analysis occur in climates that can support forests [Fig. 1; (5)]. We urge conservation
initiatives to safeguard against the conversion of old-growth grasslands for tree planting
or tillage agriculture, to maintain biodiverse grasslands with frequent fires and
megafaunal herbivores, and to emphasize the recovery of grassland plant communities in

efforts to restore Earth’s biodiversity.

Materials and Methods

Literature search and screening

To identify studies that compared species richness in old-growth grasslands and
secondary grasslands, we conducted a literature search of peer-reviewed journal articles
in the Web of Science database (27, 54). This initial Web of Science search yielded a
total of 8336 articles. We examined the titles of these 8336 articles for relevance and
retained 745 articles. We then screened the abstract (and methods in some cases) of these
745 articles to arrive at a shortlist of 99 articles for detailed examination. We then
examined in detail the full texts of these 99 articles, which resulted in a final set of 31
articles that met our eligibility criteria (described below) for inclusion in the analyses (S7

Appendix, Fig. S1) (55).

For the initial search, we used the advanced search function in Web of Science to identify
articles published from 1 January 1900 to 14 November 2018 that fit the following topic

search (TS) criteria (i.e., terms found in titles, abstracts, and key words):
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TS = (savanna* OR grassland* OR woodland* OR pine OR pinus OR eucalypt* OR
cerrado OR prairie OR veld* OR steppe) AND TS=(herb* OR grass* OR forb* OR
understor®*) AND TS=(richness OR diversity) AND TS=("old growth" OR secondary
OR succession* OR remnant* OR "old field" OR restor* OR reference OR abandon*
OR "post agric*" OR "woody encroach*" OR mine OR mining OR degrad* OR
pasture OR plantation OR afforest™*)
We subsequently scrutinized the articles to ensure that they met the following criteria. 1)
Study sites were grasslands, broadly defined to include savannas and open-canopy grassy
woodlands (22). As such, the studies in our analysis encompass herbaceous-dominated
ecosystems with scattered trees that are often called ‘forests’ or ‘woodlands’ (12). 2)
Studies included old-growth grasslands (18) that were either clearly described in the
article or that we were able to verify through correspondence with the authors. Because
there is a wide range of synonymous terminology for old-growth grasslands in the
literature, we screened studies to ensure that there were no major human-induced
structural or functional alterations to the historical herbaceous plant communities, and
that current ecosystem management closely resembled historical, endogenous disturbance
regimes (8). As such, we included study sites that supported large herbivores (domestic
livestock and/or native megafauna), were burned with prescribed fire or wildfire, or
where other regular aboveground disturbance (i.e., mowing or haying) served as a
surrogate for fire and herbivory (18). 3) Studies included secondary grasslands (11) on
sites previously occupied by old-growth grasslands that had been destroyed by tillage
agriculture, tree plantations, or other intensive land uses. 4) Studies reported data for

herbaceous plant species richness for both old-growth and secondary grasslands. 5) Study
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plots were not treated with nutrient additions (e.g., nitrogen or phosphorous fertilizers). 6)
Studies were conducted in a unique location; where multiple papers provided data for the
same study location, we excluded all but the most complete (i.e., best replicated, longest
duration) paper for that location. 7) We only included studies on ‘actively restored’
grasslands (i.e., restoration treatments such as sowing seed mixtures, soil or hay transfer)
if the study included a control treatment of ‘passive restoration’ (i.e., secondary grassland
communities assembling without propagule additions). For such studies, we only
extracted data from the passively restored secondary grasslands and the paired old-growth

grasslands.

Data extraction

Response variables

Total species richness: We extracted the mean total species richness per unit area for the
old-growth grasslands and secondary grasslands in each study. For studies that only
presented richness in figures (n = 20), we calculated the mean richness using the image
analysis software Imagel (56). For studies (n = 2) that reported median richness but not
mean, we used the median, since these studies had either non-normal data (as verified
from figures) or a large (>25) sample size (57). In cases where studies appeared to have

measured richness, but did not report richness, we contacted the authors (n = 4).

Weedy species richness: For each study, we determined whether the authors presented
data on weedy species. We included any group of species that the authors identified using
one, or a combination of, the following terms: ruderals (including annuals, perennials or
both), weedy species, arable weeds, alien species, exotic species, or invasive species.
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Using the same approaches as for total species richness (described above), we were able

to extract weedy species richness from 11 studies, yielding 29 time points.

Compositional similarity: 10 out of the 31 studies reported the similarity of old-growth
and secondary grassland plant communities as Jaccard’s (n = 4), Bray-Curtis (n = 3) and
Sorensen’s (n = 3) indices. For studies that reported dissimilarity we converted the index
to similarity (i.e., 1-dissimilarity). Because these indices range from 0 to 1, we analysed

them without further transformation (58).

Predictor and moderator variables

Location: We used the latitude and longitude of the sites reported in the methods of each

study to map study locations (Fig. 14) using Q-GIS v 2.10.1 (59).

Precipitation and temperature: We obtained mean annual precipitation and temperature
for each location from the WorldClim2 database (60). In cases where the author-reported
precipitation deviated more by more than 100 mm (n = 4 cases) from the WorldClim2
data, we used the author-reported values. We plotted mean annual precipitation versus
mean annual temperature (Fig. 1B8) with Minitab (Minitab I.N.C., Pennsylvania State

University, USA).

Type of secondary grassland: We used authors’ descriptions of land-use history to
classify secondary grasslands into one or more of the following categories for
supplemental analyses: tree-plantations/woody encroachment; tillage agriculture; soil
excavation; planted pasture; or other (SI Appendix, Table S3, SI Appendix, Fig. S8).
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Age of secondary grassland: We determined the assembly time (in years) for each
secondary grassland based on author-reported time since the last grassland-damaging
[i.e., exogenous (8)] disturbance or time since land abandonment. If secondary grasslands
were classified by a range of ages, we used the mean of the range. For open-ended
classes, we approximated the value to get a conservative estimate of age [e.g. for Oster et
al. (61), we considered the class “<10 years” to be 5 years and “>50 years” to be 55
years]. In the one study with multiple sites of different ages (i.e., Brudvig et al. (62), with
sites of age 90 years, 69 years, 58 years) we calculated a weighted mean age (weighted
by sample size). For studies (n = 3) that provided a large number (>30) of data points
across a range of secondary grassland ages, we extracted a subset of discrete time points
to represented the range. For the two (of the 92 secondary grassland timepoints) that were
sampled after one growing season, we coded their age as one year rather than as a

fraction of a year, to avoid giving them undue weight in our log(time) regression (Fig. 2).

Statistical analyses

Effect size

To compare the differences between old-growth and secondary grassland species
richness, we calculated the log response ratio (InRR) as the effect size (63). The InRR has
been widely used in ecology (64) and has several desirable properties. A major advantage
of InRR over other effect-size metrics is that it does not require variance data for
computation (63). For our calculations, InRR = log. (Ys/ Y,) where Ys= species richness

for secondary grasslands, Y,= species richness for old-growth grasslands. Thus, values of
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InRR < 0 indicated old-growth grasslands have greater richness than secondary
grasslands, whereas InRR > 0 indicated secondary grasslands are richer than old-growth
grasslands, and InRR = 0 indicated both grassland classes are equally rich in species. For
studies that provided more than one data point by time, we calculated the composite

effect size per study (65).

Variance and weights

We calculated the variance of InRR (Virr) based upon reported sample sizes (66) using
Vinrr = (Ns + No)/(Ns X No), where N is the sample size for secondary grasslands and N,
is the sample size for old-growth grasslands. By calculating Vinrr in this manner, we
were able to standardize the variance estimates across studies and obtain estimates for
those studies that did not report variance, or that had pseudo-replicated or otherwise
poorly described study designs (67, 68) (SI Appendix, Table S1). We weighted the InRR
for each study by the inverse variance, such that studies with higher variance were given
lower weights (27). We used OpenMEE (69) to perform the meta-analysis (Fig. 2),
including tests for heterogeneity, publication bias, and sensitivity. We considered meta-
analysis results to be statistically significant (at « = 0.05) if the 95% confidence intervals

(CI) of the overall mean InRR did not include zero.

Handling non-independent observations

Several studies reported multiple (non-independent) data points (n = 18), unbalanced
study designs, or both. We calculated the variance of the composite InRR for studies with
unequal sample sizes (and thus unequal variances) as (1/n)* (X Vi, i=1twn+ 2Yi; (i \V;
\/Vj)), where n=number of observations in the study and r;j = correlation coefficient

18



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

(covariance) between the pair of effect sizes under consideration (27, 65). If a study had
equal sample sizes (and thus equal variances), the above formula was simplified to: (V/n)
x Variance Inflation Factor (VIF) (27), where VIF =1 + (n-1) % 7. This formula thus
takes into account the non-independence of multiple observations reported by a single
study through the covariance factor. The possible values of ‘7’ range from 0 to 1
(assuming the correlation is positive), but we cannot know the true value of » in the
selected studies. To apply » = 0 would be to assume that observations are independent,
and result in an underestimation of the variance. Conversely, to apply » = 1 would assume
perfect (100%) correlation and certainly overestimate the variance (65). We chose to
apply » = 0.5 as a plausible value for our analysis (65), and verified that other plausible
values (i.e., » = 0.25 and 0.75), yielded similar results (SI Appendix, Table S1, ST

Appendix, Fig. S2, S3).

Between-study heterogeneity

We calculated the weighted overall mean effect size (InRR) for n = 31 studies using a
random effects model, with between-study variance estimated using the restriction
maximum likelithood (REML) approach (70). We also used REML to calculate effects by
sub-groups using moderator variables (as in ST Appendix, Fig. S8). To test if there was
significant heterogeneity associated with the effect sizes, we computed the Q statistic (a
measure of between-study variance), and tested this against a X? distribution [with n-1
degrees of freedom (dof), n» = number of studies] (27). Because the Q statistic has low

power and is not intuitive by itself (27, 65), we also report heterogeneity with the I
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statistic [approximately equal to 100 x (Q-dof/Q)], which yields a more intuitive measure

of heterogeneity, from 0 to 100% (65).

Sensitivity analyses

We performed several sensitivity analyses to verify that the meta-analysis results were
robust. 1) To determine if using the pseudo-replicated (within-study) sample sizes
affected our conclusions, we performed a post-hoc sensitivity analysis by repeating our
meta-analysis without the two studies with highest sample sizes (and consequently
highest weights) (SI Appendix, Table S1, SI Appendix, Fig. S5). Given the overall result
did not change with exclusion of these highly weighted studies, this analysis supported
our use of study sample sizes to estimate variances (71, 72). 2) To assess the sensitively
of our results to our assumption of covariance of » = 0.5, we repeated the analysis using
other plausible covariance values (» = 0.25, » = 0.75) and verified that results did not
deviate substantially with changes in 7 [as in (73); SI Appendix, Table S1, SI Appendix,
Fig. S2, S3]. 3) Given the high between-study heterogeneity obtained from the weighted
model, and to further assess the sensitivity of the calculated overall mean InRR to the
weighting of studies, we calculated an unweighted mean InRR (27) (ST Appendix, Fig.

S4).

Meta-regression of species richness and time

We tested for the effect of secondary grassland age on InRR using a meta-regression
mixed-effect model that treated each study as a random effect [i.e., REML method; (27)].
To understand the proportion of variance explained by the regression model (27), we
calculated R? as Ou/(Om + Or). We performed the meta-regression using the metafor
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package (70) in R (v 3.6.3) (74). We created all the regression analyses figures using the

ggplot2 package (75) in R (v 3.6.3) (74).

Regression analyses of compositional similarity and weedy species

To understand the relationship between the InRR of total species richness and
compositional similarity of secondary grasslands to old-growth grasslands, we performed
fixed-effect linear regression in the R base package stats (v 3.6.3) (74) for the n =10
studies that reported compositional similarity data. To analyse how InRR of weedy
species richness changes with secondary grassland age, we constructed a linear mixed-
effect model to predict weedy species InRR (with secondary grassland age as the fixed
effect and study as the random effect) using the nlme package (76) in R (v 3.6.3) (74) for
n =11 studies (and 29 timepoints). For both these analyses, we chose not to weight the
data points (as would be done in meta-regression) given that these studies represent a

relatively small subset of the full meta-analysis dataset.

Exploratory models of unexplained variance in InRR

Given the high between-study heterogeneity (1> = 90%, Fig. 2), we explored whether
unexplained variance in InRR was attributable to variables that were not part of our core
hypothesis [as in (77)]. We constructed linear mixed-effect models, with study as a
random effect, to predict InRR based on: continent, latitude, secondary grassland age,
MAP, MAT, type of secondary grassland, and sample area (SI Appendix, Table S3).

We generated a starting model using the n/me package (76) in R (v 3.6.3) (74). We then
used a step backward selection method, based on Akaike Information Criteria (AIC), to
identify the best model [MASS package (78)]. The marginal R’ value associated with each
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model was calculated separately by using the PIECEWISESEM package (79). To
visualize the relationships between InRR and the continuous and categorical predictor
variables retained in the top models (AAIC < 2 compared to the best model; SI Appendix,
Table S3), we presented results by secondary grassland type (S Appendix, Fig. S8) and

conducted a meta-regression for latitude (SI Appendix, Fig. S9).

Publication bias

To assess publication bias, we first performed non-parametric correlation tests
(Spearman’s rho and Kendall’s tau) between the standardized effect sizes and the
composite variance as a substitute (27) (SI Appendix, Table S2). A significant positive or
negative correlation would indicate publication bias (27). Second, we performed a
Cumulative Meta-Analysis (CMA) to assess publication bias (SI Appendix, Fig. S6) with
publications sorted by year and using a random-effects model (80). The CMA re-
calculates the cumulative effect size after adding studies, one by one (80). In the end, if
the effect sizes do not converge with the calculated effect size, this would suggest bias
(27). Lastly, to assess publication bias, we calculated the Rosenberg’s fail-safe number —
1.e., the number of studies with the same weight as the average of the current set of
studies that would be needed to render the results non-significant at a=0.05 (81); results
are considered unbiased if the number is high (> 5% n + 10) (65). We chose this metric
because it uses a weighted approach, whereas alternative metrics (e.g., Rosenthal’s and
Orwin’s) use an unweighted approach (27). To test if variation in sampling area affected
InRR, we conducted a regression between plot size in each study and InRR (S7 Appendix,

Fig. S7).
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Figure Captions:

Figure 1. Geographic and climatic distribution of paired old-growth grassland and
secondary grassland study sites. (4) Locations of the 31 studies included in the meta-
analysis. (B) Bi-variate plot of mean annual precipitation and mean annual temperature

for each study location.

Figure 2. Global comparison of species richness in old-growth grasslands and secondary
grasslands. The 31 plant community studies (left column) are listed alphabetically by
continent and author, and are marked by the type of aboveground disturbance that
currently maintains old-growth grasslands at each site. For each study, boxes and solid
lines display the natural logarithm of the response ratio [loge (secondary grassland
richness/old-growth grassland richness)] and 95% confidence intervals, respectively. Box
sizes are proportional to the weight of the study (see methods). Response ratios less than
zero indicate that old-growth grasslands are more species-rich than secondary grasslands,
whereas values greater than zero indicate secondary grasslands are richer. Displayed as a
red diamond and red vertical line, the global weighted mean response ratio (-0.46, I>=
90%, P = 0.0001) equates to secondary grasslands supporting 63% of the richness of (or
37% fewer species than) old-growth grasslands (ends of the diamond indicate the 95%
CI: -0.64 to -0.28, equivalent to 53% and 76%). See SI Appendix, Dataset 1 for full study

citations.
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Figure 3. Relationship between secondary grassland age and the recovery of old-growth
grassland species richness. Black circles represent secondary grassland age (n = 92,
range: 1 to 251 years, extracted from n = 31 studies) and are scaled in proportion to their
weight (see Methods; note age is represented on a logio scale). The meta-regression
model accounts for this weight and the random effect of each study location. The
regression equation, InRR = 0.2279 [logio(secondary grassland age)] - 0.7201 (R>=
0.041, P=0.0001), is displayed as a solid black line; grey shading indicates the 95%
confidence interval. The horizontal dashed line indicates the response ratio at which
secondary and old-growth grassland species richness is equal (InRR = 0). Response ratios
less than zero indicate secondary grasslands that have fewer species compared to old-

growth grasslands.

Figure 4. Indicators of plant community composition in relation to secondary grassland
species richness and age. (4) Relationship between the log response ratio (InRR) of total
species richness and the compositional similarity between secondary and old-growth
grassland communities. Data are from n = 10 studies that reported similarity indices. The
regression equation, similarity = 0.2681(InRR) + 0.4332 (R*>= 0.536, P = 0.016), is
displayed as a solid black line; grey shading indicates the 95% confidence interval. The
horizontal dashed line (similarity = 0.5) indicates the level at which secondary grasslands
are 50% similar to old-growth grasslands in species composition. At InRR = 0, secondary
and old-growth grasslands are equal in total species richness. (B) Relationship between
the InRR of weedy species richness and age of secondary grasslands. The mixed-effect
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regression model is based on the n = 11 studies (random effect) that reported weedy
species richness for n = 29 timepoints (age as fixed effect). The regression equation,
InRR = -0.8597 [logio(secondary grassland age)] + 1.8164 (R>=0.274, P < 0.0001), is
displayed as a solid black line; grey shading indicates the 95% confidence interval. At

InRR = 0, secondary and old-growth grasslands are equal in weedy species richness.
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SUPPLEMENTARY INFORMATION (TABLES)

Table S1. Sensitivity analyses for the global meta-analysis comparing species richness of old-growth and secondary grasslands.
Compared to the global meta-analysis (» = 0.5, InRR =-0.46, Fig. 2), models with plausible covariances that were lower (» = 0.25) and
higher ( = 0.75) yielded very similar results (InRR = -0.46 and -0.45, respectively). An unweighted model (InRR =-0.48) and a
weighted model that excluded the two highest-weighted studies (InRR = -0.46) confirmed that the global meta-analysis results were
not driven by weighting. Columns in the table report: InRR, the associated confidence intervals (CI), p-values for the heterogeneity
test (P), the between-study heterogeneity (), and the number of studies included in the model ().

Model Purpose of Sensitivity Test LnRR 95% CI P P n
Weighted mean InRR, Global meta-analysis (Fig. 2) 0458  -0.637,-0278  <0.0001  90% 31
random effects model (r = 0.5)
Weighted mean InRR, To determine the effect of low
random effects model (r = plausible covariance estimate on -0.463 -0.643, -0.284 <0.0001 91% 31
0.25) results (S Appendix, Fig. S2)
Weighted mean InRR, To determine the effect of high
random effects model (r = plausible covariance estimate -0.450 -0.629, -0.272 <0.0001 89% 31
0.75) (S Appendix, Fig. S3)

To determine the effect of weighting
Unweighted mean InRR on the global meta-analysis results -0.484 -0.662, -0.305 <0.0001 61% 31
(S Appendix, Fig. S4)

Weighted mean InRR, To determine whether results were
random effects model (r = heavily influenced by the two
0.5), two highest-weighted highest-weighted studies -0.401 -0.656, -0.266 <0.0001  85% 29
studies excluded (SI Appendix, Fig. S5)




Table S2. Tests for bias. We performed three tests to assess publication bias (27, 80, 81), and one test for the influence of sample plot

size on InRR, all of which were negative. The rows describe the tests, associated statistics, test interpretations, and the result of the
tests.

TEST DESCRIPTION TEST STATISTICS INTERPRETATION RESULT

Correlation between
standardized effect sizes and
standard errors (27)

Spearman’s tho =-0.176, P=0.343;

Kendall’s tau = -0.1185, P= 0.349 Correlations were not significant Negative

. . Over time (publication year), effect size
Cumulative meta-analysis (80) ) .
oo NA became more negative, and converged Negative

(81 Appendix, Fig. S6)

with global mean InRR

Fail-safe number was greater than the

R berg’s fail saft b
OSCNDELE 'S Tall sale number Fail-safe number: 2165 minimum cut-off of 165 (i.e., 5x n+10; Negative

81
(81) where n = number of studies)
Relationshi lot si
elationship between p O_t s1ze Slope: -0.00076, R*=0.0021, Variation in sample area among studies ,
and InRR (S7 Appendix, . : Negative
Fig. S7) P=0.806 did not influence global mean InRR




Table S3. Models to identify potential sources of unexplained variation in Log response ratio.
We began by defining a linear mixed effect model of InRR values, from n = 92 time points, with
seven predictor variables as fixed effects, and study sites (n = 31) as random effects. We then
used a step-backward selection method based on Akaike Information Criteria (AIC) to identify
the best model. We calculated the AAIC for each model in relation to the best model. For
predictor variables that appeared in models with AAIC <2 (in bold), and were not part of the
core hypotheses (i.e., secondary grassland type and latitude, as opposed to secondary grassland
age, Fig. 3), we produced supplemental figures to visualize their relationships with InRR (S7
Appendix, Fig. S8, S9). Abbreviations are as follows: MAP, Mean annual precipitation; MAT,
Mean annual temperature; SG_type, type of secondary grassland; plot area , size of the
sampling unit in each study; Latitude, site location in degrees north or south of the equator; and
log time, base 10 logarithm of secondary grassland age.

Model Parameters AIC AAIC R’

LnRR~ Continent + Latitude + MAP + MAT 7 85.61 738 0.399
+ log_time + SG_type+ plot_area

LnRR ~ Continent + Latitude + MAP + 6 83.65 542 0.399
log_time + SG_type + plot_area

LnRR ~ Continent + Latitude + MAP + 5 81.71 3.48  0.398

log_time + SG_type
LnRR ~ Continent + Latitude + log_time + 4 80.34 2.11  0.379
SG_type

LnRR ~ Latitude + log_time + SG_type 3 78.85 0.62 0.356

LnRR ~ Latitude + log_time 2 78.23 0 0.322

LnRR ~ log_time 1 85.48 7.25 0.14




SUPPLEMENTARY INFORMATION (FIGURES)
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Figure S1. Flowchart of the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) for step-wise selection of studies (55). Identification: The Web of Science
topic search yielded a total of 8336 articles (we were unable to identify additional records in
recent review articles). Screening: We examined the titles of the 8336 articles to eliminate those

that were obviously irrelevant (for ambigous titles, we further screened the abstract and

methods), which resulted in 99 articles for the final screening: Lastly, we read the full texts of
the 99 articles and determined that 31 articles met the eligibility criteria (see Methods) to be

included in the analysis.




Studies (n= 31)
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Figure S2. Sensitivity analysis using a plausible covariance of » = 0.25. Studies (n = 31) are
listed alphabetically by continent and author. Boxes and error bars display the natural logarithm
of the response ratio (InRR) and 95% confidence intervals, respectively. Box sizes are
proportional to the weight of the study. Log response ratios less than zero indicate that old-
growth grasslands are more species-rich than secondary grasslands, whereas values greater than
zero indicates secondary grasslands are richer. Displayed as a red diamond and red vertical line,
the global weighted mean (InRR = -0.46, >=91%, P < 0.0001) equates to secondary grasslands
supporting 63% of the species richness of old-growth grasslands (SI Appendix, Table S1).
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Figure S3. Sensitivity analysis using a plausible covariance of » = 0.75. Studies (n = 31) are
listed alphabetically by continent and author. Boxes and error bars display the natural logarithm
of the response ratio (InRR) and 95% confidence intervals, respectively. Box sizes are
proportional to the weight of the study. Log response ratios less than zero indicate that old-
growth grasslands are more species-rich than secondary grasslands, whereas values greater than
zero indicate secondary grasslands are richer. Displayed as a red diamond and red vertical line,
the global weighted mean (InRR = -0.45, >= 89%, P < 0.0001) equates to secondary grasslands
supporting 64% of the species richness of old-growth grasslands (S7 Appendix, Table S1).
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Figure S4. Sensitivity analysis with an unweighted mean InRR. Studies (n = 31 are listed
alphabetically by continent and author. Boxes and error bars display the natural logarithm of
response ratio (InRR) and 95% confidence intervals, respectively. Box sizes are proportional to
the study weights, which are all equal for this unweighted sensitivity analysis. Log response
ratios less than zero indicate that old-growth grasslands are more species-rich than secondary
grasslands, whereas values greater than zero indicate secondary grasslands are richer. Displayed
as a red diamond and red vertical line, the global unweighted mean (InRR = -0.48, = 61%, P <
0.0001) equates to secondary grasslands supporting 62% of the species richness of old-growth
grasslands (S Appendix, Table S1).
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Figure SS. Sensitivity analysis with two highest-weighted studies excluded. Studies (n = 29 are
listed alphabetically by continent and author. Boxes and error bars display the natural logarithm
of the response ratio (InRR) and 95% confidence intervals, respectively. Box sizes are
proportional to the weight of the study. Log response ratios less than zero indicates that old-
growth grasslands are more species-rich than secondary grasslands, whereas values greater than
zero indicate secondary grasslands are richer. Displayed as a red diamond and red vertical line,
the global weighted mean (InRR = -0.46, I>= 85%, P < 0.0001) equates to secondary grasslands
supporting 63% of the species richness of old-growth grasslands (SI Appendix, Table S1)
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Figure S6. Cumulative meta-analysis to assess publication bias. Studies were sorted by
publication year (oldest to most recent) and added one by one to the analysis. With each
additional study, the effect size was recalculated using a random effects model. Boxes represent
iteratively calculated effect-sizes and the bars represent 95% confidence intervals. The red
dashed line represents the global mean (InRR =-0.46, Fig. 2). Convergence of the iteratively
calculated effect sizes with the global mean effect size indicates there is no publication bias.
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Figure S7. Relationship between plot size and log response ratio (InRR) of secondary
grassland versus old-growth grassland species richness. Because species-area
relationships can differ between ecosystems, we sought to determine if variation in
sample area between studies influenced InRR. We extracted information on plot size
(which ranged from 0.009 to 100 m?) from each of the n = 31 studies and conducted a
linear regression. The regression equation [InRR = -0.00076(plot size) — 0.4688, (R*=
0.0021, P =0.806)] is displayed as a solid black line; grey shading indicates the 95%
confidence interval. Given that the slope is non-significant and the y-intercept (InRR =
0.47) is very close to the global weighted mean estimates (i.e., InRR = 0.46, Fig. 2), we
conclude that variation in plot size had no influence on overall results (Fig. 2, Fig. 3).
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Figure S8. Comparison of old-growth grassland versus secondary grassland species
richness based on type of secondary grasslands. Studies (» = 31) are listed by secondary
grassland classification. Boxes and error bars display the natural logarithm of response
ratio (InRR) and 95% confidence intervals (CI), respectively. Box sizes are proportional
to the weight of the study. Response ratios less than zero indicate that old-growth
grasslands are more species rich than secondary grasslands, whereas values greater than
zero indicate secondary grasslands are richer. Yellow diamonds represent the weighted
subgroup mean and associated 95% CI. The global weighted mean is displayed as a red
diamond and red vertical line. ‘Plantation/encroachment’ refers to tree plantations and
woody encroachment; ‘agriculture’ refers to tillage agriculture.
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Figure S9. Relationship between the log response ratio (InRR) of species richness and
the absolute latitude of studies. Points represent data from »n = 31 studies, and are scaled
in proportion to their weight (see methods). The regression equation [InRR =
0.0217(latitude) - 1.358, R*=0.24, P = 0.0026], is displayed as a solid black line; grey
shading indicates the 95% confidence interval. The horizontal dashed line indicates the
response ratio at which secondary and old-growth grassland species richness is equal
(InRR = 0). Response ratios less than zero indicate secondary grasslands that have fewer
species compared to old-growth grasslands. The labels tropical (n = 4), subtropical (n =
6), and temperate (n = 21) correspond to latitudes of <23.5°, 23.5-35°, and > 35°,
respectively.
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Dataset S1 (separate file). Data used for the analyses.
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