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Temperature-dependent line mixing and line broadening parameters were empirically-determined for
rovibrational transitions (] = 99-145) in the (00°0 — 00°1) and (01'0 — 01'1) bandheads of carbon diox-
ide near 4.2 pm. Collisional effects by argon on the high rotational energy lines (E” = 3920-8090 cm~')
in the R-branch were studied over a range of temperatures from 1200-3000 K in a shock tube. Mea-
sured absorption spectra comprising the target lines in an argon bath gas at near-atmospheric pressures
were fit with Voigt profiles to determine line-broadening coefficients, with temperature dependence ac-
counted by a power law. With line broadening established, line-mixing effects were examined at elevated
pressures up to 58 atm and similar temperatures, reflecting conditions in high-pressure combustion envi-
ronments. A modified exponential gap model for line mixing was developed to capture the pressure and
temperature dependence of collisional transfer rates for the bandhead region using the relaxation matrix
formalism.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon dioxide (CO,) is an important molecule in climatology,
biology, planetary astronomy, and combustion chemistry. High-
temperature spectroscopy of CO, is relevant for remote sensing
of extraterrestrial atmospheres [1,2], combustion diagnostics [3],
and thermal radiation modeling in the development of planetary
entry systems [4,5]. In these applications, quantitative simulation
and analysis is enabled by accurate spectroscopic data with ap-
propriate thermodynamic scaling across relevant conditions. This
work experimentally investigates the CO, spectra near 4.2 pym at
high-temperature conditions relevant to combustion and propul-
sion over a broad range of pressures (up to 58.3 atm), with the
goal of developing an accurate model of the target spectral domain
that accurately captures relevant collisional effects.

The far-wing R-branch transitions of the CO, asymmetric
stretch (v3) fundamental bands near 4.2 pm have been exten-
sively used for quantitative thermochemical sensing in combustion
flows, owing to the high absorptivity and spectral isolation from
other combustion species. Researchers have targeted several rovi-
brational transitions in these bands for CO, measurements to char-
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acterize scramjet combustor performance [6] (T = 1500-2500 K,
P < 2 atm) and spatially-resolve thermochemistry in flames [7-
12] (T = 1000-2200 K, P < 1 atm). Several shock tube kinet-
ics studies of combustion chemistry have been aided by sensitive
time-resolved CO, species measurements probing this infrared re-
gion [13-16] (T = 500-2000 K, P < 6 atm). More recently, this
spectral domain comprising the bandhead was targeted for in-
chamber rocket combustion gas sensing at much higher temper-
atures and pressures (T > 3000 K, P > 50 atm) [17]. At high gas
densities, spectrally dense bandhead regions are susceptible to col-
lisional line mixing in addition to broadening [18]. Here we exam-
ine line broadening and mixing of CO, in argon (Ar) for a group
of high-energy transitions belonging to the v;v,2v5(00°0 — 00°1)
and (010 — 0111) bandheads of CO, near 4.17 pm. The target do-
main of interest for line-mixing studies is shown in Fig. 1. The re-
mainder of the manuscript will refer to these regions collectively
using a shorthand notation, v3(0— 1).

Many researchers have quantified and modeled CO, line broad-
ening for transitions in the v3(0— 1) bands, with some report-
ing broadening effects in Ar [13,19-25], which is often used as
a bath gas for chemical kinetics studies in shock tubes. How-
ever, to the authors’ knowledge no experimentally-measured Ar-
broadening parameters are reported for rotational quantum num-
ber transitions larger than J = 100, as indicated in Fig. 2. This is
due to most experimental measurements of line broadening coeffi-
cients for CO, having been conducted below 1000 K, wherein such
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Fig. 1. (top) Spectral absorbance simulation of the (00°0— 00°1) fundamental
bandhead of CO, at 2800 K and 0.4 atm for 2% CO, in air. (bottom) Line positions
and magnitudes of the spectral transitions relevant to this work.
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Fig. 2. Experimental Ar-broadening coefficients for CO, transitions obtained by pre-
vious works for To = 296 K. The current study focuses on higher rotational quan-
tum number transitions (J = 99-145) to extend diagnostic capabilities at extreme
temperatures and pressures.

lines are weakly active. We focus this experimental study to 1200-
3000 K and evaluate lines with higher rotational energies (E’ =
3920-8090 cm!).

Line mixing is a band narrowing effect that occurs at high
gas densities, resulting from collision-induced changes in rotational
energy and is most evident when collisional linewidths are on the
order of line spacing [26]. Line mixing within and in the wings
of the v3 band of CO, has been investigated previously [22,27-
32], owing in part to its relevance in sensing of the Cytherean'
atmosphere [1], where pressures at the planet surface can ex-
ceed 90 atm. Here we study line mixing in the bandhead of the
v3(0 — 1) fundamental band of CO, at elevated pressures and very

1 The word Venusian is also occasionally used to describe properties or behavior
pertaining to the planet Venus [33].

high temperatures (up to 2850 K) relevant to hydrocarbon-fueled
combustion conditions, wherein (similar to broadening) higher ro-
tational energy states are more populated and prior work is absent.
This paper describes the experimental measurements and model-
ing of the aforementioned line broadening and mixing effects in
the v3(0— 1) fundamental bandhead region of CO, at high tem-
peratures and high pressures, with Ar as the collision partner. After
establishing the theoretical framework, we present the experimen-
tal methods, including the optical setup, shock tube apparatus, and
data processing techniques required to obtain broadening and mix-
ing parameters from laser absorption measurements. Broadening
parameters are determined at moderate pressures (P < 0.8 atm),
where many individual lines can be distinguished. An exponential
gap model is then developed to capture line-mixing effects by fit-
ting multi-line absorption spectra at high-pressure conditions (up
to 58.3 atm) generated in a shock tube. The broadening and mixing
models are shown to enable accurate spectral simulation of CO,
near 4.2 um over a broad range of temperatures and pressures.

2. Theory

The theory of laser absorption spectroscopy is described thor-
oughly in the literature [34]. A previous work by our group on
line mixing in CO bandhead spectra [35] provides an analogous
and more detailed review on the theoretical framework employed
for this study. However, since varying definitions and symbols are
present in the literature, we provide a brief overview to assist the
reader with context and nomenclature definitions.

2.1. Absorption spectroscopy and line broadening

The transmission, 7,, of monochromatic light at frequency, v,
through a uniform absorbing gas medium is expressed by the Beer-
Lambert law in Eq. (1):

7= (,1) — exp(—aty) (M)

where I, and I are the incident and transmitted light intensities,
respectively, and «, is the spectral absorbance. In the spectral
vicinity of a single transition, the spectral absorbance relates to
thermophysical gas properties through Eq. (2):

o, = S(T)NLgp (v) (2)

where S(T) [cm~!/(molec - ¢cm~2)] is the line strength of the tran-
sition, L [cm] is the path length, ¢(v) [cm] is the line shape func-
tion, and N [molec - cm~3] is the total number density of the ab-
sorbing species, given by:
PX 6

N= T 10 (3)
Here, P is the pressure with units of [Pa], X is the mole fraction
of the absorber, kg [J/K] is the Boltzmann constant, and T [K] is
the temperature. Based on the compressibility factors for CO, and
Ar, deviations from the ideal gas assumption implied in Eq. (3) are
not expected to exceed 0.4% for any condition in this study [36].
We model the spectral line shape, ¢(v), using a Voigt profile [26],
a convolution of a Lorentzian and a Gaussian profile accounting for
collisional and Doppler broadening, respectively. For the Voigt line-
shape, both collisional and Doppler broadening are characterized
by full width at half maximum (FWHM) parameter; Av¢ [cm™1]
for collisional broadening and AvD [cm~1] for Doppler broadening.
Doppler linewidth is given by Eq. (4) [34]:

Avp = 19(7.1623 - 10~ 7)\/7 (4)

where vy [cm~!] is the transition linecenter and M [g-mol~!] is
the molecular weight of the absorbing species. Collisional width
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scales with the collision frequency of the absorbing molecule A
(adjusted for quantum state), and is modeled as the product of
pressure and the sum of mole fraction weighted collisional broad-
ening coefficients of each perturbing species B:

AUC :PZXBZVA—B(T) (5)
B

where y,_g(T) [cm~Tatm~1] is the transition-dependent collisional
broadening coefficient at temperature, T. Note that in Eq. (5), total
pressure, P, has units of [atm].

As shown in Eq. (5), collisional broadening scales with pressure
linearly. The temperature dependence of y,4_g(T) is modeled as a
power law expression:

va-B(T) = Vms(%)(%) v (6)

where y,_p(Tp) [cm~Tatm~1] is the broadening coefficient at a ref-
erence temperature, Ty, and n,_p is the line-specific temperature
exponent of the absorbing species. As lines become more closely
spaced together or pressure increases, the spectral absorbance, «,,
at a given wavenumber, v, is no longer a function of just one spec-
tral transition, but is rather a summation of all neighboring tran-
sitions as demonstrated in the bandhead shown in Fig. 1. In this
work, we measure values of yco, 4, Over a range of temperatures
(1200-3000 K) and sub-atmospheric pressures to distinguish 17
transitions within the range of ] = 99-145. Transitions are probed
in both the (00°0 — 00°1) and (0110 — 01'1) fundamental bands,
recognizing weak vibrational dependence. For each transition, a
power law fit with temperature is used to infer ncg, 4 and we
report Yco,-ar(To) at a reference temperature of Ty = 1200 K. The
parameters for inaccessible (overly blended) lines are determined
via interpolation.

2.2. Line mixing

Line mixing is a phenomena in which molecular collisions in-
duce a change in rotational energy, typically within a given vibra-
tional energy level. These collision-induced transfers between rota-
tional energy states result in an intensity exchange between neigh-
boring transitions and often leads to a vibrational band narrow-
ing effect [26], which enhances high-absorbing regions. This effect
scales with collision frequency (or pressure) and is pronounced in
spectrally dense regions, such as bandheads, where line spacing is
small. An illustration of the line mixing process for two rovibra-
tional transitions is depicted in Fig. 3.

In modeling line-mixing effects, we utilize the relaxation ma-
trix formalism [37], which accounts for aggregate collisional ef-
fects (broadening and mixing) on the molecular spectra. In the fol-
lowing equations and figures, J and K refer to transitions between
lower and upper states J” — J' and K” — K’, wherein the state space
is generally distinguished from the line space here with the use
of prime () and double prime () symbols. We express the ab-
sorbance, «,, for overlapping transitions, within the impact ap-
proximation [38], in the following form:

_NL

U_?Im(d~G‘1~p~d) (7)

o
where p is a diagonal matrix with nonzero elements de-
fined by the lower state Boltzmann population fraction and
d [cm~!/(molec - cm*z)]% is a vector describing transition ampli-
tudes. Another equivalent form of Eq. (7) is shown in the Appendix
of Bendana et al. [35].

The dependence on wavenumber, v [cm~!], in Eq. (7) is within
G [cm~1], a complex matrix defined as:

G=vl-vyy—iPW=vI-H (8)
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Fig. 3. Collisional line mixing of rovibrational transitions in a fundamental asym-
metric stretch band of a linear polyatomic molecule, adapted from Hartmann [26].

where I is the identity matrix, vy [cm~!] is a diagonal matrix of
transition frequencies, and W [cm~!/atm] is the relaxation ma-
trix [37]. In Eq. (8), total pressure, P, is in units of [atm]. The
frequency-independent matrix, H, can be diagonalized by a matrix
A using a similarity transform [39] to obtain a diagonal eigenvalue
matrix with diagonal elements, w; [cm~1]. Since G differs from H
only by a constant diagonal matrix, G~ is also diagonalized by A.
Eq. (7) can now be written as a function of v summing over all
equivalent lines, J:

_NL d-A)A" - p-d)
oc‘,_?lm 2 v —awy)

(9)
J

We capture line-mixing effects with a relaxation matrix, which
is given by:

_ vy —iAvgy
W]K - {—ARRR " K

ifJ=K
if ] #K (10)

where the real diagonal elements of W are the broadening coef-
ficients, y;, discussed previously (Section 2.1) and the imaginary
diagonal elements are the pressure shifts, Avg; [cm~1/atm]. The
imaginary off-diagonal components of W represent contributions
from rovibrational dephasing [40], which can be approximated as
zero, and the real off-diagonal elements are approximated by the
state-specific population transfer rates Rys_ y» [cm~1/atm] multi-
plied by a scaling factor Agg [26].

Since collisions generally promote the Boltzmann distribution
of population, the reciprocal population transfer rates, Ryr_ x» and
Ryn_, . respectively, are related through the detailed-balance prin-
ciple [41]. If the off-diagonal elements of the relaxation matrix,
Wi, are set to zero, Eq. (7) simplifies to the sum of the Lorentzian
lines with no line-mixing effects. Invoking the random phase ap-
proximation [24], broadening coefficients can be related to the
state-to-state population transfer rates (R) between lower and up-
per states [26]:

1
V= i Z R]”—)K” + Z R]’—)K/ (]1)
Jr2K” J#K

This equation assumes negligible dephasing contributions from
elastic collisions [42].

For multiple collision partners, the full relaxation matrix is ex-
pressed as a summation of the individual perturber contributions:

W= XzW, g (12)
B
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We model the real off-diagonal elements of W with a modified-
exponential-gap (MEG) law [43,44| with the form:

e
1+ay4 (az éﬂ)
E//

1+ a4(kﬁ>
where ay(T) [cm~1/atm], a,, and a3 are species-specific MEG
law coefficients obtained by fitting measured absorbance data to
the model using a nonlinear least-squares fitting routine. a4 de-
scribes the collision duration [43] based on distance of closest ap-
proach [45] and for this study is set to as = 2 as an estimate for
collisions of linear molecules [35]. The MEG law formulation de-
scribed here has been successfully implemented for several linear
molecules [35,46,47], including CO, [48,49]. Though some of these
studies have used different a4 values, the sensitivity of a;, has been
tested using a4 =1 and a4 = 1.5 and found to have negligible in-
fluence on the results [46,48].

The species-specific MEG law coefficients at a given tempera-
ture can be obtained by fitting absorbance spectra [50]. a;(T) can
be modeled as a power law expression to determine the tempera-
ture dependence of the relaxation matrix components:

@M =a @) (L) (14)

where a;(Ty) is the MEG law coefficient at a reference tempera-
ture, Ty, and m is defined as the temperature exponent, obtained
by fitting multiple sets of absorbance data over a range of temper-
atures.

Similar to the reported broadening coefficients, yco,_ar, We re-
port measured values of MEG law coefficients for a; and the associ-
ated temperature exponent, m, at a reference temperature of Ty =
1200 K. We show that these parameters can be used to accurately
model line-mixing effects in the (00°0— 00°1) bandhead of CO,
near 4.17 pm at high pressures (10-60 atm) over a temperature
range of 1200-3000 K.

—as (Eg — Ef)

Wik = a;1(T) keT

x exp (13)

3. Experimental methods

The experiments in this work were conducted using a high-
enthalpy shock tube facility [35,51]. We provide a brief descrip-
tion here for context and reader clarity. The shock tube and cor-
responding optical setup are illustrated in Fig. 4. All laser absorp-
tion measurements are attained behind reflected shock waves that
near-instantaneously heat a prescribed gas mixture to target con-
ditions for a short test time (milliseconds). Initial reflected shock
conditions are determined by measurements of the incident shock
speed and normal shock relations, yielding a typical uncertainty of
~1% in temperature when properly accounting for vibrational re-
laxation of the gas mixture [52]. Prior to each experiment, a rough-
ing pump (Alcatel Adixen 2021i) was used to vacuum down the
shock tube to < 1 x 103 Torr. Test gas mixtures were barometri-
cally prepared in a 12.5 L agitated mixing tank using a heated ca-
pacitance manometer (MKS 627D Baratron) with a full-scale pres-
sure range of 1000 Torr and an uncertainty of 0.12% of the read-
ing. At higher pressures, an additional pressure transducer (Setra
GCT-225) with an accuracy of 0.25% of the full scale (1000 psi)
was used to prepare mixtures. All gases were supplied by Airgas,
Inc. with purity levels of 99.999% for CO,, 99.999% for Ar, and
99.995% for N, and He. Different mixtures were prepared for col-
lisional broadening and line mixing investigations (2%-5% CO,/Ar)
depending on the expected intensity of the transitions being mea-
sured; higher concentrations of CO, were used for the higher J
lines to increase absorbance and measurement signal-to-noise. Dif-
ferent driver gases (either N, or He) and diaphragm thicknesses
were used depending on the reflected shock conditions desired.

Two continuous-wave (CW) distributed feedback (DFB) inter-
band cascade lasers (Nanoplus) were utilized to spectrally-resolve
the mid-infrared CO, spectra. Each ICL has approximately ~3 mW
output power, and is rapidly tunable via injection current. One
ICL targeted the primary domain of interest near 4.17 pm (2395-
2398 cm~!) to study lines near the (00°0— 00°1) bandhead. As
seen in Fig. 1, this spectral region consists of even | = 100-144.
As is common in bandheads, many of these lines are blended to-
gether even at moderate pressures ( < 0.5 atm), precluding distinct
broadening measurements for several lines. To build a more com-
prehensive broadening dataset and establish a J-dependence, ad-
ditional CO, transitions from the neighboring (0110 — 01'1) band
with similar J (99-145) were also evaluated using an ICL near
419 nm (2383-2385 cm~1). It should be noted that vibrational de-
pendence of broadening is expected to be less than 2% [53,54] and,
as a result, was considered negligible. While the two aforemen-
tioned bands were targeted for broadening measurements of simi-
lar high J lines, only the (00°0 — 00°1) bandhead near 2398 cm~!
was investigated for line mixing. To confirm that CO, did not disso-
ciate into CO during the shock-heated experiments, we also used a
quantum cascade laser (QCL, ALPES) centered at 4.98 num targeting
the P(0,31) and P(2,20) transitions in the CO fundamental bands
(Av=1).

The interband cascade lasers were injection current tuned with
10 kHz triangle waveforms, shown in Fig. 4, over a wavenumber
range of ~1.6 cm~! at various intervals between 2382-2400 cm~!.
Similarly, the QCL targeting CO was tuned over a wavenumber
range of ~1.2 cm~! between 2008-2009 cm~! at a similar fre-
quency. For all lasers, the injection current was scanned below the
lasing threshold to account for transient thermal emission during
the measurements. The relative frequency of the laser light dur-
ing the scan was determined using a germanium etalon with a
free spectral range of 0.0231 cm~!. During the experiments, the
incident light was pitched through a CaF, beamsplitter and across
the shock tube through two 0.5° wedged sapphire windows with
a 9.5 mm aperture, as shown in Fig. 4. The transmitted light was
again passed through a beamsplitter, followed by a bandpass spec-
tral filter (Electro Optical Components, 4210442 nm or Spectro-
gon, 4960 + 148 nm) to separate the two light sources. After the
spectral filters, the light from each respective wavelength passed
through an iris to mitigate thermal emission, and was focused onto
a thermo-electrically cooled photodetector (Vigo PVI-4TE-5) using
a CaF, plano-convex lens. Incident and reflected shock pressures
were measured by a dynamic pressure transducer (Kistler 601B1)
mounted in one of the test section ports and connected to a charge
amplifier (Kistler 5018A). Pressure and detector data were collected
on a PicoScope 4000 series data acquisition module at 80 MHz
while detector data were sampled at the maximum detector band-
width of 10 MHz, yielding an equivalent measurement rate of
5 MHz.

Representative raw time-resolved signals from a shock tube ex-
periment are shown in Fig. 4. Following the passage of the incident
and reflected shocks, the target lines appear as the high tempera-
tures more densely populate the high J” rotational energy levels.
During the experiment, a non-ideal pressure rise was occasionally
observed and accounted for by assuming isentropic compression of
the test gas [35]. This assumption has been validated as an accu-
rate method for correcting thermodynamic conditions behind re-
flected shock waves [55]. For a single scan interval, the change in
temperature and pressure are less than 0.75% and 0.5%, respec-
tively; thus, the thermodynamic properties were assigned at the
scan mid-point and assumed to be constant during each scan.

Shock tube experiments for Ar line broadening parameters of
CO, were conducted over a temperature range of 1200-3000 K and
a pressure range of 0.352-0.804 atm. Moderate pressures were tar-
geted for line-broadening experiments to minimize spectral blend-
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Fig. 4. (top left) Cross-section of the shock tube test section showing windows for optical access and laser/detector setup. (top right) Example raw detector and pressure
transducer signals during non-reactive shock heating of 5% CO, in Ar. (bottom) Side view of the shock tube showing lengths of the driven and driver sections of the tube as

well as the locations of the time-of-arrival sensors.

Table 1

Ar-broadened line parameters for the CO, v3(0— 1) bands.
Transition Yco,-ar(1200 K) Nco,-Ar
(vy.J") [10-3 cm~'atm™]
R(0,100) 15.26 + 0.63 0.466 + 0.012
R(0,105) 14.80 + 0.55° 0.454 + 0.014%
R(0,110) 1434 + 1.18 0.442 + 0.024
R(0,115) 13.88 + 1.38° 0.430 + 0.023%
R(0,120) 1342 + 1.23° 0.418 £ 0.040°
R(0,125) 12.96 + 1.19° 0.406 + 0.039°
R(0,130) 12,50 + 1.15°% 0.394 + 0.038*
R(0,135) 12.04 + 1.01° 0.382 £ 0.053%
R(0,140) 11.58 + 0.92 0.370 £ 0.053
R(0,145) 11.12 + 0.68 0.357 + 0.024

2 Interpolation based on J-dependence (reference Fig. 7)

ing amongst neighboring transitions and resolve the line-specific
broadening and temperature coefficients discussed in Section 2.1.
Shock tube experiments for line-mixing parameters covered a tem-
perature and pressure range of 2000-3000 K and 16.5-58.3 atm,
respectively. Higher pressures were targeted for line-mixing exper-
iments in order to determine MEG law coefficients and prove pres-
sure scalability. A complete test matrix of all the experimental con-
ditions for these measurements can be found in the Supplemen-
tary Material.

For each experiment, absorbance, o, was determined through
Eq. (1) via measurements of incident and transmitted intensity, I
and I. The incident laser light intensity through the shock tube was
measured without a mixture present prior to each shock experi-
ment to provide a baseline Iy for calculation of «,. Each scan of
the transmitted laser intensity, I, was corrected for detector off-
set from both emission and dark current noise by tuning below
the lasing threshold. Minimal emission was observed throughout
the tests, as seen in the representative data from Fig. 4. To ob-
tain line-broadening coefficients, the measured absorbance spec-
tra for a group of transitions (regions identified in Fig. 5) was
least-squares fit with Voigt lineshape functions with broadening
coefficient, y(T), and line position, vy, set as the free parame-
ters. It should be noted that since the fit was performed on a
group of transitions, the relative line position is critical; therefore,

the bounds for vy were determined by uncertainties in the etalon
measurement. X, T, P, and L were held constant and determined
from the barometric mixture preparation, reflected shock condi-
tions, and shock tube geometry. The minor self-broadening from
CO, was also included in the simulation, effectively correcting for
this contribution. For higher-pressure line-mixing experiments, the
MEG law coefficients were set as free parameters with the diag-
onals of the relaxation matrix assigned with the pre-determined
broadening coefficients.

4. Results and discussion

Temperature dependent line-broadening coefficients of CO,
with Ar are reported for transitions in the range of | = 99-145,
suitable for spectral modeling over a temperature range of 1200-
3000 K. Seventeen transitions are measured directly through line
fitting, while the remainder are inferred via interpolation (and
compared with measured spectra). Line mixing coefficients are
also reported for the (00°0— 00°1) bandhead region near 2395-
2398 cm~! to capture the spectral distortion effects at pressures
up to 58 atm and similarly high temperatures. The following two
subsections detail the line-broadening and line-mixing results, re-
spectively.

4.1. Line broadening

As described in Section 3, scanned-wavelength laser absorption
measurements were made behind reflected shocks to gather CO,
spectral data from 1200-3000 K. Representative single-scan ab-
sorbance measurements from shock tube experiments with corre-
sponding Voigt line fits are shown in Fig. 5 for the spectral regions
(A, B, and C) evaluated in this work. As indicated and aforemen-
tioned, measurements were conducted in two different bands to
empirically-determine Ar-broadening parameters for rovibrational
transitions in the range of J= 99-145. The primary motivation of
this work was to accurately model the (00°0 — 00°1) bandhead re-
gion near 2395-2398 cm~! over a wide range of temperatures and
pressures. However, fitting individual lines in this domain proved
difficult due to severe overlap near the bandhead. As such, dis-
tinct line fits in the (00°0 — 00°1) band were restricted to Region
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Fig. 5. (top) Linestrengths for transitions of the v3(0 — 1) bands of CO, near 4.2 pm, with bands of interest noted. (bottom) Measured absorbance and corresponding Voigt

fits for the transitions shown, using the broadening parameters reported in Table 1. Transitions with broadening parameters directly measured in this work noted in red,

while those with inferred parameters are noted in black.
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tails regarding the data analysis process to obtain these results
are discussed here. Generally, the Voigt fits of lines in Regions
A and B produced low peak residuals (1-2%). At high tempera-
tures and moderate pressures the Ar-broadened spectra exhibited
some evidence of collisional narrowing (gull-wing residual) [56],
but the signal-to-noise ratio was deemed insufficient to rigorously
evaluate more advanced lineshapes than the Voigt (which per-
formed quite well). In order to accurately determine Ar-broadened
line parameters from the Voigt fits, the contribution from self-
broadening, calculated from the line parameters reported in the
HITEMP database [57], have been subtracted from the measured
collision widths.

Fig. 6 shows the CO,-Ar broadening coefficient versus tem-
perature for a subset of transitions before and after the band-
head, representing all relevant temperature conditions. The mea-
sured broadening coefficients were fit with a power law to obtain a
temperature dependence, y(T), for each transition. It can be noted
that at the lower temperatures, the highest J lines could not be
reliably discerned, reducing the number of data points available
to the power law fit. To help reduce uncertainty in the temper-
ature dependence for the lines measured in this work and con-
strain the power law fits, we incorporate estimates of yco,_ar
at 765 K by performing a linear regression of data reported by
Thibault [24] measured for lower | transitions [58]. More detail on

Temperature [K]

Fig. 6. Ar-broadening coefficients for the transitions of interest with power law fits
for 765-3000 K.

the calculation of these estimates and their associated uncertain-
ties is provided in Appendix A. Subsequently, the y(T) values for
each measured transition were used in a linear regression to es-
timate the relationship between y(T) vs J, shown as dash-dotted
lines in Fig. 7, for different temperatures.

As discussed previously, line-broadening experiments targeted
lower pressures ( <0.8 atm) to minimize spectral blending from
neighboring transitions, which become more significant near the
bandhead and complicates the spectral fitting. Despite utilizing
multiple bandheads and the low pressures of the experiments, the
R(113)-R(137) transitions are too closely spaced and blended to re-
liably fit and extract broadening information. Accordingly, we in-
fer broadening coefficients for these lines via the linear interpola-
tion, as indicated in Fig. 7. The linear relationship between yco,_ar
[cm~1/atm] and J at temperature 1200 K can be expressed with the
following equation:

Yco,-4r(1200 K) = 0.025 — 9.205 x 107°()) (15)
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Fig. 7. Measured broadening coefficients 2yco,_4- (markers) for | = 99-145 for
1200 K (red), 1800 K (blue), and 2800 K (green). Least-squares exponential fits
(lines) of the measured (filled markers) are used to estimate 2yco,_4r for J too in-
terfered to measure directly. Representative error bars shown for plot clarity.

Temperature-dependent exponents fnco,_4r for all measured and
interpolated transitions are determined by similarly fitting the in-
ferred broadening coefficients yco,_4r(T) over the range of test
temperatures. The resulting values of nco,_4r can be modeled as
a function of J using the following equation:

Nco,_ar = 0.708 — 2.417 x 1073(J) (16)

Note this expression is only considered suitable for | = 99-145. The
corresponding broadening parameters for select transitions and
their uncertainties are listed in Table 1 with a reference temper-
ature of To = 1200 K. Superscripts in the table indicate if the re-
ported parameter is from an interpolated transition. Power-law fits
of all measured broadening coefficients versus temperature (simi-
lar to the subset shown in Fig. 6) are provided in the Supplemen-
tary Material to support these summary results. The values in Ta-
ble 1 and predicted by Eq. (16) are considered most appropriate
for a temperature range T = 1200-3000 K.

Revisiting Fig. 5, it can be noted that the interpolated broaden-
ing parameters in Region C, when coupled with a Voigt lineshape
simulation, yield excellent agreement with measured spectra. The
spectra in Region C exhibits very low residuals ( <2%) despite the
indirect inference using data from Regions A and B. The slightly
more pronounced discrepancy at the bandhead near 2397.3 cm™!
provides evidence of line-mixing effects even at these lower pres-
sures [7,9].

4.2. Line mixing

As discussed in Section 2.2, the relaxation matrix, W, accounts
for the collision-induced population transfer rates that determine
line mixing and narrowing effects in the molecular spectra. The
real diagonal elements of W are the broadening coefficients, y;, the
imaginary diagonal elements are the pressure shifts, Avg, the real
off-diagonal elements are proportional to the state-specific popu-
lation transfer rates, Ry_, v, and the imaginary off-diagonal com-
ponents are approximated as zero. The reported broadening coef-
ficients in Table 1 and pressure shift coefficients from the HITEMP
database [57] are used to complete the real and imaginary diag-
onal elements of W, respectively. Though the HITEMP database
only provides CO,-air pressure shift coefficients, deviations from
this assumption were found to negligibly affect the fitting results.

The real off-diagonal elements were obtained through the MEG
law, described by Eq. (13), and the detailed balance principle for
a grouping of 34 transitions from J = 88-154. To find the MEG law
coefficients, a;, high pressure absorbance data measured using the
shock tube facility are least-squares fit with the absorbance model
given by Eq. (7), with aq, a,, and as set as the free parameters. This
procedure was carried out with test gas mixtures of 2% CO,/Ar to
obtain the appropriate rates for CO,-Ar collisions using Eq. (12).

A comparison of representative high-pressure absorbance data
collected in the shock tube at 36 atm and 2493 K is shown in Fig. 8
with various simulations. The measured data is compared to simu-
lated results using the line-mixing model developed in the present
work and a model developed by Lamouroux et al [32] for CO, line
mixing in air based on the HITRAN 2016 database [58]. Notably,
the air-broadened line-mixing model based on HITRAN 2016 poorly
represents the measured spectra at all wavenumbers of interest;
the disagreement is largely due to several missing high J transi-
tions, which are included in the HITEMP database [57]. Using the
HITEMP database with the updated Ar-broadening parameters re-
ported in Table 1 yields a prediction closer to the measurement;
however, without considering line mixing, the simulated spectra
significantly underpredicts absorbance near the bandhead, where
pronounced narrowing occurs. Implementing the aforementioned
MEG law fitting routine enables a highly accurate reconstruction of
the spectra with residual <3%. This compares to a disagreement of
nearly 30% at the bandhead peak without accounting for line mix-
ing. Notably, away from the bandhead, the line mixing model still
agrees well with both the measured absorbance and converges to
simulated spectra that ignores line mixing. To illustrate the sen-
sitivity to the MEG law coefficients, we adjust the a; parameter
( + 45%) to vary the degree of line mixing and visualize the associ-
ated changes in the spectra. As population transfer rates increase,
line mixing favors intensity transfers from weak absorption regions
to strong absorption regions, consequently narrowing the spectral
structure and increasing the differential absorption near the band-
head.

It is informative to compare the transfer rates of different tran-
sitions as a function of AJ. Fig. 9 shows the real off-diagonal ele-

4 : :
Measurement T=2493 K
351 |= = = Line mixing . P=36atm ||
HITEMP: No LM Vg \ 2% CO,
3t HITRAN: LM ’ \ LI
% \
/
25+ Increased 5., \ 1
population <\ Best fit
transfer \
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N

Population

transfers
05+ set to zero N
~ ~ |
'_o| 0 1 1
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Fig. 8. Absorbance measurement of the (00°0 — 00°1) fundamental bandhead of
CO, at 2493 K and 36 atm with spectral simulations using Eq. (2) (green),
Eq. (7) (red) with varying magnitude of population transfer rates, including no pop-
ulation transfers (a; = 0), and the line mixing (LM) model developed by Lamouroux
et al [32] available in the HITRAN database [58] (grey).
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Table 2

Temperature-dependent MEG law parameters determined in this work.
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Fig. 9. Wi given by the MEG model, from selected initial states J”= 100, 110, 120,
130, and 140 to final K” states, plotted as AJ = K" —J".

ments of the relaxation matrix, Wjg, which are proportional to the
state-to-state transfer rates, Ry, v, for select transitions given by
the line mixing model at two conditions. In this bandhead, sim-
ilar to others [35,59], we observe that Ry_ g, decays as AJ in-
creases, which may be interpreted as collision-induced transfers
across larger differences in rotational levels requiring more energy.
Fig. 9 illustrates that at higher temperatures, the population trans-
fers from larger AJ become more significant. This can be described
through Eq. (13). Notably, the relaxation matrix scales linearly with
pressure, but the relative probability of collision-induced trans-
fers between a given AJ is only dependent on temperature. As
shown here and similar to our previous line-mixing study [35],
at very high temperatures (> 2500 K), population transfers with
AJ > +1 significantly contribute to the population redistribution in
the bandhead.

With the MEG law coefficients inferred empirically at vari-
ous conditions, the temperature dependence of a;(T) was found
through Eq. (14) by fitting experimental data at different temper-
atures, while holding a, and a3 constant. The temperature depen-
dence of the relaxation matrix is captured in Fig. 10 for CO,-Ar
collisions. Notably, the temperature exponents for the off-diagonal
components of the relaxation matrix are larger than those of the
corresponding broadening coefficients. For CO,-Ar collisions, a,
and a; were obtained at 2571 K and 58.3 atm with a; reported
at a reference temperature of Ty = 1200 K. The reported MEG law
coefficients can be found in Table 2. Importantly, the Wi elements
proportional to the specific transfer rates obtained by the reported
MEG law coefficients do not completely sum up to the broadening
coefficient (as shown in Eq. (11)) due to either the Agg factor be-
ing less than unity or other state-changing collisions outside of the
domain considered. For a given rovibrational line, the proxy trans-
fer rates for the grouping of lines considered here summed to a
typical value of approximately 70% of the corresponding broaden-
ing coefficient. As such, caution should be exercised in using this

Temperature [K]

Fig. 10. Best-fit determinations of a; for different temperatures (markers) with
power law fits (dashed line) for CO,-Ar collisional line mixing.
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Fig. 11. CO,-Ar: measured spectral absorbance compared to the developed MEG
model used capture line-mixing effects over a range of pressures. The simulated
spectral absorbance with no line mixing is illustrated for reference.

relaxation matrix beyond modeling the target absorption spectra,
as the real off-diagonal absolute values have not been normalized.

With an established temperature dependence for Wy and y/,
the target bandhead spectra can be simulated over a wide range
of temperatures and pressures. To validate the pressure scalability
and accuracy of the line mixing model, a series of shock tube ex-
periments were conducted from 16.5-58.3 atm for 2% CO,/Ar at
similar temperatures, respectively, as shown in Fig. 11. At all con-
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ditions, the line mixing model exhibits excellent agreement with
the measured absorbance spectra.

5. Conclusion

Ar-broadening coefficients and temperature-dependent expo-
nents have been reported for mid-wave infrared CO, transitions
(J= 99-145) in the v3(0— 1) fundamental bands near 4.2 pm.
Experiments were conducted over a wide range of tempera-
tures, 1200-3000 K, utilizing a shock tube facility. To the au-
thors’ knowledge, this work represents the first experimental
study of these very high rotational energy transitions (E’ =
3920-8090cm™1), extending the spectroscopic knowledge base of
temperature-dependent broadening for CO,. With broadening pa-
rameters established, a modified exponential gap model was de-
veloped to capture the thermodynamic scaling of the relaxation
matrix, proportional to state-specific collisional transfer rates asso-
ciated with line mixing. The line-mixing model developed in this
work is shown to accurately simulate the bandhead spectral do-
main (2395-2398 cm~!) over a wide range of temperatures and
pressures, 1200-3000 K and 16.5-58.3 atm, relevant to combustion
and planetary entry.
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Appendix A. Uncertainty analysis

The uncertainty analysis presented here follows the analysis
presented in the Appendix of Bendana et al [35], with added
discussion for inferring the properties for the lines other than
those which were directly measured. The broadening parameters
reported in Table 1 and the MEG law coefficients reported in
Table 2 are provided with uncertainty estimates, the calculations
of which are detailed in this Appendix. Unless otherwise noted,
we follow the Taylor series method (TSM) of uncertainty propa-
gation [60], in which the uncertainty of a variable r, Ar, is given
by:

2 or 2 ar 2
(Ar)* = 871AX1 + 872Ax2 +--

where x; are dependent variables and Ax; are their respective un-
certainties.

(A1)
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Fig. Al. Estimation of y and Ay at 765 K for high J transitions with measure-
ments of Thibault [24]. Measured values (open red markers with error bars) used
in regression (dashed-dot line) shown with regression uncertainty (dashed lines)
and estimated values (open black markers with error bars).

Al. Thermodynamic state variables

The parameters we report are determined from measurements
made at various thermodynamic conditions, uncertainties of which
ultimately affect the temperature- and pressure-dependence of the
associated models.

In this study, uncertainty in pressure is dominated by uncer-
tainty in the reflected shock pressure APs due to uncertainties in
the inputs to the normal shock relations. Likewise, there is un-
certainty in the reflected shock temperature, ATs. For the sake of
brevity, the uncertainties APs and ATs will not be discussed here
in further detail; however, we note that significant contributors
include uncertainties in the composition of the driven gas (from
the barometric mixture preparation), uncertainties in the time-of-
arrival measurements that determine shock velocity, and small un-
certainties in the initial pressure P; and temperature T;. Further
information regarding uncertainties in reflected shock conditions
can be found in the work by Campbell et al. [52].

A2. Broadening coefficient

The uncertainties in collisional broadening coefficient y,4_g(Ty)
(for absorber A by perturber B), Ays_p(Tp), and temperature-
dependent exponent, An,_p, are determined by applying a lin-
ear regression to the natural logarithm of Eq. (6). In this case, the
standard errors of the slopes and intercepts of the fitted lines are
Any_p and Ay,_g(Ty), respectively. In our linear regressions, we
follow the approach of York et al. [61], incorporating variable un-
certainties in both x and y to provide slope and intercept standard
errors more reflective of variable measurement quality amongst
the data. This allows us to utilize measurements from both the
shock tube described in this manuscript as well as values esti-
mated from the work of Thibault [24] in the same regression (as
shown in Fig. 6), despite that each of the experiments utilized a
different facility and has different measurement uncertainties.

As mentioned in Section 4.1, we estimated y for high J tran-
sitions at 765 K by performing a linear regression on values of
y reported by Thibault [24] validated for lower J transitions (J =
51-100). This estimate assumes a linear dependence of y on J for
J> 51. The regression, which is weighted according to the reported
measurement uncertainty, is shown in Fig. A.12. Since the data are
extrapolated, uncertainties in estimated y, Ay, are conservatively
calculated by summing in quadrature the nearest reported mea-
surement uncertainty (Ay mess for ] = 100) and the variation re-
sulting from uncertainty in the linear regression, Ay reg:

Ayjs100 = \/(Aymeas)z + (A)/reg)z (A.2)

Values of Ayrg at 765 K for | = 101-145 (examples shown in
Fig. 6) are determined by varying the possible regressions to de-
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termine a variation in possible y which still reproduce measured
y for ] = 51-100 constrained to within the 20 reported measure-
ment uncertainty. This span is noted by dashed lines in Fig. A.12.

Aya_p(Ty) and An,_p have uncertainty dependence on AT
(discussed previously) and Ay,_g(T). We can determine Ay,_g(T)
by applying Eqs. (A1) to (5) after rearranging to solve for
Ya-g(T):

A\ _ (A | (Avcar)’
s ) ~\ 2% ) T\ 2P

2
AvcAXp AXp
Ateaty Ot (T
+ 25X X ;XCVA c(T)
2
1
+ )TB;AXCVA—C(T)
2

1
+ X ;XCAVA—C(T) (A.3)

Eq. (A.3) describes the uncertainty dependence of the broadening
coefficient of absorber A by perturber B, y4_g(T), on the uncer-
tainties in collisional width Av, total pressure P, mole fraction of
perturber B, Xz, and broadening influences of any other perturbers
C (which includes self-broadening by A). When considering only a
single perturber B, as in this study, C=A to account for the in-
fluence of self-broadening. AP is determined from APs, and mole
fraction uncertainties AX; are determined based on the barometric
mixture preparation uncertainties. Collisional width Avc is deter-
mined from a Voigt fit of the measured absorbance spectra, and so
A(Avc) is estimated by multiplying the maximum residual of the
Voigt fit by Avg, typically less than 3%.

Thus, the uncertainty dependencies of Ay, _g(Tp) and Any_p
are all accounted for. For interpolated values of y,_g(T) between
J of 113-137 which were not directly measured (noted with su-
perscript @ in Table 1), Aya_g(T)/ya_p(T) was assumed to be the
same as the largest Ay, _p(T)/y4_g(T) calculated for directly mea-
sured transitions; in this study, approximately 9%.

A3. MEG law coefficients

The MEG coefficients a;(T), a,, and as for each experiment are
empirically determined by a nonlinear least-squares fit so their un-
certainties cannot be interpreted as meaningfully through physi-
cal relationships as described by Eq. (A.1). Therefore, we estimate
uncertainties for these coefficients in a manner consistent with
how the model will be used; i.e., to accurately simulate absorption
spectra in the range of thermodynamic conditions described in this
work. The uncertainties in a;(T), a, and a3 for each high-pressure
shock tube experiment were inferred by varying the wavenumber
range over which the least-squares fit described in Section 4.2 was
implemented. The differences between the values of g; determined
from simulating the wavelength range of the measured experiment
(2396-2398 cm~!) and the values of a; determined from simulat-
ing the wavelength range of the (00°0— 00°1) band before over-
lapping with the other band (2385-2398 cm~!) were taken to con-
servatively estimate Aag;. This represents the uncertainty associ-
ated with using experimental data gathered from a limited spectral
range to model the line mixing behavior of the entire band.

The uncertainties for a;(T), Aa;(T), are shown as error bars in
Fig. 10. Together with AT, these are used in the linear regression
determination of a;(Ty) and m to obtain their respective uncertain-
ties Aaq(Tp) and Am using the same approach of York et al. [61] as
described for Ay,_g(Tp) and Ang_g.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.jqsrt.2020.107135.
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