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Abstract—Algorithmic fairness is a major concern in recent
years as the influence of machine learning algorithms becomes
more widespread. In this paper, we investigate the issue of algo-
rithmic fairness from a network-centric perspective. Specifically,
we introduce a novel yet intuitive function known as fairness
perception and provide an axiomatic approach to analyze its
properties. Using a peer-review network as a case study, we also
examine its utility in terms of assessing the perception of fairness
in paper acceptance decisions. We show how the function can be
extended to a group fairness metric known as fairness visibility
and demonstrate its relationship to demographic parity. We also
discuss a potential pitfall of the fairness visibility measure that
can be exploited to mislead individuals into perceiving that the
algorithmic decisions are fair. We demonstrate how the problem
can be alleviated by increasing the local neighborhood size of the
fairness perception function.

I. INTRODUCTION

The influence of machine learning is pervasive across
numerous applications, from healthcare and e-commerce to
financial and criminal justice systems. Despite its utility,
previous studies have shown that the algorithmic decisions
may contain unintended biases that discriminate against certain
groups of the population [1], [2], [3]. As a result, the challenge
of removing biases from the algorithmic decision-making
process has gained significant attention in recent years. In
particular, various mathematical formulations of fairness have
been proposed. For instance, group fairness metrics such as
demographic parity and equalized odds have been developed to
assess the degree of prejudice against certain protected groups
in the population. While each metric has its own merits, many
of them are incompatible with each other [4], [5].

The group fairness metrics are designed to determine the
level of equity among different groups of individuals who are
harmed by or benefited from the algorithmic-driven decisions.
However, the consequences of an unfair decision may extend
beyond those individuals who are directly impacted by the
decision. In fact, they may elicit negative responses from other
individuals who identified themselves to be in the same group
as the affected individuals. For instance, hiring discrimination
against a qualified member from an underrepresented group
not only affects the well being of that individual, but will
also have an adverse effect on other members of the under-
represented group who observed such behavior. This example
suggests that fairness assessment must take into consideration
the perception of other individuals who may not be directly
impacted by the algorithmic decisions [6], [7].

Fig. 1: An example illustration of fairness perception.

Fairness perception is rooted in the social comparison
theory. For instance, equity theory [8] argues that “humans do
not base their satisfaction on what they receive but rather what
they receive in relation to what they think they should receive”.
The reaction of an individual to the outcome of a decision
process is based on the expectation of the individual and this
expectation not only depends on one’s own outcome but also
the outcomes of other individuals they are aligned with, which
we refer to as the reference group. The choice of the reference
group is typically influenced by the similarity measure we use,
e.g., we may compare ourselves to our co-workers, friends, and
family members. By observing the outcomes of other members
in our reference group, this will help shape our expectation
about what should be considered a fair outcome.

In this paper, we examine the notion of fairness perception
from a network analysis perspective. Networks provide a
natural way to represent individuals and their connections to
other individuals in the same reference group. For instance,
Figure 1 shows a toy example of a network of students
applying for college admission to a prestigious university. In
this network, two students are linked if they know each other.
Suppose the admission committee of the college has decided to
accept 3 of the applicants, denoted as nodes with green check
marks, and to reject the other 4 applicants. For brevity, we
assume all the students have similar qualifications. Consider
the two students labeled as 1 and 2, respectively. Although
both applicants were rejected, their expectations for admission
and perceptions of fairness are very different. Student 1 has
a higher expectation of being admitted compared to student 2
since all of his/her friends were accepted. Thus, the perception
of fairness for student 1 is different than that for student 2.

This paper introduces the notion of network-centric fair-
ness perception and illustrates its application to peer review
process. Peer evaluation of scientific work has a significant



effect on scientific advancement. However, similar to other
systems designed by humans, it is potentially biased, favoring
certain groups of individuals (e.g., famous researchers from
top institutions) [9], [10]. In this study, we show how the pro-
posed function can be used to assess the perception of authors
about paper acceptance decisions. An axiomatic approach for
analyzing the desirable properties of fairness perception func-
tions is also presented. We then extend our proposed function
to a group fairness measure known as fairness visibility and
show its relationship to demographic parity under certain mild
assumptions. We also describe a potential pitfall of assessing
fairness from a local neighborhood perspective. Specifically, it
can mislead individuals into thinking that the decision-making
process is fair even though the overall decisions are biased
toward certain groups of individuals. Finally, we show how
to alleviate the problem by expanding the local neighborhood
size of the fairness perception function.

II. QUANTIFYING FAIRNESS PERCEPTION

Let G =< V,E,X > be an attributed network, where V
is set of nodes, E ⊆ V × V is the set of links (edges), and
X ∈ R|V |×d is the feature matrix associated with the nodes.
We further assume that X = (X(p), X(u)), where X(p) are the
protected attributes and X(u) are the unprotected ones. The
set of links can also be represented by an adjacency matrix,
A, where Aij = 1 if a link exists between nodes i and j.
Furthermore, we denote Ak =

∏k
i=1A, where Ak

ij > 0 if there
exists a path of length k between i and j, and 0 otherwise.

We also assume that each node v is associated with a target
outcome, yv ∈ {0, 1}. As an example, in the context of peer
review network, each node corresponds to a submitted paper
and links between papers are established if the two papers
share the same authors or have authors who had previously
collaborated with each other. The outcome yv of a given paper
v may indicate whether the paper is acceptable or unacceptable
based on the average ratings provided by reviewers.

We assume there exists a decision function h : V → {0, 1}
associated with each node in the network. Let H be the
hypothesis space of all decision functions. Our goal is to learn
a decision function h ∈ H that is consistent with the set of
outcomes Y while satisfying some fairness criterion. From the
perspective of peer review network, the decision function h
may refer to the final decision whether to accept or reject the
paper. The true positive and false positive rates of the binary
decision function, h, can be computed as follows:

• True positive rate, TPR =
∑

v yvh(v)∑
v yv

• False positive rate, FPR =
∑

v(1−yv)h(v)∑
v yv

Our goal is to determine how the final decisions are per-
ceived by the individual nodes in the network. Do they feel that
the decisions are biased toward nodes that belong to certain
groups? To answer this question, we assume each node v is
associated with a fairness perception function, f(v, h), given
a decision function h. The function provides a local, albeit
myopic, view on individual fairness of the nodes in a network.

A. Axioms for Fairness Perception

We first outline the desirable properties of the fairness
perception function, f(v, h), using the following set of axioms.
We assume each node v ∈ V is associated with the following
tuple, (v.Xp, v.Xu, yv, N(v)), where v.Xp denotes the value
of its protected attribute, v.Xu denotes the value of its other
(unprotected) attributes, yv denotes its target outcome, and
N(v) denotes its δ-neighborhood, which is defined as follows:

N(v) = {u | ∃k ≤ δ : Ak
uv > 0}. (1)

For brevity, we assume δ = 1, unless stated otherwise. Let
Gr = (Vr, Er, Xr) be an ego-network for node r, where
Vr = N(r) is the 1-neighborhood of r, Er = {(i, j) | i, j ∈
N(r) and (i, j) ∈ E} and Xr is the feature matrix associated
with the attributes of the nodes in Vr. We present a set of
axioms on the fairness perception function.

1) Locality axiom: If h(v) = h′(v) and ∀u ∈ N(v) :
h(u) = h′(u), where h, h′ ∈ H, then f(v, h) = f(v, h′).

2) Monotonicity axiom: If h(v) < h′(v) and ∀u ∈ N(v) :
h(u) = h′(u), where h, h′ ∈ H, then f(v, h) ≤ f(v, h′).

3) Neighborhood expectation axiom: If h(v) = h′(v) and
∀u ∈ N(v) : h(u) ≤ h′(u), where h, h′ ∈ H, then
f(v, h) ≥ f(v, h′).

4) Homogeneity axiom: Let Gu and Gv be the induced
sub-graphs of Vu = N(u)∪ {u} and Vv = N(v)∪ {v},
respectively. If Gu and Gv are isomorphic with respect
to the decision function h, then f(u, h) = f(v, h).

For the last axiom, we say that a pair of networks, Gr =
(Vr, Er, Xr) and Gs = (Vs, Es, Xs), are isomorphic with
respect to the decision function h if there exists a bijection
function m : Vr → Vs such that:
• ∀u ∈ Vr : h(u) = h(m(u)), yu = ym(u) and Xu =
Xm(u).

• ∀(u1, u2) ∈ Er : (m(u1),m(u2)) ∈ Es

The locality axiom states that the perception of fairness
for an individual depends on the decision outcomes for other
individuals in its neighborhood. As long as the outcomes for
the node and its neighborhood remains unchanged, the fairness
perception function should remain the same. The monotonicity
axiom suggests that the perception of fairness for an individ-
ual never decreases if the decision changes in favor of the
individual (assuming the decisions for its neighbors remain
unchanged). For example, if a previous decision on the paper
was overturned (say from reject to accept), then one should
expect the fairness perception to improve (or at least stays
the same). In contrast, the neighborhood expectation axiom
states that if the number of neighbors with favorable decisions
increases, then fairness perception decreases monotonically.
This is because, if more individuals in our reference group
received favorable decisions, we expect the decision outcome
to be favorable for us as well. The increased expectation makes
it less likely for us to perceive the decision as fair if our
paper is rejected. The fourth axiom ensures consistency of the
fairness perception function when applied to different nodes in
the network, The axiom states that if two disparate nodes with



similar neighborhoods receive the same decision outcomes,
their perception of fairness should be the same.

B. Proposed Network-Centric Fairness Perception

Definition 1 (Network-Centric Fairness Perception): Given
a network G =< V,E,X > and a decision function h, the
network-centric fairness perception function is defined as:

f(v, h) =

{
1 if E[h(v)] ≤ h(v)
0 otherwise

(2)

where E[h(v)] is the expected value of h(v), which must
satisfy the following properties:

1) If ∀u ∈ N(v) : h(u) = h′(u), then E[h(v)] = E[h′(v)].
2) If ∀u ∈ N(v) : h(u) ≤ h′(u), then E[h(v)] ≤ E[h′(v)].
3) Let Gu and Gv be the the induced sub-graphs based on

the node sets Vu = N(u) ∪ {u} and Vv = N(v) ∪ {v},
respectively. If Gu and Gv are isomorphic with respect
to the decision function h, then E[h(v)] = E[h(u)].

Our fairness perception function can thus be viewed as a
local measure of individual fairness for any given node v in a
network. If the decision h(v) is more favorable than expected,
then v will perceive the decision as fair. Furthermore, the
expected value of the decision outcome, E[h(v)], depends on
the neighborhood of the node v.

Theorem 1: The network-centric fairness perception func-
tion given in Eqn. (2) satisfies the locality, monotonicity,
neighborhood expectation, and homogeneity axioms.

Proof : The locality and monotonicity properties are proven
using the first property. Since E[h(v)] remains unchanged
when h(u) = h′(u) for all the nodes u in the neighborhood
N(v), Eqn. (2) suggests that f(v, h) depends only on h(v).
If h(v) = h′(v), then f(v, h) = f ′(v, h), thereby proving
that the locality axiom holds. Similarly, if h(v) < h′(v), then
f(v, h) ≤ f(v, h′), which satisfies the monotonicity axiom.
For the neighborhood expectation axiom, the second property
states that the expected value monotonically decreases when
h(u) ≤ h′(u) for all the nodes u ∈ N(v). Since E[h′(v)] is
larger, then nodes that initially satisfy the inequality E[h(v)] ≤
h(v) may no longer do so since h′(v) = h(v). Thus, f(v, h) ≥
f(v, h′). Finally, we use the the third property to prove the
homogeneity axiom. Let Gu and Gv be the induced sub-graphs
based on node sets Vu = N(u)∪{u} and Vv = N(v)∪{v},
respectively. Since Gu and Gv are isomorphic with respect to
the decision function h and E[h(u)] = E[h(v)] holds due to
the third property, therefore f(u, h) = f(v, h). �

We consider the following neighborhood peer expectation
approach to compute E[h(v)]:

E[h(v)] =
yv
k1

[ ∑
u∈N(v)

yuh(u)
]
+
1− yv
k0

[ ∑
u∈N(v)

(1−yu)h(u)
]
,

where k0 =
∑

u∈N(v)(1 − yu), k1 =
∑

u∈N(v) yu, and
yu ∈ {0, 1}. Note that if the target outcome yv = 1, then
E[h(v)] depends only on the first term (i.e., other nodes u in its
neighborhood with yu = 1). On the other hand, if yv = 0, then

E[h(v)] depends only on the second term (i.e., other nodes u
in its neighborhood with yu = 0).

Intuitively, the neighborhood peer expectation considers the
average decision of all its neighbors with the same target
outcome. For example, if yu denotes whether paper u is
acceptable (based on its review ratings) and h(u) is its decision
for acceptance, then the expected value of h(u) depends on
the average decision for other papers in its neighborhood (e.g.,
papers co-authored by one of the authors or their collaborators)
with the same degree of acceptability. Since the expectation is
a monotonically increasing function of h(u) for its neighbors,
it can be trivially shown that the neighborhood peer expecta-
tion satisfies the first two properties given in Definition 1. The
third property holds since the bijection function guarantees that
the y and h values for the nodes in the neighborhoods of u
and v to be the same. Thus, their expected values, E[h(u)]
and E[h(v)], will also be the same.

III. FAIRNESS VISIBILITY

We now introduce fairness visibility, which extends the
fairness perception function to a group fairness measure.

Definition 2 (Fairness Visibility): Let Vc = {u | u ∈
V, u.Xp = c}, i.e., the set of nodes belonging to the protected
attribute group c. The fairness visibility of h for group c is
defined as follows:

FV (Vc) =

∑
v∈Vc

f(v, h)

|Vc|
(3)

Note that the fairness visibility for a given group c can be
viewed as the average fairness perception of all the nodes
that belong to the protected group c. For example, the group
c may refer to all the papers written by well-established
authors in the peer review network. To determine whether the
decision function h is fair, we compare the fairness visibility
for different groups of nodes using the definition below.

Definition 3 (Fairness Visibility Parity): The decision func-
tion h satisfies fairness visibility parity for Vc and Vc′ if

FV (Vc) = FV (Vc′) (4)

For example, in a peer review network, we may categorize
the papers into two groups, those written by famous authors
or those written by less established researchers. If the average
fairness perception for both groups of papers are the same, then
their fairness visibility parity holds. The larger the disparity,
the more biased are the decisions as perceived by the groups.

A standard approach for measuring group fairness is to
compute demographic parity, which is defined as follows:

Definition 4 (Demographic Parity): The decision function h
satisfies demographic parity for Vc and V ′c if

P (h(v) = 1 | v ∈ Vc) = P (h(v) = 1 | v ∈ V ′c ) (5)

Unlike fairness visibility parity, demographic parity is com-
puted for non-relational data since it ignores the neighborhood
structure of a node. In the context of peer review network, each
probability term in Eqn. (5) corresponds to the acceptance rate
of papers that belong to the group c or c′. For brevity, we



Fig. 2: The average rating distribution of submitted papers. The
red line indicates the threshold used for classifying papers as
acceptable (y = 1) or unacceptable (y = 0).

termed P (h(v) = 1|v ∈ Vc) as the acceptance probability for
the group Vc. The theorem below illustrates the relationship
between fairness visibility and acceptance probability.

Theorem 2: Assuming the network graph is connected and
the decision function h has non-zero true positive and false
positive rates, the fairness visibility of group Vc, based on the
neighborhood peer expectation, converges to the acceptance
probability for Vc as the δ-neighborhood size increases.

Proof : Given a node v, note that N(v) → V as the δ-
neighborhood expands since the network graph is assumed
to be connected. Furthermore, if the true positive and false
positive rates for h are non-zeros, then eventually E[h(v)] >
0,∀v ∈ V by expansion of δ-neighborhood. It follows that
f(v, h) = 1 if h(v) = 1 and f(v, h) = 0 if h(v) = 0. Thus
FV (Vc) converges to P (h(v) = 1|v ∈ Vc). �

Corollary 2.1: Given a connected network G, the decision
function h satisfies demographic parity if and only if there
exists a positive integer k such that for all δ ≥ k, fairness
visibility parity holds for h with the given δ-neighborhood.

IV. APPLICATION TO PEER REVIEW NETWORKS

This section presents a case study on the application of our
proposed approach to a peer review network dataset.

A. Data

We constructed a network from the peer review dataset col-
lected for the ICLR 2020 conference from the OpenReview.net
website. Specifically, for each submitted paper, we gathered
information about its title, abstract, list of authors and their
affiliations. In addition, the anonymized reviews and accep-
tance decision for each reviewed paper are also available. For
the ICLR 2020 conference, the number of submitted papers is
2594. However, 382 of the submissions were withdrawn. Our
analysis is therefore restricted to only 2212 papers which had
been reviewed. We use this information to create a network
that contains 2212 nodes, one for each peer-reviewed paper.

The total number of accepted papers, either as oral or poster
presentation, is 687 while the number of rejected papers is
1525. Thus, the conference acceptance rate is around 31%.

TABLE I: Summary distribution of acceptable and accepted
papers for the ICLR 2020 conference.

Acceptability
y = 1 y = 0

Acceptance h = 1 589 98
Decision h = 0 117 1408

(a) All papers

Acceptability Acceptability
y = 1 y = 0 y = 1 y = 0

Acceptance h = 1 94 13 h = 1 495 85
Decision h = 0 12 153 h = 0 105 1255

(b) Famous authors (c) Non-famous authors

Acceptability Acceptability
y = 1 y = 0 y = 1 y = 0

Acceptance h = 1 190 34 h = 1 399 64
Decision h = 0 21 328 h = 0 96 1080

(d) Top institutions (e) Non-top institutions

We use the acceptance decision of each paper as the decision
function h to evaluate fairness perception. We consider the ac-
ceptability of a paper, in terms of its average review ratings, as
the target outcome y. Our assumption here is that the reviewers
are rational-minded individuals, whose average ratings given
to a paper reflect the technical merits and acceptability level
of the paper. Figure 2 shows histograms of average review
ratings for the accepted and rejected papers. Given that the
number of accepted papers is 687, we choose an acceptability
threshold of 6 since it gives a number of acceptable papers
that has the closest match to the actual number of accepted
papers. With this threshold, all papers whose average ratings
are larger than 5 are considered acceptable, i.e., y = 1. Table
I(a) shows a confusion matrix comparing the acceptability of
the paper (y) and its acceptance decision (h).

The total number of authors who had submitted papers to
the conference was 6953. We were able to extract authorship
information for each paper, such as names and email addresses
of the co-authors, affiliation, gender, and scholarid by prepos-
sessing the the users profile page on the OpenReview website.
Based on this information we classified the submitted papers
into groups based on the following “protected” attributes:

• Famous author papers: If a paper includes one or more
famous authors, its protected attribute value is Xp = 0,
otherwise Xp = 1. We consider the top 500 authors with
highest h-index according to Google scholar1 as famous
authors. With this designation, 272 of the submissions
were classified as famous author papers.

• Top institution papers: If a paper has an author from a
top-10 university according to the csrankings.org web-
site2, then it its protected attribute value is Xp = 0,
otherwise Xp = 1. We found 573 of the submitted papers
have at least one author from a top institution.

1https://scholar.google.com/citations?view op=search authors&hl=en&
mauthors=label:machine learning

2http://csrankings.org/#/index?all



(a) Famous author (b) Top institution

Fig. 3: Degree distribution of nodes in peer-review network.

A breakdown on the number of acceptable and accepted or
rejected papers for each group is shown in Tables I(b)-(e). The
results given in these tables are consistent with previous re-
search, which had suggested that conference paper acceptance
decisions are generally biased in favor of famous authors or
papers written by authors from top institutions [9], [10]. In
particular, the results suggest that the chance for an acceptable
paper to be accepted is significantly higher for papers written
by famous authors (88.7%) or authors from a top institution
(90.1%) compared to those written by non-famous authors
(82.5%) or authors from lower ranked institutions (80.6%).
Papers by famous or top institution authors also have a higher
chance of getting their unacceptable papers accepted compared
to those by non-famous authors or authors from lower ranked
institutions, as reflected by their higher false positive rates.

We use the co-authorship information extracted from the
authors’ profile pages on OpenReview.net to construct the links
between the nodes in the network. We consider two papers
are linked if they share a common co-author or if the authors
have collaborated in the past. Figures 3-(a) and 3-(b) show the
degree distribution of the networks based on the famous author
and top institution protected attributes. The results suggest that
papers by famous authors or authors from top institutions tend
to have higher degree (on average) and a heavier tail in their
distribution compared to those written by non-famous authors
or authors from lower ranked institutions.

B. Fairness Perception

We applied the proposed fairness perception function to the
network and evaluated the proportion of papers who perceived
the paper acceptance decision to be fair or unfair. The results
are shown in Figure 4-(a) for the famous author protected
attribute. Despite the fact that papers by famous authors are
generally favored (i.e., have higher true positive and false
positive rates), the bar chart shown in Figure 4-(a) suggests
that the majority of them still perceived the decision to be
unfair. According to the fairness perception function, the main
source of their discontent is the unacceptable papers that were
rejected (i.e., the blue bar), which they believe should have
been accepted. For papers by non-famous authors, Figure 4-
(a) tells an opposite story as the majority of them perceived the
paper acceptance decisions to be fair. Although a significantly
large number of them still perceived the decision to reject their
unacceptable papers as unfair (see the blue bar for perceived
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Fig. 4: Assessment of network-centric fairness perception

Fig. 5: Comparison of E[h(v)] for rejected papers by famous
and non-famous authors.

unfair), the non-famous author papers are more amenable to
accepting the decision to reject their unacceptable papers (see
the proportion of blue bar for perceived fair).

The preceding results show a potential pitfall of using the
fairness perception function (with neighborhood size δ = 1).
Although the analysis of the confusion matrices given in
Table I suggests that the decision is biased in favor of papers
written by famous authors or top institutions, the non-famous
authors or those from non-top-tier institutions still perceived
the decisions to be fair! This can be explained as follows. Since
our fairness perception function depends on the computation of
E[h(v)], we examine the distribution of E[h(v)] for rejected
papers by famous and non-famous authors. The results are
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Fig. 6: Effect of neighborhood size on fairness visibility.

shown in Figure 5. More than 40% of the rejected papers
by non-famous authors have an expected value close to 0
compared to around 10% of the rejected papers by famous au-
thors, Based on the definition given in Eqn. (2), the larger the
proportion of papers with E[h(v)] close to zero, the more likely
they perceived the decision to be fair. One possible explanation
for the famous authors to have fewer proportion of papers
with E[h(v)] close to zero is due to the degree distribution
of their nodes (see Figure 3). Since papers by famous authors
generally have a higher degree, this increases the number of
nodes in their neighborhood, which in turn, results in a higher
expected value according to the formula used to compute the
neighborhood peer expectation. In contrast, many papers by
non-famous authors have low degree nodes, thus producing
more nodes with low E[h(v)].

C. Fairness Visibility

In this section, we will empirically evaluate the theoretical
results for fairness visibility, which provides a possible so-
lution to alleviate the potential pitfall of using our fairness
perception function. For this experiment, we vary the δ-
neighborhood size from 1 to 5 and compute the correspond-
ing fairness visibility measure with respect to the protected
attributes. The results are plotted in Figure 6.

For Figure 6-(a), observe that the fairness visibility of papers
by famous authors are initially lower than that for papers by
non-famous authors when δ = 1. This means that, on average,
the papers by famous authors have lower perceived fairness.
As δ increases, fairness visibility decreases for both groups
of papers. However, the rate of decrease is higher for papers
by non-famous authors. According to Theorem 2, under mild
assumption, fairness visibility will converge to the acceptance
probability of each subgroup of the protected attribute when
δ increases. Since the acceptance probability for Xp = 0
(famous authors) is higher than that for Xp = 1 (non-famous
authors), the fairness visibility for famous authors will be
higher for larger values of the neighborhood size, δ. This
provides a strategy to counter against the potential pitfall of
using fairness perception by expanding the neighborhood size
δ. Furthermore, it is worth noting that the peer review network
is not a connected graph. As a result, the fairness visibility
does not converge exactly to the acceptance probability for
each group, which is 0.2989 (for non-famous authors) and
0.3933 (for famous authors), when δ is sufficiently large.

A similar observation can be made when analyzing the
effect of increasing neighborhood size on fairness visibility
using top institution as protected attribute. As shown in Figure
6-(b), increasing δ leads to lower fairness visibility. However,
with sufficiently large δ, the fairness visibility for papers by
authors from top institutions is higher than that for papers by
authors from lower ranked institutions. By setting δ = 2, the
fairness visibility provides a good assessment on the true bias
of the paper acceptance decisions.

V. CONCLUSION

This paper presents a novel approach for algorithmic fair-
ness in network data. Motivated by the equity theory in social
science, we introduced the concept of fairness perception
as a local formulation of fairness and quantified this notion
through an axiomatic approach to analyze its properties. We
also showed how our proposed network-centric fairness per-
ception function can be extended to a group fairness measure
known as fairness visibility. We provided theoretical analysis
to demonstrate its relationship to demographic parity. Using
a peer-review network as case study, we also examined its
utility in terms of assessing the perception of fairness in paper
acceptance decisions. We also highlighted a potential pitfall
of using fairness visibility measure as it can be exploited
to mislead individuals into perceiving that the algorithmic
decisions are fair. Finally, we show how to alleviate the
problem by increasing the local neighborhood size.

ACKNOWLEDGMENT

This material is based upon work supported by the NSF
Program on Fairness in AI in collaboration with Amazon under
award #IIS-1939368. Any opinion, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation or Amazon.

REFERENCES

[1] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,”
ProPublica, May, vol. 23, 2016.

[2] B. J. Jefferson, “Predictable policing: Predictive crime mapping and
geographies of policing and race,” Annals of the American Association
of Geographers, vol. 108, no. 1, pp. 1–16, 2018.

[3] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, “Algo-
rithmic decision making and the cost of fairness,” in SIGKDD. ACM,
2017, pp. 797–806.

[4] A. Chouldechova, “Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments,” Big data, vol. 5, no. 2, pp.
153–163, 2017.

[5] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, “On the (im)
possibility of fairness,” arXiv preprint arXiv:1609.07236, 2016.
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